
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3512–3528
November 4-9, 2025 ©2025 Association for Computational Linguistics

LNE-Blocking: An Efficient Framework for Contamination Mitigation
Evaluation on Large Language Models

Ruijie Hou1*, Yueyang Jiao1*,
Hanxu Hu3†, Yingming Li1, Wai Lam4, Huajian Zhang5, and Hongyuan Lu2†

1Zhejiang University 2FaceMind Corporation
3University of Zurich 4The Chinese University of Hong Kong 5Westlake University

ruijie.hou@zju.edu.cn, hongyuanlu@outlook.com

Abstract

The problem of data contamination is now al-
most inevitable during the development of large
language models (LLMs), with the training data
commonly integrating those evaluation bench-
marks even unintentionally. This problem sub-
sequently makes it hard to benchmark LLMs
fairly. Instead of constructing contamination-
free datasets (quite hard), we propose a novel
framework, LNE-Blocking, to restore model
performance prior to contamination on poten-
tially leaked datasets. Our framework consists
of two components: contamination detection
and disruption operation. For the prompt, the
framework first uses the contamination detec-
tion method, LNE, to assess the extent of con-
tamination in the model. Based on this, it ad-
justs the intensity of the disruption operation,
Blocking, to elicit non-memorized responses
from the model. Our framework is the first to
efficiently restore the model’s greedy decod-
ing performance. This comes with a strong
performance on multiple datasets with poten-
tial leakage risks, and it consistently achieves
stable recovery results across different mod-
els and varying levels of data contamination.
We release the code at https://github.com/
RuijieH/LNE-Blocking to facilitate research.

1 Introduction

In the era of fierce development with large lan-
guage models (LLMs), it has been a popular re-
search topic across many areas such as chain-of-
thought reasoning (Wang et al., 2023; Wei et al.,
2024), machine translation (Lu et al., 2023; Zhu
et al., 2024a), code generation (Li et al., 2023a;
Zhang et al., 2023), and even spatial reasoning (Hu
et al., 2024). Despite the fact that LLMs are usually
strong on many tasks, Natural Language Process-
ing (NLP) practitioners secretly face a common

*Both authors contributed equally to this work.
†Hongyuan Lu and Hanxu Hu are corresponding authors.

Prompt:

Ground Truth: return len(set(string.lower()))

Greedy: return len(set(string.lower()))

LNE-Blocking: return len({character.lower() for character in string})

Continuations:

def count_distinct_characters(string: str):
""" find out how many distinct characters
(regardless of case) does it consist of """

0.70 _return
0.20 return
0.05 _ret
0.04 _if

0.00_return
0.66 return
0.16 _ret
0.15 _if

0.60 _len(set
0.20 len({
0.10 _not
0.05 _

0.00 _len(set
0.50 len({
0.25 _not
0.13 _

LLM
Decoding

LLM
Decoding

…

…

…

…

LLM
Infer

Count(Blocking)=2

Blocking Blocking

LNE-Blocking:

Disrupt Generation

Contamination Detection

Figure 1: Illustration of our proposed LNE-Blocking
framework. The whole framework decouples contamina-
tion mitigation evaluation into two components: contam-
ination detection and disruption operations. The contam-
ination detection step determines the number of Block-
ing operations to be performed, which are then executed
to guide the model in generating a non-memorized re-
sponse for the current sample.

problem called data contamination when conduct-
ing NLP research and engineering which frequently
relies on benchmark data that could be potentially
contaminated in LLMs.

Data contamination, also called data leakage, oc-
curs when the test data is inadvertently included
in the model’s training data (Magar and Schwartz,
2022; Golchin and Surdeanu, 2024). This causes
the model to perform exceptionally well on the
leaked test data. Due to the immense scale and
diverse origins of the pre-trained datasets used for
LLMs, even when developers do not intentionally

3512

https://github.com/RuijieH/LNE-Blocking
https://github.com/RuijieH/LNE-Blocking

introduce contamination, LLMs are more vulnera-
ble to data contamination.

As a result, preventing benchmark data con-
tamination in LLMs becomes highly challenging.
This prevents NLP developers and researchers
from honestly judging the LLMs. To conduct
the contamination-free evaluation of models, prior
works (Zhu et al., 2024b; Li et al., 2024; Zhang
et al., 2024) have assessed model performance by
creating or reconstructing new datasets that are free
from leakage. However, these approaches are as-
sociated with significant labor costs and do not
completely eliminate the risk of these datasets be-
ing inadvertently leaked in newly released mod-
els. One less studied problem, defined as con-
tamination mitigation evaluation, is conducting
the contamination-free evaluation of models on
datasets already at risk of leakage.

For contamination mitigation evaluation,
TED (Dong et al., 2024) spends significant time
sampling and generating multiple responses on ex-
isting benchmarks, then removes similar responses
to assess the model’s genuine performance under
sampling methods. In contrast, this paper proposes
the LNE-Blocking framework, which adaptively
restores the model’s true performance under
varying contamination levels. It operates online
during generation, without relying on sampled
responses, and directly assesses the model’s
genuine performance under greedy decoding.

Specifically, the LNE-Blocking framework ex-
plicitly decouples contamination mitigation into
contamination detection and disruption operations,
as shown in Figure 1. The contamination detec-
tion strategy, LNE (Length Normalized Entropy),
determines the degree of contamination based on
the model’s output, while the disruption operation,
Blocking, intervenes in the original generation pro-
cess by suppressing the token with the highest re-
sponse probability during decoding. Overall, the
framework adjusts the frequency of disruption op-
erations based on the model’s contamination level,
prompting the model to generate non-memorized
content for the current sample. To the best of our
knowledge, we are the first to propose a method
for assessing the model’s genuine performance un-
der greedy decoding. Additionally, experiments
demonstrate that our approach is highly robust
across different tasks and models, even with vary-
ing levels of contamination.

To this end, we make three key contributions:

• We propose the LNE-Blocking framework,
which decouples contamination mitigation
into contamination detection and disrup-
tion operations, enabling contamination-free
model evaluation without relying on sampling
methods.

• For the contamination mitigation evaluation
task, we are the first to assess the model’s
genuine performance under greedy decoding,
addressing a key gap in current research.

• Extensive experiments demonstrate that the
proposed approach is highly robust across a
wide range of tasks and LLMs.

2 Motivation

Contaminated models often exhibit a high lexical
overlap between their output and the ground truth,
which is indicative of memory phenomena (Magar
and Schwartz, 2022). As shown in Figure 2, as
the degree of contamination increases, the overlap
between the output generated by greedy decoding
and the ground truth significantly rises. This be-
haviour reflects the model’s tendency to memorize
the training data rather than generalizing it. One
solution (Dong et al., 2024) to assess the genuine
performance of such contaminated models involves
generating diverse outputs through multiple sam-
pling and filtering out similar samples. Then, they
expect to derive non-memorized answers that stem
from the model’s generalization abilities, rather
than its memorized knowledge.

However, answers based on memory phenom-
ena tend to have a very high likelihood within
the decoding process, meaning that obtaining non-
memorized, generalized answers requires a large
number of samplings. TED (Dong et al., 2024)
has found that at least 50 samples are necessary to
achieve satisfactory performance estimates. This
process is both highly random and time-consuming.
Nevertheless, the inherent randomness of the sam-
pling process presents a fundamental limitation: it
makes consistent generation of non-memorized an-
swers across models with varying contamination
levels challenging, even when employing the rec-
ommended 50 sampling attempts. Particularly for
heavily contaminated models, this approach fails
because memorized outputs dominate the sampling
distribution, and the probability of obtaining suffi-
cient non-memorized samples is critically low for
reliable evaluation. This fundamental limitation is

3513

Mild Cont. Moderate Cont. Heavy Cont.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

U
G

E-
L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Le
ng

th
 N

or
m

al
iz

ed
 E

nt
ro

py

Greedy Output
Fixed Blocking 1

Fixed Blocking 2
Fixed Blocking 5

LNE

Figure 2: An example showing the changes in Length-
Normalized Entropy (LNE), and the impact of the
Blocking operations, on model memory phenomena
(ROUGE-L), in models with varying levels of contam-
ination, where "Cont." is an abbreviation of contami-
nation. Fixed Blocking 1, 2, and 5 refer to the fixed
number of Blocking operations applied for any given
prompt.

empirically demonstrated in our subsequent experi-
ments in section 6.1.2.

To address this limitation, a controlled genera-
tion strategy is required to elicit non-memorized
responses from the model. When interrupted dur-
ing question answering, the human could discard
rote-memorized responses and reformulate answers
based on a deeper conceptual understanding of the
question. Inspired by this, we propose the Block-
ing operation, a technique that suppresses the gen-
eration of the highest-probability tokens during
decoding, to simulate the interruption mechanism
observed in human response patterns. It can be
controllably triggered online during decoding, ef-
fectively overcoming the inherent randomness and
time-intensive nature of the sampling method.

Blocking reduces the reliance on memorized con-
tent and encourages the model to generate non-
memorized answers, as demonstrated by the re-
duction in ROUGE-L (Lin, 2004) similarity be-
tween the output after applying the Blocking opera-
tion and the memorized output (denoted as Greedy
Output), as in Figure 2. Blocking enables the
model to produce more diverse and generalized
outputs, without sacrificing quality. For exam-
ple, the output of the contaminated model is re-
turn len(set(string.lower())). If the model is good
at coding, after applying the Blocking operation,
the model could generate an equivalent piece of
code using its generalization ability, such as return

len({character.lower() for character in string})1.
Additionally, as shown in Figure 2, models with

different contamination levels exhibit varying de-
grees of memorization, and the impact of the Block-
ing operation varies accordingly. To effectively
disrupt memorized responses, models with varying
contamination levels require different intensities of
Blocking. In particular, as the level of contamina-
tion increases, the intensity of the Blocking must
be increased to counteract the effects of memory.

A natural idea, then, is to explicitly combine the
contamination detection strategy and the Blocking
operation into a unified framework, LNE-Blocking.
In this framework, the first step is to detect the de-
gree of contamination, and then use this informa-
tion to adjust the intensity of Blocking, ensuring
that memorization is disrupted without negatively
affecting performance. This framework allows for
a more targeted and adaptive application of Block-
ing across different contamination levels. And, we
propose using Length Normalized Entropy (LNE)
as the contamination detection strategy. A heavily
contaminated model will exhibit greater certainty
in its token predictions. As a result, the entropy
in the probability distribution at each decoding po-
sition becomes lower as the model grows more
confident in generating memorized content. As
shown in Figure 2, with increased contamination,
the generated text becomes closer to the ground
truth, leading to a corresponding decrease in LNE.

3 Related Work

Data Contamination Detection The issue of
data contamination in large language models
(LLMs) gained attention in the context of GPT-3
(Brown, 2020), where the vast pre-training corpus
inevitably overlapped with evaluation benchmarks.
Meanwhile, as models are iteratively improved by
using data coming from users, they overlook the
problem of indirect data leakage (Balloccu et al.,
2024). Following this, some work (Pan et al., 2020;
Zhou et al., 2023; Jacovi et al., 2023; Dodge et al.,
2021) exposed the serious consequences of data
contamination and urged attention to this problem.
To address this, Min-k% Prob (Shi et al., 2024) cal-
culates the average of the smallest k% probabilities
of generated tokens and flags potential contami-
nation if this average exceeds a certain threshold.
Similarly, perplexity(Li, 2023) is also used to de-
tect contamination, assuming that leaked data tends

1We provide additional examples in the Appendix F.

3514

to produce lower perplexity scores.

Contamination Free Evaluation To evaluate
LLMs in the context of potential data contamina-
tion, several methodologies generate new datasets
that do not overlap with the model’s training
data, adopting a dataset-centric perspective. GSM-
Plus(Li et al., 2024) ensures that benchmark data
is absent from the model’s training set by recon-
structing the original GSM8k dataset (Cobbe et al.,
2021) through the introduction of perturbations.
GSM1k(Zhang et al., 2024) involves the creation of
a completely new dataset from scratch. It remains
private and is only made publicly available at a
future point in time. CleanEval(Zhu et al., 2024b)
proposed paraphrasing contaminated datasets using
LLMs for evaluation. However, these approaches
are associated with significant labor costs and do
not fully eliminate the risk of these datasets being
inadvertently leaked in newly released models.

One less explored but important problem is how
to quantitatively assess the performance of mod-
els using datasets that have already been leaked.
Some methods (Bai et al., 2023; Yu et al., 2024;
Li et al., 2025) employ external LLMs as examin-
ers to evaluate the performance of the target LLM.
These frameworks typically necessitate assessing
a broad spectrum of dimensions for each input in
order to comprehensively measure the model’s un-
derstanding, which often incurs substantial com-
putational and implementation overhead. Unlike
approaches that rely on external LLMs, TED (Dong
et al., 2024) filters non-memorized samples through
multiple sampling rounds, using these samples for
contamination mitigation evaluation. However, the
sampling process is both highly random and time-
consuming. LNE-Blocking can be controllably
triggered online during the decoding process, ef-
fectively overcoming the inherent randomness and
time-intensive nature of the sampling method.

4 Methodology

The section discusses how to utilize LNE for assess-
ing the degree of contamination, how to employ
Blocking for disruption, and how to integrate both
methods to construct a framework for contamina-
tion mitigation evaluation.

4.1 LNE for Assessing the Degree of
Contamination

Given a prompt x and a language model M , our
goal is to assess the degree of contamination of M

with respect to this prompt. First, we perform a
greedy decoding inference to obtain ygreedy. The
greedy decoding process can be expressed as:

y
greedy
i = argmax

j∈V
(M(x, y

greedy
1:i−1)) (1)

where y
greedy
i represents the token at position i in

the generated sequence, and M(x, y
greedy
1:i−1) denotes

the logits output of the model M , which is a vector
of dimension RV , with V representing the size of
the vocabulary. The token y

greedy
i is selected by

identifying the index j that maximizes the corre-
sponding logit value.

Then, based on the probability distribution at
each position during the inference that generates
ygreedy with length N , we calculate the Length Nor-
malized Entropy (LNE) as:

LNE(M,x) =
1

N

N∑

i=1

H
(
yi|M,x, ygreedy

1:i−1

)

= − 1

N

N∑

i=1

V∑

j

p (yi = j) log p (yi = j)

(2)

where H(yi|M,x, ygreedy1:i−1) represents the en-
tropy at the i-th position during the greedy decod-
ing process, p (yi = j) denotes the probability of
the model generating the j-th token from the vo-
cabulary Vocab at the i-th position, with V repre-
senting the size of the token vocabulary.

As the degree of contamination of the model in-
creases, the LNE(M,x) decreases. We normalize
it to LNE(M,x), as shown in Equation (3), so that
it is proportional to the degree of contamination,
with the normalized value2 lying within the range
of 0 to 1.

LNE(M,x) = 1− LNE(M,x)

2
(3)

4.2 Blocking for Disrupting Generation
To disrupt the generation of LLMs, we propose
the blocking operation during the decoding pro-
cess, which suppresses the token with the highest
probability at a certain position during decoding.

Specifically, for a model M and a prompt x,
when the Blocking operation is applied to the i-th
position during the decoding process, the resulting
response is defined as:

yBlocking(M,x,(i)) = (y
greedy
1:i−1 , y

block
i , y

greedy
i+1:l) (4)

2We divide LNE(M,x) by 2 primarily because we ob-
served that, for different models, the range of LNE generally
falls between 0 and 2.

3515

where l is the length of the resulting response. Dur-
ing the process, each position before the i-th ap-
plies greedy decoding using Equation (1). At the
i-th position, the token with the highest probabil-
ity from the distribution, modified by the Blocking
operation, is selected for generation, as follows:

yblock
i = argmax(Mblock(x, y

greedy
1:i−1)) (5)

To obtain Mblock(x, y
greedy
1:i−1), the logits output with

the maximum value suppressed, the process in-
volves first identifying the index of the maximum
value and then suppressing it:

Mblock(x,y
greedy
1:i−1)←M(x,y

greedy
1:i−1),

Mblock(x,y
greedy
1:i−1)[argmaxj∈V (Mblock(x,y

greedy
1:i−1))]← −∞

(6)

After the generation of the i-th token, the subse-
quent tokens are still generated using greedy de-
coding:

y
greedy
i+1 = argmax

j∈V
(M(x, (y

greedy
1:i−1 , y

block
i))) (7)

4.3 LNE-Blocking for Contamination
Mitigation Evaluation

For models with different contamination levels,
varying Blocking intensities are required during
generation to disrupt the model’s memorization, re-
flecting the original capabilities of the models. This
section will sequentially explain how to control the
Blocking intensity and how to determine it based
on the level of contamination.

4.3.1 Multi Blocking operations for
Disrupting Memorization

For highly contaminated data, only performing the
Blocking operation once during generation is not
sufficient to disrupt its memorization, requiring
more Blocking operations to increase disruption
intensity. Meanwhile, Blocking is applied earlier
in the generation process to interrupt the generation
of memorized answer tokens as early as possible,
ensuring that the final response is more likely to
differ significantly from the standard memorized
answer. It provides the model with sufficient room
to adjust its response logic effectively. Another
reason is that a study (Wang and Zhou, 2024) has
shown that performing the sampling operation at
the beginning of generation can trigger the model’s
chain-of-thought (COT) reasoning, reflecting its
generalization ability.

Specifically, for a model M and a prompt x,
when the Blocking operation is applied n times
starting from the first token during decoding, the
resulting response is defined as:

yBlocking(M,x,(1,2,...n)) = (yblock
1:n , y

greedy
n+1:l) (8)

First, for i ≤ n, we define yblock
i as:

yblock
i = argmax

j∈V
Mblock(x, y

block
1:i−1). (9)

Then, for i > n, the remaining tokens are generated
as:

y
greedy
i = argmax

j∈V
Mblock(x, (y

block
1:n , y

greedy
n:i−1)).

(10)

4.3.2 Determine the disrupting intensity
based on the LNE

The Blocking intensity is determined based on
the contamination level, detected by LNE(M,x).
Given a prompt x and model M , LNE(M,x) is
first obtained through greedy decoding using Equa-
tion (3), and then the Blocking intensity corre-
sponding to both the prompt and the model is
controlled by determining the number of Blocking
operations using LNE(M,x) and Threshold_Task
jointly.

Specifically, the number of Blocking operations
is defined as:

Cnt(M,x) = round(LNE(M,x) ∗ Threshold_Task)
(11)

where Threshold_Task is a hyperparameter de-
pendent on the specified task. On each task, each
data-model pair undergoes greedy generation once,
and the corresponding number of Blocking opera-
tions can be determined using Equation (11).

Since the range of LNE(M,x) is between 0
and 1, for heavily polluted (memorized) samples,
LNE(M,x) can reach its maximum value of 1.
In this case, the corresponding number of Block-
ing operations, Cnt(M,x), also attains its maxi-
mum value, Threshold_Task3. Therefore, Thresh-
old_Task acquires the following practical interpre-
tation: it represents the maximum number of times
a sample can be blocked under the given task. No-
tably, this hyperparameter depends on the evalua-
tion task but is independent of the model. There-
fore, when the evaluation task is known but the
contamination level of the model is unknown, this
threshold can still be determined.

3We detail in the Appendix E how the hyperparameter
Threshold_Task is determined for different tasks.

3516

4.3.3 Contamination Mitigation Evaluation
After performing greedy generation once to obtain
LNE(M,x) using Equation (3), we calculate the
number of Blocking operations, Cnt(M,x), using
Equation (11). Then, we perform the Blocking op-
eration Cnt(M,x) times to disrupt memorization.
The resulting output is defined as:

yLNE-Blocking = yBlocking(M,x,(1,2,...Cnt(M,x)))

(12)
Finally, for an evaluation metric E ,
E(yLNE-Blocking) is used instead of E(ygreedy)
to evaluate the model’s performance after the
contamination mitigation under greedy decoding.

The LNE-Blocking pseudocode for contamina-
tion mitigation evaluation is shown in Algorithm 1.

Algorithm 1 The pseudocode of LNE-Blocking

Require: LLM M , the prompt of test data x,
evaluation metric E , and hyper-parameter
Threshold_Task.

Ensure: Genuine Performance under greedy de-
coding ep.

1: Obtain ygreedy from M with the prompt x via
Equation (1).

2: Get the LNE(M,x) via Equation (3).
3: Determine the execution count of the Blocking

operation, Cnt(M,x), use Equation (11).
4: Obtain yLNE-Blcoking via Equation (12).
5: Obtain ep based on E(yLNE-Blocking).
6: return ep.

5 Experimental Setup

5.1 Dataset
HumanEval (Chen et al., 2021): The Hu-
manEval dataset released by OpenAI includes 164
programming problems with a function signature,
docstring, body, and several unit tests, all hand-
written to ensure exclusion from the training set of
code generation models. And the initial publica-
tions(Touvron et al., 2023; Roziere et al., 2023; Ni-
jkamp et al., 2022; Dubey et al., 2024) of the mod-
els - Llama 2, CodeLlama, CodeGen and Llama
3.1, employ the HumanEval dataset as a benchmark
for evaluating code generation performance. We
assumed that these models have not been contami-
nated by the test set of the HumanEval dataset.

GSM8K (Cobbe et al., 2021): GSM8K (Grade
School Math 8K) is a dataset of 8.5K high-quality

linguistically diverse grade school math word prob-
lems. The dataset was created to support the task
of question answering on basic mathematical prob-
lems that require multi-step reasoning. The initial
publications (Touvron et al., 2023; Dubey et al.,
2024) of the models, Llama 2, Llama 3.1, employ
the GSM8K dataset as a benchmark for evaluating
their arithmetic reasoning capacity.

GSM-Plus (Li et al., 2024): It is an augmented
version of GSM8K with various mathematical per-
turbations, including numerical variation, arith-
metic variation, problem understanding challenges,
distractor insertion, and critical thinking tasks. This
dataset was released in January 2024, which is after
the release of Llama 2. Given the randomness of
these perturbations and the innovative nature of the
techniques employed, it is highly likely that the
original uncontaminated version of Llama 2 was
not exposed to contamination during its training.

5.2 Models

For the code generation task, we chose four mod-
els, Llama 2, CodeLlama, CodeGen and Llama 3.1,
each trained for 20 epochs to produce 20 LoRA
weights corresponding to different levels of contam-
ination. For Llama 2, CodeLlama, and CodeGen,
the contaminated models were directly simulated
using the LoRA weights provided by TED(Dong
et al., 2024), which simulate data contamination by
training LLMs using benchmark data, mixing the
HumanEval test set and StarCoder data(Li et al.,
2023b) at 1:1,000 ratio. For the recent model,
Llama 3.1, we used its base version and employed a
continued pretraining approach using the test set of
the HumanEval dataset to simulate contamination
as TED(Dong et al., 2024).

For the arithmetic reasoning task, we utilize the
base versions of the Llama 2 and Llama 3.1 models
and adopt a continued pretraining methodology
using the test set of the GSM8K dataset to emulate
contamination, executing training for 20 epochs.
To simulate more realistic contamination scenarios,
we apply the same continued pretraining strategy
to Llama 2 using the GSM-Plus dataset.

For ease of analysis, we defined the first third
of the 20-epoch contamination as mildly contami-
nated (Mild Cont.), the middle third as moderately
contaminated (Moderate Cont.), and the final third
as heavily contaminated (Heavy Cont.). The train-
ing was conducted on a single 4090 GPU using the
LLaMA-Factory framework (Zheng et al., 2024),

3517

with a learning rate of 1e-4. And the training time
for the code generation and arithmetic reasoning
tasks was 2 hours and 20 hours, respectively.

5.3 Evaluation Metrics

For contamination mitigation evaluation, we mea-
sure the model’s performance after contamination
has been mitigated. Specifically, the performance
metrics used for code generation and arithmetic
reasoning tasks are Pass@1 and exact match Ac-
curacy (Dong et al., 2024), respectively. Addition-
ally, we introduce a novel metric, Performance Gap
(PG), defined as:

PG = abs(E(Y eva
M)− E(YMorigin)) (13)

where Y eva
M represents the output of the model

after contamination mitigation on the entire test
dataset, and YMorigin represents the output of the
corresponding uncontaminated model on the entire
test dataset. For LNE-Blocking, Y eva

M and YMorigin

correspond to Y
LNE-Blocking
M and Y

greedy
Morigin

, while for

TED, they correspond to Y TED
M and Y sampling

Morigin
.

PG quantifies how closely the performance of
the model after mitigation matches the original un-
contaminated model. A smaller PG value indicates
that the contamination mitigation strategy is better.

6 Results

6.1 Contamination Mitigation Evaluation

In this section, we evaluate the models’ perfor-
mance after applying the LNE-Blocking strategy
to mitigate contamination. We also employ PG to
evaluate the effectiveness of LNE-Blocking and
compare these with TED (Dong et al., 2024), a
method for contamination mitigation evaluation
based on sampling. The definition of TED is illus-
trated in Appendix A.2.

Contamination mitigation evaluation is con-
ducted on two tasks: code generation and arith-
metic reasoning. In Appendix B, we validate the
effectiveness of our approach on the task of Sum-
marization. Additionally, relying solely on the dec-
larations from model developers may not guarantee
that the origin model has not been contaminated by
the test dataset. To address this, we also utilized
a recently released dataset, GSM-Plus, to validate
the effectiveness of the contamination mitigation
strategy on arithmetic reasoning task. Moreover,
Appendix C presents an analysis of our method’s
performance on smaller, domain-specific models.

6.1.1 Code Generation
For this task, we use the test set of HumanEval as
the benchmark and set the Threshold_Task to 4.
For the TED method, the edit distance threshold is
set to 2, following (Dong et al., 2024).

As shown in Table 1, the PG metric of LNE-
Blocking after contamination mitigation remains
small, denoting that the LNE-Blocking strategy
enables models to achieve relatively stable perfor-
mance restoration across different models and con-
tamination levels after contamination mitigation un-
der greedy decoding. Additionally, the average PG
metric of LNE-Blocking is small, denoting that af-
ter applying a contamination mitigation strategy to
contaminated models, the evaluation performance
approaches the performance of the original uncon-
taminated models.

In contrast, the PG metric of TED diverges from
the original model as contamination deepens, indi-
cating insufficient stability in restoration. Particu-
larly in the heavily contaminated models CodeL-
lama and Llama 3.1, our method significantly out-
performs TED . This is mainly due to the random-
ness of sampling, which causes the TED method
to fail on heavily contaminated models, while the
Blocking operation avoids it by controlling the trig-
gering of sampling.

Furthermore, for models, CodeGen and Llama 2,
with lower contamination, the LNE-Blocking strat-
egy under-performs compared to TED. This may
be because, at lower contamination levels, multi-
ple samplings yield more diverse results to reduce
memorization. This suggests that the framework
has room for improvement with a more fine-grained
strategy for detecting contamination levels.

6.1.2 Arithmetic Reasoning
For this task, we use the test set of the GSM8K and
GSM-Plus dataset as the benchmark and set the
Threshold_Task to 7. For the TED method, since
previous research did not evaluate this task (Dong
et al., 2024), we conducted a search to identify
the optimal threshold that is compatible with both
Llama 2 and Llama 3.1, finding it to be 50.

As shown in Table 2, similar to the task of code
generation, our method enables models to achieve
relatively stable performance restoration across dif-
ferent models and contamination levels after con-
tamination mitigation under greedy decoding.

However, TED suffers from insufficient stabil-
ity in restoration. Particularly in the heavily con-
taminated models, our method significantly outper-

3518

Table 1: Contamination mitigation evaluation on Code Generation, where values outside the parentheses represent
model performance, Pass@1, while those inside the parentheses represent the PG metric. Bold indicates the strategy
with the best performance at the current contamination level, and underline highlights our proposed strategy, which
significantly outperforms others under the current contamination level.

Model Strategy Uncontaminated Mild Cont. Moderate Cont. Heavy Cont. Average

CodeGen-6B

Sampling 0.122 0.246 0.714 0.836 0.577
Greedy 0.165 0.317 0.819 0.913 0.653
TED 0.106 (0.016) 0.148 (0.036) 0.234 (0.112) 0.211 (0.072) 0.188 (0.072)
LNE-Blocking 0.073 (0.091) 0.094 (0.071) 0.113 (0.052) 0.117 (0.037) 0.108 (0.056)

Llama 2-7B

Sampling 0.111 0.243 0.659 0.798 0.556
Greedy 0.128 0.289 0.742 0.861 0.609
TED 0.095 (0.016) 0.118 (0.017) 0.128 (0.021) 0.114 (0.036) 0.114 (0.024)
LNE-Blocking 0.098 (0.030) 0.144 (0.016) 0.134 (0.037) 0.128 (0.018) 0.132 (0.025)

CodeLlama-7B

Sampling 0.218 0.382 0.700 0.808 0.613
Greedy 0.311 0.447 0.784 0.870 0.682
TED 0.205 (0.013) 0.318 (0.099) 0.392 (0.174) 0.375 (0.137) 0.345 (0.129)
LNE-Blocking 0.268 (0.043) 0.307 (0.033) 0.282 (0.032) 0.271 (0.045) 0.283 (0.037)

Llama 3.1-8B

Sampling 0.329 0.474 0.879 0.947 0.739
Greedy 0.348 0.524 0.893 0.936 0.758
TED 0.306 (0.023) 0.397 (0.084) 0.257 (0.083) 0.176 (0.169) 0.273 (0.101)
LNE-Blocking 0.293 (0.055) 0.356 (0.061) 0.364 (0.038) 0.305 (0.067) 0.333 (0.054)

Table 2: Contamination mitigation evaluation on Arithmetic Reasoning datasets, GSM8K and GSM-Plus, where
values outside the parentheses represent model accuracy, while those inside the parentheses represent the PG metric.

Model Strategy Uncontaminated Mild Cont. Moderate Cont. Heavy Cont. Average

GSM8K Dataset

Llama 2-7B

Sampling 0.221 0.380 0.715 0.874 0.627
Greedy 0.145 0.252 0.637 0.853 0.556
TED 0.217 (0.005) 0.348 (0.126) 0.278 (0.119) 0.113 (0.162) 0.232 (0.122)
LNE-Blocking 0.133 (0.012) 0.163 (0.023) 0.224 (0.079) 0.222 (0.075) 0.198 (0.057)

Llama 3.1-8B

Sampling 0.719 0.772 0.939 0.995 0.889
Greedy 0.555 0.592 0.889 0.993 0.807
TED 0.704 (0.016) 0.723 (0.019) 0.306 (0.414) 0.050 (0.694) 0.379 (0.346)
LNE-Blocking 0.475 (0.080) 0.429 (0.126) 0.487 (0.068) 0.488 (0.065) 0.471 (0.084)

GSM-Plus Dataset

Llama 2-7B

Sampling 0.151 0.274 0.683 0.752 0.542
Greedy 0.090 0.208 0.651 0.747 0.505
TED 0.152 (0.001) 0.262 (0.111) 0.305 (0.154) 0.143 (0.008) 0.235 (0.089)
LNE-Blocking 0.096 (0.006) 0.117 (0.027) 0.140 (0.051) 0.139 (0.049) 0.130 (0.040)

forms TED. It is worth noting that the PG metric
increases dramatically to about 0.414 and 0.694
when applying TED to the mildly and heavily con-
taminated Llama 3.1, denoting it fails completely.
This is also due to its sampling randomness, which
prevents it from generating diverse answers when
the probability of memorized answers is high.

Meanwhile, for Llama 2—which has lower
contamination risks on GSM-Plus—our method
achieves a performance restoration with a maxi-
mum Performance Gap (PG) of only 5% across all
contamination levels.

6.2 Ablation study

In this section, we analyze the contribution of each
component in LNE-Blocking and examine how text

generation coherence changes before and after its
application. And we analyze the selection of the
hyperparameter Threshold_Task in the Appendix
E.

6.2.1 Effectiveness of LNE-Blocking
Components

As shown in Table 3, when using a fixed num-
ber of Blocking operations to restore the perfor-
mance of models with varying levels of contamina-
tion, the extent of performance restoration differs.
With fewer Blocking operations, the performance
of models with mild contamination can be well
restored, but heavily contaminated models remain
poorly restored. And, as the number of Blocking
operations increases, models with more severe con-

3519

Table 3: Ablation study of the components of LNE-Blocking, where values outside the parentheses represent model
performance, Pass@1, while those inside the parentheses represent the PG metric. Perplexity is denoted as PPL,
and Min-k% Prob is denoted as Min-k, with their definitions provided in Appendix A.1. Fixed Blocking 1, 2, and 5
refer to the fixed number of Blocking operations applied for any given prompt.

Strategy Uncontaminated Mild Cont. Moderate Cont. Heavy Cont. Average

Greedy Decoding 0.311 0.447 0.784 0.870 0.682
Fixed Blocking 1 0.287 (0.024) 0.364 (0.089) 0.430 (0.119) 0.413 (0.100) 0.394 (0.097)
Fixed Blocking 2 0.274 (0.037) 0.360 (0.089) 0.372 (0.070) 0.351 (0.033) 0.352 (0.062)
Fixed Blocking 3 0.250 (0.061) 0.329 (0.047) 0.305 (0.037) 0.288 (0.035) 0.304 (0.041)
Fixed Blocking 4 0.165 (0.146) 0.266 (0.065) 0.274 (0.040) 0.271 (0.043) 0.261 (0.057)
PPL-Blocking 0.262 (0.049) 0.313 (0.043) 0.280 (0.037) 0.274 (0.047) 0.284 (0.042)
Min-k-Blocking 0.274 (0.037) 0.339 (0.065) 0.274 (0.051) 0.270 (0.043) 0.290 (0.052)
LNE-Blocking 0.268 (0.043) 0.307 (0.033) 0.282 (0.032) 0.271 (0.045) 0.283 (0.037)

Table 4: Coherence Measurement for Arithmetic Reasoning Using Llama-3.1, where PPL refers to Perplexity, GPTS
to GPT Score, and HumanE to Human Evaluation. And LNE-Blocking is denoted as LB.

Metric Ground Truth
Uncont.
pre-LB

Uncont.
post-LB

Mild Cont.
post-LB

Moderate Cont.
post-LB

Heavy Cont.
post-LB

Average
post-LB

PPL 11.189 10.260 11.007 11.176 12.354 12.992 11.977
GPTS 8.408 8.106 7.503 7.434 6.902 6.803 7.123
CER 100.0% 8.5% 11.0% 7.2% 29.1% 39.6% 22.3%

tamination are restored more effectively, while the
restoration of less contaminated models becomes
less optimal. This demonstrates the effectiveness
of employing a contamination detection strategy
to adjust the Blocking intensity according to the
contamination level.

When using other existing contamination detec-
tion methods, such as Perplexity and Min-k% Prob,
instead of LNE to adjust the Blocking intensity,
their performance recovery is less effective than
that achieved with LNE, as shown in Table 3. This
highlights that LNE is more suitable for adjusting
Blocking intensity, possibly because LNE lever-
ages more information from the entire distribution
at each decoding position.

6.2.2 Impact on Generation Coherence

We conducted coherence evaluations for code gen-
eration tasks employing GPT-based scoring, Per-
plexity (PPL) metrics and Compilation Error Rate
of the generated code. Specifically, the Compi-
lation Error Rate is defined as the ratio of Syn-
taxError and IndentationError occurrences during
runtime over the total number of samples for the
code generation task. This metric could accurately
reflect the consistency of the generated code con-
tent. Details of the remaining metrics are provided
in the Appendix D.

As shown in Table 4, the coherence metrics show
that as the level of contamination increases, the

coherence of the outputs after blocking slightly
deteriorates. However, the changes remain at a
relatively low level, indicating that the impact on
coherence is minimal. While during this process,
the model’s accuracy after blocking significantly
drops compared to its accuracy under contamina-
tion. Especially, when applying LNE-Blocking to
mildly contaminated models, the blocked model’s
generated outputs exhibit a lower compilation error
rate (7.2%) than the contaminated model (8.5%).
This strongly suggests that blocking does not dis-
rupt the coherence of the generated content.

7 Conclusion

In this paper, we propose the LNE-Blocking frame-
work to address the challenge of data contamina-
tion in large language models (LLMs). By de-
coupling detection and disruption, the framework
first restores the model’s greedy decoding perfor-
mance after contamination mitigation. Through
extensive experiments, we demonstrate that LNE-
Blocking effectively restores model performance
under greedy decoding, achieving robust and con-
sistent promising results across diverse tasks and
contamination levels. This work provides a practi-
cal and efficient solution for contamination mitiga-
tion, offering a new direction for fair benchmarking
and reliable evaluation of LLMs.

3520

8 Limitations

Our work has several limitations, which we aim to
address in our future work:

First, the evaluation of our work is mainly fo-
cused on benchmarks for code generation and arith-
metic reasoning. In the future, we will further vali-
date our approaches on other benchmarks.

Second, considering the limitation of compu-
tational resources, we employ LoRA instead of
full-parameter fine-tuning to simulate data contam-
ination for LLMs. In future work, we plan to extend
our setting to full-parameter fine-tuning.

Third, considering the issue of training cost,
we currently simulate contamination through the
method of continued pretraining. In real-world
scenarios, a significant portion of contamination
also arises from pretraining from scratch. To sim-
ulate this contamination, it might have to retrain
an LLM from scratch using a large corpus that in-
cludes some test data. However, such a process
would be prohibitively expensive.

References

Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He,
Xiaozhi Wang, Jifan Yu, Kaisheng Zeng, Yijia Xiao,
Haozhe Lyu, et al. 2023. Benchmarking foundation
models with language-model-as-an-examiner. Ad-
vances in Neural Information Processing Systems,
36:78142–78167.

Simone Balloccu, Patrícia Schmidtová, Mateusz Lango,
and Ondrej Dusek. 2024. Leak, cheat, repeat: Data
contamination and evaluation malpractices in closed-
source LLMs. In Proceedings of the 18th Confer-
ence of the European Chapter of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 67–93, St. Julian’s, Malta. Association
for Computational Linguistics.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Jesse Dodge, Maarten Sap, Ana Marasović, William
Agnew, Gabriel Ilharco, Dirk Groeneveld, Mar-
garet Mitchell, and Matt Gardner. 2021. Docu-
menting large webtext corpora: A case study on
the colossal clean crawled corpus. arXiv preprint
arXiv:2104.08758.

Yihong Dong, Xue Jiang, Huanyu Liu, Zhi Jin, Bin Gu,
Mengfei Yang, and Ge Li. 2024. Generalization or
memorization: Data contamination and trustworthy
evaluation for large language models. In Findings of
the Association for Computational Linguistics ACL
2024, pages 12039–12050, Bangkok, Thailand and
virtual meeting. Association for Computational Lin-
guistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Shahriar Golchin and Mihai Surdeanu. 2024. Time
travel in LLMs: Tracing data contamination in large
language models. In The Twelfth International Con-
ference on Learning Representations.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee,
and Yuanzhi Li. 2023. Textbooks are all you need.
Preprint, arXiv:2306.11644.

Hanxu Hu, Hongyuan Lu, Huajian Zhang, Yun-Ze Song,
Wai Lam, and Yue Zhang. 2024. Chain-of-symbol
prompting for spatial reasoning in large language
models. In First Conference on Language Modeling.

Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav
Goldberg. 2023. Stop uploading test data in plain
text: Practical strategies for mitigating data contam-
ination by evaluation benchmarks. arXiv preprint
arXiv:2305.10160.

Peng Li, Tianxiang Sun, Qiong Tang, Hang Yan, Yuan-
bin Wu, Xuanjing Huang, and Xipeng Qiu. 2023a.
CodeIE: Large code generation models are better
few-shot information extractors. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 15339–15353, Toronto, Canada. Association
for Computational Linguistics.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. GSM-plus: A compre-
hensive benchmark for evaluating the robustness of
LLMs as mathematical problem solvers. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2961–2984, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

3521

https://doi.org/10.18653/v1/2024.eacl-long.5
https://doi.org/10.18653/v1/2024.eacl-long.5
https://doi.org/10.18653/v1/2024.eacl-long.5
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/https://arxiv.org/abs/2107.03374
https://doi.org/https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://arxiv.org/abs/2104.08758
https://doi.org/10.18653/v1/2024.findings-acl.716
https://doi.org/10.18653/v1/2024.findings-acl.716
https://doi.org/10.18653/v1/2024.findings-acl.716
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2305.10160
https://arxiv.org/abs/2305.10160
https://arxiv.org/abs/2305.10160
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2023.acl-long.855
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163
https://doi.org/10.18653/v1/2024.acl-long.163

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: May the source be with you!
arXiv preprint arXiv:2305.06161.

Xiang Li, Yunshi Lan, and Chao Yang. 2025. Treee-
val: Benchmark-free evaluation of large language
models through tree planning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 39, pages 24485–24493.

Yucheng Li. 2023. Estimating contamination via
perplexity: Quantifying memorisation in language
model evaluation. arXiv preprint arXiv:2309.10677.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Hongyuan Lu, Haoran Yang, Haoyang Huang, Dong-
dong Zhang, Wai Lam, and Furu Wei. 2023.
Chain-of-dictionary prompting elicits translation
in large language models. arXiv e-prints, page
arXiv:2305.06575.

Inbal Magar and Roy Schwartz. 2022. Data contamina-
tion: From memorization to exploitation. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 157–165, Dublin, Ireland. Association
for Computational Linguistics.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2022. Codegen: An open large language
model for code with multi-turn program synthesis.
arXiv preprint arXiv:2203.13474.

Xudong Pan, Mi Zhang, Shouling Ji, and Min Yang.
2020. Privacy risks of general-purpose language
models. In 2020 IEEE Symposium on Security and
Privacy (SP), pages 1314–1331. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Weijia Shi, Anirudh Ajith, Mengzhou Xia, Yangsibo
Huang, Daogao Liu, Terra Blevins, Danqi Chen, and
Luke Zettlemoyer. 2024. Detecting pretraining data
from large language models. In The Twelfth Interna-
tional Conference on Learning Representations.

Sotaro Takeshita, Tommaso Green, Ines Reinig, Kai
Eckert, and Simone Ponzetto. 2024. ACLSum: A
new dataset for aspect-based summarization of scien-
tific publications. In Proceedings of the 2024 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
6660–6675, Mexico City, Mexico. Association for
Computational Linguistics.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2717–2739, Toronto, Canada. Association for
Computational Linguistics.

Xuezhi Wang and Denny Zhou. 2024. Chain-of-thought
reasoning without prompting. In Advances in Neural
Information Processing Systems, volume 37, pages
66383–66409. Curran Associates, Inc.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2024. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, Nips ’22,
Red Hook, NY, USA. Curran Associates Inc.

Zhuohao Yu, Chang Gao, Wenjin Yao, Yidong Wang,
Wei Ye, Jindong Wang, Xing Xie, Yue Zhang,
and Shikun Zhang. 2024. KIEval: A knowledge-
grounded interactive evaluation framework for large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 5967–5985,
Bangkok, Thailand. Association for Computational
Linguistics.

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,
Dylan Slack, Qin Lyu, et al. 2024. A careful exami-
nation of large language model performance on grade
school arithmetic. arXiv preprint arXiv:2405.00332.

Kechi Zhang, Zhuo Li, Jia Li, Ge Li, and Zhi Jin.
2023. Self-edit: Fault-aware code editor for code
generation. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 769–787, Toronto,
Canada. Association for Computational Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Kun Zhou, Yutao Zhu, Zhipeng Chen, Wentong Chen,
Wayne Xin Zhao, Xu Chen, Yankai Lin, Ji-Rong
Wen, and Jiawei Han. 2023. Don’t make your llm
an evaluation benchmark cheater. arXiv preprint
arXiv:2311.01964.

3522

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2309.10677
https://arxiv.org/abs/2309.10677
https://arxiv.org/abs/2309.10677
https://doi.org/10.48550/arXiv.2305.06575
https://doi.org/10.48550/arXiv.2305.06575
https://doi.org/10.18653/v1/2022.acl-short.18
https://doi.org/10.18653/v1/2022.acl-short.18
https://arxiv.org/abs/2203.13474
https://arxiv.org/abs/2203.13474
https://doi.org/10.1109/SP40000.2020.00095
https://doi.org/10.1109/SP40000.2020.00095
https://arxiv.org/abs/2308.12950
https://doi.org/10.18653/v1/2024.naacl-long.371
https://doi.org/10.18653/v1/2024.naacl-long.371
https://doi.org/10.18653/v1/2024.naacl-long.371
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2023.acl-long.153
https://doi.org/10.18653/v1/2024.acl-long.325
https://doi.org/10.18653/v1/2024.acl-long.325
https://doi.org/10.18653/v1/2024.acl-long.325
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://arxiv.org/abs/2405.00332
https://doi.org/10.18653/v1/2023.acl-long.45
https://doi.org/10.18653/v1/2023.acl-long.45
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.01964
https://arxiv.org/abs/2311.01964

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024a. Multilingual machine translation with
large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 2765–2781,
Mexico City, Mexico. Association for Computational
Linguistics.

Wenhong Zhu, Hongkun Hao, Zhiwei He, Yun-Ze Song,
Jiao Yueyang, Yumeng Zhang, Hanxu Hu, Yiran
Wei, Rui Wang, and Hongyuan Lu. 2024b. CLEAN–
EVAL: Clean evaluation on contaminated large lan-
guage models. In Findings of the Association for
Computational Linguistics: NAACL 2024, pages 835–
847, Mexico City, Mexico. Association for Computa-
tional Linguistics.

3523

https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.176
https://doi.org/10.18653/v1/2024.findings-naacl.53
https://doi.org/10.18653/v1/2024.findings-naacl.53
https://doi.org/10.18653/v1/2024.findings-naacl.53

A Formulas and Principles for
Comparison Methods

A.1 Data Contamination Detection
Consider the output of the model’s greedy decoding
as y. Below are the definitions of several contami-
nation detection methods.

Perplexity: calculates the perplexity of the re-
sponse generated by the model through greedy de-
coding, as:

Perplexity = exp

(
− 1

N

N∑

i=1

logP (yi)

)
(14)

where N is the length of the greedy decoded output,
y. Lower perplexity indicates higher contamination
levels.

Mink% Prob: Computes the negative average
log probability of the k% least probable tokens
in the response generated by the model through
greedy decoding, as:

Min-k(y) = − 1

E

∑

yi∈Min-k%(y)

logP (yi) (15)

where E is the size of the Min-K%(y) set, and Min-
K%(y) is the set of k% least probable tokens in the
response. Smaller values of Min-k% Prob indicate
higher contamination levels.

A.2 Contamination Mitigation Evaluation
TED: filters non-memorized samples through mul-
tiple sampling rounds, using these samples for con-
tamination mitigation evaluation. It is illustrated
as:

Se =
{
s | s ∈ S ∧ EditDist

(
s, sgreedy) > τ

}

(16)
where S is the set of outputs sampled from LLM,
sgreedy denotes the output generated by the LLM
using greedy decoding, and τ is a predefined thresh-
old for the edit distance. The set Se contains only
those samples from S for which the edit distance to
the greedy decoding output exceeds the threshold
τ .

B Contamination Mitigation Evaluation
on the Summarization Task

To achieve a broader validation of the effective-
ness of LNE-Blocking across benchmarks, we con-
ducted experiments on a summarization task using
the ACLSum (Takeshita et al., 2024) dataset. This

dataset, released in 2024, is specifically designed
for aspect-based summarization of scientific publi-
cations. The models evaluated were Qwen2.5-7B
and Qwen2.5-14B, and we employed the ROUGE-
L metric to measure the similarity between model-
generated outputs and the reference summaries.
The Threshold_Task was set to 30, and both
contamination simulation and inference were con-
ducted using a two-shot prompt. As shown in Ta-
ble 5, our strategy consistently and stably restores
the genuine capabilities of models with varying
levels of contamination for both Qwen2.5-7B and
Qwen2.5-14B on the summarization task. These
results suggest that our approach is effective not
only in code generation and arithmetic reasoning
but also in NLP tasks like summarization.

C Contamination Mitigation in Small
Domain-Specific Models

Phi-1 (Gunasekar et al., 2023) is a Transformer-
based model with 1.3 billion parameters, specifi-
cally trained for fundamental Python coding tasks.
Released in June 2023, Phi-1 achieves over 50% ac-
curacy on the HumanEval benchmark, significantly
outperforming larger models such as Llama 3.1-8B
(released in July 2024) (Dubey et al., 2024), which
obtains an accuracy of 0.348. The strong perfor-
mance of Phi-1 can be attributed to its training data,
which consists of a carefully curated collection of
"textbook-quality" web content, along with syn-
thetically generated textbooks and exercises using
GPT-3.5.

As shown in Table 6, our strategy consistently
and stably restores the genuine capabilities of mod-
els with varying levels of contamination for Phi-1
on the code generation task. Notably, in compari-
son with Llama 2-7B and Llama 3.1-8B in Table
1, Phi-1 exhibits a considerably lower restored per-
formance after applying LNE-Blocking when com-
pared to the performance of the developer-released
"uncontaminated" version of the model, with a per-
formance gap (PG) of 25%. This discrepancy sug-
gests that overfitting may be a plausible concern for
Phi-1, indicating potential limitations in its general-
ization when trained on highly curated or synthetic
data.

D Coherence Evaluation Metrics

We conducted coherence evaluations for code gen-
eration tasks using the following defined metrics.

GPT Score (GPTS): We utilized the following

3524

Table 5: Contamination mitigation evaluation on Summarization, where values outside the parentheses represent
model performance, ROUGE-L, while those inside the parentheses represent the PG metric based on ROUGE-L.

Model Strategy Uncontaminated Mild Cont. Moderate Cont. Heavy Cont. Average

Qwen2.5-7B Greedy 0.145 0.220 0.248 0.253 0.230
LNE-Blocking 0.135 (0.011) 0.175 (0.013) 0.179 (0.011) 0.152 (0.011) 0.166 (0.011)

Qwen2.5-14B Greedy 0.139 0.226 0.265 0.304 0.250
LNE-Blocking 0.122 (0.017) 0.175 (0.036) 0.163 (0.024) 0.143 (0.005) 0.158 (0.023)

Table 6: Contamination mitigation evaluation on HumanEval for Phi-1, where values outside the parentheses
represent model performance, Pass@1, while those inside the parentheses represent the PG metric.

Model Strategy Uncontaminated Mild Cont. Moderate Cont. Heavy Cont. Average

Phi-1
Greedy 0.524 0.421 0.559 0.728 0.552
LNE-Blocking 0.274 (0.250) 0.226 (0.299) 0.169 (0.356) 0.124 (0.400) 0.187 (0.338)

prompts to have GPT-4o evaluate the model out-
puts.

• "Give you a code snippet, please rate its coher-
ence on a scale of 1 to 10. First, provide the
score enclosed in <score></score>, then give
the reason enclosed in <reason></reason>.
Do not pay attention to whether the code is
concise or complete." + response

where response refers to the output generated by
the model.

Perplexity (PPL) : We used the Meta-Llama-
3.1-70B-Instruct-Turbo model to measure the per-
plexity of the generated content.

Compilation Error Rate (CER): We calculated
the ratio of SyntaxError and IndentationError oc-
currences during runtime over the total number of
samples for the code generation task.

E Task-Specific Determination of
Threshold_Task

The Threshold_Task value selected based on
Llama-2 and a single task, performing effectively
across all evaluated models on this task.

As shown in Table 7, It can be observed that the
optimal Threshold_Task value for the Llama-2-7B
model varies across different tasks. We applied the
corresponding values heuristically to other models
on the same tasks and achieved stable recovery
performance, as shown in Table 1 and Table 2.

F More Representative Generated Cases
after LNE-Blocking

We provide two representative examples below to
illustrate the effects of applying the LNE-Blocking
operation on different types of samples.

The first case involves a relatively simple task,
namely generating a string of space-delimited num-
bers from 0 to n. After applying LNE-Blocking,
the model still produces a correct solution, albeit
with a different implementation style.

In contrast, the second case is more complex,
requiring the model to compute the maximum nest-
ing depth of parentheses in a given string. In this
case, the memorized generation is correct, but af-
ter applying LNE-Blocking, the model’s response
changes to simply counting the number of left
parentheses — a behavior that does not align with
the intended task. This indicates that, for more
challenging tasks, LNE-Blocking suppresses mem-
orized golden answers and reveals the model’s un-
derlying, genuine reasoning capability.

Case 1: Simple Sequence Generation
Prompt:
def s t r i n g _ s e q u e n c e (n : i n t) −> s t r :

" " " R e t u r n a s t r i n g c o n t a i n i n g space
− d e l i m i t e d numbers s t a r t i n g from

0 up t o n i n c l u s i v e .
>>> s t r i n g _ s e q u e n c e (0)
’0 ’

>>> s t r i n g _ s e q u e n c e (5)
’0 1 2 3 4 5 ’
" " "

Generated Content before LNE-Blocking:
re turn ’ ’ . j o i n ([s t r (x) f o r x in

range (n + 1)])

Generated Content after LNE-Blocking:
r e t v a l : l i s t [s t r] = []

f o r i in range (n + 1) :
r e t v a l . append (s t r (i))

re turn ’ ’ . j o i n (r e t v a l)

3525

Case 2: Nested Parentheses Parsing
Prompt:
from t y p i n g import L i s t

def p a r s e _ n e s t e d _ p a r e n s (p a r e n _ s t r i n g :
s t r) −> L i s t [i n t] :
" " " I n p u t t o t h i s f u n c t i o n i s a

s t r i n g r e p r e s e n t e d m u l t i p l e
groups f o r n e s t e d p a r e n t h e s e s
s e p a r a t e d by s p a c e s .

For each o f t h e group , o u t p u t t h e
d e e p e s t l e v e l o f n e s t i n g o f
p a r e n t h e s e s .

E . g . (() ()) has maximum two l e v e l s
o f n e s t i n g w h i l e ((())) has
t h r e e .

>>> p a r s e _ n e s t e d _ p a r e n s (’ (() ()) ((()
)) () ((()) () ()) ’)

[2 , 3 , 1 , 3]
" " "

Generated Content before LNE-Blocking:
def p a r s e _ p a r e n _ g r o u p (s) :

d e p t h = 0
max_depth = 0
f o r c in s :

i f c == ’ (’ :
d e p t h += 1
max_depth = max (depth ,

max_depth)
e l s e :

d e p t h −= 1

re turn max_depth

re turn [p a r s e _ p a r e n _ g r o u p (x) f o r x
in p a r e n _ s t r i n g . s p l i t (’ ’) i f x]

Generated Content after LNE-Blocking:
import r e g e x
p a r e n _ g r o u p s = r e g e x . s p l i t (r ’ \ s+ ’ ,

p a r e n _ s t r i n g)
re turn [l e n (r e g e x . f i n d a l l (r ’ \ (’ , p))

f o r p in p a r e n _ g r o u p s]

G Analysis of Blocking Tokens

In this section, we illustrate the token changes that
occur during the execution of the Blocking opera-
tion. We pair the tokens selected for Blocking with
their respective alternative tokens and visualize the
top 20 tokens with the highest frequencies in Figure
3.

Furthermore, we provide examples in Table 8,
displaying the complete model outputs both be-
fore and after applying the Blocking operation, to
demonstrate its impact on the model’s response.

3526

Table 7: Contamination Mitigation Evaluation of Llama-2-7B on Different Datasets with Varying Values of
Threshold_Task

Task Model Threshold_Task Uncont. Mild Cont. Moderate Cont. Heavy Cont. Average

Code Generation

Llama 2-7B 0(Greedy) 0.128 0.289 0.742 0.861 0.609
Llama 2-7B 1 0.110(0.018) 0.171(0.043) 0.241(0.113) 0.262(0.134) 0.216(0.088)
Llama 2-7B 4 0.098(0.030) 0.144(0.016) 0.134(0.006) 0.130(0.002) 0.132(0.004)
Llama 2-7B 7 0.055(0.073) 0.091(0.037) 0.082(0.046) 0.077(0.051) 0.081(0.047)

Arithmetic Reasoning

Llama 2-7B 0(Greedy) 0.145 0.252 0.637 0.853 0.556
Llama 2-7B 1 0.161(0.016) 0.200(0.055) 0.331(0.186) 0.379(0.234) 0.293(0.148)
Llama 2-7B 4 0.142(0.003) 0.179(0.034) 0.258(0.113) 0.274(0.129) 0.230(0.085)
Llama 2-7B 7 0.133(0.012) 0.163(0.018) 0.224(0.079) 0.220(0.075) 0.198(0.053)

_= _r
et _i
f

_r
es

ul
t _ _n

re
tu

rn

_n
ot

_d
ef

<0
x0

A
>

_r
et

ur
n ([

_i
m

po
rt , : _ =

_l
en _(_#

(

_=

_ret

_if

_result

_

_n

return

_not

_def

<0x0A>

_return

([

_import

,

:

_

=

_len

_(

_#

(

0 0 0 0 0 0 0 0 0 0 0 0 0 310 49 281 172 0 0 0 0

0 0

0 0 0 0 0 0 0 0 0 0 108 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 0 30 0 0 0 0 0 0 0 0

0 0 0 0 72 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 70 119 30 0 0 52 0 48 0 0 0 0 0 0 0 0 0 0 35 0

0 0

0 0

38 0

0 0

116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 39

0 0

0 0 0 0 0 0 0 39 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0 0 0 0 0 0 0 0 0 0 49 0 0 0 0 0 0 53 0 0
0

50

100

150

200

250

300

Fr
eq

ue
nc

y

Figure 3: A heatmap of token replacement frequency during the Blocking operation.

3527

Table 8: Examples of LLM Outputs Before and After Blocking, where Replaced Pairs (A, B) indicates the
replacement of token A with candidate token B during Blocking.

Replaced Pairs
Origin Outputs
Outputs after Blocking

(_if , _return)
if not numbers:\n return 0.0\n mean = sum(numbers) / len(numbers)\n return sum(abs(x
- mean) for x in numbers) / len(numbers)
return float((sum(abs(x - mean(numbers)) for x in numbers)) / len(numbers))

(_return, _ret)
return [x + 1 for x in l]
ret_l=[]\n for i in l:\n ret_l.append(i+1)\n return ret_l

(_return, return)
return number % 1.0
returnnumber=number%1\n return returnnumber

(_return, _if)
return ”.join(map(lambda x, y: str(int(x) înt(y)), a, b))
if a != b:\n raise ValueError("Inputs must be equal")\n return "".join(map(lambda x, y:
str(int(x) înt(y)), a, b))

(_return, _#)
return ’ ’.join(str(i) for i in range(n + 1))
TODO\n return ’ ’.join(str(i) for i in range(n + 1))

(_return, _def)
return [len(p) for p in paren_string.split() if p]
def parse(s):\n if s[0] == ’(’:\n return 1 + parse(s[1:])\n else:\n return 0\n \n return
[parse(s) for s in paren_string.split()]

3528

