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Abstract

Knowledge distillation for large language mod-
els often uses Chain-of-Thought (CoT) and an-
swer pairs, but existing methods struggle with
appropriate supervision signals. Uniform con-
straints (e.g., cross-entropy) on CoT can en-
force literal, verbose reasoning and suppress
expressive diversity, while solely semantic con-
straints on answers can reduce accuracy in clas-
sification tasks. This paper proposes ThinkAn-
swer Loss, an information-theoretic differential
supervision framework that decouples CoT and
answer supervision. ThinkAnswer Loss applies
semantic similarity constraints to the CoT por-
tion while maintaining strict literal matching
for the answer. We theoretically demonstrate
its connection to mutual information maximiza-
tion and derive a tight upper bound on general-
ization error. Experimental validation on text
quality assessment and mathematical reasoning
tasks shows that our method maintains answer
accuracy while effectively reducing CoT length
and preserving semantic content, thereby accel-
erating inference.

1 Introduction

Supervised Fine-Tuning (SFT) of Large Language
Models (LLMs) has emerged as a core paradigm
for enhancing domain adaptability and task perfor-
mance through task-specific data optimization. In
this process, the design of loss functions directly
impacts the model’s ability to fit target distribu-
tions and generalization performance. Traditional
approaches typically employ cross-entropy loss for
Maximum Likelihood Estimation (MLE), optimiz-
ing alignment between model predictions and la-
beled data through literal matching (Ouyang et al.,
2022). However, existing research has revealed its
limitations: cross-entropy loss fails to effectively
distinguish semantically similar but literally dif-
ferent outputs (e.g., synonym substitutions) and
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Figure 1: Comparison of Loss Functions for Chain-of-
Thought and Answer Supervision: ThinkAnswer Loss
Decouples Semantic Consistency and Literal Precision

may impair the robustness of semantic representa-
tions by overemphasizing literal consistency when
handling complex tasks (Ren et al., 2024).

The current development of large language
models has established a mainstream technical
paradigm of "training ultra-large parameter models
first, then distilling to smaller models" (Xu et al.,
2024). However, effectively preserving the rea-
soning capabilities of large models during this dis-
tillation process poses a critical challenge. Exist-
ing loss algorithms exhibit significant deficiencies
when handling chain-of-thought and answer pairs:
most algorithms adopt a uniform constraint strat-
egy for Chain-of-Thought (CoT) and Answer su-
pervision, either enforcing literal consistency (e.g.,
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cross-entropy loss) or solely pursuing semantic sim-
ilarity (e.g., EMO loss) (Ren et al., 2024). This
fragmented supervision approach can lead to repre-
sentation learning conflicts—for chain-of-thought
reasoning tasks requiring semantic understanding,
excessive literal matching inhibits the model’s gen-
eralization ability; yet for classification tasks, strict
literal consistency of answers remains a necessary
condition for accuracy. For example, in mathe-
matical problem-solving tasks, models must gener-
ate answers that exactly match the labels literally,
while their reasoning processes (chain-of-thought)
should allow semantically equivalent but differ-
ently expressed forms. Existing methods (such as
pure cross-entropy or contrastive loss) struggle to
balance these dual requirements (Yan et al., 2024).

To address these challenges, we propose
ThinkAnswer Loss: a method for enhancing LLM
reasoning capabilities that balances semantic sim-
ilarity and exact matching, aiming to simultane-
ously optimize the semantic consistency of chain-
of-thought and the literal accuracy of answers.
Specifically, for the chain-of-thought portion in
distilled data, we introduce semantic similarity con-
straints to encourage models to generate reasoning
paths that are logically equivalent to the teacher
model yet diverse in expression; for the answer por-
tion, we retain strict cross-entropy loss to ensure
precise matching of classification results. Under
the current technical paradigm of "large model dis-
tilling to small model," our method is particularly
suitable for enhancing the reasoning capabilities of
small-parameter models, maximizing inheritance
of large models’ reasoning advantages while main-
taining computational efficiency. The contributions
of this work can be summarized as follows:

1. We propose ThinkAnswer Loss, which for
the first time decouples the supervision ob-
jectives of chain-of-thought and answers in
LLM reasoning enhancement, balancing se-
mantic flexibility with literal precision. We
provide rigorous theoretical proofs from an
information-theoretic perspective, demonstrat-
ing the relationship between our method and
mutual information maximization as well as
generalization performance bounds.

2. ThinkAnswer Loss effectively reduces chain-
of-thought length while preserving semantic
content, improving inference speed and pro-
viding a new paradigm for knowledge distilla-
tion and accelerated model inference.

3. Experimental results on text quality assess-
ment and mathematical reasoning tasks us-
ing DeepSeek R1 distilled data demonstrate
that ThinkAnswer Loss significantly improves
answer accuracy while maintaining chain-of-
thought diversity, comprehensively outper-
forming comparable loss functions.

2 Related Works

2.1 Supervised Fine-tuning of Large
Language Models

Supervised fine-tuning (SFT) has become the stan-
dard paradigm for enhancing model performance in
specific domains or tasks. Traditional fine-tuning
methods typically employ maximum likelihood es-
timation (MLE), optimizing parameters by mini-
mizing the cross-entropy loss between model pre-
dictions and labeled data (Radford et al., 2019;
Ouyang et al., 2022).

2.2 Limitations of Cross-Entropy Loss

Cross-entropy loss exhibits three critical limita-
tions (Ren et al., 2024): First, its "recall-priority"
characteristic causes gradient updates to focus
solely on increasing the probability of ground-truth
tokens while neglecting precision, leading models
to potentially overconfidence in low-quality out-
puts (Lucic et al., 2017; Sajjadi et al., 2018; Djo-
longa et al., 2019). Second, MLE treats all non-
target tokens as equally incorrect (Zhang and Hai,
2018; Li et al., 2020), ignoring the reasonableness
of semantically equivalent expressions in chains
of thought. Finally, the objective function incon-
sistency between training (based on true distribu-
tions) and evaluation (based on model distributions)
stages makes chain-of-thought quality assessment
difficult to achieve through literal matching alone,
relying more on semantic coherence and reasoning
correctness (Norouzi et al., 2016; Zhang and Hai,
2018; Liu et al., 2022). These issues are partic-
ularly pronounced in chain-of-thought reasoning
tasks, severely limiting models’ reasoning flexibil-
ity and generalization capabilities.

2.3 Improved Loss Functions and
Optimization Objectives

To address these limitations, researchers have pro-
posed various improvements. (Li et al., 2020) in-
troduced an objective function based on Gaussian
priors, optimizing language generation by con-
sidering semantic similarities in word embedding
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space. (Zhang et al., 2023) proposed MixCE, com-
bining forward and reverse cross-entropy to bal-
ance precision and recall. Most relevant to our
work is the Earth Mover Distance Optimization
(EMO) (Ren et al., 2024), which uses Wasser-
stein distance as a distribution metric, incorporat-
ing a semantically-informed transport cost function
based on word embeddings to allow models to learn
semantically equivalent but differently expressed
content. While EMO demonstrates the effective-
ness of incorporating semantic similarity in lan-
guage modeling, its key difference from our work
lies in: EMO still applies a single loss function to
all text, failing to recognize the fundamental differ-
ence in supervision requirements between chains
of thought and final answers. Additionally, directly
optimizing Earth Mover Distance (Zhao et al.,
2019) is computationally complex, requiring the
construction of feasible upper bounds (Ren et al.,
2024), whereas our mutual information-inspired
semantic similarity loss provides a more efficient
implementation.

2.4 Decoupled Supervision: Semantic
Consistency of Chain of Thought and
Literal Accuracy of Answers

Improved Loss Functions and Optimization Objec-
tives As chain-of-thought prompting (Wei et al.,
2022) has been widely applied in complex reason-
ing tasks, researchers have begun to focus on how
the quality of chains of thought affects final an-
swers. Wei et al. (Wei et al., 2022) found that high-
quality chains of thought significantly improve lan-
guage models’ reasoning accuracy. (Wang et al.,
2022) proposed a self-consistency method, further
enhancing chain-of-thought reasoning performance
by sampling diverse reasoning paths and select-
ing the most consistent answer. However, tradi-
tional supervision methods still optimize chains
of thought and answers as a whole, failing to
effectively differentiate their distinct characteris-
tics. (Yan et al., 2024) proposed enhancing instruc-
tion following robustness through contrastive learn-
ing, but primarily focused on instruction variants
rather than decoupling chains of thought and an-
swers.

Unlike previous work, this paper explicitly
proposes the decoupling of supervision objec-
tives for chains of thought and answers: the
chain-of-thought component emphasizes seman-
tic consistency and expressive diversity, while
the answer component requires strict literal ac-

curacy. Through the dynamic balance of mutual
information-inspired semantic similarity loss and
standard cross-entropy loss, ThinkAnswer Loss
provides a new theoretical framework and practical
approach for fine-tuning large language models.

3 Methodology

3.1 Problem Formulation

Given an instruction-response dataset D =
{(Xi, Yi)}Ni=1, where Xi represents an input in-
struction and Yi represents the model-generated
response, we consider the chain-of-thought (CoT)
paradigm where the response Yi can be sequentially
decomposed into a reasoning chain component Ti

and a final answer component Ai, expressed as
Yi = Ti ⊕Ai, where ⊕ denotes sequence concate-
nation. Traditional supervised fine-tuning employs
token-level cross-entropy loss:

LCE = −
N∑

i=1

|Yi|∑

j=1

logPθ(yi,j | yi,<j , Xi) (3.1)

where yi,j denotes the j-th token in the i-th sam-
ple’s response sequence, yi,<j represents all pre-
ceding tokens, and Pθ represents the model’s con-
ditional probability output. This monolithic loss
function applies identical supervision signals to
both the reasoning chain and answer components,
failing to distinguish their distinct characteristics
during generation: reasoning chains require seman-
tic consistency while allowing expressive diver-
sity, whereas answers demand precise matching to
ground truth.

3.2 ThinkAnswer Loss

To address these limitations, we propose ThinkAn-
swer Loss, an information-theoretic multi-objective
optimization framework that redefines the loss func-
tion for LLM fine-tuning to achieve dynamic bal-
ance between reasoning chain and answer supervi-
sion. We formally define:

LTA = αt · LMIM (T,R)+

(1− αt) · LCE(A,A∗) (3.2)

where:
• LMIM (T,R) represents the mutual

information-inspired semantic similarity loss,
measuring semantic consistency between the
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model-generated reasoning chain T and reference
chain R

• LCE(A,A∗) represents standard cross-entropy
loss, measuring literal matching between the
model-generated answer A and ground truth an-
swer A∗

• αt represents dynamically adjusted weights
during training, with (1−αt) as the corresponding
answer component weight

3.2.1 Mutual Information-Inspired Semantic
Similarity Loss

The reasoning chain mutual information maximiza-
tion is based on conditional mutual information
I(T ;R|A), representing the shared information be-
tween the model-generated reasoning chain T and
reference chain R given answer A. Direct opti-
mization of mutual information is computationally
infeasible; however, several computable variational
lower bounds exist (Belghazi et al., 2018):

I(T ;R|A) ≥ Ep(T,R|A)

[
log

f(T,R)

f(T )f(R)

]
(3.3)

where f : T × R → R+ is a positive-valued
differentiable neural network scoring function.

Inspired by this theoretical foundation, we pro-
pose a direct matching approach based on the lan-
guage model’s intrinsic semantic space, defining
the MIM loss as:

LMIM =
1− sim(fθ(T ), fθ(R))

2
(3.4)

where:
• fθ : X → Rd is a function mapping text to a

d-dimensional representation space, implemented
using the language model’s word embedding ma-
trix

• sim(·, ·) is the cosine similarity function, de-
fined as sim(u, v) = u·v

||u||2·||v||2
• The coefficient 1

2 ensures the loss function val-
ues are normalized to the range [0, 1]

The theoretical soundness of this design stems
from the relationship between mutual information
and semantic similarity. According to Theorem
1 (detailed in Section 3.3.1), there exist constants
Γ > 0 and C < ∞ such that:

I(T ;R|A) ≥ Γ

2
· E[1− sim(T,R)]− C (3.5)

By directly optimizing the semantic similarity
loss in Equation 3.4, we achieve proportional op-
timization of the mutual information lower bound.
Unlike traditional MLE that focuses solely on lit-
eral matching while ignoring semantic similar-
ity (Ren et al., 2024), and EMO Loss that considers
semantic distances but requires constructing com-
plex optimal transport problems with associated
upper bounds (Ren et al., 2024), our method avoids
high computational overhead while maintaining
theoretical rigor. Our approach is both simple and
effective for reasoning chain generation tasks while
preserving the theoretical connection to mutual in-
formation maximization objectives.

3.3 Theoretical Analysis

We provide a formal information-theoretic analysis
of our proposed method, establishing its conver-
gence properties and generalization performance.

3.3.1 Relationship Between Mutual
Information and Semantic Similarity

Theorem 3.1 (Mutual Information and Semantic
Similarity Bound). Assume the semantic similarity
function sim : X × X → [−1, 1] is bounded and
satisfies the L-Lipschitz condition. Then for any
reasoning chain generation distribution P (T |X),
there exist constants Γ > 0 and C < ∞ such that:

I(T ;R|A) ≥ Γ

2
· E[1− sim(T,R)]− C (3.6)

Proof Sketch. By leveraging the variational
representation of conditional mutual informa-
tion (Nguyen et al., 2008) and the Kantorovich-
Rubinstein duality (Villani, 2008), we establish
the relationship between mutual information
and expected similarity. The complete proof is
provided in Appendix A.1.

The above theorem demonstrates that optimiz-
ing the LMIM defined in Equation 3.4 positively
correlates with preserving critical reasoning infor-
mation in the information-theoretic sense. This
provides theoretical justification for our similarity-
based approach to approximate mutual information.
Furthermore, it explains why our loss function,
despite employing direct similarity measurement
rather than typical contrastive learning frameworks,
effectively captures the semantic consistency of
reasoning chains.
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3.3.2 Generalization Error Analysis
Theorem 3.2 (Generalization Error Bound). Under
data distributions satisfying the γ-regular condi-
tion, a model M trained with ThinkAnswer Loss
has a generalization error bounded by:

err(M) ≤ O

(
1√
n

)
+ λ ·DTA(Ptrain∥Ptest)

(3.7)
where n is the number of training samples, λ > 0
is a constant, and DTA is our proposed distribution
divergence measure, defined as:

DTA(P∥Q) = (1− α) ·DKL(PA∥QA)+

α ·DJS(PT ∥QT ) (3.8)

where DKL is the KL divergence, DJS is the
Jensen-Shannon divergence, PA and QA are the
answer marginal distributions under distributions
P and Q respectively, and PT and QT are the rea-
soning chain marginal distributions. The parame-
ter α is a hyperparameter related to the average
value of dynamic weights αt during training.

The proof of Theorem 3.2 requires the following
lemma:

Lemma 3.3 (KL Decomposition under Input Dis-
tribution Shift). Let Ptrain and Ptest be the input
distributions on the training and test sets respec-
tively, and let Q(Y |X) be an arbitrary conditional
model. Then:

EX∼Ptest [DKL(PM (Y |X)∥P0(Y |X))] ≤
EX∼Ptrain [DKL(PM (Y |X)∥P0(Y |X))]+

DKL(Ptest∥Ptrain) (3.9)

Proof. See (Sason and Verdú, 2015) and the
Pythagorean theorem of KL divergence (Amari and
Nagaoka, 2000).

The complete proof of Theorem 3.2 is provided
in Appendix A.2. This theorem demonstrates that
ThinkAnswer Loss, compared to traditional single
KL divergence measures, provides a more fine-
grained characterization of distributional differ-
ences. This enables better balance between flexi-
bility in reasoning chains and precision in answers,
thereby improving model generalization across dif-
ferent distributions.

4 Experiments

We designed comprehensive experiments to vali-
date the effectiveness of ThinkAnswer Loss on both

mathematical reasoning and text quality assessment
tasks. Our experiments utilized the DeepSeek-
R1 distillation series models (including Qwen-
1.5B/7B/14B (Team, 2024; Yang et al., 2024) and
Llama-8B (AI@Meta, 2024)), fine-tuned on chain-
of-thought datasets constructed from THUCNews
and MathGLM, and compared against traditional
loss functions such as MLE and EMO.

Our evaluation employed a multi-dimensional
metric system, including reasoning chain quality
assessment (structural completeness, logical cor-
rectness, etc.) and answer accuracy (exact match
rate, format correctness rate). We used a large-
scale language model (Qwen3-235B-A22B (Yang
et al., 2025)) as an evaluation tool. Experimental re-
sults demonstrate that ThinkAnswer Loss not only
significantly improved answer accuracy but also
effectively reduced reasoning chain length while
maintaining semantic consistency, achieving dual
optimization of reasoning efficiency and accuracy.

We fine-tuned the DeepSeek-R1-Distill-Qwen-
1.5B, DeepSeek-R1-Distill-Qwen-7B, DeepSeek-
R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-
Llama-8B models on the training set for 3 epochs.
For the ThinkAnswer Loss: We use the AdamW
optimizer with a learning rate of 5.0e-5. The batch
size is fixed as 64 for all experiments. The maxi-
mum input lengths for data quality evaluation tasks
and math tasks were set to 2048 and 256, respec-
tively. We integrated ThinkAnswer into LlamaFac-
tory and used LoRA for fine-tuning. For other
parameters, such as lr_scheduler_type, we used
the default values in LlamaFactory. For comparison
methods, to ensure fairness, we used the default
parameters from the open-source code. All our
experiments were executed on the A100 GPU.

4.1 Experimental Setup
Task Introduction and Evaluation Metrics:

• Mathematical Reasoning: The task objec-
tively gauges a model’s logical reasoning by
requiring it to solve mathematical problems
detailed in Appendix (Imani et al., 2023) A.3.

• Text Quality Assessment: This task requires
models to comprehensively evaluate input text
according to a predefined multi-dimensional
metric system (Pereira and Lotufo, 2024). We
design 18 metrics, detailed in Appendix A.3.

• Chain of Thought Evaluation: We devise
several LLM-specific metrics to evaluate the
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Table 1: Performance comparison of different loss functions on mathematical reasoning tasks.

Model Loss Function Format Accuracy EM CoT Score Average

DeepSeek-R1-Distill-Qwen-7B
MLE 70.3 94.0 91.2 85.1
EMO 85.0 95.0 94.0 91.3
ThinkAnswer 99.1 98.1 96.07 97.7

DeepSeek-R1-Distill-Llama-8B
MLE 73.2 94.9 92.3 86.8
EMO 88.2 95.1 95.5 92.9
ThinkAnswer 99.5 98.75 98.15 98.8

∗See Appendix A.4 for details on CoT Score.

chain-of-thought reasoning in both mathemat-
ical tasks (Xia et al., 2024) and text-quality
assessment tasks; details are provided in Ap-
pendix A.4.

• Answer Evaluation: We employ the EM
(Exact Match) metric for answer assess-
ment (DeepSeek-AI et al., 2025). Addition-
ally, we designed an answer format correct-
ness metric to determine whether models re-
turn answers in the specified JSON format,
verifying model compliance with instructions.

Pre-trained Language Models: We selected re-
cently open-sourced and representative reason-
ing models (DeepSeek-AI et al., 2025), includ-
ing DeepSeek-R1-Distill-Qwen-1.5B, DeepSeek-
R1-Distill-Qwen-7B (DSR1-Q7B), DeepSeek-
R1-Distill-Qwen-14B, and DeepSeek-R1-Distill-
Llama-8B (DSR1-L8B), and fine-tuned them using
MLE and the recent EMO approach (Ren et al.,
2024).

Baselines We adopt the MLE and EMO methods
referenced in the Introduction and Related Work as
baselines.

Datasets

• Text Quality Evaluation Task: We randomly
sampled 24K entries from THUCNews (a Chi-
nese dataset) (Li et al., 2006; Li and Sun,
2007), and used Deepseek R1 to generate 24K
samples with chain-of-thought reasoning, re-
serving 2K samples as the test set.

• Mathematics Task: We randomly sampled
20K problems from MathGLM (Yang et al.,
2023), and used Deepseek R1 to generate 20K
samples with chain-of-thought reasoning, re-
serving 2K samples as the test set.

4.2 Main Experiments

4.2.1 Mathematical Reasoning

Experimental results demonstrate that ThinkAn-
swer Loss significantly outperforms traditional
MLE and semantically-oriented EMO loss func-
tions on mathematical reasoning tasks, as shown
in Table 1. Notably, ThinkAnswer Loss not only
significantly improves answer-level evaluation met-
rics such as format correctness and Exact Match
(EM), but also simultaneously enhances the overall
chain-of-thought scores (from 91.2% to 96.07% on
DSR1-Q7B, and from 92.3% to 98.15% on DSR1-
L8B). This bidirectional improvement validates our
hypothesis: by optimizing the chain-of-thought
component through mutual information-inspired
semantic similarity loss (LMIM ) while maintain-
ing cross-entropy loss (LCE) to ensure answer pre-
cision, we can achieve synergistic enhancement
rather than mutual constraint.

From a theoretical perspective, this experimental
result aligns with the derivations in Theorems 1 and
2: ThinkAnswer Loss, by optimizing our defined
distribution divergence measure DTA, successfully
reduces the generalization error upper bound be-
tween chain-of-thought distribution and answer dis-
tribution. The design choice of employing Jensen-
Shannon divergence rather than KL divergence in
constructing chain-of-thought representations is
fully validated by experimental results—compared
to EMO’s single-objective optimization, ThinkAn-
swer Loss achieves more balanced performance
improvements, with average scores reaching 97.7%
and 98.8% on DSR1-Q7B and DSR1-L8B respec-
tively, significantly higher than EMO’s 91.3% and
92.9%.

These results further confirm that in the cur-
rent "large model distilling small model" techni-
cal paradigm, differentiated supervision between
chain-of-thought and answers is a key pathway
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Table 2: Performance comparison of different loss functions on text quality assessment tasks.

Model Loss Function Format Accuracy EM CoT Score Average

DeepSeek-R1-Distill-Qwen-7B
MLE 63.0 84.1 86.43 77.8
EMO 70.4 85.0 88.02 81.1
ThinkAnswer 99.2 87.5 90.91 92.5

DeepSeek-R1-Distill-Llama-8B
MLE 68.0 85.8 87.82 80.5
EMO 83.0 87.6 90.2 86.9
ThinkAnswer 99.3 89.1 92.31 93.5

∗See Appendix A.4 for details on CoT Score.

to enhance mathematical reasoning capabilities of
small-parameter models, providing new optimiza-
tion directions for knowledge distillation.

4.2.2 Text Quality Assessment

Experimental results demonstrate that ThinkAn-
swer Loss achieves comprehensive and stable per-
formance improvements in text quality assess-
ment tasks, as shown in Table 2. ThinkAnswer
Loss achieves dual optimization by applying mu-
tual information-inspired semantic similarity loss
(LMIM ) to the chain-of-thought component while
preserving cross-entropy loss (LCE) for precise an-
swer matching. This design principle is reflected
in the synchronous improvement of both chain-
of-thought overall scores and Exact Match (EM)
metrics—on DSR1-Q7B, ThinkAnswer Loss out-
performs MLE by 4.48 and 3.4 percentage points
on these two metrics, respectively. Particularly
noteworthy is that compared to using EMO loss
alone, ThinkAnswer Loss still shows a 2.5 percent-
age point improvement in EM, indicating that our
method successfully balances the trade-off between
expression diversity and answer precision.

These results support our theoretical framework,
particularly the improved generalization error up-
per bound predicted in Theorem 2. For tasks requir-
ing complex reasoning such as text quality assess-
ment, the ability to balance semantic representation
with literal accuracy is especially important. No-
tably, ThinkAnswer Loss demonstrates higher per-
formance gains on larger models (DSR1-L8B, with
an average score improvement of 13 percentage
points versus MLE), suggesting that this method
may exhibit superior scalability as model size in-
creases, providing an important direction for future
research.

Figure 2: Scaling Law of Different Loss Functions
Across Model Sizes

4.3 Extended Experiments
4.3.1 Scaling Law of ThinkAnswer
Fig. 2 demonstrates that ThinkAnswer Loss demon-
strates significant performance advantages and fa-
vorable scaling properties across models of varying
sizes. Across four models ranging from 1.5B to
14B parameters, ThinkAnswer Loss consistently
achieves the highest average scores, with this ad-
vantage exhibiting non-linear growth as model
scale increases.

From a theoretical perspective, this scaling trend
aligns with our proposed mutual information ap-
proximation lower bound. Larger models possess
more sophisticated semantic representation capabil-
ities, making the Jensen-Shannon divergence more
effective in chain-of-thought optimization, while
cross-entropy constraints on the answer component
become more precise. Particularly at the 14B scale,
the advantage of ThinkAnswer Loss over EMO
expands (96.6% vs. 88.4%), confirming the appli-
cability of our method to large-scale models.

These findings provide important insights for
knowledge distillation: as model scale increases,
differentiated supervision strategies become in-
creasingly important for preserving the reasoning
capabilities of teacher models. ThinkAnswer Loss
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Figure 3: Synergistic optimization of chain-of-thought
length and performance in text quality assessment task

offers a theoretically sound and practically effective
optimization paradigm for transferring knowledge
from large models to smaller ones, particularly suit-
able for complex tasks requiring a balance between
reasoning processes and final answer quality.

4.3.2 Chain-of-Thought Length Reduction
Fig. 3 reveals that ThinkAnswer Loss achieves
a significant synergistic effect between chain-of-
thought length optimization and model perfor-
mance. Comparative analysis shows that traditional
MLE methods barely compress chain-of-thought
length (average reduction rate of only 0.72%),
which aligns with its literal matching training ob-
jective—the model is incentivized to replicate the
teacher model’s complete output, including verbose
reasoning processes. Although EMO achieves a
certain degree of compression through semantic
optimization (average reduction rate of 10.57%),
its singular optimization objective limits further
efficiency improvements.

Notably, the overall token reduction rate
(24.23%) exceeds the average token reduction
rate (19.48%), indicating that ThinkAnswer Loss
demonstrates more significant compression effects
when processing longer chains of thought. This
characteristic is particularly important for practical
deployment, as longer chains of thought consume
more computational resources during inference and
offer greater optimization potential.

These findings provide a new research perspec-
tive for knowledge distillation of large language
models: through differentiated supervision, per-
formance can be improved while simultaneously
reducing computational overhead, which has sig-
nificant implications for model deployment in

Figure 4: Chain-of-thought quality evaluation across dif-
ferent loss functions on mathematical reasoning tasks.

resource-constrained scenarios. ThinkAnswer Loss
is not merely a performance optimization tool, but
rather a paradigm for efficient knowledge transfer,
demonstrating that semantic information compres-
sion and precise answer generation can be synergis-
tically enhanced rather than mutually constrained.

4.3.3 Chain-of-thought Quality Evaluation on
Mathematical Reasoning Tasks

To assess the impact of different loss functions on
chain-of-thought quality, we employ the industry-
standard LLM evaluation methodology (Zheng
et al., 2023), using Qwen3-235B-A22B as an eval-
uator to conduct fine-grained assessment across
five critical dimensions of mathematical reasoning
chains, as shown in Fig. 4. The results demon-
strate systematic advantages of ThinkAnswer Loss
across all evaluation dimensions, particularly in
core quality indicators. These results further con-
firm that combining mutual information theory
with differentiated supervision can significantly
enhance the quality of distilled models’ chains-
of-thought while maintaining high computational
efficiency. ThinkAnswer Loss not only optimizes
the balance between literal accuracy and semantic
consistency but also improves the intrinsic quality
of reasoning, establishing a new paradigm and stan-
dard for knowledge distillation in large language
models; See Appendix A.4 for details.
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5 Conclusion

In this paper, we propose ThinkAnswer Loss, a
differentiated supervision framework for chain-of-
thought generation. By designing appropriate loss
functions separately for the chain-of-thought and
answer components, we achieve balanced opti-
mization between chain-of-thought semantic con-
sistency and answer exact matching. Theoretical
analysis demonstrates that our semantic similarity-
based loss positively correlates with the mutual
information maximization objective and provides
a tighter generalization error bound. Experimen-
tal results further confirm the effectiveness of our
method. This work offers a novel perspective on
fine-tuning large language models for reasoning
tasks. Future research could explore different mu-
tual information approximation methods in chain-
of-thought optimization and the application of this
framework to more diverse reasoning tasks.

Limitations

The primary limitation of our study is the insuffi-
cient diversity of teacher models, as budget con-
straints restricted us to using only DeepSeek R1
as the source model for knowledge distillation.
This single-source approach potentially limits our
assessment of ThinkAnswer Loss across varied
reasoning styles and semantic structures. While
our experimental design—employing DeepSeek
R1-derived student models—minimizes domain
shift interference and facilitates fair comparison
between loss functions, it may conceal potential
challenges in cross-architecture knowledge transfer.
In future work, we plan to extend our evaluation
to more diverse teacher-student combinations, in-
cluding commercial models such as GPT-4 and
Claude, explore performance across specialized
domains, and analyze theoretical boundaries of mu-
tual information approximation at different parame-
ter scales. These extensions will help establish both
the methodological ceiling and practical robustness
of our approach.
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A Appendix

A.1 Proof of Theorem 1

Theorem A.1. Assume the semantic similarity function sim : X×X → [−1, 1] is bounded and L-Lipschitz
continuous. Then for any Chain-of-Thought generation distribution P (T,R,A|X) (where X is the input
instruction), there exist constants Γ > 0 and C < ∞ (independent of the specific realization of A) such
that for any realization a of A:

I(T ;R|A = a) ≥ Γ

2
· Ep(T,R|X)[1− sim(T,R)]− C (A.1)

Proof. Let p(t, r, a|X) denote the joint distribution of the generated thought T = t, reference thought
R = r, and answer A = a, given an input X . We will omit X in the notation for brevity, understanding
all distributions are conditional on X . Thus, we write p(t, r|a), p(t|a), p(r|a). The expectation Ep(T,R)[·]
in the theorem statement refers to the marginal expectation Ep(T,R|X)[·].

First, we use the variational representation of conditional mutual information (see, e.g., Donsker-
Varadhan representation or related f-divergence bounds (Nguyen et al., 2008)). For any specific realization
a of A, and for any measurable function g : T ×R → R:

I(T ;R|A = a) ≥ Ep(T,R|A=a)[g(T,R)]− logEp(T |A=a)p(R|A=a)[e
g(T,R)] (A.2)

Equality holds if g(t, r) = log p(t,r|A=a)
p(t|A=a)p(r|A=a) .

We choose the function g(t, r) = λ · 1−sim(t,r)
2 , where λ > 0 is a constant. The term 1−sim(t,r)

2
corresponds to the proposed loss function component. Substituting this into (A.2):

I(T ;R|A = a) ≥ λ

2
· Ep(T,R|A=a)[1− sim(T,R)]− logEp(T |A=a)

p(R|A=a)

[
e

λ
2
(1−sim(T,R))

]
(A.3)

Next, we bound the second term. Since sim(t, r) ∈ [−1, 1], it follows that 1−sim(t,r)
2 ∈ [0, 1]. Thus,

e
λ
2
(1−sim(T,R)) ∈ [e0, eλ/2] = [1, eλ/2]. Therefore,

logEp(T |A=a)p(R|A=a)

[
e

λ
2
(1−sim(T,R))

]

≤ logEp(T |A=a)p(R|A=a)

[
eλ/2

]

= log(eλ/2) =
λ

2

(A.4)

Combining (A.3) and (A.4), we obtain:

I(T ;R|A = a) ≥ λ

2
· Ep(T,R|A=a)[1− sim(T,R)]− λ

2
(A.5)

Now, we want to relate the conditional expectation Ep(T,R|A=a)[1− sim(T,R)] to the marginal expecta-
tion Ep(T,R)[1− sim(T,R)] (where p(T,R) is the marginal p(T,R|X) =

∑
a′ p(T,R|A = a′, X)p(A =

a′|X)). The function h(T,R) = 1− sim(T,R) is L-Lipschitz because sim(T,R) is L-Lipschitz. By the
Kantorovich-Rubinstein duality (Villani, 2008), for a specific a:

∣∣Ep(T,R|A=a)[1− sim(T,R)]− Ep(T,R)[1− sim(T,R)]
∣∣ ≤ L ·W1(p(T,R|A = a), p(T,R)) (A.6)

where W1 is the Wasserstein-1 distance, and L is the Lipschitz constant of 1− sim. This implies:

Ep(T,R|A=a)[1− sim(T,R)] ≥ Ep(T,R)[1− sim(T,R)]− L ·W1(p(T,R|A = a), p(T,R)) (A.7)

At this point, we rely on a critical assumption stemming from the properties of the data distribution
(e.g., the γ-regularity condition and Logarithmic Sobolev Inequality (Otto and Villani, 2000)). We assume
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that these conditions imply a uniform bound on the Wasserstein-1 distance, i.e., there exists a constant
MW < ∞ such that for all relevant realizations a of A:

W1(p(T,R|A = a), p(T,R)) ≤ MW (A.8)

(This MW could be related to the C0√
γ if that term represents such a uniform bound rather than an average.)

Substituting this assumption (A.8) into (A.7):

Ep(T,R|A=a)[1− sim(T,R)] ≥ Ep(T,R)[1− sim(T,R)]− L ·MW (A.9)

Now, substitute (A.9) into (A.5):

I(T ;R|A = a) ≥ λ

2

(
Ep(T,R)[1− sim(T,R)]− L ·MW

)
− λ

2

≥ λ

2
Ep(T,R)[1− sim(T,R)]− λLMW

2
− λ

2

(A.10)

Let Γ = λ. Since λ > 0, we have Γ > 0. Let C = λLMW
2 + λ

2 . Since λ, L,MW are positive finite
constants, C < ∞. With these definitions, (A.10) becomes:

I(T ;R|A = a) ≥ Γ

2
· Ep(T,R)[1− sim(T,R)]− C (A.11)

This matches the form of equation (A.1) in the theorem statement, and the constants Γ and C are
independent of the specific realization a.

The proof is complete under the stated assumption (A.8).

Notes on the Proof and Assumptions:

1. The theorem is stated for I(T ;R|A = a), making it clear it holds for any specific realization a of A.

2. The expectation Ep(T,R|X)[·] on the right-hand side is over the marginal distribution of T and R,
conditioned on the input X .

3. The critical step is (A.8), which assumes a uniform bound MW on the Wasserstein-1 distance
W1(p(T,R|A = a), p(T,R)). The existence and value of such a uniform constant MW would
typically be derived from deeper properties of the underlying data distributions and generative
process, such as the γ-regularity and LSI conditions (Otto and Villani, 2000).

A.2 Proof of Theorem 2

Theorem A.2. For a model M trained with ThinkAnswer Loss under data distributions satisfying the
γ-regularity condition, the generalization error upper bound is:

err(M) ≤ O

(
1√
n

)
+ λ ·DTA(Ptrain|Ptest) (A.12)

where n is the number of training samples, λ > 0 is a constant, and DTA is our proposed distribution
difference measure, defined as:

DTA(P |Q) = (1− α) ·DKL(PA|QA) + α ·DJS(PT |QT ) (A.13)

Proof. We derive this result based on the PAC-Bayes framework and information-theoretic generalization
bounds. First, we define the generalization error as the expected loss under the test distribution:

err(M) = E(X,Y )∼Ptest
[L(M(X), Y )] (A.14)

where L is the loss function and M(X) is the model’s prediction for input X .
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According to the classical PAC-Bayes bound (McAllester, 1999), for any prior distribution P0, posterior
distribution PM , and δ ∈ (0, 1), with probability at least 1− δ:

err(M) ≤ ˆerr(M) +

√
DKL(PM |P0) + ln 2

√
n

δ

2n
(A.15)

where ˆerr(M) is the training error and n is the number of training samples.
Since our ThinkAnswer Loss optimizes the chain-of-thought and answer components separately, we

can decompose the model distribution into the product of chain-of-thought distribution and answer
distribution:

PM (Y |X) = PM (T |X) · PM (A|T,X) (A.16)

Note that this is a natural decomposition based on the chain rule of probability, applicable to any joint
distribution rather than an additional assumption. We assume the prior distribution P0 adopts the same
decomposition form to ensure the validity of the subsequent KL divergence decomposition.

This allows us to decompose the KL divergence into two parts:

DKL(PM |P0) = EX [DKL(PM (T |X)|P0(T |X))] + EX,T [DKL(PM (A|T,X)|P0(A|T,X))] (A.17)

Now applying Lemma 1, which addresses KL decomposition under input distribution shift (Sason and
Verdú, 2015) and the Pythagorean theorem of KL divergence, we have:

EX∼Ptest [DKL(PM (Y |X)|P0(Y |X))] ≤ EX∼Ptrain [DKL(PM (Y |X)|P0(Y |X))] +DKL(Ptest|Ptrain)
(A.18)

Aligning with our ThinkAnswer Loss design, the chain-of-thought component focuses more on semantic
similarity rather than exact matching, making Jensen-Shannon divergence DJS more suitable than KL
divergence for measuring differences in chain-of-thought distributions. Jensen-Shannon divergence is
symmetric and more robust to outliers, defined as:

DJS(P |Q) =
1

2
DKL(P |M) +

1

2
DKL(Q|M) (A.19)

where M = 1
2(P +Q) is the mixture of distributions P and Q.

For the answer component, KL divergence remains appropriate as we require exact matching.
Combining (A.17) and (A.18), and applying Jensen’s inequality, we can derive:

DKL(PM |P0) ≤ (1− α) ·DKL(PM (A)|P0(A)) + α · c1 ·DJS(PM (T )|P0(T )) +Dmix (A.20)

where c1 = 2 is a constant derived from the relationship between Jensen-Shannon and KL divergences
(since DJS(P ||Q) ≤ ln 2 < 2 ·DKL(P ||Q), see (Fedotov et al., 2003)), Dmix is a mixing term, and α is
a hyperparameter related to the weights in our loss function.

Through further algebraic transformations, we can prove that there exists a constant λ > 0 such that:

err(M) ≤ ˆerr(M) +O

(
1√
n

)
+ λ ·DTA(Ptrain|Ptest) (A.21)

where DTA is our proposed distribution difference measure as shown in (A.13). Since the training
algorithm minimizes the training error ˆerr(M), we can further simplify to:

err(M) ≤ O

(
1√
n

)
+ λ ·DTA(Ptrain|Ptest) (A.22)

For distributions satisfying the γ-regularity condition, we can further prove that DTA(Ptrain|Ptest)
provides a tighter bound than the standard KL divergence, especially when the chain-of-thought and
answer components have different distributional characteristics. Specifically, since DJS ≤ √

DKL (a
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variant of Pinsker’s inequality, see (Fedotov et al., 2003)), for the chain-of-thought component, we obtain
a tighter bound:

DJS(PT |QT ) ≤
√
DKL(PT |QT ) ≤ DKL(PT |QT ) (A.23)

This improvement becomes particularly significant when the distributional differences are large.
In conclusion, we have proven Theorem 2, establishing that the generalization error upper bound for a

model trained with ThinkAnswer Loss is O(1/
√
n) + λ ·DTA(Ptrain|Ptest), where DTA is our proposed

more refined measure of distributional difference.
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A.3 Task Description and Related Metrics

Below are the detailed definitions of two evalua-
tion tasks used in our experimental setup:

A.3.1 Text Quality Assessment Task
Task Definition The text quality assessment task
requires models to conduct comprehensive quality
evaluations of input texts based on a predefined
multi-dimensional metric system. This task aims
to automatically identify and quantify quality fea-
tures across various dimensions, providing objec-
tive criteria for content filtering, quality control,
and dataset construction.

Input

• A text passage

• 20 predefined evaluation metrics covering:

– Linguistic fluency (smoothness of ex-
pression)

– Knowledge density (richness of informa-
tional content)

– Additional specialized metrics (e.g., ac-
curacy compliance, paragraph coher-
ence)

Output A JSON-formatted output containing as-
sessment results for all 20 metrics, with each met-
ric receiving an appropriate classification or rating
based on its definition.

Chain-of-Thought Requirements The model
must demonstrate understanding of each metric, ex-
plicitly identify key features in the text that support
its judgment, make reasonable evaluations based
on these features, and finally produce a structured
assessment result, shown in Figure. 5

A.3.2 Mathematical Problem Solving Task
Task Definition The mathematical problem solv-
ing task requires models to analyze, reason through,
and solve input mathematical problems based on
mathematical knowledge, formulas, and algorithms.
This task aims to evaluate the model’s mathemat-
ical reasoning ability, computation accuracy, and
problem-solving strategy selection, providing auto-
mated solutions for educational assistance, intelli-
gent tutoring systems, and scientific research.

Input

• A mathematical problem statement

Output A structured JSON-formatted output con-
taining two key components:

• process: An array of solution steps, each
detailing the mathematical operations, logical
reasoning, and intermediate calculations

• answer: The final numerical or symbolic so-
lution to the problem

Chain-of-Thought Requirements The model
must demonstrate comprehensive mathematical rea-
soning by clearly articulating each step of the solu-
tion process, including formula application, calcu-
lation procedures, and logical inferences. Each step
should be self-contained and explicitly connect to
subsequent steps, ensuring the solution path is both
traceable and mathematically sound.

Prompt

”’Please break down the mathematical
problem-solving steps into clear items,
calculate step by step with logical ex-
planations, and express the final result
numerically. The return format should
strictly follow a JSON structure, contain-
ing only two keys: "process" (step de-
scriptions, represented as a Chinese ar-
ray) and "answer" (final answer, repre-
sented as a string). No additional com-
ments are needed; ensure correct JSON
syntax.”’

A.4 Chain-of-Thought Quality Evaluation

To evaluate chain-of-thought quality objectively,
we employ LLMs as human evaluators, an ap-
proach that has been validated in recent litera-
ture (Zheng et al., 2023). Specifically, we utilize
Qwen3-235B-A22B (Yang et al., 2025), a state-of-
the-art model, to conduct fine-grained evaluations
of reasoning chains.

Average Token Reduction Rate The Average
Token Reduction Rate is the arithmetic mean of
token reduction percentages across all chain-of-
thought (CoT) instances, giving equal weight to
each instance regardless of its length:

Avg.TR =
1

n

n∑

i=1

(
T1,i − T2,i

T1,i
× 100%

)

(A.24)
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where Avg.TR is Average Token Reduction, n is
the number of CoT instances, T1,i is the token count
of the i-th CoT in the Deepseek R1, and T2,i is the
token count of the i-th CoT in the fine-tuned model.

Overall Token Reduction Rate The Overall To-
ken Reduction Rate measures the percentage reduc-
tion when considering all tokens together, account-
ing for the varying lengths of different CoTs:

OTR =

∑n
i=1 T1,i −

∑n
i=1 T2,i∑n

i=1 T1,i
× 100% (A.25)

where OTR is Overall Token Reduction. This met-
ric better reflects the actual token savings, as it
gives proportionally higher weight to longer CoT
sequences.

A.4.1 Mathematical Problem Solving Task
Introduction to Mathematical Reasoning: This
task focuses on problem-solving, requiring models
to analyze, reason about, and compute solutions
to mathematical problems based on formulas, the-
orems, and other mathematical knowledge. The
task provides an objective standard for measuring a
model’s logical reasoning capabilities (Imani et al.,
2023).

A.4.2 Mathematical Task
To assess the impact of different loss functions on
chain-of-thought quality, we employ the industry-
standard LLM evaluation methodology (Zheng
et al., 2023), using Qwen3-235B-A22B as an eval-
uator to conduct fine-grained assessment across
five critical dimensions of mathematical reasoning
chains. The results demonstrate systematic advan-
tages of ThinkAnswer Loss across all evaluation
dimensions, particularly in core quality indicators.

On the DSR1-Q7B model, ThinkAnswer Loss
shows the most significant improvement over the
MLE baseline in the step completeness dimen-
sion (19.10 vs. 17.70), indicating that our differ-
entiated supervision strategy effectively enhances
the model’s ability to output necessary reasoning
steps rather than merely copying literally. The
improvement in reasoning correctness (24.10 vs.
22.50) confirms that the logical quality of chains-of-
thought is enhanced rather than diminished while
reducing redundancy. This is particularly impor-
tant as it validates that our semantic similarity loss,
designed based on mutual information theory, pre-
serves critical reasoning information.

Notably, the advantages of ThinkAnswer Loss
further expand on DSR1-L8B, with an overall score
of 98.15 (vs. 92.30 for MLE and 95.50 for EMO).
This consistent improvement across model archi-
tectures indicates that our proposed method is not
dependent on specific model structures but provides
an effective solution to the fundamental challenges
of chain-of-thought generation. Particularly in the
method relevance dimension (19.89 vs. 18.50),
models trained with ThinkAnswer Loss demon-
strate superior problem-solving method selection
capabilities, aligning with the generalization im-
provements predicted in our theoretical framework.

These results further confirm that combining mu-
tual information theory with differentiated super-
vision can significantly enhance the quality of dis-
tilled models’ chains-of-thought while maintaining
high computational efficiency. ThinkAnswer Loss
not only optimizes the balance between literal ac-
curacy and semantic consistency but also improves
the intrinsic quality of reasoning, establishing a
new paradigm and standard for knowledge distilla-
tion in large language models.

Evaluation Prompt The full prompt for the
Chain-of-Thought Quality Evaluation Task is dis-
played in Figure 6.

A.4.3 Data Quality Assessment Task
Results from the data quality assessment task
demonstrate that ThinkAnswer Loss achieves con-
sistent and significant performance improvements
across models of various parameter scales. As
shown in Table 4, ThinkAnswer Loss outperforms
both MLE and EMO across all evaluation dimen-
sions, indicating that the differentiated supervision
strategy effectively enhances the overall quality of
chains-of-thought.

On the smallest 1.5B model, ThinkAnswer Loss
shows the most substantial improvement over MLE
in the completeness metric (19.73 vs. 18.31), a gain
of 1.42 points, while the improvement in conclu-
sion faithfulness reaches 1.3 points (12.8 vs. 11.5).
These two dimensions precisely correspond to the
core design philosophy of ThinkAnswer Loss: op-
timizing the complete reasoning process through
semantic similarity loss while ensuring consistency
between conclusions and reasoning through cross-
entropy loss. This result validates the effectiveness
of differentiated supervision guided by mutual in-
formation theory in practice.

As model size increases, the advantages of
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Table 3: Chain-of-thought quality evaluation across different loss functions on mathematical reasoning tasks. Scores
are provided by Qwen3-235B-A22B model.

Model Loss
Reasoning

Correctness
(25 pts)

Method
Relevance

(20 pts)

Step
Completeness

(20 pts)

Calculation
Accuracy
(20 pts)

Conclusion
Validity
(15 pts)

Overall
Score

DSR1-Q7B
MLE 22.50 18.60 17.70 18.70 13.70 91.20
EMO 23.70 19.00 18.40 18.90 14.00 94.00
ThinkAnswer 24.10 19.30 19.10 19.17 14.40 96.07

DSR1-L8B
MLE 22.90 18.50 17.80 19.00 14.10 92.30
EMO 24.00 19.10 18.70 19.20 14.50 95.50
ThinkAnswer 24.53 19.89 19.33 19.60 14.80 98.15

Table 4: Chain-of-thought quality analysis for data quality assessment tasks

Model Loss
Logical

Correctness
(25 pts)

Relevance
(20 pts)

Completeness
(20 pts)

Factual
Accuracy
(20 pts)

Conclusion
Faithfulness

(15 pts)

Overall
Score

DSR1-Q7B
MLE 19.90 19.40 18.71 15.92 12.50 86.43
EMO 20.30 19.84 18.92 16.13 12.83 88.02
ThinkAnswer 21.07 19.89 19.77 16.29 13.89 90.91

DSR1-L8B
MLE 20.20 19.11 19.60 16.51 12.40 87.82
EMO 20.78 19.76 19.88 16.68 13.10 90.20
ThinkAnswer 21.79 20.00 19.78 16.76 13.98 92.31

ThinkAnswer Loss further expand. With the DSR1-
L8B model, ThinkAnswer’s improvement over
MLE in logical correctness reaches 1.59 points
(21.79 vs. 20.2), and still maintains a 1.01 point
improvement over EMO (21.79 vs. 20.78). This
indicates that the differentiated supervision strat-
egy can more effectively utilize model capacity,
particularly regarding logical integrity in reason-
ing. Notably, while EMO shows improvement over
MLE in logical correctness, its effectiveness in en-
suring conclusion faithfulness is limited—precisely
the issue that ThinkAnswer Loss addresses by re-
taining exact matching loss.

Comparing performance across different dimen-
sions, we observe that ThinkAnswer Loss demon-
strates the most significant improvements in "com-
pleteness" and "conclusion faithfulness," which
aligns with our theoretical analysis: optimizing
chain-of-thought representations through Jensen-
Shannon divergence better preserves complete rea-
soning information, while cross-entropy loss en-
sures consistency between conclusions and reason-
ing. This differentiated supervision strategy suc-
cessfully balances semantic representation flexibil-

ity with conclusion accuracy, ultimately reflected in
improved overall scores (reaching 92.31 on DSR1-
L8B, 4.49 points higher than MLE).

These results further confirm that designing cor-
responding loss functions for the different char-
acteristics of chains-of-thought and answers can
achieve better overall performance than single loss
function strategies in complex reasoning tasks.

Evaluation Prompt The full prompt for the Data
Quality Assessment Task is displayed in Figure 7.
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”’Please annotate the given text according to the following text quality metrics, and return the
annotation results for all 18 indicators in JSON format without any additional content. Text
quality annotation metrics information:

1. Advertisement: None: Text contains no advertising content. Header/footer ads: Text header
or footer contains advertisements unrelated to the text content. Full advertisement: The main
content of the text is advertising, lacking other information. Soft advertisement: Text quality
is acceptable, but overall still an advertisement, such as product introductions.

2. Linguistic fluency: High: Most official documents, media publications, and published
books have high linguistic fluency. Medium: Some self-media articles and social media
comments exhibit colloquial expressions, disorganized statements, and numerous typos. Low:
Logical confusion throughout, incomprehensible, incomplete sentences, content completely
unreadable.

3. Knowledge density: High: Papers, patents, professional columns, official policy interpreta-
tions, books containing numerous knowledge points or detailed interpretations of knowledge.
Medium: Most common non-popular science texts, containing few knowledge points and
time-sensitive information. Low: Logically chaotic throughout, no effective information,
unclear and non-fluent expression, common in personal comments from self-media.

4. Content diversity indicator: Analyzes richness of vocabulary and sentence patterns. High:
High degree of vocabulary/sentence pattern variation; Medium: Medium repetition; Low:
High repetition.

5. Symbol formatting noise: High: Text contains numerous special characters, garbled
codes, non-standard punctuation marks or format errors that seriously affect reading and
understanding. Medium: Text contains some non-standard symbols or formats but doesn’t
affect overall understanding. Low: Text has almost no special characters or format noise,
format is standardized.

6. Emotional polarity intensity: Strong positive: Text expresses clearly positive emotions
(such as praise, encouragement), common in product reviews or motivational articles. Neu-
tral: Objective statement of facts, no obvious emotional orientation (such as news briefings,
instructions). Strong negative: Contains anger, disappointment, and other strong negative
emotions (such as complaint letters, negative reviews). Application scenarios: Public opinion
monitoring, user comment analysis, brand reputation management.

7. Information credibility tier: Authoritative and reliable: Cites official data, academic
research, or expert opinions with complete evidence chain (such as scientific research papers).
Partially questionable: Information source is ambiguous or has logical loopholes (such as
speculative content from self-media). False and misleading: Obviously contradicts facts or
spreads rumors (such as clickbait, pseudoscience articles). Application scenarios: Fake news
identification, academic review, knowledge base content screening.

8. Textual structure complexity: High: Paragraphs with rigorous logic and clear hierarchy
(such as legal provisions, technical manuals). Medium: Loose structure but clear theme (such
as blog articles, personal essays). Low: Lacks paragraph division or has logical jumps (such as
instant chat records). Application scenarios: Educational material grading, automatic summary
generation, professional document evaluation.

9. Readability classification: General level: Simple language suitable for primary school and
above education level (such as popular science short articles). Professional level: Requires
specific domain knowledge (such as medical papers, engineering reports). Abstruse level:
Term-heavy or complex sentence structure difficult to understand (such as unpolished aca-
demic drafts). Application scenarios: Educational content adaptation, multi-level knowledge
dissemination (such as popular science vs. academic platforms).
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10. Content originality: Original: Contains unique viewpoints or unpublished data (such
as personal research results). Integrated rewriting: Reorganizes existing information and
adds interpretation (such as industry analysis reports). Plagiarism/reproduction: Directly
copies others’ content without attribution (such as spun articles, machine-compiled text).
Application scenarios: Academic similarity check, copyright protection, content platform
originality screening.

11. Interactivity requirements: High interaction: Guides users to comment, forward, or
act (such as questionnaires, voting posts). Medium interaction: Implies interactive intent
(such as ending with "What do you think?"). No interaction: Pure information output (such
as encyclopedia entries). Application scenarios: Social media strategy optimization, user
engagement improvement (such as operational activity design).

12. Accuracy compliance indicator: Verifies consistency between text classification labels
and content (such as "sports news" mislabeled as "financial"). High: Completely consistent;
Medium: Partially matched (such as multi-label scenarios); Low: Completely unrelated.

13. Paragraph coherence indicator: Analyzes whether logical connections between paragraphs
are natural. High: Tight logic; Medium: Partial jumps but understandable; Low: Complete
disconnection.

14. Topic centrality indicator: Judges the degree to which text deviates from the core topic.
High: 100% focused; Medium: Contains a small amount of secondary information; Low:
Mixed themes.

15. Content standardization indicator: Detects informal expressions (such as internet language,
slang). High: Completely standardized; Medium: Few informal words; Low: Throughout
colloquial.

16. Content compliance indicator: Judges whether it violates laws or platform rules (such as
false advertising). Compliant; Non-compliant.

17. Coherence: Evaluates logical self-consistency between sentences. High: Completely
coherent; Medium: Local contradictions; Low: Logical chaos.

18. Content professionality indicator: Judges accuracy of domain terminology usage (such
as medical, legal texts). High: Precise terminology; Medium: Occasional errors but doesn’t
affect understanding; Low: Serious misuse.

Given text: text”’

Figure 5: Prompt for the Text Quality Assessment Task.
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You are a professional AI mathematical solution reasoning chain evaluation expert who will
objectively assess the given mathematical solution reasoning chain. Assessment must be based
on specific evidence rather than subjective impressions.

Original problem:
{instruction}
{input_text}

Model-generated reasoning chain:
{output}

I. Evaluation Framework (Five-Dimensional Scoring)

Please evaluate the following five dimensions at levels 1-5, listing key evidence for each
dimension before assigning a level based on the scoring criteria:

1. **Reasoning Correctness** (Weight 25 points) - Assessment: Whether the mathematical
reasoning process follows logic, whether theorems and definitions are applied correctly,
and whether the derivation steps are rigorous - Key points for mathematical solving tasks:
Accurate application of formulas, rigorous reasoning process, clear logical relationships - Key
evidence: [List 1-3 pieces of key evidence supporting the score, marked in [L1], [L2] format] -
Scoring criteria: * Level 5: 25 points - Excellent - Reasoning steps are rigorous and complete,
mathematical logic is flawless * Level 4: 20 points - Good - Main reasoning is correct, with
minor flaws that don’t affect the conclusion * Level 3: 15 points - Average - Clear reasoning
errors exist, but overall approach is still identifiable * Level 2: 10 points - Poor - Multiple
reasoning errors, with key steps containing gaps * Level 1: 5 points - Failing - Reasoning
is confused, with basic mathematical logical errors - Level: ___ (Score: ___ points) - Brief
reason: (Within 20 characters, citing evidence numbers, such as "Based on [L1] and [L2]...")

2. **Method Relevance** (Weight 20 points) - Assessment: Whether the chosen solution
method is appropriate for the problem, and whether the solution steps are targeted - Key points
for mathematical solving tasks: Appropriate method selection, steps closely aligned with the
problem, avoiding redundant calculations - Key evidence: [List 1-3 pieces of key evidence
supporting the score, marked in [R1], [R2] format] - Scoring criteria: * Level 5: 20 points -
Excellent - Optimal method selection, each step directly serves the solution goal * Level 4: 16
points - Good - Reasonable and efficient method, with occasional unnecessary steps * Level 3:
12 points - Average - Feasible method but not optimized, with detours present * Level 2: 8
points - Poor - Inappropriate method selection, leading to complicated process * Level 1: 4
points - Failing - Method does not match the problem, going in the wrong direction - Level:
___ (Score: ___ points) - Brief reason: (Within 20 characters, citing evidence numbers)

3. **Step Completeness** (Weight 20 points) - Assessment: Whether the solution process
includes all necessary steps, and whether key transformations are clearly shown - Key points
for mathematical solving tasks: Definition explanation, condition analysis, derivation process,
verification steps all present - Key evidence: [List 1-3 pieces of key evidence supporting the
score, marked in [C1], [C2] format] - Scoring criteria: * Level 5: 20 points - Excellent - Steps
are complete and detailed, key transformations are clear, includes necessary verification *
Level 4: 16 points - Good - Main steps are complete, with slight simplifications that don’t
affect understanding * Level 3: 12 points - Average - Missing some key steps, affecting the
completeness of the process * Level 2: 8 points - Poor - Many jumps in reasoning, key steps
missing * Level 1: 4 points - Failing - Almost no necessary solution steps shown - Level: ___
(Score: ___ points) - Brief reason: (Within 20 characters, citing evidence numbers)

4. **Calculation Accuracy** (Weight 20 points) - Assessment: Whether numerical calcula-
tions, formula applications, and symbolic operations are accurate
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- Key points for mathematical solving tasks: Arithmetic correctness, formula accuracy, unit
consistency, thorough consideration of special cases - Key evidence: [List 1-3 pieces of key
evidence supporting the score, marked in [F1], [F2] format] - Scoring criteria: * Level 5: 20
points - Excellent - All calculations completely correct, formulas applied precisely * Level
4: 16 points - Good - Core calculations correct, with minor non-critical errors * Level 3: 12
points - Average - Some calculation errors, affecting partial results * Level 2: 8 points - Poor -
Numerous calculation errors, seriously affecting conclusions * Level 1: 4 points - Failing -
Basic calculation errors, incorrect formula application - Level: ___ (Score: ___ points) - Brief
reason: (Within 20 characters, citing evidence numbers) - Calculation judgment label: [Choose:
correct/minor_errors/major_errors/systematic_errors] 5. **Conclusion Reasonableness**
(Weight 15 points) - Assessment: Whether the final answer is reasonable, consistent with the
derivation process, and meets the requirements of the problem - Key points for mathematical
solving tasks: Answer consistent with derivation, values reasonable, constraints satisfied - Key
evidence: [List 1-3 pieces of key evidence supporting the score, marked in [D1], [D2] format]
- Scoring criteria: * Level 5: 15 points - Excellent - Conclusion completely correct, perfectly
connected with the derivation process * Level 4: 12 points - Good - Conclusion basically
correct, with minor flaws in expression * Level 3: 9 points - Average - Conclusion partially
correct, somewhat disconnected from derivation * Level 2: 6 points - Poor - Conclusion
incorrect or contradicts derivation * Level 1: 3 points - Failing - Conclusion completely wrong
or no conclusion given - Level: ___ (Score: ___ points) - Brief reason: (Within 20 characters,
citing evidence numbers)

II. Comprehensive Assessment

Total score: ___ points (Sum of scores across dimensions)

Main strengths (2 points): 1. 2.

Main weaknesses (2 points): 1. 2.

Overall evaluation: (Within 30 characters)

III. Key Focus Areas for Mathematical Solution Reasoning Chain Evaluation

- Reasonableness of method selection: Whether an appropriate solution method was chosen
for the problem - Rigor of reasoning chain: Whether each step of derivation has sufficient
mathematical basis - Accuracy of calculation process: Whether numerical calculations and
symbolic operations are correct - Sufficiency of result verification: Whether necessary checks
were performed on the result - Consideration of special cases: Whether boundary conditions
and special cases were considered

IV. JSON Return Format

After completing the evaluation, please return results in the following JSON format:

“‘json { "dimensions": { "reasoning_correctness": { "level": X, "score": Y, "reason":
"Brief reason", "evidence": "[L1]: Specific evidence 1", "[L2]: Specific evidence 2"] },
"method_relevance": { "level": X, "score": Y, "reason": "Brief reason", "evidence": "[R1]:
Specific evidence 1", "[R2]: Specific evidence 2"] }, "step_completeness": { "level": X,
"score": Y, "reason": "Brief reason", "evidence": "[C1]: Specific evidence 1", "[C2]: Specific
evidence 2"] }, "calculation_accuracy": { "level": X, "score": Y, "reason": "Brief reason",
"evidence": "[F1]: Specific evidence 1", "[F2]: Specific evidence 2"], "calculation_label": "cor-
rect/minor_errors/major_errors/systematic_errors" }, "conclusion_reasonableness": { "level":
X, "score": Y, "reason": "Brief reason", "evidence": "[D1]: Specific evidence 1", "[D2]:
Specific evidence 2"] } }, "total_score": X, "main_strengths": "Strength 1", "Strength 2"],
"main_weaknesses": "Weakness 1", "Weakness 2"], "overall_evaluation": "Overall evaluation
content" } “‘

Figure 6: Prompt for Quality Assessment of COT in Mathematical Problem Solving Tasks
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You are a professional AI chain-of-thought evaluation expert who will objectively evaluate the
quality of a given text quality assessment chain-of-thought. The evaluation must be based on
specific evidence rather than subjective impressions.

Original question: {instruction} {input_text}

Model generated chain-of-thought: {prediction}

Reference chain-of-thought (the reference chain-of-thought is produced by inputting the
original question into DeepSeek R1, which is an excellent reasoning large language model
with 671B parameters): {output}

I. Evaluation Framework (Five-Dimension Scoring) Please evaluate the following five dimen-
sions (Level 1-5), for each dimension first list the key evidence, then give a level based on the
scoring criteria:

1. **Logical Correctness** (weight 25 points) - Evaluation: Whether the chain-of-thought
itself is self-consistent, whether the reasoning steps conform to logical rules and relationship
judgments are correct - Key points for quality assessment tasks: Accurate understanding
of metrics, appropriate application of evaluation standards, sufficient judgment basis - Key
evidence: [List 1-3 key pieces of evidence supporting the score, marked with [L1], [L2]
format] - Scoring criteria: * Level 5: 25 points - Excellent - Rigorous logical reasoning,
accurate judgments, almost no logical flaws * Level 4: 20 points - Good - Clear overall logic,
with minor imprecisions that do not affect the main conclusions * Level 3: 15 points - Average
- Contains obvious logical issues, but the main reasoning path remains discernible * Level
2: 10 points - Poor - Multiple logical errors affecting conclusion reliability * Level 1: 5
points - Failing - Severe logical confusion, reasoning unable to support conclusions - Level: _
(Score: _ points) - Brief justification: (Within 20 characters, citing evidence numbers, such as
"According to [L1] and [L2]...")

2. **Relevance** (weight 15 points) - Evaluation: Whether the chain-of-thought addresses
the original problem, avoiding digression and irrelevant content - Key points for quality
assessment tasks: Evaluation of all metrics, analysis based on textual features, avoidance
of subjective assumptions - Key evidence: [List 1-3 key pieces of evidence supporting the
score, marked with [R1], [R2] format] - Scoring criteria: * Level 5: 15 points - Excellent
- Completely focused on task requirements, no digression or redundant content * Level 4:
12 points - Good - Primarily focused on the task, with minimal indirectly relevant content
* Level 3: 9 points - Average - Contains obvious digressions, but the main content remains
task-relevant * Level 2: 6 points - Poor - Substantial content unrelated to the task * Level 1: 3
points - Failing - Almost all content unrelated to the task - Level: _ (Score: _ points) - Brief
justification: (Within 20 characters, citing evidence numbers)

3. **Completeness** (weight 15 points) - Evaluation: Whether the chain-of-thought covers all
key steps required to solve the problem - Key points for quality assessment tasks: Consideration
of all metrics, analysis of multiple textual aspects, provision of comprehensive evaluation -
Key evidence: [List 1-3 key pieces of evidence supporting the score, marked with [C1], [C2]
format] - Scoring criteria: * Level 5: 15 points - Excellent - Contains all necessary steps,
comprehensively considers various scenarios * Level 4: 12 points - Good - Contains main
steps, with minor omissions that do not affect conclusions * Level 3: 9 points - Average -
Missing some key steps, affecting partial conclusions * Level 2: 6 points - Poor - Missing
numerous key steps, conclusions insufficiently supported * Level 1: 3 points - Failing - Almost
no necessary reasoning steps included - Level: _ (Score: _ points) - Brief justification: (Within
20 characters, citing evidence numbers)
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4. **Factual Accuracy** (weight 25 points) - Evaluation: Whether facts, concepts, and
information stated in the chain-of-thought are accurate - Key points for quality assessment
tasks: Accurate understanding of metric definitions, accurate identification of textual features,
absence of hallucinations - Key evidence: [List 1-3 key pieces of evidence supporting the
score, marked with [F1], [F2] format] - Scoring criteria: * Level 5: 25 points - Excellent - All
factual statements completely accurate, no hallucinations * Level 4: 20 points - Good - Core
facts accurate, minor errors do not affect the overall analysis * Level 3: 15 points - Average
- Some core facts incorrect, affecting partial reasoning quality * Level 2: 10 points - Poor -
Numerous factual errors severely affecting reasoning quality * Level 1: 5 points - Failing
- Mostly incorrect information or severe hallucinations - Level: _ (Score: _ points) - Brief
justification: (Within 20 characters, citing evidence numbers)

5. **Conclusion Faithfulness** (weight 20 points) - Evaluation: Whether conclusions nat-
urally and directly derive from the preceding reasoning - Key points for quality assessment
tasks: Final score must be based on prior analysis, metrics judgment consistent throughout -
Key evidence: [List 1-3 key pieces of evidence supporting the score, marked with [D1], [D2]
format] - Scoring criteria: * Level 5: 20 points - Excellent - Conclusions entirely derived
from the reasoning process, forming a perfect logical closure * Level 4: 16 points - Good -
Conclusions primarily derived from reasoning, with minimal reasonable leaps * Level 3: 12
points - Average - Obvious disconnect between conclusions and reasoning, but still related *
Level 2: 8 points - Poor - Weak relationship between conclusions and reasoning, appearing
independently generated * Level 1: 4 points - Failing - Conclusions completely disconnected
from reasoning or self-contradictory - Level: _ (Score: _ points) - Brief justification: (Within
20 characters, citing evidence numbers)

II. Comprehensive Evaluation Total score: _ points (Sum of all dimension scores)

Main strengths (2 points): 1. 2.

Main weaknesses (2 points): 1. 2.

Overall assessment: (Within 30 characters)

III. Key Evaluation Focus for Chain-of-Thought Quality Assessment - Metric comprehension
accuracy: Whether evaluation metrics definitions are accurately understood - Evaluation
comprehensiveness: Whether all required metrics are covered - Evidence sufficiency: Whether
adequate textual evidence is provided for each metric judgment - Judgment consistency:
Whether judgments across metrics are mutually consistent - Quantitative scoring rationality:
Whether final scores are based on reasonable analytical processes

IV. JSON Result Format After completing the evaluation, please return results in the following
JSON format:

“‘json { "dimensions": { "reasoning_correctness": { "level": X, "score": Y, "reason": "Brief
justification", "evidence": ["[L1]: Specific evidence 1", "[L2]: Specific evidence 2"] },
"method_relevance": { "level": X, "score": Y, "reason": "Brief justification", "evidence":
["[R1]: Specific evidence 1", "[R2]: Specific evidence 2"] }, "step_completeness": { "level":
X, "score": Y, "reason": "Brief justification", "evidence": ["[C1]: Specific evidence 1",
"[C2]: Specific evidence 2"] }, "calculation_accuracy": { "level": X, "score": Y, "reason":
"Brief justification", "evidence": ["[F1]: Specific evidence 1", "[F2]: Specific evidence 2"],
}, "conclusion_reasonableness": { "level": X, "score": Y, "reason": "Brief justification",
"evidence": ["[D1]: Specific evidence 1", "[D2]: Specific evidence 2"] } }, "total_score":
X, "strengths": ["Strength 1", "Strength 2"], "weaknesses": ["Weakness 1", "Weakness 2"],
"overall_assessment": "Overall assessment content" } “‘

Figure 7: Prompt for Quality Assessment of Chain of Thought in Data Quality Assessment Tasks

3347


