
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3411–3425
November 4-9, 2025 ©2025 Association for Computational Linguistics

Instance-level Randomization: Toward More Stable LLM Evaluations

Yiyang Li1,*, Yonghuang Wu2, Ying Luo1, Liangtai Sun1,
Zishu Qin2, Lin Qiu1, Xuezhi Cao1, Xunliang Cai1

1Meituan Group, 2Fudan University
{liyiyang06,luoying08,sunliangtai,qiulin07,caoxuezhi,caixunliang}@meituan.com

{yonghuangwu21,zsqin23}@m.fudan.edu.cn

Abstract
Evaluations of large language models (LLMs)
suffer from instability, where small changes of
random factors such as few-shot examples can
lead to drastic fluctuations of scores and even
model rankings. Moreover, different LLMs
can have different preferences for a certain set-
ting of random factors. As a result, using a
fixed setting of random factors, which is of-
ten adopted as the paradigm of current eval-
uations, can lead to potential unfair compar-
isons between LLMs. To mitigate the volatility
of evaluations, we first theoretically analyze
the sources of variance induced by changes
in random factors. Targeting these specific
sources, we then propose the instance-level
randomization (ILR) method to reduce vari-
ance and enhance fairness in model compar-
isons. Instead of using a fixed setting across
the whole benchmark in a single experiment,
we randomize all factors that affect evaluation
scores for every single instance, run multiple
experiments and report the averaged score. The-
oretical analyses and empirical results demon-
strate that ILR can reduce the variance and un-
fair comparisons caused by random factors, as
well as achieve similar robustness level with
less than half computational cost compared
with previous methods. Codes and data are
available at https://github.com/EricLee8/
Instance-level-Randomization.

1 Introduction

With large language models (LLMs) getting
stronger (Hurst et al., 2024; DeepSeek-AI et al.,
2024; Yang et al., 2025; Meta, 2025), evaluation
of them is also becoming harder and more impor-
tant (Laskar et al., 2024; Chang et al., 2024). One
of the biggest challenges of evaluation is that it
suffers from instability, where small changes of
random factors such as few-shot examples, task de-
scriptions, and even evaluation frameworks can re-
sult in significant fluctuations of evaluation scores,

* Corresponding author.

and even model rankings (Qian et al., 2024; Xu
et al., 2024; Guan et al., 2025; Pan et al., 2025).
Figure1 illustrates an example where 7 LLMs
are evaluated on Hellaswag (Zellers et al., 2019)
dataset. As random factors vary across differ-
ent runs, model rankings change drastically, with
Qwen2.5-7B ranking over as large a range as from
1st to 6th.

Given the above observations, literature can be
categorized into the following two groups. One
group of works mainly focus on reporting the ex-
treme values or range of fluctuations caused by
these random factors. They either utilize Auto-
mated Prompt Engineering to find the best or worst
prompts, and report the corresponding scores under
these prompts (Cao et al., 2024), or design methods
to estimate the range of evaluation scores (Madaan
et al., 2024; Polo et al., 2024; Alzahrani et al.,
2024). Another group of works pay attention
on mitigating the instability before the evaluation
phase. For example, Kurt et al. 2024 adopt con-
strained decoding to make outputs more consis-
tent, Irugalbandara 2024 suggest formatting the
multiple-choice tasks as cloze tests to avoid the
unstable decoding process.

However, few works attempt to enhance the ro-
bustness of evaluation (Ngweta et al., 2025). In
this paper, we fill the gap of stabilizing evaluations
by proposing an embarrassingly simple yet sur-
prisingly effective method to mitigate the bias and
variance of evaluations caused by random factors.

In terms of the most adopted paradigm of the cur-
rent evaluations, it usually adopts a fixed setting of
random factors and only runs a single experiment,
which imposes biased settings, high variance, and
potential unfair comparisons between models due
to LLMs’ volatility on the random factors. A nat-
ural and naive alleviation is to vary the settings of
random factors across multiple runs and report the
averaged results (Mizrahi et al., 2024). However,
this method suffers a high variance and requires a

3411

https://github.com/EricLee8/Instance-level-Randomization
https://github.com/EricLee8/Instance-level-Randomization

Ra
nk

1

2

3

4

5

6

7

qwen2.5-7B

qwen1.5-14B

glm4-9B

qwen2-7B

gemma2-9B

llama3-8B

llama3.1-8B

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

3

4

5

6

7

1

2

3

4

5

6

7

1

22

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

1

2

3

4

5

6

7

F1 F2 F3 O1 O2 O3 T1 T2 T3

Figure 1: Model ranking variation on Hellaswag with different random factors changing, where “F” represents
few-shot examples, “O” represents option labels, and “T” represents task descriptions.

large number of runs to obtain an unbiased and sta-
ble result. Based on this, we theoretically analyze
the sources of the evaluation instability, based on
which we propose our instance-level randomization
(ILR) method to stabilize evaluations. Specifically,
instead of using a fixed setting for a single exper-
iment, we apply random settings to each of the
instances in a benchmark. We show both theoreti-
cally and empirically that our proposed ILR is able
to reduce the variance faster, using less than 50%
computational cost to obtain the same variance.

In this paper, we study few-shot examples, task
descriptions, prompt formats, and option labels as
the random factors that affect evaluations, whose
detailed explanations are in Appendix E. Neverthe-
less, we underline that without the loss of general-
ity, our ILR can be applied to as many as random
factors as we can consider.

To sum up, the contributions of this work are:
• We propose comprehensive theoretical analy-

ses of the sources of the evaluation instability
caused by the random factors.

• Based on the theoretical analyses, we propose
a simple yet effective instance-level random-
ization (ILR) method to obtain a more robust
evaluation, which can achieve the same robust-
ness level with less than half computational
cost compared with previous methods.

• Empirical results solidly validate the theoret-
ical analyses, as well as the effectiveness of
our method.

2 Related Work

Instability of evaluations have been discovered and
studied by the community for a long time. Studies
have shown that random factors such as phrasing

and wording of prompts (Errica et al., 2024; Razavi
et al., 2025), choice and order of few-shot exam-
ples (Xu et al., 2024; Pisarevskaya and Zubiaga,
2025), as well as their format and structure (Ng-
weta et al., 2025), can lead to large variances in
model outputs (Meincke et al., 2025), even affect-
ing factual accuracy (Wang et al., 2024a). Given
these factors, studies focus on either reporting or
mitigating the evaluation instability.

2.1 Reporting Evaluation Instability

With growing awareness of instability in LLM
evaluations caused by random factors, researchers
are reporting this phenomenon by quantifying and
representing its extent. Studies explore perfor-
mance under extreme conditions, identifying “best”
prompts through Automated Prompt Engineer-
ing (Wen et al., 2023; Ye et al., 2024; Kong et al.,
2024; Li et al., 2025) and “worst” prompts (Cao
et al., 2024). However, focusing on best or worst
prompts may not reflect real-world experiences
where prompts are diverse and spontaneous, and
they require much additional compute, posing chal-
lenges for scalable and generalizable evaluation.

Additionally, compared to directly reporting ex-
treme values or variances (Bouthillier et al., 2021;
Madaan et al., 2024; Lin et al., 2025), researchers
have proposed other statistical metrics, such as per-
formance gaps across different prompts (Sclar et al.,
2024; Mizrahi et al., 2024), or median performance
and percentile-based metrics (Polo et al., 2024).
These methods provide valuable insights into the
statistical characteristics of the evaluation instabil-
ity, but they only focus on the phenomenon itself,
rather than offering direct strategies to alleviate its
impact on the evaluation process.

3412

range: 0.08
std: 0.03

p_value: 0.014

range: 0.07
std: 0.02

p_value: 0.042

range: 0.09
std: 0.03

p_value: 0.038

range: 0.12
std: 0.04

p_value: <0.001

range: 0.09
std: 0.03

p_value: 0.047

range: 0.12
std: 0.04

p_value: <0.001

Figure 2: Box plots of different LLMs’ scores on
the Winogrande, Hellaswag, and MMLU-Pro datasets,
where each model is evaluated 8 times under various
few-shot example settings. The box plots illustrate the
distribution of scores across these 8 runs, where the
yellow text box around each box-plot represents the sta-
tistical analysis on the results.

2.2 Mitigating Evaluation Instability

Recognizing the presence of instability in LLM
evaluations and its potential impact on model rank-
ings, several approaches are proposed to mitigate
instability by modifying model outputs. MTP (Iru-
galbandara, 2024) enhances the reliability and con-
sistency of structured output generation by con-
strained decoding, but it primarily focuses on stabi-
lizing the generation process rather than the evalu-
ation itself. Similarly, Madaan et al. 2024 propose
to reframe multiple-choice tasks as cloze filling to
avoid the unstable generation process, thus reduc-
ing variance.

Most related to our work, MOF (Ngweta et al.,
2025) enhances robustness to prompt format
changes by diversifying expression styles in few-
shot examples. While effective in reducing perfor-
mance gaps caused by formatting variations, MOF
focuses solely on non-semantic aspects of few-shot
examples. In contrast, our approach is applicable to
a broader range of random factors, offering a more
comprehensive solution to mitigating the evalua-
tion instability.

In summary, existing methods lack the generality
to tackle diverse instability sources. Our work fills
this gap by proposing a unified framework that sta-
bilizes evaluations against a wide array of random
factors.

3 Problems of Current Evaluation

In this section, we show that current evaluation
paradigm of LLMs suffers from biased settings,
high variance, and potential unfair comparisons

between different models. Specifically, there are
many random factors that can affect the perfor-
mance scores of LLMs in a benchmark, such as
instructions, task descriptions, prompt formats, and
few-shot examples. However, current benchmarks
usually adopt a fixed setting of the above random
factors, resulting in biased and unstable evaluations
of different LLMs.

3.1 Biased Settings

In real-world scenarios, different users may use
different settings of the aforementioned random
factors to prompt LLMs, which leads to a discrep-
ancy between benchmark scores with fixed factors
and the actual user experience.

Formally, the true average score of LLMs on a
benchmark should be calculated as follows:

SM = Ef∼F E(x,y)∼D I(M(f(x)) = y), (1)

where SM means the score of model M , f is sam-
pled from F , which is the joint distribution of all
random factors that may affect the benchmark per-
formance, (x, y) is the query, where problem x and
reference answer y are sampled from the dataset
distribution D, and I is an indicator function that
outputs 1 if the output of the LLM matches the
reference y.

Current benchmarks only adopt a fixed setting
of random factors fbiased, resulting in biased esti-
mation of the true average score:

Sbiased
M = E(x,y)∼D I(M(fbiased(x)) = y). (2)

Different choice of fbiased can lead to significant
changes of benchmark scores, and even shift the
model rankings.

3.2 High Variance

Using a fixed setting to evaluate LLMs on a bench-
mark also introduces high variances of evaluation
scores. We show this observation with an ex-
ample of few-shot evaluations on two strongest
models at present: GPT-4o (Hurst et al., 2024)
and Deepseek-R1 (DeepSeek-AI et al., 2025).
Specifically, we conducted 8 experiments for each
model on the Winogrande (Sakaguchi et al., 2021),
Hellaswag (Zellers et al., 2019), and MMLU-
Pro (Wang et al., 2024b) datasets using different
few-shot examples, with each dataset containing
100 instances in Winogrande and Hellaswag, and
500 instances in MMLU-Pro.

3413

Figure 3: Correlations of different LLMs over different
few-shot examples on Hellaswag and Winogrande.

Figure 2 presents box plots of the scores
achieved by various LLMs on the three datasets,
where the p-value shown in the yellow text box
around each box-plot represents the statistical sig-
nificance of the difference between the best and
worst runs out of the 8 experiments, as determined
by a paired t-test. As shown in the figure, the choice
of few-shot examples has a substantial impact on
evaluation scores across all datasets even with the
strongest models: the maximum range between
the best and worst runs can reach 12%, and in all
cases, the differences between the highest and low-
est scores are statistically significant (p < 0.05).

This observation demonstrates that results ob-
tained from a single experiment with a fixed setting
can have high variance, making score comparisons
between models unreliable. For more examples of
other random factors and on other models, please
refer to Appendix C.

3.3 Unfair Comparisons

Another problem of the current fix-setting evalua-
tion is potential unfair comparisons between LLMs.
Specifically, different models may exhibit distinct
preferences for particular random factors. Taking
few-shot evaluation as an example, if we use a
fixed set of few-shot examples to evaluate Model

A and Model B, we may observe that Model A
outperforms Model B. However, if we switch to
another set of few-shot examples, the result may
be reversed. More generally, this observation mani-
fests as low or even negative correlations between
models when multiple experiments are conducted
with different random factors.

Figure 3 illustrates the Pearson correlations of
different LLMs over different few-shot examples
on Hellaswag and Winogrande. We can see from
the figure that the correlations are relatively low,
where Llama3-8B and Qwen2-72B even show a
moderately strong negative correlation. This indi-
cates that using a fixed setting to evaluate models
can be potentially unfair if the fixed setting happens
to be preferred by one model, and disfavored by
another. For correlation analysis of more random
factors, please refer to Appendix D.

4 Methodology

In this section, we propose a simple yet effective
method using Instance-Level Randomization (ILR)
over random factors, which can reduce the variance
of evaluation scores, and mitigate the instability of
model rankings at a lower cost. Figure 4 briefly
illustrates our ILR method and the comparison be-
tween ILR and the normal evaluation setting. The
left side illustrates the normal evaluation paradigm,
in which the same set of random factor settings
is applied to every instance within a benchmark.
Since a given model tends to exhibit consistent
preferences toward the same settings, each instance
in the benchmark tends to simultaneously overes-
timate or underestimate the model’s true accuracy
for that instance. This leads to unfair, biased, and
unstable evaluation results. In contrast, the right
side presents our proposed ILR method, which em-
ploys different settings for all random factors for
each instance. This approach offsets preference
effects against each other, resulting in fairer, more
stable, and less biased evaluation outcomes.

In the subsequent sections, we provide both the-
oretical and empirical evidence demonstrating that
ILR achieves a faster reduction in evaluation vari-
ance with fewer runs, thus lowering computational
overhead. Besides, we also introduce the Observed
Reversal Probability (ORP) as a novel metric to
quantify the stability of model rankings. Our exper-
iments confirm that ILR significantly reduces ORP,
proving its ability to produce fairer, more stable,
and ultimately more reliable evaluation results.

3414

Instance 1

II V IV VI

Instance 2

V X VI I

Instance n

IX II I IV

Instance 1

I I I I

Instance 2

I I I I

Instance n

I I I I

…………

Models Instance

1 2 n……

……

……

Instance

1 2 n……

……

fair, unbiased & stable
(Instance-level Randomization)

unfair, biased & unstable
(normal evaluation)

+

-

-

+

-

+

-

-

-

-

+

+

……

……

……

+

-

-

+

-

-

+

+ +

-

+

-

fewshot examples prompt format task description option label

…… ……

Figure 4: A brief illustration of our ILR method. Different Roman numerals in circles represent different evaluation
settings applied to each instance of a benchmark. The plus and minus signs mean that a certain evaluation setting
has positive or negative effect on the evaluation result of an instance for a specific model. Different colors of the
signs represent different models, who have specific preferences over certain evaluation settings.

4.1 Variance Analysis

Before introducing our ILR method, we analyze
the sources of variance when using the mean of n
evaluation runs, each considering different random
factors, as the benchmark evaluation result. We
rewrite Eq. (1) from its expected value form to its
sampled mean form. Suppose for the ith evalua-
tion run, the setting of the random factors is fi, the
corresponding accuracy of the benchmark contain-
ing m instances {(xk, yk)}mk=1 is marked as Āi =
1
m

∑m
k=1 I(M(fi(xk)) = yk), and the final aver-

age accuracy of the benchmark is Ā = 1
n

∑n
i=1 Āi.

For simplicity, we write I(M(fi(xk)) = yk) as
fi(xk). So far, we can calculate the variance of the
mean of n runs as follows:

V ar(Ā) = V ar

(
1

n

n∑

i=1

Āi

)

=
1

n2




n∑

i=1

V ar(Āi) + 2
∑

1≤i<j≤n

Cov(Āi, Āj)


 ,

V ar(Āi) =
1

m2

(m∑

k=1

V ar(fi(xk))

+ 2
∑

1≤k<l≤m

Cov(fi(xk), fi(xl))

)
.

(3)

Combining the equations in Eq. (3), we have:

V ar(Ā) =
1

n2

1

m2

n∑

i=1

m∑

k=1

V ar(fi(xk)) +

1

n2

1

m2

n∑

i=1

∑

1≤k<l≤m

2Cov(fi(xk), fi(xl)) +

1

n2

∑

1≤i<j≤n

2Cov(Āi, Āj).

(4)

Using Āi =
1
m

∑m
k=1 fi(xk) and the linearity of

covariance, Cov(Āi, Āj) can be expanded as fol-
lows:

Cov(Āi, Āj) =
1

m2

m∑

k=1

m∑

l=1

Cov(fi(xk), fj(xl)). (5)

There are three items that consist of V ar(Ā),
each of which is one line in Eq. (4). The first
item is the average of the inherent variance of each
instance’s accuracy, which follows a Bernoulli dis-
tribution and cannot be optimized since it only de-
pends on its mean p. The second term represents
the pairwise covariance between instances within
the dataset, which is typically positive, as instances
from the same dataset are usually positively corre-
lated. Reducing the correlation between instances
can help minimize this term. The third term is the
pairwise covariance of experiment scores across
runs with different random factors. Similarly, re-
ducing the correlation between experiments can
help minimize this term.

4.2 Instance-level Randomization
To start with, let us revisit the meaning of Eq. (1)
and the current evaluation convention first. We
sample a setting of random factors fbiased from the
combinational distribution F , fix it across the sam-
pled data points (x, y) from the data distribution
D, and calculate the mean accuracy of these data
points as the final score. This convention leads to
the aforementioned three problems in Section 3.

3415

To mitigate the problems causing by a fixed
fbiased, previous works propose to run multiple
experiments of different settings and report the av-
erage scores (Mizrahi et al., 2024), or report confi-
dence intervals and range distributions (Sclar et al.,
2024; Polo et al., 2024). However, they require rel-
atively high number of experiments or more com-
pute to reduce the variance to an acceptable range.
Different from previous works, this paper aims to
identify methods that can reduce evaluation vari-
ance more rapidly with fewer runs.

As mentioned in Section 4.1, the most effective
way to reduce variance is to decrease the correla-
tion between instances within the benchmark and
the correlation between multiple runs of the bench-
mark. Therefore, we summarize two points to en-
sure unbiased and fair evaluation, as well as reduce
variance:

• We consider as much random factors as possi-
ble when sampling settings, which helps ob-
tain a more unbiased performance estimation.

• Instead of using a fixed setting of random fac-
tors across the benchmark, we randomly sam-
ple different settings for each instance, which
helps decrease the instance-wise correlation
thus reducing variance, as well as mitigate
potential unfair comparisons caused by differ-
ent LLMs’ preferences over a fixed setting of
specific random factors.

Instance-level randomization changes the
instance-wise covariance term in Eq. (4) to
Cov(fk

i (xk), f
l
i (xl)), which means different

instances are now evaluated under different
random factor settings within an experiment. Also,
it changes the inner part of the experiment-wise
covariance term in Eq. (5) to Cov(fk

i (xk), f
l
j(xl)),

which means the differences between experiments
now arise not only from a single setting of random
factors, but also from distinct random factors
applied to each instance. This helps decrease the
correlation between instances and also experiments.
To explain intuitively, two instances evaluated with
different random factors tend to be less correlated
than those evaluated with the same random factor.

As for the variance term, the inner part
of summation changes from V ar(fi(xk)) to
V ar(fk

i (xk)). The change of random factors of an
instance may lead to the change of its inherent prob-
ability of being answered correctly, thus changing
the variance1. However, since the change of ran-

1The variance of Bernoulli distribution is p(1− p).

dom factors is randomly sampled, we can assume
that the average impact of the variance term to be 0.

All of the above theoretical analyses are empiri-
cally validated in Section 5.1.

4.3 Speed of Variance Reduction

In this section, we derive that considering more
random factors can accelerate the rate at which
the variance of n experiments decreases as n in-
creases, while the ILR method can speed up the
rate at which the variance of a single experiment
decreases with regard to the number of dataset in-
stances m. Although it is challenging to analyze
theoretically how the variance decreases with n
when both approaches are combined, our empiri-
cal results in Section 5.2 demonstrate that using
both methods together can further accelerate the
reduction of variance.

We can rewrite the first equation of Eq. (3) as its
mean form:

V ar =
1

n

n∑

i=1

V ar(Āi),

Cov =
2

n(n − 1)

∑

1≤i<j≤n

Cov(Āi, Āj),

V ar(Ā) =
1

n2

(
nV ar + 2

n(n − 1)

2
Cov

)

=
1

n
V ar +

n − 1

n
Cov

=
1

n
(V ar − Cov) + Cov.

(6)

When considering more random factors, the av-
erage variation of single experiment V ar is un-
changed, while the average covariance Cov be-
tween experiments is reduced. The derivative of
V ar(Ā) with regard to n is − 1

n2 (V ar − Cov),
the absolute value of which will be increased
with the decrement of Cov since usually we have
V ar > |Cov|. Therefore, we can achieve lower
variance with smaller n. Similarly, we can derive
that the speed of single experiment variance reduc-
tion with regard to m.

5 Experiments

In this section, we first conduct experiments to em-
pirically validate the theoretical analyses in Section
4.1 and 4.3. After that, we propose a metric called
Observational Reversal Probability (ORP) to mea-
sure the effectiveness of ILR. The experiments are
conducted on Winogrande, Hellaswag, BigBench-
Hard (Suzgun et al., 2023), and MMLU-pro (Wang
et al., 2024b), with 100 samples on each subset of
these datasets if applicable.

3416

Corrfixed
instance Corrrandom

instance Corrfixed
experiment Corrrandom

experiment Varfixed
instance Varrandom

instance
Winogrande 0.177 0.091 0.096 0.073 0.207 0.198
Hellaswag 0.457 0.119 0.213 0.161 0.204 0.197

Table 1: Correlation and variance in Eq. (4) before (marked as fixed) and after (marked as random) instance-level
randomization.

5.1 Covariance Reduction

To validate the theoretical analysis of covariance
reduction in Section 4.2, we conduct experiments
under fixed settings and ILR settings, and calcu-
late the correlation coefficients at both instance-
level and experiment-level, which correspond to
the second line of Eq. (4), and Eq. (5), respectively.
Specifically, we vary a random factor as the cause
of the variance, and fix or randomize others for
fixed and ILR settings.

As shown in Table 1, we observe reduction of
correlation at both instance-level and experiment-
level, where the former drops more significantly
after ILR. This is because prior to randomiza-
tion, instance-level correlations mainly arise from
shared random factors; after randomization, these
correlations decrease more substantially. In con-
trast, experiment-level random factors are already
different across experiments, even though they are
fixed within each experiment, so their correlations
are inherently lower and decrease less noticeably
after randomization compared to the instance-level.
As for the variance term of each instance itself, it
remains relatively stable as analyzed in Section 4.2.

5.2 Faster Variance Reduction

To empirically validate the theoretical analysis of
faster variance reduction of the proposed method,
we conduct experiments by calculating the mean’s
variance of n experiments with regard to the in-
crease of n. Specifically, we also vary a random
factor as the cause of the variance of a single exper-
iment, and adopt three scenarios according to the
setting of other random factors in n experiments:

• For each of the n experiments, only one ran-
dom factor is considered, which is the same
setting in previous works (Mizrahi et al., 2024;
Ngweta et al., 2025).

• For each of the n experiments, multiple ran-
dom factors are considered.

• We combine the instance-level randomization
and multiple random factors consideration.

We conduct 20 experiments, each of which is re-
peated 15 times to calculate the standard deviation

2 4 6 8 10 12 14
Number of Experiments

0.01

0.02

0.03

0.04

0.05

St
an

da
rd

 D
ev

ia
tio

n
of

 M
ea

n

one_factor
more_factors
combined

Figure 5: Variation reduction with the number of exper-
iments. The solid lines represent the standard deviation
of the mean over n experiments, while the shaded area
indicates the estimated standard deviation of this stan-
dard deviation, which is calculated from 30 selections.

of a single experiment. For each n, we randomly
select n out of the 20 experiments (n ≤ 15) as the
results of n experiments, and repeat this selection
process 30 times to get a more accurate estimation.
The mean of these selections is used as the standard
deviation of the mean across multiple experiments.

As shown in Figure 5, the standard deviation
drops as the number of experiments increases,
which is in accordance with the Law of Large Num-
bers. Considering more random factors makes the
standard deviation drop faster since it reduces the
correlation between experiments, as theoretically
analyzed in Section 4.3. This observation is also in
line with Bouthillier et al. 2021, where they study
the effect of random factors on training. Addition-
ally, applying ILR further accelerates the speed of
standard deviation reduction. More intuitively, if
we aim to reduce the standard deviation to 0.02,
previous methods require approximately 6.5 exper-
iments, whereas our ILR only needs about 3. This
reduces the evaluation cost by more than 50%.

5.3 Observed Reversal Probability

Besides variance reduction, we show that ILR also
helps obtain a more stable and fairer evaluation of
model rankings, as well as achieve a more accurate
estimation of the models’ true performance on a
benchmark.

3417

To quantitatively analyze the impact of random
factors on model rankings, we introduce the Ob-
served Reversal Probability (ORP). ORP measures
the likelihood that the observed ranking of two
models (designated A and B) reverses due to the
change of random factors.

Let the true accuracies of model A and B be
SA and SB , respectively. In practice, their ob-
served accuracies are OA = SA + ∆SA and
OB = SB + ∆SB . Here ∆SA and ∆SB are nor-
mally distributed2 random variables with standard
deviations σA and σB , and a Pearson correlation
coefficient ρAB . The observed performance dif-
ference, ∆S = OA −OB , consequently follows a
normal distribution with a mean of δAB = SA−SB

and a variance of σ2
A + σ2

B − 2ρABσAσB . ORP
measures the probability that the observed ranking
is reversed compared with the true ranking due to
the change of random factors:

ORP (δAB) = P (δAB∆S < 0)

= Φ

(
|δAB |√

σ2
A + σ2

B − 2ρABσAσB

)
.

(7)

Here, δAB denotes the true difference between the
two models, while ∆S represents the observed
score difference. A product of them less than zero
indicates that the observed ranking is reversed com-
pared to the true ranking. Therefore, the lower
ORP, the more stable an evaluation. In practice,
σ2
A, σ2

B , and ρAB can be calculated from multiple
runs. However, the true difference δAB is unknown.
Therefore, we consider ORP as a function of δAB

and calculate the area under the ORP − δAB curve
(AUC) as the final ORP value between two models.

5.4 ORP Reduction
To show ILR makes the evaluation more stable, we
conduct experiments by varying random factors
and calculate the average ORP value between each
pair of four models3 in BBH (Suzgun et al., 2023),
Winogrande, and Hellaswag. Figure 6 illustrates
the ORP curves before and after ILR, correspond-
ing to either individual random factors or the con-
sidering them all. We see from the figure that ILR
reduces the ORP for all settings, meaning that the
evaluation is less sensitive to the change of random
factors after ILR.

We attribute this observation to the following
reasons. For one experiment, suppose the accuracy

2Values affected by multiple random factors are usually
normally distributed, e.g., scores of exams.

3Llma3-8B, GLM4-9B, Llama3-70B, and Qwen2-72B.

of an instance xk is composed of three parts:

OM (xk) = SM (xk) + ∆SM (xk, f) + ϵk. (8)

Here OM (xk) is the observed accuracy of model
M on instance xk, SM (xk) is the inherent true ac-
curacy of the model on this instance, ∆SM (xk, f)
is the fluctuation term imposed by the random
factors f , and ϵk is zero-mean random noise.
∆SM (xk, f) is related to both model M and the
setting of random factors f , which is also the
source of unfair evaluations since different models
may have different preferences for certain f . The
performance score of a model is calculated as:

OM =
1

m

m∑

k=1

(OM (xk, f))

=
1

m

m∑

k=1

(SM (xk) + ∆SM (xk, f) + ϵk)

= SM +
1

m

m∑

k=1

∆SM (xk, f) +
1

m

m∑

k=1

ϵk.

(9)

Here SM is the true accuracy of model M on
the dataset,

∑m
k=1 ϵk will gradually converge to

0 as m increases. However, a fixed f will make
∆SM (xk, f) constantly positive or negative, intro-
ducing bias of evaluations and unfair comparisons
between different LLMs. Fortunately, applying
ILR here changes this term to

∑m
k=1∆SM (xk, f

k),
where the effects of different fk can be either posi-
tive or negative. As m increases, these effects tend
to offset each other, causing this term to approach
0 and avoiding the model bias introduced by fixing
f . Therefore, ILR not only enhances the stability
of the evaluation, but also renders each experiment
less biased and fairer between models.

5.5 ORP as a Meta-Evaluation Metric
In addition to serving as a meta-evaluation met-
ric for algorithms themselves, ORP can also be
used as a meta-evaluation metric for datasets. A
horizontal comparison of the ORP values in Fig-
ure 6 allows us to identify which factors have a
greater impact on the dataset, thus guiding the de-
sign of algorithms to enhance robustness against
them. Vertically, by comparing ORP values across
different datasets under the same random factor, we
can assess their robustness to random perturbations
and select more robust datasets for model evalua-
tion. Overall, ORP is a valuable meta-evaluation
metric that offers deeper insights for the evaluation
community. We leave further exploration of these
analyses as future work.

3418

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5
OR

P
Va

lu
e

BBH
fixed_all:0.0598
random_all:0.0457

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

BBH
fixed_fewshots:0.0877
random_fewshots:0.0452

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

BBH
fixed_option_label:0.1017
random_option_label:0.0861

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

BBH
fixed_task_description:0.0557
random_task_description:0.0406

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

BBH
fixed_prompt_format:0.0434
random_prompt_format:0.0375

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Winogrande
fixed_all:0.0617
random_all:0.0422

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Winogrande
fixed_fewshots:0.0455
random_fewshots:0.0407

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Winogrande
fixed_option_label:0.0838
random_option_label:0.0462

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Winogrande
fixed_task_description:0.0194
random_task_description:0.0142

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Winogrande
fixed_prompt_format:0.0494
random_prompt_format:0.0295

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Hellaswag
fixed_all:0.0680
random_all:0.0514

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Hellaswag
fixed_fewshots:0.0652
random_fewshots:0.0491

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Hellaswag
fixed_option_label:0.1088
random_option_label:0.0659

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Hellaswag
fixed_task_description:0.0260
random_task_description:0.0220

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

Hellaswag
fixed_prompt_format:0.0452
random_prompt_format:0.0332

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

MMLU_Pro
fixed_all:0.0602
random_all:0.0529

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

MMLU_Pro
fixed_fewshots:0.0876
random_fewshots:0.0463

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5
OR

P
Va

lu
e

MMLU_Pro
fixed_option_label:0.0707
random_option_label:0.0457

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

MMLU_Pro
fixed_task_description:0.0511
random_task_description:0.0396

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
True Difference of Model Performance

0.0

0.1

0.2

0.3

0.4

0.5

OR
P

Va
lu

e

MMLU_Pro
fixed_prompt_format:0.0449
random_prompt_format:0.0396

Figure 6: ORP curves between different LLMs on Hellaswag, Winogrande, BBH, and MMLU-Pro. We consider
four random factors: few-shot examples, option labels, task descriptions, and prompt formats. Three horizontal
lines indicate how much the difference of scores should be to have 90%, 95%, and 99% confidence that one model
actually outperforms another, respectively. The values in each legend are the AUCs. The lower the curves (smaller
AUCs) the better.

6 Conclusion

This paper tackles the instability of LLM evalua-
tions, where random factors cause score fluctua-
tions and unreliable model rankings. We propose
Instance-Level Randomization (ILR), a method
that randomizes these factors for each instance and
averages results across multiple experiments.

Theoretical analysis and empirical results show
ILR effectively reduces variance and unfair com-
parisons with less than half the computational cost
of previous methods. ILR lowers both instance-
level and experiment-level correlations and accel-
erates variance reduction as the number of experi-
ments increases. We also introduce Observed Re-
versal Probability (ORP) to measure ranking sta-
bility, demonstrating that ILR significantly reduces
ORP, leading to more dependable evaluations.

To sum up, ILR offers a practical and efficient
approach to achieve more robust, fair, and reliable
LLM evaluations.

Limitations

While the proposed Instance-Level Randomization
(ILR) method demonstrates significant advantages,
there are some limitations and avenues for future
exploration.

First, we treat the impact of different random

factors as independent ones to simplify the empiri-
cal validation of the theoretical analysis. However,
literature points out that they may correlate with
each other (Weber et al., 2023), causing signifi-
cant difficulties to jointly analyze them. We leave
the empirical validation under this circumstance in
future work.

Second, the empirical validation in this study
primarily focuses on a specific set of common ran-
dom factors, namely few-shot examples, task de-
scriptions, prompt formats, and option labels. Al-
though ILR is designed to be broadly applicable to
as many random factors as can be considered, its
performance characteristics when applied to other,
potentially more intricate or less common, random
factors could be a subject for further investigation.

3419

References

Norah Alzahrani, Hisham Abdullah Alyahya, Yazeed
Alnumay, Sultan Alrashed, Shaykhah Alsubaie,
Yousef Almushayqih, Faisal Mirza, Nouf Alotaibi,
Nora Al-Twairesh, Areeb Alowisheq, M. Saiful Bari,
and Haidar Khan. 2024. When benchmarks are tar-
gets: Revealing the sensitivity of large language
model leaderboards. In Proceedings of the 62nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
13787–13805. Association for Computational Lin-
guistics.

Xavier Bouthillier, Pierre Delaunay, Mirko Bronzi, As-
sya Trofimov, Brennan Nichyporuk, Justin Szeto,
Nazanin Mohammadi Sepahvand, Edward Raff,
Kanika Madan, Vikram Voleti, Samira Ebrahimi Ka-
hou, Vincent Michalski, Tal Arbel, Chris Pal, Gaël
Varoquaux, and Pascal Vincent. 2021. Accounting
for variance in machine learning benchmarks. In
Proceedings of the Fourth Conference on Machine
Learning and Systems, MLSys 2021, virtual, April
5-9, 2021. mlsys.org.

Bowen Cao, Deng Cai, Zhisong Zhang, Yuexian Zou,
and Wai Lam. 2024. On the worst prompt perfor-
mance of large language models. In Advances in
Neural Information Processing Systems 38: Annual
Conference on Neural Information Processing Sys-
tems 2024, NeurIPS 2024, Vancouver, BC, Canada,
December 10 - 15, 2024.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu,
Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi,
Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang,
Yi Chang, Philip S. Yu, Qiang Yang, and Xing Xie.
2024. A survey on evaluation of large language mod-
els. ACM Trans. Intell. Syst. Technol., 15(3):39:1–
39:45.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhi-
hong Shao, Zhuoshu Li, Ziyi Gao, and 81 others.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. CoRR,
abs/2501.12948.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
and 81 others. 2024. Deepseek-v3 technical report.
CoRR, abs/2412.19437.

Federico Errica, Giuseppe Siracusano, Davide San-
vito, and Roberto Bifulco. 2024. What did I do
wrong? quantifying llms’ sensitivity and consistency
to prompt engineering. CoRR, abs/2406.12334.

Bryan Guan, Tanya G. Roosta, Peyman Passban, and
Mehdi Rezagholizadeh. 2025. The order effect: In-
vestigating prompt sensitivity in closed-source llms.
CoRR, abs/2502.04134.

Aaron Hurst, Adam Lerer, Adam P. Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, Alek-
sander Madry, Alex Baker-Whitcomb, Alex Beutel,
Alex Borzunov, Alex Carney, Alex Chow, Alex Kir-
illov, Alex Nichol, Alex Paino, and 79 others. 2024.
Gpt-4o system card. CoRR, abs/2410.21276.

Chandra Irugalbandara. 2024. Meaning typed prompt-
ing: A technique for efficient, reliable structured
output generation. CoRR, abs/2410.18146.

Weize Kong, Spurthi Amba Hombaiah, Mingyang
Zhang, Qiaozhu Mei, and Michael Bendersky. 2024.
Prewrite: Prompt rewriting with reinforcement learn-
ing. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics, ACL
2024 - Short Papers, Bangkok, Thailand, August 11-
16, 2024, pages 594–601. Association for Computa-
tional Linguistics.

Will Kurt, Remi Louf, and Clémentine Fourrier. 2024.
Improving prompt consistency with structured gener-
ations.

Md. Tahmid Rahman Laskar, Sawsan Alqahtani, M. Sai-
ful Bari, Mizanur Rahman, Mohammad Abdul-
lah Matin Khan, Haidar Khan, Israt Jahan, Amran
Bhuiyan, Chee-Wei Tan, Md. Rizwan Parvez, Ena-
mul Hoque, Shafiq Joty, and Jimmy Huang. 2024. A
systematic survey and critical review on evaluating
large language models: Challenges, limitations, and
recommendations. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 13785–13816. Association
for Computational Linguistics.

Wenwu Li, Xiangfeng Wang, Wenhao Li, and Bo Jin.
2025. A survey of automatic prompt engineering: An
optimization perspective. CoRR, abs/2502.11560.

Feng Lin, Dong Jae Kim, Zhenhao Li, Jinqiu Yang,
and Tse-Hsun (Peter) Chen. 2025. Robunfr: Eval-
uating the robustness of large language models on
non-functional requirements aware code generation.
CoRR, abs/2503.22851.

Lovish Madaan, Aaditya K. Singh, Rylan Schaeffer,
Andrew Poulton, Sanmi Koyejo, Pontus Stenetorp,
Sharan Narang, and Dieuwke Hupkes. 2024. Quan-
tifying variance in evaluation benchmarks. CoRR,
abs/2406.10229.

Lennart Meincke, Ethan Mollick, Lilach Mollick, and
Dan Shapiro. 2025. Prompting science report 1:
Prompt engineering is complicated and contingent.
CoRR, abs/2503.04818.

3420

https://doi.org/10.18653/V1/2024.ACL-LONG.744
https://doi.org/10.18653/V1/2024.ACL-LONG.744
https://doi.org/10.18653/V1/2024.ACL-LONG.744
https://proceedings.mlsys.org/paper_files/paper/2021/hash/0184b0cd3cfb185989f858a1d9f5c1eb-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2021/hash/0184b0cd3cfb185989f858a1d9f5c1eb-Abstract.html
http://papers.nips.cc/paper_files/paper/2024/hash/7fa5a377b7ffabcce43cd00231bb3f9c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/7fa5a377b7ffabcce43cd00231bb3f9c-Abstract-Conference.html
https://doi.org/10.1145/3641289
https://doi.org/10.1145/3641289
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2501.12948
https://doi.org/10.48550/ARXIV.2412.19437
https://doi.org/10.48550/ARXIV.2406.12334
https://doi.org/10.48550/ARXIV.2406.12334
https://doi.org/10.48550/ARXIV.2406.12334
https://doi.org/10.48550/ARXIV.2502.04134
https://doi.org/10.48550/ARXIV.2502.04134
https://doi.org/10.48550/ARXIV.2410.21276
https://doi.org/10.48550/ARXIV.2410.18146
https://doi.org/10.48550/ARXIV.2410.18146
https://doi.org/10.48550/ARXIV.2410.18146
https://aclanthology.org/2024.acl-short.54
https://aclanthology.org/2024.acl-short.54
https://huggingface.co/blog/evaluation-structured-outputs
https://huggingface.co/blog/evaluation-structured-outputs
https://aclanthology.org/2024.emnlp-main.764
https://aclanthology.org/2024.emnlp-main.764
https://aclanthology.org/2024.emnlp-main.764
https://aclanthology.org/2024.emnlp-main.764
https://doi.org/10.48550/ARXIV.2502.11560
https://doi.org/10.48550/ARXIV.2502.11560
https://doi.org/10.48550/ARXIV.2503.22851
https://doi.org/10.48550/ARXIV.2503.22851
https://doi.org/10.48550/ARXIV.2503.22851
https://doi.org/10.48550/ARXIV.2406.10229
https://doi.org/10.48550/ARXIV.2406.10229
https://doi.org/10.48550/ARXIV.2503.04818
https://doi.org/10.48550/ARXIV.2503.04818

AI Meta. 2025. The llama 4 herd: The beginning
of a new era of natively multimodal ai innova-
tion. https://ai. meta. com/blog/llama-4-multimodal-
intelligence/, checked on, 4(7):2025.

Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror,
Dafna Shahaf, and Gabriel Stanovsky. 2024. State of
what art? A call for multi-prompt LLM evaluation.
Trans. Assoc. Comput. Linguistics, 12:933–949.

Lilian Ngweta, Kiran Kate, Jason Tsay, and Yara Rizk.
2025. Towards LLMs robustness to changes in
prompt format styles. In Proceedings of the 2025
Conference of the Nations of the Americas Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies (Volume 4: Student
Research Workshop), pages 529–537, Albuquerque,
USA. Association for Computational Linguistics.

Jane Pan, Ryan Shar, Jacob Pfau, Ameet Talwalkar,
He He, and Valerie Chen. 2025. When benchmarks
talk: Re-evaluating code llms with interactive feed-
back. CoRR, abs/2502.18413.

Dina Pisarevskaya and Arkaitz Zubiaga. 2025. Zero-
shot and few-shot learning with instruction-following
llms for claim matching in automated fact-checking.
arXiv preprint arXiv:2501.10860.

Felipe Maia Polo, Ronald Xu, Lucas Weber, Mírian
Silva, Onkar Bhardwaj, Leshem Choshen, Allysson
Flavio Melo de Oliveira, Yuekai Sun, and Mikhail
Yurochkin. 2024. Efficient multi-prompt evaluation
of llms. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Kun Qian, Shunji Wan, Claudia Tang, Youzhi Wang,
Xuanming Zhang, Maximillian Chen, and Zhou Yu.
2024. VarBench: Robust language model bench-
marking through dynamic variable perturbation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2024, pages 16131–16161, Miami,
Florida, USA. Association for Computational Lin-
guistics.

Amir Hossein Razavi, Mina Soltangheis, Negar
Arabzadeh, Sara Salamat, Morteza Zihayat, and
Ebrahim Bagheri. 2025. Benchmarking prompt sen-
sitivity in large language models. In Advances in In-
formation Retrieval - 47th European Conference on
Information Retrieval, ECIR 2025, Lucca, Italy, April
6-10, 2025, Proceedings, Part III, volume 15574 of
Lecture Notes in Computer Science, pages 303–313.
Springer.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: an adver-
sarial winograd schema challenge at scale. Commun.
ACM, 64(9):99–106.

Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane
Suhr. 2024. Quantifying language models’ sensitiv-
ity to spurious features in prompt design or: How I
learned to start worrying about prompt formatting.

In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi,
Denny Zhou, and Jason Wei. 2023. Challenging
big-bench tasks and whether chain-of-thought can
solve them. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 13003–13051. Association for
Computational Linguistics.

Hongchen Wang, Kangming Li, Scott Ramsay, Yao
Fehlis, Edward Kim, and Jason Hattrick-Simpers.
2024a. Evaluating the performance and robustness
of llms in materials science q&a and property predic-
tions. CoRR, abs/2409.14572.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max
Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang Yue,
and Wenhu Chen. 2024b. Mmlu-pro: A more robust
and challenging multi-task language understanding
benchmark. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural
Information Processing Systems 2024, NeurIPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Lucas Weber, Elia Bruni, and Dieuwke Hupkes. 2023.
Mind the instructions: a holistic evaluation of con-
sistency and interactions in prompt-based learning.
In Proceedings of the 27th Conference on Compu-
tational Natural Language Learning, CoNLL 2023,
Singapore, December 6-7, 2023, pages 294–313. As-
sociation for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Yuxin Wen, Neel Jain, John Kirchenbauer, Micah Gold-
blum, Jonas Geiping, and Tom Goldstein. 2023. Hard
prompts made easy: Gradient-based discrete opti-
mization for prompt tuning and discovery. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurIPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Derek Xu, Tong Xie, Botao Xia, Haoyu Li, Yunsheng
Bai, Yizhou Sun, and Wei Wang. 2024. Does few-
shot learning help LLM performance in code synthe-
sis? CoRR, abs/2412.02906.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang,
Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao,
Chengen Huang, Chenxu Lv, Chujie Zheng, Day-
iheng Liu, Fan Zhou, Fei Huang, Feng Hu, Hao

3421

https://doi.org/10.1162/TACL_A_00681
https://doi.org/10.1162/TACL_A_00681
https://aclanthology.org/2025.naacl-srw.51/
https://aclanthology.org/2025.naacl-srw.51/
https://doi.org/10.48550/ARXIV.2502.18413
https://doi.org/10.48550/ARXIV.2502.18413
https://doi.org/10.48550/ARXIV.2502.18413
http://papers.nips.cc/paper_files/paper/2024/hash/28236482f64a72eec43706b6f3a6c511-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28236482f64a72eec43706b6f3a6c511-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.findings-emnlp.946
https://doi.org/10.18653/v1/2024.findings-emnlp.946
https://doi.org/10.1007/978-3-031-88714-7_29
https://doi.org/10.1007/978-3-031-88714-7_29
https://doi.org/10.1145/3474381
https://doi.org/10.1145/3474381
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://openreview.net/forum?id=RIu5lyNXjT
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.824
https://doi.org/10.48550/ARXIV.2409.14572
https://doi.org/10.48550/ARXIV.2409.14572
https://doi.org/10.48550/ARXIV.2409.14572
http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html
http://papers.nips.cc/paper_files/paper/2024/hash/ad236edc564f3e3156e1b2feafb99a24-Abstract-Datasets_and_Benchmarks_Track.html
https://doi.org/10.18653/V1/2023.CONLL-1.20
https://doi.org/10.18653/V1/2023.CONLL-1.20
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a00548031e4647b13042c97c922fadf1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a00548031e4647b13042c97c922fadf1-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a00548031e4647b13042c97c922fadf1-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2412.02906
https://doi.org/10.48550/ARXIV.2412.02906
https://doi.org/10.48550/ARXIV.2412.02906

Ge, Haoran Wei, Huan Lin, Jialong Tang, and 41
others. 2025. Qwen3 technical report. Preprint,
arXiv:2505.09388.

Qinyuan Ye, Mohamed Ahmed, Reid Pryzant, and
Fereshte Khani. 2024. Prompt engineering a prompt
engineer. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 355–
385. Association for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Conference of the Association for Compu-
tational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages
4791–4800. Association for Computational Linguis-
tics.

3422

https://arxiv.org/abs/2505.09388
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.21
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.21
https://doi.org/10.18653/V1/P19-1472
https://doi.org/10.18653/V1/P19-1472

A Computational Experiments

We conduct experiments on Qwen2-72B, Llama3-
70B, GLM4-9B, Llama3-8B, Gemma2-9B,
Qwen2.5-7B, Qwen1.5-14B. For models with
less than 14B parameters, we deploy them on 1
single A100-80GB GPU. It takes about 1 hour to
run 10, 000 instances with vLLM framework. For
models more than 14B parameters, we deploy them
on 4 A100-80GB GPUs. It takes about 2 hours to
run 10, 000 instances with vLLM framework.

B Information About Use Of AI
Assistants

We use GPT-4o to polish some sentences of our
paper.

C Box plots of different LLM scores

Figure 7: Box plots of different LLMs’ scores on the
Winogrande and Hellaswag datasets, where each model
is evaluated 8 times under different option label settings.

Figure 8: Box plots of different LLMs’ scores on the
Winogrande and Hellaswag datasets, where each model
is evaluated 8 times under different task description
settings.

D Correlations of different LLMs

glm4-9B llama3-8B llama3-70B qwen2-72B

gl
m

4-
9B

lla
m

a3
-8

B
lla

m
a3

-7
0B

qw
en

2-
72

B

1 -0.15 0.11 0.09

-0.15 1 0.48 0.43

0.11 0.48 1 0.14

0.09 0.43 0.14 1

pearson on hellaswag_v2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

glm4-9B llama3-8B llama3-70B qwen2-72B

gl
m

4-
9B

lla
m

a3
-8

B
lla

m
a3

-7
0B

qw
en

2-
72

B

1 0.43 0.13 0.32

0.43 1 -0.03 0.48

0.13 -0.03 1 -0.04

0.32 0.48 -0.04 1

pearson on winogrande_v2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 9: Correlations of different LLMs over different
option labels on Hellaswag and Winogrande.

glm4-9B llama3-8B llama3-70B qwen2-72B

gl
m

4-
9B

lla
m

a3
-8

B
lla

m
a3

-7
0B

qw
en

2-
72

B

1 0.1 -0.25 -0.28

0.1 1 0.41 0.02

-0.25 0.41 1 0.43

-0.28 0.02 0.43 1

pearson on hellaswag_v2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

glm4-9B llama3-8B llama3-70B qwen2-72B

gl
m

4-
9B

lla
m

a3
-8

B
lla

m
a3

-7
0B

qw
en

2-
72

B

1 0.05 -0.31 -0.17

0.05 1 0.01 0.31

-0.31 0.01 1 -0.09

-0.17 0.31 -0.09 1

pearson on winogrande_v2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 10: Correlations of different LLMs over different
task descriptions on Hellaswag and Winogrande.

3423

E Example of Different Random Factors

We study few-shot examples, task descriptions,
prompt formats, and option labels as the random
factors that affect evaluations. As shown in Figure
11, few-shot examples and option labels are illus-
trated in red and green, respectively. We define the
combination of question prefixes, option prefixes,
and answer prefixes, as the prompt format, which
is shown in blue. The combination of introductions
of the task and the Chain-of-Thought (Wei et al.,
2022) prompts marked in orange is defined as task
descriptions.

Example of raw data

Given a context and multiple options,
choose the most reasonable continuation.
Question:
[header] How to take care of a budgie . . .
Options:
A. Cockatiels only need a cage . . .
B. [substeps] They should also . . .
C. Cockatiels will be more interested . . .
D. The cage should be at least . . .
Let us do this task step by step.
The solution is: The question asks . . .
[OTHER FEW-SHOT EXAMPLES]
Question:
Several replays of acrobatic moves . . .
Options:
A. go across the screen directing . . .
B. are written in yellow letters . . .
C. are shown followed on the . . .
D. are then repeated on the . . .
Let us do this task step by step.
The solution is:

Figure 11: The example of raw data is shown above,
where the red texts are few-shot examples, the blue texts
are prompt formats, the green texts are option labels,
and the orange texts are task descriptions.

Example of different few-shot examples

Given a context and multiple options,
choose the most reasonable continuation.
Question:
A soccer player is held back from . . .
Options:
A. are curling on the sidelines. . . .
B. kick the ball to one another, . . .
C. play soccer in an outdoor field . . .
D. huddle up holding a goal . . .
Let us do this task step by step.
The solution is: To solve this problem . . .
[OTHER FEW-SHOT EXAMPLES]
Question:
Several replays of acrobatic moves . . .
Options:
A. go across the screen directing . . .
B. are written in yellow letters . . .
C. are shown followed on the . . .
D. are then repeated on the . . .
Let us do this task step by step.
The solution is:

Figure 12: The example of different few-shot examples.

Example of different prompt formats

Given a context and multiple options,
choose the most reasonable continuation.
Here is a question:
[header] How to take care of a budgie . . .
Options:
A. Cockatiels only need a cage . . .
B. [substeps] They should also . . .
C. Cockatiels will be more interested . . .
D. The cage should be at least . . .
Let us do this task step by step.
The solution is: The question asks . . .
[OTHER FEW-SHOT EXAMPLES]
Here is a question:
Several replays of acrobatic moves . . .
Here are the options:
A. go across the screen directing . . .
B. are written in yellow letters . . .
C. are shown followed on the . . .
D. are then repeated on the . . .
Let us do this task step by step.
Here is the solution:

Figure 13: The example of different prompt formats.

3424

Example of different option labels

Given a context and multiple options,
choose the most reasonable continuation.
Question:
[header] How to take care of a budgie . . .
Options:
(1) Cockatiels only need a cage . . .
(2) [substeps] They should also . . .
(3) Cockatiels will be more interested . . .
(4) The cage should be at least . . .
Let us do this task step by step.
The solution is: The question asks . . .
[OTHER FEW-SHOT EXAMPLES]
Question:
Several replays of acrobatic moves . . .
Options:
(1) go across the screen directing . . .
(2) are written in yellow letters . . .
(3) are shown followed on the . . .
(4) are then repeated on the . . .
Let us do this task step by step.
The solution is:

Figure 14: The example of different option labels.

Example of different task descriptions

Given a context and several options, select
the most logical continuation.
Question:
[header] How to take care of a budgie . . .
Options:
A. Cockatiels only need a cage . . .
B. [substeps] They should also . . .
C. Cockatiels will be more interested . . .
D. The cage should be at least . . .
We will address this task gradually.
The solution is: The question asks . . .
[OTHER FEW-SHOT EXAMPLES]
Question:
Several replays of acrobatic moves . . .
Options:
A. go across the screen directing . . .
B. are written in yellow letters . . .
C. are shown followed on the . . .
D. are then repeated on the . . .
We will address this task gradually.
The solution is:

Figure 15: The example of different task descriptions.

3425

