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Abstract

Counterfactual data augmentation (CDA) is a
promising strategy for improving hate speech
classification, but automating counterfactual
text generation remains a challenge. Strong
attribute control can distort meaning, while pri-
oritizing semantic preservation may weaken
attribute alignment. We propose Gradient-
assisted Energy-based Sampling (GENES)
for counterfactual text generation, which re-
stricts accepted samples to text meeting a
minimum BERTScore threshold and applies
gradient-assisted proposal generation to im-
prove attribute alignment. Compared to other
methods that solely rely on either prompting,
gradient-based steering, or energy-based sam-
pling, GENES is more likely to jointly satisfy
attribute alignment and semantic preservation
under the same base model. When applied to
data augmentation, GENES achieved the best
macro F1-score in two of three test sets, and
it improved robustness in detecting targeted
abusive language. In some cases, GENES
exceeded the performance of prompt-based
methods using a GPT-4o-mini, despite relying
on a smaller model (Flan-T5-Large). Based
on our cross-dataset evaluation, the average
performance of models aided by GENES is
the best among those methods that rely on a
smaller model (Flan-T5-L). These results po-
sition GENES as a possible lightweight and
open-source alternative.

Warning: this paper shows texts or examples
that may be offensive or upsetting.

1 Introduction

The rise of hate speech has driven the development
of datasets and machine learning models aimed
at mitigating harm. However, despite advances in
Large Language Models (LLMs), these models of-
ten suffer from poor generalizability or unintended
bias (Zhou et al., 2021), largely due to data-level
issues like imbalanced labels, skewed topics, and

token biases (Swamy et al., 2019; Nejadgholi and
Kiritchenko, 2020; Ramponi and Tonelli, 2022;
Bourgeade et al., 2023). Data augmentation is a
potential solution. However, approaches with a
purely generative goal do not directly mitigate bias
and may lead to inconsistent performance gains
(Wullach et al., 2021; Feng et al., 2021; Casula
and Tonelli, 2023). Ideally, augmentation is done
to break correlations between target variables and
irrelevant features.

In this regard, counterfactual data augmen-
tation (CDA) has emerged as a promising strat-
egy (Samory et al., 2021; Sen et al., 2022). CDA
involves generating synthetic data by modifying
observed texts to satisfy target attributes while
preserving their original meaning. Studies have
showed that training on both original and coun-
terfactual data help reduce the model’s reliance
on spurious correlations, improving out-of-domain
generalization (Kaushik et al., 2021; Madaan et al.,
2023; Zhang et al., 2023).

Despite its potential, implementing CDA in prac-
tice remains challenging. While human-edited
counterfactual texts continue to be the standard
(Sen et al., 2023), manual generation is time-
consuming and resource-intensive. One poten-
tial solution is to fine-tune an LLM for counter-
factual text generation. However, fine-tuning re-
quires large datasets and significant computational
resources. Alternatively, prompting LLMs could be
a lightweight solution. However, in the hate speech
domain, LLMs often fail to produce edits that reli-
ably flip the target attribute (Sen et al., 2023). This
is partly due to built-in safeguards against offensive
content (Wang et al., 2024) and the inherent diffi-
culty of generating text with subjective concepts
like abusiveness and offensiveness (Li et al., 2023).
Thus, there is a need for more reliable, resource-
efficient methods for counterfactual generation. In
the hate speech domain, related works have relied
primarily on manual, prompt-based, or fine-tuning

3529



approaches (Sen et al., 2021; Mostafazadeh Da-
vani et al., 2021; Hartvigsen et al., 2022; Zhang
et al., 2023) , leaving unexplored the potential of
plug-and-play controlled text generation methods.

To address these limitations, we investigated the
efficacy of plug-and-play controlled text genera-
tion methods (Madaan et al., 2023; Forristal et al.,
2023) as a means of counterfactual data augmen-
tation. Plug-and-play methods enable control over
specific attributes in generated text without requir-
ing extensive fine-tuning. By integrating smaller
classifiers or score functions, these approaches
facilitate controlled generation with minimal re-
source overhead.

Counterfactual generation must balance two key
goals: target attribute alignment and semantic sim-
ilarity. While plug-and-play methods can support
multi-attribute control, most existing techniques
were originally developed for general conditional
text generation rather than counterfactual text gen-
eration. As a result, they do not directly address the
dual requirements of reliably flipping a target at-
tribute while preserving meaning. Gradient-based
approaches such as PPLM (Dathathri et al., 2019)
excel at attribute control but provide limited mech-
anisms for semantic preservation, whereas energy-
based methods like Mix & Match (Mireshghallah
et al., 2022) allows similarity constraints but re-
quire careful tuning. These limitations motivated
us to modify and adapt plug-and-play methods for
counterfactual data augmentation, exploring what
changes are necessary to better satisfy the unique
goals of counterfactual text generation.

Our contributions are as follows:

• We proposed, Gradient-assisted Energy-based
Sampling, a modified sampling procedure to
tailor-fit energy-based methods for counterfac-
tual text generation.

• Our experiments showed that sampling from a
truncated energy-based model and implement-
ing gradient-assisted proposal generation help
increase the likelihood of generating counter-
factual texts that jointly satisfy attribute align-
ment and semantic preservation.

• Our experiments demonstrate that the pro-
posed method, despite relying on a smaller
model (Flan-T5-Large), improves the robust-
ness of the classifier, particularly in the de-
tection of targeted abusive language. In

some cases, it is even better than or on par
with prompt-based approaches using more ad-
vanced models (e.g., GPT-4o-mini), highlight-
ing its effectiveness as a lightweight alterna-
tive.

2 Preliminary

2.1 Counterfactual Text Generation

This study uses counterfactual text generation to
augment hate speech examples in the training data.
Counterfactual text generation involves modifying
an existing text to reflect a specific attribute while
preserving its core meaning. For example:

• Input text X: “The young and new swimmers
won so many medals in the Olympics.”

• Desired attribute a: Hate speech (Positive).

• Counterfactual text X̃: “Those young and new
swimmers f***king cheated and won medals
in the Olympics”

Here, the core meaning remains—swimmers win-
ning medals—but hate speech is introduced, mak-
ing it a counterfactual example for model training.
Formally, given an input text X and a desired at-
tribute a, such as hate speech, the goal is to gener-
ate a counterfactual text X̃ such that:

• Attribute alignment: X̃ reflects the desired
attribute a.

• Semantic preservation: X̃ retains the mean-
ing of the original text as closely as possible
(X ≈ X̃).

2.2 From Controlled Generation to Data
Augmentation

When appropriately adapted, plug-and-play con-
trolled text generation methods offer a lightweight
and automated solution for counterfactual data aug-
mentation. In the context of hate speech classifica-
tion, this entails transforming non-hateful (normal)
comments into counterfactual variants that reflect
hateful content. The process begins by sampling a
subset of normal comments from the training set.
For each selected instance, a controlled generation
method is applied to produce a candidate counter-
factual text conditioned on the target attribute (e.g.,
hate speech). Given that plug-and-play generation
methods do not guarantee perfect attribute control,
a filtering step is employed to retain the generated
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outputs with a high predicted probability of exhibit-
ing the target attribute, as determined by a clas-
sifier. These high-confidence counterfactuals are
then added to the training data. Finally, the down-
stream classifier is fine-tuned on the augmented
dataset to improve its generalization performance.

3 Gradient-assisted Energy-based
Sampling for Counterfactual Text
Generation

In this section, we introduce GENES (Gradient-
assisted Energy-based Sampling), a plug-and-
play framework for counterfactual text genera-
tion. As illustrated in Figure 1, GENES combines
energy-based sampling with a hard rejection cri-
terion and incorporates gradient-based steering to
guide the proposal distribution.

The remainder of this section is organized as
follows. We first outline how energy-based meth-
ods are commonly adapted for counterfactual text
generation. We then describe the modifications in-
troduced in GENES to enhance the efficiency and
effectiveness of the sampling strategy.

3.1 Energy-based Model for Counterfactual
Text Generation

Energy-based methods (Mireshghallah et al.,
2022; Forristal et al., 2023) provides a unified
framework to enforce many requirements at once
(e.g., fluency, style, semantic similarity, etc.), mak-
ing them well-suited for tasks like counterfactual
text generation. These methods define an energy-
based model (EBM) that rewards text which satis-
fies all required attributes. For counterfactual text
generation, the energy-based model is typically de-
fined with the following components:

1. Attribute-based energy component Ea(X̃)
This component quantifies the prominence of
a desired attribute a (e.g., hate speech). It is
defined as:

Ea(X̃) = − log(p(a|X̃)) (1)

where p(a|X̃) is the probability of attribute
a in a text X̃ . In this study, this probability
is computed using a transformer-based hate
speech classifier.

2. Similarity-based energy component
Es(X̃,X) This component quantifies the
energy associated with preserving the seman-
tics of the original text X . For this study,

we combined BERTScore (Zhang* et al.,
2020) for semantic similarity and BLEU-2
(Papineni et al., 2002) for word-level overlap:

Es(X̃,X) = −α log(BERT (X̃,X))

− (1− α) log(BLEU(X̃,X))

where α ∈ (0, 1) controls the tradeoff be-
tween semantic similarity and lexical overlap.
In this study, we set α = 0.75, prioritizing
model-based semantic similarity. This allows
some changes in phrasing and diction, as long
as the core meaning is retained. This is to
recognize that incorporating toxic language
(e.g., sarcasm) may require a different writing
style.

The final energy function for counterfactual text
generation is given by:

g(X̃) = exp{−β1Ea(X̃)− β2Es(X̃,X)} (2)

where β1 and β2 control the influence of attribute
alignment and semantic preservation. This formu-
lation enables the generation of counterfactual text.
It is similar to the examples used in the experiments
of Mireshghallah et al. (2022).

3.2 Sampling from Truncated EBM
In energy-based methods, controlled text gener-
ation is conducted by sampling texts from the
energy-based model. Typically, a Metropolis-
Hastings sampling method (Hastings, 1970) is used,
where a candidate text is sampled and accepted or
rejected based on the transition probability:

p(X̃;X) = min

(
1,

g(X̃)pLM (X|X̃)

g(X)pLM (X̃|X)

)
(3)

where g(X) denotes the energy function in Eq (2),
and pLM (X̃|X) is the likelihood under the lan-
guage model LM . This rule favors candidates that
are both fluent and aligned with target attributes.
Following Forristal et al. (2023), GENES uses Flan-
T5 (Chung et al., 2022) for proposal generation.

Although energy-based methods support multi-
objective control, balancing attribute alignment and
semantic similarity remains difficult. The two ob-
jectives are competing characteristics: enforcing
stronger alignment to the target attribute inevitably
reduces semantic similarity to the original text. In
addition, the lack of hard constraints means sam-
pling may generate text that over-optimizes one
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Figure 1: The left side depicts the sampling algorithm. Acceptance is based on the transistion probability p(X̃,X)
and a BERTScore threshold, restricting sampling within an acceptable region. The right side shows the details of
gradient-based steering applied in the proposal generation process.

component at the expense of the other. To address
this, we introduce a hard rejection rule based on a
minimum BERTScore threshold Bmin. A candi-
date is accepted only if it passes both the transition
probability and the similarity threshold, effectively
restricting sampling to a truncated EBM—i.e.,
the subset of proposals that remain semantically
close to the original text.

3.3 Gradient-Assisted Sampling
The additional restriction simplifies the multi-
objective problem. However, the stricter accep-
tance rule increases the rejection rate, making it
less efficient. To address this, we incorporate
gradient-based weighted decoding (Dathathri
et al., 2019; Madaan et al., 2023) to the proposal
generation process, increasing the chances of gen-
erating acceptable sequences.

At each decoding step t, the hidden state Ht

is computed based on prior tokens X̃<t and the
encoding representation of the prompt e:

Ht = Transformer(X̃<t, e)

A perturbation ∆Ht is applied to to the hidden
state Ht to steer the generation process towards the
desired attribute:

ôt = PredictionHead(Ht +∆Ht)

The perturbation ∆Ht is computed as a normalized
gradient step that minimizes the loss function L,
which consists of two terms: the attribute-based
energy component (Eq. (1)), and the Kullback-
Leibler divergence between the modified and origi-
nal token distributions:

L = Ea(X̃)−
T∑

t=1

DKL(π(ot)|π(ôt)) (4)

The gradient step, scaled by a learning rate γ ∈
(0, 1), increases the probability of attribute a while
keeping the modified token distribution π(ôt) close
to the original distribution π(ot). Minimizing the
loss does attribute control while maintain fluency
and/or semantic similarity (Dathathri et al., 2019;
Madaan et al., 2023).

4 Experiments and Results

4.1 Part 1: Quality of Counterfactual Text
Generation

4.1.1 Task and Data
For the first experiment, the goal is to character-
ize the quality of counterfactual text generation. A
sample of 300 normal comments from the CADD
dataset (Song et al., 2021) was used. These com-
ments are typically single sentences, ranging from

3532



5 to 35 words. We focused on three hierarchical at-
tributes from the CADD dataset: abusiveness (a1),
targeted (a2), and implicitness (a3). The hierarchy
follows:

1. Abusiveness (a1 = 1) indicates abusive
speech, i.e., offensive or toxic speech.

2. If abusive, the comment can be targeted
(a2 = 1) or untargeted (a2 = 0). Hate
speech is defined as both abusive and tar-
geted.

3. If abusive and targeted, the comment can be
further classified as with implicit hate (a3 =
1) or without implicit hate (a3 = 0).

The task in this experiment was to transform nor-
mal comments into counterfactual examples of ex-
plicit hate speech (a1 = 1, a2 = 1, a3 = 0).

To facilitate plug-and-play methods, a RoBERTa-
Large model (Liu et al., 2019) was finetuned sepa-
rately for each attribute, using a conditional train-
ing approach (see details in appendix A). For the
energy-based sampling, the attribute-based energy
component was defined as:

Ea(X̃) = − log(p(a1|X̃))

− log(p(a2|a1 = 1, X̃))

− log(p(a3|a1 = 1, a2 = 1, X̃))

This formulation allows one to control text gen-
eration with respect to the hierarchical attribute
structure.

4.1.2 Methods
We compared GENES against four baselines
for counterfactual text generation, all imple-
mented with the Flan-T5-Large model. First, 5-
shot Prompting serves as a reference method
where counterfactuals are generated directly from
prompts without any additional sampling or steer-
ing (see Appendix B). Second, Block M&M adapts
the Block Metropolis-Hastings energy-based sam-
pler of Forristal et al. (2023) to this task. Third,
CASPer applies the gradient-based steering ap-
proach proposed by Madaan et al. (2023), adapted
for Flan-T5-Large. Finally, we implemented a re-
stricted variant of Block M&M that implements
truncated sampling but not gradient-assisted pro-
posal generation. We refer to this method as Re-
stricted Block M&M (Res. M&M).

All methods produce a chain of candidate texts,
from which the highest-scoring sample is selected

using the energy function (Eq. 2). For CASPer,
which lacks a native energy model, the same energy
function is applied post hoc for ranking, following a
sample-and-rank strategy similar to Dathathri et al.
(2019).

4.1.3 Evaluation Metrics
We evaluated the quality of counterfactual texts
based on two core objectives: attribute alignment
and semantic preservation.

Flip rate was used to measure attribute align-
ment, defined as the percentage of counterfactuals
where the predicted label matches the target, based
on classifiers trained on CADD. A higher flip rate
indicates better attribute control.

For semantic preservation, we used BERTScore
and BLEU-2, where higher scores reflect closer
similarity to the original text.

Additionally, we conducted a subjective evalua-
tion using GPT-4o-mini, which rated each coun-
terfactual on fluency (1–5), similarity (1–5), and
toxicity (1–3) to provide complementary insights
(see Appendix C for details).

4.1.4 Results
Table 1 shows that plug-and-play methods signifi-
cantly improve attribute alignment over few-shot
prompting only. Low flip rate with prompting only
is likely due to safeguards against abusive content.
The flip rates for abusiveness (a1) increase at least
four times with any controlled generation method.
However, methods failed to control the implicitness
of hate speech. This is likely due to the weaker clas-
sifier for implicitness (a3). Its F1-score (59.85%)
is low compared to abusiveness (a1, 89.17%) and
being targeted (a2, 71.92%).

A trade-off exists between attribute control and
text similarity. CASPer and Block M&M has the
highest flip rate but lowest similarity (BERTScore
< 0.87, BLEU-2 < 0.20), while 5-shot prompting
preserves content best (BERTScore > 0.90, BLEU-
2 > 0.50) but weak at modifying attributes (flip rate
for a1 is at most 12%). Res. M&M and GENES
strike a more balanced performance. Res. M&M at-
tains stronger flip rates, while GENES offers better
semantic preservation. Overall, these results indi-
cate that prompting alone provides limited attribute
control, whereas plug-and-play methods such as
CASPer and Block M&M excel at attribute control
but fails at maintaining semantic similarity.

In addition to automatic metrics, we employed
GPT-4o-mini to evaluate the counterfactual outputs

3533



Method Flip Rate ↑ Text Similarity ↑ GPT-based Evaluation ↑ Cross Analysis ↑
a1 a1, a2 a1, a2, a3 BERT BLEU %Fluent %Similar %Toxic %Flipped %Flipped

(3 or up) (3 or up) (2 or 3) & Fluent & Similar

5-shot Prompt 11.00% 3.33% 0.67% 0.9414 0.5632 82.67% 75.00% 3.67% 11.33% 12.00%
CASPer 61.00% 48.33% 6.67% 0.8518 0.1230 34.00% 17.67% 36.00% 19.33% 12.00%
Block M&M 83.00% 71.33% 7.33% 0.8646 0.1825 36.00% 17.00% 44.00% 28.33% 22.33%
Res. M&M 54.00% 40.33% 3.00% 0.8943 0.3098 72.67% 48.33% 28.00% 42.00% 36.00%
GENES 49.67% 35.33% 3.33% 0.9079 0.4105 83.67% 68.33% 26.00% 43.67% 42.00%

Table 1: The flip rate is presented at different levels - abusiveness only (a1), hate speech (a1 and a2), and explicit
hate speech (a1, a2, a3). BERT refers to the average BERTScore and BLEU refers to the average BLEU-2 score
between the counterfactual text and the original comment. GPT-based evaluation refers to the subjective ratings of
fluency, similarity, and toxicity done by prompting GPT-4o-mini. Flipped cases are those detected as abusive by the
finetuned model or tagged as toxic by GPT. The cross analysis presents the percentage of flipped cases that are also
fluent or similar.

with respect to fluency, semantic similarity to the
original text, and perceived toxicity. The results,
reported in Table 1, corroborate the quantitative
findings. Few-shot prompting produces fluent and
highly similar texts but rarely alters the target at-
tributes. In contrast, CASPer and Block M&M
enforce attribute changes effectively, though at a
substantial cost to similarity (below 20%). Fluency
scores exhibit a positive correlation with similar-
ity, with GENES and Res. M&M yielding more
fluent outputs than CASPer and Block M&M. Fur-
thermore, the results indicate that even without
gradient-assisted sampling, applying a BERTScore
threshold contributes to improvements in output
quality.

The cross-analysis evaluates the percentage of
counterfactual texts that successfully flip the tar-
get attribute— either detected as abusive by the
trained classifier or tagged as possibly toxic by
GPT—while maintaining some level of similarity
to the original (BLEU-2 > 0.30 or GPT similarity
rating ≥ 3). In the Flipped & Similar category,
GENES outperform Res. M&M by around 6 per-
centage pts. and surpasses other methods by 20
to 30 percentage points. In terms of Flipped &
Fluent %, GENES also performed best. Overall,
GENES achieves the best balance among fluency,
similarity, and attribute alignment, making it ideal
for counterfactual text generation.

The reported results use hyperparameters that
best balance attribute alignment and semantic
preservation (details in Appendix D).

4.1.5 Patterns in Counterfactual Text
Generation

The researchers manually inspected the counter-
factual texts generated by different methods. This

Original: You could just stay in your state
5-shot Prompt: You could just stay in your state
CASPer: It’s okay to stay sick when you’re sh*t
Block M&M: are not welcome in America because of
your race
Res. M&M: Can’t you just move on in the United
States.
GENES: You could stay in your own state and be d*mb

Table 2: Examples of counterfactual hate speech gener-
ated by each method.

section summarizes the main patterns, with illustra-
tive examples provided in Table 2.

Few-shot prompting typically reproduces the
original input with only superficial edits such as
changes in word order, pronouns, or verb tense. For
example, the comment “Tried doing a search in
your email attached to your driver account...” was
minimally revised to “Tried doing a search in your
driver account email...”. In Table 2, prompting only
resulted in no changes. In contrast, CASPer and
Block M&M (unrestricted) strongly enforce the
target attribute but often sacrifice content preserva-
tion. CASPer frequently rewrites the text entirely.
For instance, “Thank you for creating this sub...”
was replaced with “You’re racist because you are
white...”. Similarly, unrestricted Block M&M trans-
formed “Kinda basic but I’m hyped for the PS5...”
into “...I hate people who don’t speak English...”.
These outputs introduce identity-related terms but
reduce coherence and similarity, as seen in Table 2.

By comparison, Restricted Block M&M and
GENES generally retain the structure or topic
while adding abusive terms or aggressive phras-
ing. For example, from the original “Scary how
y’all seems to think it’s ok for a unique card to
be in meta for 3 years”, Restricted M&M gener-
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ated “...You think it’s OK for a special card to be in
meta...”, while GENES produced “y’all are n*ts...I
have a card in meta...”. These revisions convey
hostility but do not consistently target protected
groups, aligning more with abusiveness than with
hate. Similarly, the GENES example in Table 2
demonstrates targeted offensiveness (e.g., directed
at “you”) without group-level targeting. Over-
all, truncated energy-based sampling and gradient-
assisted proposal generation enhance the quality of
counterfactual abusive text.

4.1.6 Effects of Hyperparameters

EBM Setting % Flipped & Similar

β1, β2, Bmin Res. M&M GENES
10, 5, 0.850 26.33% 35.00% (+8.67)
10, 5, 0.875 33.00% 38.00% (+5.00)
10, 10, 0.875 36.00% 42.00% (+6.00)

Table 3: This table focuses on the results for the explicit
hate speech case, where the number of iterations is 40
and the learning rate for gradient-based steering is 0.10.

Table 3 summarizes the impact of different
hyperparameter configurations. For the energy-
based model (EBM), assigning equal weights to
the attribute and similarity components (β1 = β2)
yielded a better balance than prioritizing the at-
tribute component alone (β1 > β2). Enforcing a
minimum BERTScore threshold (Bmin) improved
semantic preservation; lowering the threshold from
0.875 to 0.850 reduced the proportion of Flipped &
Similar texts, and removing it entirely is expected
to further degrade similarity.

Under identical EBM settings, GENES is better
than Res. M&M in Flipped & Similar percent-
age. This demonstrates the advantage of gradient-
assisted proposal generation in balancing attribute
control and semantic preservation. It helps increase
the percentage of flipped cases generated via trun-
cated sampling. In terms of text quality, the in-
troduction of gradient-based steering may add un-
necessary formatting artifacts or special symbols.
Nonetheless, this can be cleaned by improving
the prompt or energy components, post-processing,
and/or through re-ranking.

4.2 Part 2: Counterfactual Data
Augmentation

4.2.1 Task and Data
We evaluated counterfactual data augmentation un-
der an imbalanced setting using the CADD dataset,
with a baseline training set of 1,000 hate speech and
4,000 normal comments. For the task, we focused
on binary classification: hate speech (a = 1) vs.
non-hate speech (a = 0). A RoBERTa-Large clas-
sifier was trained on both baseline and augmented
data, treating the generated labels as ground truth.
Performance was compared to assess the impact of
each augmentation strategy.

4.2.2 Data Augmentation Strategies
Using each augmentation method, 800 synthetic
hate speech examples were added to the training
set. We compared four generation methods us-
ing Flan-T5-Large: Chain-of-Thought prompting
(Few-shot-Flan), GENES, Restricted Block M&M
(Res. M&M), Unrestricted Block M&M (Block
M&M), and CASPer. The base model was kept the
same for comparability. Among several tested con-
figurations of GENES (see Appendix E), we used
the setting with Bmin = 0.850 and β1 = β2 = 10,
as it provided the best results in-domain. For com-
parability, CASPer, Block M&M, and Res. M&M
were implemented under the corresponding hyper-
parameter settings.

To benchmark against stronger prompting-based
approaches, we additionally evaluated chain-of-
thought prompting (Few-shot-GPT) and the Tox-
iCraft framework (Hui et al., 2024), both im-
plemented using the GPT-4o-mini model. Toxi-
Craft is a prompt-based method designed to gen-
erate synthetic toxic or hate speech data. In our
setup, it was implemented by selecting 100 train-
ing samples as seed examples, with prompts con-
structed around manually selected attributes from
the CADD dataset.

4.2.3 Evaluation Metrics
We assessed the impact of counterfactual data aug-
mentation using recall, precision, and macro F1-
score. In-domain performance was evaluated on
the CADD test set, which includes only normal and
hate speech samples. Out-of-domain (OOD) perfor-
mance was measured on two Twitter-based bench-
marks: the Latent Hate Speech dataset (LatentHate)
(ElSherief et al., 2021) and the updated Offen-
sive Language Identification Dataset (AbuseEval)
(Zampieri et al., 2019; Tommaso Caselli, 2020),
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CADD AbuseEval LatentHate Average

Method R P Macro F1 (Diff. C.I.) R P Macro F1 (Diff. C.I.) R P Macro F1 (Diff. C.I.) Macro F1

Baseline 0.69 0.86 0.829 0.53 0.82 0.696 0.76 0.66 0.681 0.735
ToxiCraft 0.68 0.82 0.813 (-0.030, -0.002) 0.78 0.72 0.735 (0.020, 0.061) 0.83 0.61 0.636 (-0.063, -0.027) 0.728
Few-shot-GPT 0.72 0.82 0.826 (-0.016, 0.011) 0.81 0.71 0.739 (0.021, 0.067) 0.83 0.61 0.633 (-0.068, -0.029) 0.733
Few-shot-Flan 0.74 0.77 0.812 (-0.033, -0.002) 0.75 0.72 0.729 (0.011, 0.056) 0.91 0.58 0.585 (-0.119, -0.073) 0.709
CASPer 0.69 0.81 0.812 (-0.033, -0.003) 0.78 0.73 0.744 (0.026, 0.071) 0.91 0.57 0.583 (-0.121, -0.075) 0.713
Block M&M 0.71 0.82 0.823 (-0.019, 0.007) 0.77 0.73 0.745 (0.028, 0.070) 0.92 0.57 0.568 (-0.136, -0.091) 0.712
Res. M&M 0.70 0.83 0.821 (-0.021, 0.005) 0.75 0.73 0.741 (0.025, 0.067) 0.93 0.57 0.563 (-0.142, -0.095) 0.708
GENES 0.73 0.82 0.830 (-0.013, 0.015) 0.72 0.76 0.750 (0.036, 0.073) 0.93 0.57 0.578 (-0.125, -0.081) 0.719

Table 4: This table reports the recall (R), precision (P), and macro F1-score of the models on the CADD, AbuseEval,
and LatentHate datasets. It also show 95% confidence interval (C.I.) estimate for change in macro F1-score relative
to the baseline. Intervals containing zero (black) implies no sufficient statistical evidence to conclude difference.
Intervals above zero (blue) denotes a significant increase; intervals below zero (red) denotes a significant decrease.
Few-shot-GPT and ToxiCraft were implemented using GPT-4o-mini, while other methods were implemented using
Flan-T5-L

both of which differ in source and characteristics
from the Reddit-based CADD. Both of the out-of-
domain test sets were sampled such that there are
500 implicit cases, 500 explicit cases, and 1000
normal comments. We also used the average macro
F1-score across the three datasets as an indicator
of model robustness.

4.2.4 Results
Table 4 reports recall, precision, and macro F1-
scores across three test datasets: CADD, AbuseE-
val, and LatentHate.

Recall-Precision Trade-off: Data augmentation
generally increases recall while slightly reducing
precision, yielding better detection coverage at the
cost of some false positives. On AbuseEval and La-
tentHate, recall gains outweighed precision drops,
whereas changes in CADD were minimal (within
±0.05).

In-domain Performance (CADD): Changes in
macro F1-score were negligible. GENES achieved
the highest score with incremental improvement
over the baseline and other methods. Most of the
differences from baseline are not statistically sig-
nificant. This suggests augmentation primarily re-
balanced recall and precision rather than improving
overall accuracy. However, ToxiCraft, Few-shot-
Flan, and CASPer showed small but statistically
significant declines, indicating more noise are in-
troduced by the synthetic data.

Out-of-Domain Performance: The results re-
veal contrasting effects of data augmentation across
test sets. On AbuseEval, all methods improved
macro F1-score, with GENES again achieving the
highest score. Improvements across methods were

generally comparable, though prompt-based ap-
proaches (Few-shot and ToxiCraft) lagged behind
plug-and-play methods. On LatentHate, however,
macro F1-score declined despite recall gains, indi-
cating a rise in false positives. The decline was con-
sistent across methods but less severe for methods
dependent on GPT-4o-mini than those dependent
on a smaller Flan-T5-Large model.

Cross-Dataset Average: Because out-of-domain
effects vary by dataset, average macro F1-scores
must be interpreted with caution. GPT-based meth-
ods obtained the highest average, driven largely by
more stable performance on LatentHate. Never-
theless, GENES achieved the best macro F1-score
in two out of three datasets and the highest aver-
age among Flan-T5-Large methods, outperforming
Few-shot-Flan, CASPer, Block M&M, and Res.
M&M.

Why AbuseEval Improves but LatentHate De-
clines: The discrepancy stems from both distribu-
tional shift and annotation differences. LatentHate
diverges more strongly from CADD (MAUVE =
0.13, vs. 0.17 for AbuseEval) and seems to adopt
a narrower definition of hate speech, requiring at-
tacks on social groups through slurs, dehumaniza-
tion, or violent rhetoric (e.g., “jews are committing
white genocide,” “kill all jihadis,”). In contrast,
AbuseEval is dominated by generic insults and par-
tisan abuse (e.g., “you’re a clown,” “Liberals are so
pathetic”), which closely resemble counterfactual
edits generated by plug-and-play methods. As a
result, classifiers trained on CADD align well with
AbuseEval but misclassify LatentHate cases, where
positives requires targeting a social group. This
mismatch highlights the need for augmentation
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methods that capture group-directed and violence-
related patterns beyond generic abusiveness.

Follow-up Run, GENES with LatentHate Guid-
ance: To address this weakness, we tested
GENES with a classifier trained on LatentHate
to guide counterfactual generation. In this set-
ting, GENES achieved macro F1-scores of 0.823
on CADD, 0.757 on AbuseEval, and 0.654 on
LatentHate. While performance on CADD and
AbuseEval was comparable to the CADD-guided
version, LatentHate performance improved sub-
stantially, surpassing prompt-based methods via
GPT-4o-mini. The cross-dataset average also in-
creased to 0.745, the highest overall. These results
indicate that simulating dataset-specific character-
istics is feasible when a reliable classifier is avail-
able, and that GENES, even with a smaller model
(Flan-T5-Large), can perform more consistently
than prompting a larger model (GPT-4o-mini).

5 Related Works

CDA has been explored in hate speech detection,
but most studies have used prompting, fine-tuning,
and/or manual strategies to generate counterfac-
tual text (Wullach et al., 2021; Sen et al., 2021;
Mostafazadeh Davani et al., 2021; Hartvigsen et al.,
2022; Zhang et al., 2023). However, using plug-
and-play controlled text generation to enable CDA
remains underexplored.

There are two common categories of plug-and-
play controlled text generation: weighted decoding,
and energy-based methods. Weighted decoding
adjust token probabilities at inference to enforce
attributes (Dathathri et al., 2019; Yang and Klein,
2021; Madaan et al., 2021; Gu et al., 2022; Madaan
et al., 2023). PPLM (Dathathri et al., 2019) and
FUDGE (Yang and Klein, 2021) manipulate hidden
states or logits, but are not designed for counterfac-
tual generation. Gradient-based steering methods
such as GYC (Madaan et al., 2021) and CASPer
(Madaan et al., 2023) target counterfactual text but
lack the flexibility of energy-based approaches.

Energy-based models (EBMs) treat controlled
generation as sampling (Mireshghallah et al., 2022).
While M&M avoids gradient dependence, it is
slowed by token-level sampling. Block M&M
improves efficiency with utterance-level sampling
(Forristal et al., 2023), while COLD Decoding (Qin
et al., 2022) employs Langevin dynamics but re-
quires gradient access to energy functions. Our
method combines EBM flexibility with gradient-

based perturbation through a separate loss func-
tion. Other directions include prefix tuning; for
instance, MAGIC (Liu et al., 2024) controls corre-
lated attributes but requires extra training and data,
suggesting avenues for future exploration.

6 Conclusion

This work introduced Gradient-assisted Energy-
based Sampling (GENES), a modified sampling
procedure designed to adapt energy-based meth-
ods for counterfactual text generation. Our ex-
periments demonstrated that combining truncated
energy-based sampling with gradient-assisted pro-
posal generation improves the likelihood of produc-
ing counterfactual texts that jointly satisfy attribute
alignment and semantic preservation.

When applied for data augmentation, GENES
improved classifier robustness, particularly in de-
tecting targeted abusive language. Despite relying
on a smaller model (Flan-T5-Large), it performed
on par with, or in some cases better than, prompt-
based methods using more advanced models (e.g.,
GPT-4o-mini), underscoring its effectiveness as a
lightweight alternative.

The outcome was heterogeneous. Performance
on LatentHate was weaker, suggesting that current
methods may struggle with generating implicit hate
speech, which appears more important for improv-
ing robustness (Nejadgholi et al., 2022). Manual
inspection further showed that plug-and-play meth-
ods often inject explicit abusive terms or flip the
tone to an aggressive style, but do not always cap-
ture protected-group targeting. A follow-up run
that implements GENES guided by a LatentHate-
trained classifier partially mitigated this gap, show-
ing that simulating dataset-specific characteristics
can further enhance effectiveness. Overall, these
findings highlight the promise of lightweight plug-
and-play counterfactual generation for improving
hate speech detection. Future work should explore
more precise control over both the main attribute
(hate/abusiveness) and its specific target (e.g., so-
cial groups) to better capture the nuances of hate
speech.

7 Limitations

The effectiveness of GENES depends on the ac-
curacy of the discriminator, as weaker classifiers
reduce reliability of attribute control. Performance
may also vary across tasks and domains. While
preliminary manual inspection was conducted, a

3537



more extensive human evaluation is needed to bet-
ter assess the quality of generated counterfactuals.

The method further requires access to model
hidden states and gradients for gradient-based
weighted decoding, restricting applicability to
open-access models and necessitating compatibility
between the generator and discriminator. Although
this setup can scale to larger open models with
appropriate adjustments, it cannot be directly ap-
plied to black-box APIs, where only energy-based
sampling remains feasible.

From a computational perspective, weighted de-
coding alone is relatively efficient, but combining
it with energy-based sampling increases runtime,
making GENES the slowest among the methods
tested. On a sample of texts (5–75 words, average
24 words), average runtime per 25 iterations was
approximately 14 minutes for GENES, compared
to 13 minutes for Block M&M and 11 minutes
for CASPer. As with other iterative approaches,
GENES is more suitable for offline applications
such as data augmentation. Runtime can, how-
ever, be reduced through early stopping criteria, for
example by terminating once attribute probability
exceeds 0.60 and BERTScore passes a similarity
threshold rather than running the full number of
iterations.

8 Ethical Considerations

This research exclusively utilizes publicly available
datasets with appropriate licenses. All datasets
are publicly available and they are either released
under a Creative Commons (CC) license or an MIT
license, both permitting use for research purposes.
Similarly, all pre-trained models used in this study
(RoBERTa and Flan-T5) are open-access, ensuring
transparency and reproducibility.

While counterfactual data augmentation involves
generating synthetic comments, including hate
speech, all generated data are strictly used for re-
search purposes to improve hate speech classifica-
tion. Controlled text generation should never be
used for malicious activities. Furthermore, we em-
phasize that the generated texts do not reflect our
values or viewpoints.

9 Use of AI in this Research

AI tools were used solely to assist in improving the
writing clarity and language of this paper. Specifi-
cally, AI-assisted refinements were applied to en-
hance readability, coherence, and grammatical ac-

curacy. No AI-generated content was used to re-
place critical thinking or fabricate results. Ideas,
methodology, experimental design, analysis, and
conclusions were entirely conceived, developed,
and executed by the authors.
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A Fine-tuning and Computational
Resources

Fine-tuning was not required for the main language
model (Flan-T5-L). However, it was necessary to
finetune discriminators to guide text generation.
These discriminators were trained by fine-tuning a
RoBERTa-large model on an NVIDIA A100-PCIE-
40GB GPU server, which was also used for in-
ference and counterfactual text generation. Train-
ing of a single discriminator takes about 20-30
mins of GPU processing. The methods were imple-
mented primarily using PyTorch and Transformers
libraries.

Due to the hierarchical definition of attributes,
a conditional training approach was applied. The
classifier for abusiveness (a1) was trained on the
full dataset. The classifier for targeted (a2) was
trained only on abusive samples (a2|a1 = 1).
Lastly, the classifier for implicitness was trained
only on abusive and targeted samples (a3|a1 =
1, a2 = 1). The training configurations for the first
experiment are summarized in table (5).

Abusiveness a1
Number of Epochs 3
Batch Size 16
Learning Rate 1× 10−5

Weight Decay 0.01
Targeted a2|a1 = 1

Number of Epochs 10
Batch Size 16
Learning Rate 1× 10−6

Weight Decay 0.01
Implicitness a3|a1 = 1, a2 = 1

Number of Epochs 15
Batch Size 16
Learning Rate 1× 10−6

Weight Decay 0.01

Table 5: Overview of configurations used during the
training of models.

For the second experiment, the same configura-
tion was used for all versions of the training dataset
over 5 epochs, with a batch size of 16, learning rate
of 1 × 10−5, and a weight decay of 0.01. In all
cases, we used the AdamW optimizer (Loshchilov
and Hutter, 2019) for the finetuning process.

B Prompt Design

All methods used the same prompt structure as a
starting point. The prompt introduces the two main
task components, defines key terms, and provides

five handcrafted example sets. Each example con-
sists of a neutral comment and two counterfactual
variations—explicit and implicit hate speech. The
prompt design is partially based on the prompt of
Sen et al. (2023).

Design of Prompts in the Experiments:

Your task has two parts:
1. Add {target} hate speech into the
comment or rewrite it into a {target} hate
speech. {definition}
2. Make as few changes as possible by
adding, removing, or editing phrases.
Sentences should be realistic and fluent.

Examples:

‘comment’: That place is gorgeous
and seems pretty chill—such a lovely
neighborhood.
‘implicit’: That place is gorgeous and
seems pretty chill—not too many loud
gays.
‘explicit’: That place is gorgeous and seems
pretty chill—no LGBT sinners f***king
it...
{...4 more examples are shown...}

Perform the task on the ‘comment’ only.
‘comment’:{input}
‘{target}’:

The {target} placeholder represents either ‘ex-
plicit’ or ‘implicit’, depending on the target. The
{definition} placeholder is replaced with the cor-
responding definition:

• explicit: explicit hate speech is an obvious
expression of threat, or hostile intent, often
through derogatory words, profanity, and in-
sults.

• implicit: implicit hate speech is an indirect
expression of threat, or hostile intent, often
through sarcasm, irony, or stereotype.

Since implicitness was not specified in the sec-
ond experiment, the prompt was slightly modified.
The same examples were used, but the ‘implicit’
and ‘explicit’ labels were replaced with ‘hate’.
Also, a generic definition of hate speech was used.
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C GPT-based Evaluation

GPT-based evaluation was done by prompting GPT-
4o-mini to rate the counterfactual text with respect
to fluency, similarity, and toxicity. A fluency rating
of ≥ 3 indicates a fluent text (3 =‘understandable
but with noticeable errors and phrasing issues’). A
similarity rating of ≥ 3 indicates acceptable simi-
larity between the original and the counterfactual
(3 =‘different words were used, but the topic is
related to the reference’.). Lastly, a 3-pt toxicity
scale was used: 3 =‘clearly offensive, toxic, or
hateful’, 2 =‘possibly offensive, toxic, or hateful’,
1 =‘not offensive, toxic, nor hateful at all.’

The next set of figures shows the relationship
between the GPT-based evaluation and other quan-
titative metrics. These figures show that there is
some agreement between the subjective ratings of
GPT-4o-mini and the evaluation based on predicted
probabilities, BERTScore, and BLEU-2.

Figure 2: Comparison of BLEU-2 scores with GPT-
based ratings for Fluency and Similarity

Figure 2 compares fluency and similarity ratings
of GPT-generated text with the calculated BLEU-2
score between the original and counterfactual texts.
The results indicate a general correlation: higher
BLEU-2 scores are associated with higher fluency
and similarity ratings. Notably, a BLEU-2 score
of at least 0.25 most likely corresponds to fluency
(≥ 3) and similarity (≥ 3).

Similarly, figure 3 shows that a higher
BERTScore is associated with better fluency and
text similarity. It can be observed that a BERTScore
higher than 0.875 is most likley associated to fluent
(≥ 3) and similar (≥ 3) text.

Lastly, Figure 4 shows that GPT-assigned toxi-
city ratings of possibly toxic (= 2) or toxic (= 3)
are associated with higher predicted probabilities
for abusiveness and hate speech. Specifically, when
GPT detects some level of toxicity, the predicted

Figure 3: Comparison of BERTScore with GPT-based
ratings for Fluency and Similarity

Figure 4: Comparison of Predicted Probability for Abu-
siveness p(a1 = 1) and Hate Speech p(a1 = 1, a2 = 1)
with GPT-based ratings for toxicity.

probability of abusiveness is most likely ≥ 0.75,
while the predicted probability of hate speech is
most likely ≥ 0.50.

D Hyperparameter Selection

Refer to Table 6 for flip rates, Table 7 for text sim-
ilarity, Table 8 for GPT-based ratings, and Table
9 for cross-analysis. Notations: N (iterations), γ
(learning rate), β1 (attribute-based energy weight),
β2 (similarity-based energy weight), and Bmin

(minimum BERTScore).
For the first experiment, hyperparameter selec-

tion for the energy-based model followed a fixed
set of combinations inspired by Mireshghallah et al.
(2022).

Given three target attributes, we considered at
least 20 iterations, based on prior findings suggest-
ing 10 iterations were generally sufficient. To as-
sess improvements, we initially tested hyperparam-
eters over 20 iterations before increasing to 40 itera-
tions to examine its impact on flip rate. The results
showed improved attribute control at 40 iterations,
likely due to the task’s multi-aspect nature.
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Attribute Control
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin FR(a1)↑ FR(a1, a2)↑ FR(a1, a2, a3)↑ FR(a1)↑ FR(a1, a2)↑ FR(a1, a2, a3)↑
5-shot prompt - - - - - 12.00% 3.33% 0.67% 9.00% 4.67% 3.00%
CASPer 20 0.05 - - - 55.33% 40.00% 6.67% 66.33% 58.33% 45.67%

40 0.1 - - - 61.00% 48.33% 6.67% 80.67% 72.33% 64.33%
(Res.) Block M&M 20 - 10 5 0.850 54.00% 42.33% 8.33% 61.00% 53.67% 44.67%

20 - 10 10 0.875 40.33% 26.67% 4.67% 43.33% 32.33% 29.33%
40 - 10 5 0.850 75.67% 63.00% 7.33% 78.67% 70.67% 66.00%
40 - 10 5 0.875 53.33% 38.67% 4.33% 57.33% 47.67% 42.33%
40 - 10 10 0.875 54.00% 40.33% 3.00% 61.33% 50.33% 44.67%

GENES 20 0.1 10 5 0.850 46.00% 30.00% 3.33% 48.67% 37.33% 33.33%
20 0.1 10 10 0.875 35.00% 18.67% 2.33% 41.00% 31.00% 27.00%
40 0.1 10 5 0.850 56.67% 43.00% 5.67% 65.67% 59.67% 55.00%
40 0.1 10 5 0.875 48.33% 33.00% 3.67% 53.67% 42.33% 39.67%
40 0.1 10 10 0.875 50.00% 35.33% 3.33% 52.67% 42.00% 38.00%

Table 6: FR refers to flip rate. Three (3) attributes are being controlled - a1 (abusive), a2 (targeted), and a3
(implicitness). Joint expression of a1 & a2 is hate speech, while a1, a2, & a3 jointly refers to explicit/implicit hate.

To ensure comparability across methods,
GENES adopted the same configurations as Block
M&M, with the only modification being the addi-
tion of gradient perturbation (γ learning rate). For
the second experiment, the best settings in the first
experiment were used but it was implemented in
25 iterations only since only 1 attribute is being
controlled.

For learning rate selection, we tested γ =
0.1, 0.05, 0.01, ultimately selecting γ = 0.1 as it
produced observable changes in text fluency and
similarity. Learning rates below 0.05 had mini-
mal impact. Due to time constraints, CASPer was
tested with fewer configurations, but its hyperpa-
rameter selection was informed by those effective
for GENES.

E Other settings for GENES

We also experimented with alternative settings for
GENES. First, we varied the minimum BERTScore
threshold (Bmin) to examine the trade-off between
semantic similarity and text variability, while keep-
ing the energy weights fixed at β1 = β2 = 10,
the optimal setting identified in prior hyperparam-
eter tuning. We tested Bmin = 0.825, 0.850, and
0.875, with the best in-domain performance ob-
served at Bmin = 0.850. The corresponding macro
F1-scores were 0.816 (Bmin = 0.825), 0.830
(Bmin = 0.850), and 0.823 (Bmin = 0.875).

Second, we explored injecting additional charac-
teristics of unhealthy comments by incorporating a
classifier trained on the Unhealthy Comments Cor-
pus (UCC) (Price et al., 2020) alongside the CADD-
trained classifier. However, this setting did not
yield improvements over using the CADD-trained
classifier alone. This suggests that the performance

gap between AbuseEval and LatentHate cannot be
fully explained by implied attributes such as con-
descension, dismissiveness, or sarcasm (present in
UCC). As noted in the main discussion, a key factor
is the absence of specific group-level or trait-based
targets in the generated counterfactual texts.
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Semantic Similarity
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin BERTScore↑ BLEU-2↑ % No Edit↓ BERTScore↑ BLEU-2↑ % No Edit↓
5-shot prompt - - - - - 0.9622 0.6723 14.33% 0.9455 0.5482 9.00%
CASPer 20 0.05 - - - 0.8520 0.0780 0.00% 0.8419 0.0289 0.00%

40 0.1 - - - 0.8493 0.0577 0.00% 0.8427 0.0309 0.00%
(Res.) Block M&M 20 - 10 5 0.850 0.8693 0.1951 2.33% 0.8617 0.1195 2.33%

20 - 10 10 0.875 0.8910 0.3175 1.00% 0.8864 0.2683 0.67%
40 - 10 5 0.850 0.8645 0.1543 0.67% 0.8582 0.1024 2.00%
40 - 10 5 0.875 0.8844 0.2716 4.00% 0.8817 0.2329 6.33%
40 - 10 10 0.875 0.8850 0.2770 0.33% 0.8821 0.2538 1.33%

GENES 20 0.1 10 5 0.850 0.8973 0.3297 3.33% 0.8731 0.2265 4.33%
20 0.1 10 10 0.875 0.9104 0.4205 0.67% 0.8948 0.3380 1.67%
40 0.1 10 5 0.850 0.8808 0.2736 1.00% 0.8673 0.1758 1.00%
40 0.1 10 5 0.875 0.8927 0.3376 4.67% 0.8861 0.2889 3.67%
40 0.1 10 10 0.875 0.8992 0.3780 1.67% 0.8872 0.2968 0.67%

Table 7: The BERTScore and BLEU-2 measures the similarity between the original and counterfactual texts. The
’% No Edit’ is the percentage where the method failed to make any changes to the original text.

GPT-based Evaluation
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

N γ β1 β2 Bmin % Fluent↑ % Similar↑ % Toxic↑ % Fluent↑ % Similar↑ % Toxic↑
5-shot prompt - - - - - 82.67% 75.00% 3.67% 86.33% 73.00% 2.33%
CASPer 20 0.05 - - - 43.67% 22.33% 30.00% 28.00% 8.00% 33.00%

40 0.1 - - - 34.00% 17.67% 36.00% 25.00% 9.00% 45.33%
(Res.) Block M&M 40 - 10 5 0.850 49.33% 28.00% 43.00% 46.33% 18.33% 44.33%

40 - 10 5 0.875 69.00% 43.00% 28.67% 65.00% 35.00% 35.00%
40 - 10 10 0.875 72.67% 48.33% 28.00% 68.33% 39.67% 34.67%

GENES 40 0.1 10 5 0.850 65.67% 45.00% 32.33% 56.00% 31.33% 39.00%
40 0.1 10 5 0.875 77.67% 59.00% 32.33% 76.00% 46.67% 29.67%
40 0.1 10 10 0.875 83.67% 68.33% 26.00% 77.00% 57.00% 28.33%

Table 8: This table shows the summary of additional evaluations using gpt-4o-mini as a model-based rater. Fluent
rating is ≥ 3, and a similar rating is ≥ 3. A case is toxic if the rating is 2 (possibly toxic) or 3 (toxic).

Attribute Control vis-a-vis Text Quality
Method Hyperparameters Case 1: Explicit Hate Speech Case 2: Implicit Hate Speech

% Toxic % Toxic % Toxic % Toxic % Toxic % Toxic
N γ β1 β2 Bmin (All) and Fluent and Similar (All) and Fluent and Similar

5-shot prompt - - - - - 13.67% 12.33% 12.00% 10.00% 9.33% 8.67%
CASPer 20 0.05 - - - 61.00% 19.67% 12.00% 69.00% 16.33% 5.67%

40 0.1 - - - 68.33% 19.33% 13.00% 84.67% 18.33% 6.67%
(Res.) Block M&M 40 - 10 5 0.850 81.00% 37.00% 26.33% 82.00% 33.67% 17.00%

40 - 10 5 0.875 61.00% 36.67% 33.00% 63.33% 35.33% 29.00%
40 - 10 10 0.875 63.00% 42.00% 36.00% 64.67% 39.00% 34.33%

GENES 40 0.1 10 5 0.850 62.00% 37.00% 35.00% 68.67% 34.00% 23.00%
40 0.1 10 5 0.875 55.67% 39.00% 38.00% 58.33% 38.67% 34.00%
40 0.1 10 10 0.875 55.00% 44.00% 42.00% 57.00% 38.33% 37.33%

Table 9: This table summarizes how each method is able to satisfy both constraints of counterfactual text generation.
For GPT-based ratings, settings with better results were prioritized.
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