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Abstract

Contrast-enhanced 3D Medical imaging (e.g.,
CT, MRI) leverages phase sequences to uncover
temporal dynamics vital for diagnosing tumors,
lesions, and vascular issues. However, current
retrieval models primarily focus on spatial fea-
tures, neglecting phase-specific progression de-
tailed in clinical reports. We present the Phase-
aware Memory Network (PAMN), a novel
framework enhancing 3D medical image re-
trieval by fusing imaging phases with diagnos-
tic text. PAMN creates rich radiological repre-
sentations that enhance diagnostic accuracy by
combining image details with clinical report
context, rigorously tested on a novel phase-
series dataset of 12,230 hospital CT scans.
PAMN achieves an effective balance of per-
formance and scalability in 3D radiology re-
trieval, outperforming state-of-the-art baselines
through the robust fusion of spatial, temporal,
and textual information.

1 Introduction

3D contrast-enhanced imaging is integral to med-
ical diagnostics, enhancing anatomical and patho-
logical visualization beyond non-contrast scans.
This technique is particularly valuable in computed
tomography (CT) and magnetic resonance imag-
ing (MRI), where contrast agents improve tissue
differentiation and vascular visualization, aiding in
tumor (Pandit et al., 2025), lesion (Wei et al., 2024),
and abnormality detection (Liu et al., 2024b). For
comprehensive assessment, 3D contrast-enhanced
imaging spans axial, sagittal, and coronal planes,
following distinct phases: pre-contrast acquisition,
contrast administration, and post-processing (Hsu
et al., 2023). Its interpretation requires multidis-
ciplinary collaboration among radiologists, medi-
cal physicists, and clinicians to refine diagnoses
and guide decisions (Sack, 2023). While deep
learning-based evaluation systems (Huang et al.,
2025a; Miller et al., 2024) aid decision-making and
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Figure 1: PAMN utilizes the multi-view and multi-phase
nature of radiological imaging. It uses temporal contrast
changes to align medical images with text, capturing
lesion progression across sequential imaging phases for
medical diagnosis.

streamline workflows, a unified approach for ef-
fectively leveraging imaging planes and phases in
diagnosis is yet to be established.

Multi-view image analysis primarily addresses
spatial and geometric relationships between im-
ages captured from different perspectives (Wang
et al., 2015). These methods—applied in tasks
such as video understanding (Li et al., 2025b; Sid-
diqui et al., 2024; Zhou et al., 2025), 3D render-
ing (Huang et al., 2025b; Liu et al., 2024a), and
segmentation (Qin et al., 2023; Wang et al., 2024;
Chen et al., 2025; Li, 2024)—rely on synthesizing
geometric features like depth, shape, or texture to
enhance scene understanding and object classifica-
tion (Zhu et al., 2024; Jin et al., 2025a). Multi-scale
feature aggregation leverages spatial information
across multiple resolutions to extract both fine de-
tails (Yu et al., 2024; Wang et al., 2023a; Jia and
Li, 2024) and broader contextual cues (Lin et al.,
2023a; Cai et al., 2023), while sequential architec-
tures—such as long short-term memory (LSTM)
networks (Hong et al., 2023; Tang et al., 2024) and
transformer-based models (Dong et al., 2023; Yang
et al., 2023)—capture sequential (Yang et al., 2023;
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Peng et al., 2022) or temporal (Alkin et al., 2024;
Chang et al., 2024) dependencies within image se-
quences. Despite these advancements, adapting
these techniques to medical imaging, especially for
aligning spatial and phase information with textual
clinical insights in 3D contrast-enhanced imaging,
remains a challenging open problem.

Diagnostic reports offer rich clinical insights
from multi-phase medical images by integrating
spatial, temporal, and pathological correlations.
While vision-language models like BiomedCLIP
(Zhang et al., 2023) and LLaVA-Med (Li et al.,
2024) excel at joint visual-textual representation
learning for tasks like classification and retrieval,
and UniMedI (He et al., 2024) and fVLM (Shui
et al., 2025) have unified multi-modal images us-
ing reports or direct 3D image-text pairing, most
current methods overlook crucial temporal infor-
mation. In multi-phase radiology, temporal dynam-
ics, such as contrast agent progression, are vital
for clinical decisions and often detailed in reports.
Aligning these reports with specific imaging phases
can significantly enhance feature representations in
3D contrast-enhanced imaging.

To address this, we introduce the Phase-aware
Memory Network (PAMN), a novel framework that
combines phase-specific spatial cues with tempo-
ral progression modeling of contrast enhancement,
utilizing diagnostic reports to refine feature repre-
sentations (Figure 2). PAMN comprises three core
components:

¢ Phase-aware Multiview Modeling. PAMN
organizes imaging phases and classifies
anatomical planes to create phase-specific rep-
resentations, ensuring anatomical consistency
while capturing subtle pathological variations.

¢ Phase Dynamic Modeling. PAMN tracks the
temporal progression of contrast agents across
phases, differentiating tissues based on their
unique enhancement patterns.

* Text-guided Representation Alignment.
PAMN uses diagnostic reports as supervisory
cues to model clinically relevant features that
align with diagnostic patterns, boosting inter-
pretability and robustness.

2 Related Work

2.1 Multi-view Representation Learning

Multi-view representation learning (MvRL) inte-
grates multiple perspectives into unified represen-

tations, enhancing tasks like video understanding
(Siddiqui et al., 2024; Li et al., 2025a), 3D render-
ing (Huang et al., 2025b; Jin et al., 2025b), and seg-
mentation (Qin et al., 2023; Chen et al., 2025). Tra-
ditional methods like Canonical Correlation Anal-
ysis (CCA) and its deep learning variants (Wang
et al., 2015; Yuan et al., 2022) map views to a com-
mon subspace but struggle with high-dimensional
data due to computational inefficiencies and linear-
ity constraints (Wang et al., 2023b). Deep learn-
ing advances, including CNNs (Feng et al., 2018;
Sun et al., 2020) and GNNs (Hassani and Khasah-
madi, 2020; Xue et al., 2020), enable nonlinear
feature fusion but face challenges with redundancy
and misalignment. Contrastive learning (Lin et al.,
2022; Yu et al., 2022) improves cross-view consis-
tency by aligning shared semantics while retaining
view-specific details. Beyond loss design, multi-
scale feature aggregation (Yu et al., 2024; Wang
et al., 2023a) enhances representation robustness
(Lin et al., 2023a; Cai et al., 2023), while sequen-
tial modeling with LSTMs (Hong et al., 2023; Tang
et al., 2024) and transformers (Dong et al., 2023;
Yang et al., 2023, 2025) captures sequential (Peng
et al., 2022) or temporal (Alkin et al., 2024; Chang
et al., 2024) dependencies, benefiting tasks like 3D
reconstruction and forecasting. However, medi-
cal imaging poses challenges due to heterogeneity,
noise, and the need for interpretability, requiring
domain-specific adaptations.

2.2 Medical Image-Text Alignment

Medical image-text alignment, integrating visual
data like X-rays, MRIs, and CTs with clinical
notes, enhances medical understanding and diagno-
sis (Zhang et al., 2024; Lu et al., 2024). Pre-trained
vision-language models (VLMs) such as Biomed-
CLIP (Zhang et al., 2023) and LLaVA-Med (Li
et al., 2024) support tasks like image retrieval and
classification. However, extending this to 3D med-
ical imaging is challenging due to limited anno-
tated 3D volumes. While methods like knowledge
distillation (Park et al., 2022) and 2D slice extrac-
tion (He et al., 2024; Lin et al., 2023b) have been
used, and fVLM (Shui et al., 2025) aligned 3D im-
ages with reports using a proprietary dataset, these
largely focus on spatial alignment and neglect cru-
cial temporal dynamics like contrast agent progres-
sion. No existing public datasets address phase-
series imaging, which is vital for modeling tem-
poral contrast variations. To address this gap and
enable evaluation of temporal dynamics in multi-
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Figure 2: Overview. The proposed framework processes 3D medical images by first sorting imaging phases and
classifying anatomical planes. The model then extracts phase-specific features from multi-phase imaging sequences,
integrating them through multi-scale feature extraction, dynamic gating, memory attention, and memory update
mechanisms. Finally, the extracted view features are aligned with corresponding clinical text descriptions to generate
text-aligned representations, enabling improved medical image retrieval and interpretation.

phase radiology, we curated our own phase-series
dataset for this study.

3 Method

In this section, we present the Phase-aware Mem-
ory Network (PAMN), which aligns multi-phase
medical images with text by organizing images into
phase sequences and extracting multi-scale spatial
features (Figure 2).

3.1 Medical Image Organization into Phase
Sequence

In our system, 3D medical images are orga-
nized into a sequence of imaging phases reflect-
ing contrast administration and clinical needs.
Plane classification ensures a uniform axial, sagit-
tal, or coronal view across each series, enabling
precise temporal comparisons. The sequence
starts with pre-contrast images capturing baseline
anatomy without contrast, followed by contrast-
enhanced phases—arterial, portal venous, and de-
layed—highlighting contrast dynamics to distin-
guish tissues and detect abnormalities like tumors
or vascular issues. Next, dynamic phases such as
Mean Transit Time (MTT), Cerebral Blood Vol-
ume (CBV), and Cerebral Blood Flow (CBF) offer
functional insights into circulation and perfusion,
distinct from structural contrast data. Post-contrast
phases conclude the sequence, providing detailed
diagnostic views. This structured approach aligns
with clinical protocols, maintaining spatial and tem-

poral coherence for accurate anatomical and func-
tional assessment.

3.2 Multi-scale Feature Extraction

Given a 3D medical image volume or a multi-
phase imaging sequence, the raw image tensor
is partitioned into non-overlapping patches. Let
Iy € ROXPXHXW denote the input at phase t,
where C' is the number of channels, and D x H x W
the spatial resolution. Feature extraction is per-
formed using a Vision Transformer (ViT):

F,=V(l,), F,eRV*Y (1)

where U(-) represents patch embedding and con-
textualization through the ViT, IV is the number of
patches, and C" is the embedding dimension.

Multi-scale spatial features are extracted us-
ing convolutions with kernel sizes K
{k1,ko,...,kn}. Foreach k;, ®py,(-) reshapes
F, into a spatial feature map, applies the convolu-
tion, and reshapes it back to N x C’. The same
process applies to M;_.

Ft,k‘i - (EF,ki (Ft)a (2)
M1, = Poas g, (Me—1)
A NxC’ ;
where Fip,, M;_1, € R . This process
captures diverse spatial relationships, enhancing
feature robustness for memory updates and align-
ment.
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3.3 Adaptive Gating for Memory Updates

To dynamically control memory updates, we use
learnable update (z;) and reset (1) gates:

Here, o(-) is the sigmoid function. Similar to
O 1, the functions @gf) () and @S\Z) (+) reshape F}
and M;_; into spatial feature maps, apply convo-
lutions with distinct kernels for the update gate,
and reshape back; @g) (+) and @S\? (+) do the same
for the reset gate. If an image in the phase se-
ries is missing, both z; and r; are set to O to ex-
clude it from the update. The learnable parameters
0,0, € RN adaptively scale each patch, ensuring
consistent feature processing across channels.

3.4 Memory Update with Attention

The model computes a candidate memory state M,
by combining multi-scale feature embeddings with
past memory, modulated by the reset gate ry:

m
M. =) tanh(Fyp, +10 0 My1g,)  (4)
=1

The tanh(-) function bounds the memory repre-
sentation to prevent excessive activations, while 7
regulates the influence of past memory M;_1 j, on
the update.

An attention mechanism refines M. by empha-
sizing informative spatial regions. A learnable func-
tion ®,, such as a convolution, processes M. to
capture spatial dependencies, and softmax normal-
ization yields attention weights:

M = softmax(®y (M) © M. 5)

This prioritizes regions critical for robust feature
retention and contextual understanding.

The final memory state M; blends the previ-
ous memory M;_1 with the refined candidate M32",
guided by the update gate z;:

My=(1—2)OM_1+2z60M" (6

Here, z; balances the incorporation of new infor-
mation with continuity from past knowledge.

3.5 Attention Pooling and Multi-Phase Image
Representation Projection

At the final phase 7, an attention pooling mecha-
nism aggregates the memory state My € RV X!
into a compact representation for tasks like text
alignment. A learnable function ®p,1, such as a
I1x1 convolution, computes attention scores over
the N patches, and the aggregated memory M7 is:

N

My = Z softmax (®poot (M7))i - Mr;  (7)
i=1

where Mr; € R is the i-th patch embedding,
and My € RY weights each patch by its attention
score, prioritizing informative regions for retrieval.

This aggregated representation M is then pro-
jected into a joint vision-language embedding
space, yielding a normalized feature M for text
comparison. This ensures scale invariance and
enhances multimodal alignment for effective re-
trieval.

3.6 Text Representation Encoding

For cross-modal retrieval, textual descriptions of
medical images are mapped into a shared embed-
ding space with images. Given a tokenized se-
quence T' € R”, where L is the sequence length, a
pretrained language model (e.g., BERT) generates
contextualized features:

Hyexe = BERT(T) (8)

where Hiey € REX ¢ holds contextual embeddings
from the final layer. The special [CLS] token em-
bedding is projected via a learnable function and
L2-normalized to yield the final text embedding T’
for alignment with image encodings.

3.7 Contrastive Learning for Modality
Alignment

To align multi-phase medical images with their
corresponding textual descriptions, we employ con-
trastive learning in a shared retrieval space. This
framework maximizes similarity between match-
ing image-text pairs while separating non-matching
ones. Given a batch of B multi-phase image
embeddings M € RE*B and text embeddings
T € RO'*B , where each column represents L2-
normalized embeddings (Sections 3.5 and 3.6), the
similarity matrix S € RP*5 is computed as:

S=M'.T, 9
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with S; ; measuring the similarity between phase
sequence ¢ and diagnosis report j. The contrastive
loss is:

1 eXp(Sm'/T)
L= 5 Zlog ZB

, (10)
i=1 j=1 exp(Si,;/T)

with 7 as a learnable temperature parameter. This
loss maximizes similarity for matching pairs .S; ;
while minimizing it for non-matching pairs S; ;
(j # 1), leveraging in-batch negatives to enable
effective cross-modal retrieval.

4 Experiments

4.1 Dataset

Hospital CT Scans. Computed Tomography
(CT) images were acquired using the DISCOV-
ERY CT750 HD FREEDOM system at Dongfang
Hospital. In 2024, this study included 61,332 pa-
tient cases, with scans adhering to standardized
imaging protocols for consistent, high-quality data.
Anatomical regions evaluated comprised the head
and brain, chest, abdomen, pelvis, spine and bones,
soft tissues and vasculature, and limb joints. Post-
acquisition, images were digitally archived and or-
ganized for subsequent analysis.

CT Phase Datasets. The 3D medical images
were grouped into phase-series based on contrast
administration and diagnostic requirements. A pre-
contrast phase captured native anatomy, followed
by contrast-enhanced phases to highlight dynamics,
aiding detection of abnormalities such as tumors or
vascular issues. The dataset, segmented by timing
and contrast, yielded 12,230 phase-series samples:
7,142 with two phases, 3,451 with three, and 1,637
with four.

To illustrate the utility of multi-phase imaging,
Figure 3 presents a representative case comparing
non-contrast and delayed contrast-enhanced phases.
The wedge-shaped hypodense lesion in the right
hepatic lobe shows persistent hypoenhancement,
suggesting heterogeneous fatty infiltration or per-
fusion alterations. A dense focus in the left distal
ureter, consistent with a calculus, is more conspic-
uous post-contrast due to improved delineation of
urinary structures. Subtle renal micro-calcifications
are also visible across phases. These observations
highlight how contrast-enhanced imaging enhances
diagnostic accuracy in evaluating hepatic perfusion
and urinary obstruction.

Non-contrast Phase

Contrast (Delayed) Phase
sagitt: al

Coro

ne Sagittal Plane

Figure 3: Comparison of non-contrast and delayed
contrast-enhanced CT images highlights a wedge-
shaped hepatic lesion with persistent hypoenhancement
and improved visualization of a left ureteral stone with
upstream dilation, underscoring the diagnostic value of
contrast enhancement in characterizing hepatic perfu-
sion and urinary obstruction.

4.2 Results

We compare the retrieval performance of PAMN
variants (with and without temporal data) against
2D and 3D baselines: PMC-CLIP (Lin et al.,
2023b) and a self-implemented 3D vanilla base-
line for 3D medical image retrieval.

4.2.1 Quantitative Performance on
Phase-Series Dataset

Table 1 presents the performance of three models
on the Phase-Series dataset: 3D Vanilla Baseline,
3D Baseline ST, and PAMN. The 3D Vanilla Base-
line is a self-implemented model for 3D medical
image retrieval, focusing on pairwise image-text
alignment without specialized phase-series han-
dling. 3D Baseline ST, a variant of this baseline,
simplifies the input by sampling a single image
from the phase series, representing a single tem-
poral snapshot. In contrast, PAMN, our proposed
model, dynamically models phase feature interac-
tions, leveraging multi-phase information to en-
hance retrieval performance. PAMN consistently
outperforms both variants of the 3D vanilla base-
line across all test sizes and retrieval tasks.

For example, in the image retrieval task with
100 test samples, the standard 3D Vanilla Baseline
achieves an IR R@10 of 30.77%, while 3D Base-
line ST scores 62.00%. PAMN outperforms both
by reaching an IR R@10 of 76.00%—this repre-
sents an improvement of 45.23 percentage points
over 3D Vanilla Baseline and 14.00 points over 3D
Baseline ST. A similar pattern is observed in the
text retrieval task, where the TR R@10 scores are
31.62% for 3D Vanilla Baseline, 62.00% for 3D
Baseline ST, and 73.00% for PAMN.
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Table 1: Comparison of PMC-CLIP, 3D Vanilla Baseline, and PAMN on Phase-Series and Caption Datasets.

Phase-Series

Caption

Test Samples‘ Metric ‘

| | 3D Baseline 3D Baseline ST PAMN | PMC-CLIP 3D Baseline L 3D Baseline PAMN w/oT PAMN w/T

IRR@1 7.69 18.00 24.00| 9.00 32.00 64.00 32.00 64.00

IR R@5 17.52 42.00 60.00| 28.00 63.00 95.00 63.00 97.00

100 IRR@10 | 30.77 62.00 76.00| 45.00 73.00 99.00 78.00 99.00
TRR@1 4.70 15.00 21.00| 18.00 30.00 70.00 31.00 73.00

TR R@5 20.51 42.00 58.00| 47.00 68.00 95.00 65.00 97.00
TRR@10| 31.62 62.00 73.00| 59.00 80.00 98.00 80.00 98.00

IRR@1 2.67 6.20 7.20 4.40 14.60 39.60 13.80 52.00

IR R@5 7.14 19.60 25.00| 12.80 34.40 76.20 34.40 82.40

500 IRR@10 | 12.47 30.20 39.00| 18.80 47.80 87.20 46.40 90.00
TRR@1 1.98 6.00 7.20 7.60 14.20 40.40 15.00 48.80

TR R@5 7.82 19.20 24.60| 20.20 38.00 74.20 33.80 81.20
TRR@10| 11.44 28.60 38.00| 31.00 52.20 87.00 49.00 88.80

IRR@1 1.57 3.60 5.10 1.90 9.00 27.30 8.10 39.10

IRR@5 4.00 11.50 17.30| 7.60 24.60 61.10 23.40 72.00

1000 IRR@10 7.05 19.90 2570| 12.10 34.80 76.10 33.00 84.30
TRR@1 1.39 3.30 5.60 4.60 9.20 26.60 8.90 37.20

TR R@5 4.18 11.60 17.00| 13.00 26.70 61.80 24.00 72.40
TRR@10| 7.66 18.80 27.00| 19.80 38.40 75.30 35.50 84.00

IRR@1 1.04 2.40 3.35 1.15 8.10 19.10 8.00 30.75

IR R@5 2.49 7.70 11.85| 4.35 20.20 47.45 19.05 61.70

2000 IRR@10 4.43 11.70 17.95| 7.60 28.40 62.25 27.80 75.80
TRR@1 0.80 1.95 3.45 3.15 8.50 18.45 7.55 29.70

TRR@5 2.72 6.96 11.25 8.55 21.75 47.30 19.80 61.70
TRR@10| 4.67 11.60 17.30| 13.55 30.95 62.15 28.75 74.70

As the number of test samples increases, overall
retrieval performance declines—a reflection of the
challenges inherent in large-scale retrieval. Nev-
ertheless, PAMN demonstrates a more controlled
degradation. For example, at 500 test samples, the
TR R@10 drops to 11.44% for 3D Vanilla Baseline
and 28.60% for 3D Baseline ST, while PAMN still
manages 38.00%. At 1000 samples, PAMN attains
an IRR@10 of 25.70% and a TR R@10 of 27.00%,
significantly outperforming 3D Vanilla Baseline’s
7.05% and 7.66%, with 3D Baseline ST achieving
intermediate scores of 19.90% and 18.80%. Even
at the largest scale of 2000 samples, PAMN yields
17.95% (IR R@10) and 17.30% (TR R@10), com-
pared to 4.43% and 4.67% for 3D Vanilla Baseline,
with 3D Baseline ST reaching 11.70% and 11.60%.

Despite these improvements, overall recall val-
ues remain relatively low, likely due to the lim-
ited number of training samples. This data depen-
dency suggests that both the 3D vanilla baseline
and PAMN could benefit from larger-scale training
or pretraining on more diverse multimodal medical
datasets. In Section 4.3.1, we further demonstrate
that PAMN adheres to data scaling laws, support-
ing our hypothesis that increased data availability
leads to improved model performance.

4.2.2 Quantitative Performance on General
Caption Dataset

We further evaluate the generalizability of PAMN
for 3D medical image retrieval, regardless of phase-

series availability (Table 1). We compare PAMN
against PMC-CLIP, a 2D-based medical image
analysis model, and the 3D vanilla baseline, the
state-of-the-art for 3D medical image retrieval. Ad-
ditionally, we assess the impact of patch size varia-
tions in the 3D vanilla baseline by comparing 3D
Baseline L (8x32x32) and 3D Baseline (4x16x16)
as baselines for retrieval performance at different
levels of spatial granularity. Our study focuses on
two PAMN variations: PAMN w/o T, trained on
a dataset without phase series, and PAMN w/ T,
which incorporates phase series during training.

The results reveal that PMC-CLIP underper-
forms significantly compared to 3D retrieval mod-
els, underscoring the fundamental differences be-
tween 2D and 3D medical image retrieval. Un-
like natural images, where 2D features often suf-
fice for analysis, medical images contain volu-
metric structures that require models capable of
extracting spatial features across multiple slices.
PMC-CLIP lacks spatial encoding, leading to a
substantial drop in retrieval accuracy. For exam-
ple, at 100 test samples, PMC-CLIP achieves an
IR R@1 of only 9.00%, while both 3D Baseline
(4x16x16) and PAMN w/ T reach 64.00%. Simi-
larly, at 1000 test samples, PMC-CLIP’s IR R@1
drops to 1.90%, whereas 3D Baseline (4x16x16)
achieves 27.30% and PAMN w/ T further improves
to 39.10%. These results confirm that retrieval
in 3D medical imaging necessitates models that
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can process volumetric information, as 2D-based
retrieval fails to capture depth and structural conti-
nuity.

Beyond demonstrating the necessity of spatial
information, our experiments show that PAMN w/o
T generalizes effectively to datasets that do not in-
clude temporal phase series, indicating that it is
not dependent on temporal variations to achieve
strong performance. When trained on a dataset
without phase information, PAMN w/o T achieves
retrieval performance comparable to 3D Baseline
L (8x32x32), suggesting that it can successfully
converge on static 3D datasets without requiring
explicit temporal cues. At 500 test samples, PAMN
w/o T attains IR R@1 = 13.80%, IR R@5 =
34.40%, and IR R@10 = 46.40%, closely matching
3D Baseline L (8x32x32), which achieves 14.60%,
34.40%, and 47.80%, respectively. The similar-
ity in performance suggests that PAMN effectively
learns spatial representations without phase data,
making it well-suited for single-phase datasets
where temporal variation is unavailable.

Although PAMN w/o T performs well on static
datasets, our results indicate that incorporating
phase series during training significantly enhances
retrieval performance, as demonstrated by PAMN
w/ T. When trained with both the baseline dataset
and additional phase series, PAMN w/ T consis-
tently outperforms 3D Baseline (4x16x16), show-
ing that temporal diversity improves retrieval per-
formance. The benefits of phase series are par-
ticularly evident in larger test sets, where addi-
tional temporal variations enable the model to learn
richer feature representations, enhancing general-
ization. For example, at 500 test samples, PAMN
w/ T achieves IR R@1 = 52.00%, IR R@5 =
82.40%, and IR R@10 = 90.00%, whereas 3D
Baseline (4x16x16) reaches only 39.60%, 76.20%,
and 87.20%, respectively. A similar trend appears
at 1000 test samples, where PAMN w/ T achieves
IR R@1 = 39.10%, significantly surpassing 3D
Baseline (4x16x16), which only reaches 27.30%.
These findings suggest that phase series contribute
additional diversity to the dataset, improving the
model’s ability to differentiate similar images and
leading to better retrieval outcomes.

4.3 Ablation Study

In this section, we evaluate the critical factors af-
fecting PAMN’s retrieval performance through a
series of controlled experiments, analyzing the in-
fluence of dataset scale, feature aggregation strate-

- 60% 70% . 80% W 90% = 100%

60

IR R@1 IR R@5 IR R@10

100 500 1000 2000 100 500 1000 2000 100 500 1000 2000

20 TR R@1 TR R@5 TR R@10

0 100 500 1000 2000 0

o

100 500 1000 2000 100 500 1000 2000

Figure 4: Impact of dataset size on retrieval perfor-
mance.

gies, and phase-series length on retrieval accuracy.

4.3.1 Data Scale Law

We evaluate the impact of dataset size on retrieval
performance by training PAMN on five different
scales (60%—100%) of the full phase-series dataset.
As shown in Figure 4, retrieval accuracy improves
consistently with larger training data, confirming
the strong dependence on the scale of the dataset.
For the 100-sample test set, IR R@10 improves
from 40.00% (60% data) to 76.00% (full data),
while TR R@10 increases from 47.00% to 73.00%.

In particular, PAMN matches or exceeds 3D
Baseline ST on the training scale 80%, with PAMN
achieving IR R@10 of 23.50% and TR R@10 of
24.50% compared to 3D Baseline ST’s 19.90% and
18.80%, respectively, on the test set of 1000 sam-
ples. These findings reinforce the data-intensive
nature of retrieval models, validating our hypoth-
esis from Section 4.2.1 that increased data avail-
ability enhances model performance and supports
PAMN’s scalability under larger training regimes.

4.3.2 Pooling Aggregation

We assess several fixed pooling aggregation strate-
gies to underscore the importance of integrating
phase knowledge. As shown in Figure 5, even these
naive methods—mean (MEAN), max (MAX), and
attention-based (ATTENTION) pooling—that stat-
ically aggregate phase features lead to significant
improvements over the baseline 3D Vanilla Base-
line model, which lacks any explicit phase feature
integration.

On the 100-sample test set, the baseline model
achieves an IR R@10 of 30.77% and a TR R@10
of 31.62%. Fixed pooling methods improve these
metrics notably: IR R@10 increases to 51.00%
(MEAN) and 58.00% (MAX), while TR R@10
reaches 63.00% (MEAN) and 72.00% (MAX).
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Figure 5: Impact of feature aggregation strategies on
retrieval performance.

Although ATTENTION pooling offers moderate
gains (46.00% for both IR and TR R@10), the
benefits of aggregating phase features are clear.

More importantly, PAMN—which dynamically
models phase feature interactions—outperforms
all fixed pooling strategies across test sizes. On
the 100-sample test set, PAMN records an IR
R@10 of 76.00% and a TR R@10 of 73.00%. In
large-scale retrieval (2000-sample test set), fixed
pooling methods yield IR R@10 values of 8.40%
(MEAN), 6.70% (MAX), and 5.65% (ATTEN-
TION), whereas PAMN achieves 17.95%. Simi-
larly, for TR R@10, PAMN attains 17.30% com-
pared to 10.15% (MEAN), 10.60% (MAX), and
6.10% (ATTENTION).

These results reveal two critical insights. First,
integrating phase knowledge via even simple ag-
gregation boosts recall significantly over phase-
agnostic baselines. Second, PAMN’s adaptive mod-
eling of phase interactions consistently surpasses
fixed strategies, ensuring robust retrieval across
scales. This underscores the necessity of dynamic,
phase-aware approaches for advancing diagnostic
performance.

4.3.3 Adaptive Series Length

We evaluated PAMN’s robustness to varying phase-
series lengths, testing a single trained model on
datasets with 2, 3, or 4 imaging phases. In the 2000-
sample set, for instance, there were 1219 samples
for 2-phase, 495 for 3-phase, and 286 for 4-phase
evaluations. Figure 6 demonstrates that increasing
the number of phases generally improves retrieval
performance, highlighting the benefit of richer tem-
poral representations. For the 100-sample test set,
the impact of additional phases was clear: IR R@1
increased from 19.00% for PAMN-P2 to 24.00%
for PAMN-P4, while TR R@10 rose from 67.00%
to 73.00%. These improvements show that incor-

. PAMN-P2 PAMN-P3  mmm PAMN-P4

IR R@1 IR R@5 IR R@10

3|

500 1000 2000 10 500 1000 2000 10 50 1000 2000
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Figure 6: Retrieval performance of PAMN with varying
phase-series lengths.

porating more phase information can significantly
boost recall.

However, in larger test sets, these gains tended
to saturate. For example, in the 2000-sample set,
IR R@10 improved by 1.70 percentage points from
PAMN-P2 to PAMN-P3, but only by an additional
0.30 percentage points for PAMN-P4. A simi-
lar pattern was observed with TR R@10 and in
the 1000-sample test set. This saturation likely
results from the reduced sample size for the 4-
phase configuration combined with the inherent
challenges of large-scale retrieval. As noted in Sec-
tion 4.2.2, PAMN without phase training defaults
to baseline spatial features. The results here further
confirm that adding phases consistently enhances
recall, though gains depend on data distribution,
underscoring PAMN’s reliance on robust, balanced
datasets for optimal temporal modeling.

5 Conclusion

This study introduces the Phase-Aware Memory
Network (PAMN), a novel framework enhancing
3D medical image retrieval by integrating multi-
view spatial alignment, multi-phase temporal dy-
namics, and diagnostic text context. Unlike conven-
tional methods, PAMN captures contrast-phase pro-
gression, aligning it with clinical reports to produce
richer, clinically relevant representations. Experi-
ments on a 12,230-sample CT dataset show PAMN
outperforming 2D and 3D baselines, with up to
45% recall@10 improvement and robust scalabil-
ity. Ablations confirm the value of temporal cues
and dynamic feature fusion. PAMN’s adaptability
to single-phase datasets highlights its versatility,
paving the way for intelligent, context-driven ra-
diological analysis, with potential for automated
diagnostics and broader clinical applications.
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6 Limitations

Despite PAMN’s promising performance, this
study faces limitations primarily stemming from
the relatively limited scale and diversity of avail-
able multi-phase medical imaging data. The dataset
curated from hospital CT scans, although exten-
sive, may not comprehensively capture the full
variability encountered across different institutions
or imaging protocols, potentially restricting the
model’s generalizability. Furthermore, the per-
formance gains demonstrated by PAMN high-
light its data-dependent nature, suggesting that fu-
ture research would benefit from larger-scale and
multi-institutional datasets encompassing broader
anatomical contexts and varied clinical scenarios.
Nevertheless, this work establishes a robust frame-
work for phase-aware image retrieval and lays criti-
cal groundwork for future advancements in multi-
phase medical retrieval and automated clinical re-
port generation.
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A Implementation Details

Input 3D phase images are normalized via Min-
Max Normalization and resized to 32 x 256 x 256.
A 3D Vision Transformer (ViT) with 12 layers and
a patch size of 8 x 32 x 32 extracts phase embed-
dings, producing a 257 x 768 output (1 [CLS] token
and 256 patch tokens, each 768-dimensional). Af-
ter PAMN encoding, the phase-series tokens are
processed by a pretrained BERT model with 12 lay-
ers. Text inputs are capped at 512 tokens, with the
[CLS] token serving as the global feature for align-
ment. Training occurs on an Inspur NF5468M6
server over 50 epochs with a batch size of 32, us-
ing 8 NVIDIA A100 GPUs and DeepSpeed for
bf16 mixed-precision training. We use the AdamW
optimizer with weight decay, an initial learning
rate of 10™%, a warm-up phase, and a cosine decay
schedule. Retrieval performance is evaluated us-
ing Recall@k (R@1, R@5, R@10), where R@1
measures top-1 accuracy and R@5/R@10 assess
broader retrieval effectiveness.

B Attention on Phase Series

PAMN fuses multi-phase medical images with diag-
nostic text via a tiered attention framework—Iocal
(within phases), sequential (across phases), and
global—to build a unified diagnostic representa-
tion. For instance, in the arterial phase, PAMN
captures vascular enhancement outlining liver ab-
scesses, while later phases reveal mucosal hyperen-
hancement and fat stranding linked to colitis, track-
ing contrast progression and subtle tissue shifts
(Figure 7).

A global attention mechanism integrates these
phase-specific insights, aligning spatial abnormal-
ities with clinical report semantics. The result-
ing attention maps spotlight key features—Iliver
lesions, colonic edema, pleural and pericardial ef-
fusions—enhancing diagnostic focus.

PAMN’s visual features are aligned with text
features extracted by a language model, empha-
sizing key terms—such as peripherally enhanc-
ing, abscess, circumferential hyperenhancement,
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Attention Across Phase Series
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Figure 7: Feature Alignment. Attention maps from PAMN across contrast phases for representative axial slices
(rows), with the final column (View Attention) integrating multi-phase focus. The corresponding diagnostic text
highlights key terms (e.g., peripherally enhancing) attended by the language model, with warmer heatmap colors
indicating higher attention weights.

fat stranding, and pericardial effusion—that are at-
tended to by the language model (see Figure 7).
These terms directly correspond to imaging charac-
teristics observed in specific contrast phases: in the
arterial phase, peripherally enhancing and abscess
reflect the contrast-defined rim of a lesion; in later
phases, circumferential hyperenhancement and fat
stranding signify inflammatory changes tied to coli-
tis; and pericardial effusion is identified through the
global integration of multi-phase data. This precise
alignment of semantic and imaging cues amplifies
diagnostic accuracy and enhances the interpretabil-
ity of complex 3D medical image analysis.
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