LMUNIT: Fine-grained Evaluation with Natural Language Unit Tests

Jon Saad-Falcon'*, Rajan Vivek!", William Berrios'”
Nandita Shankar Naik', Matija Franklin', Bertie Vidgen'
Amanpreet Singh', Douwe Kiela'?, Shikib Mehri'

!Contextual Al
2Stanford University, Department of Computer Science

jonsaadfalcon@stanford.edu, shikib@contextual.ai

Abstract

As language models become integral to critical
workflows, assessing their behavior remains a
fundamental challenge — human evaluation is
costly and noisy, while automated metrics pro-
vide only coarse, difficult-to-interpret signals.
We introduce natural language unit tests, a
paradigm that decomposes response quality into
explicit, testable criteria, along with a unified
scoring model, LMUNIT, which combines
multi-objective training across preferences,
direct ratings, and natural language rationales.
Through controlled human studies, we show this
paradigm significantly improves inter-annotator
agreement and enables more effective LLM de-
velopment workflows. LMUNIT achieves state-
of-the-art performance on evaluation bench-
marks including FLASK, BigGenBench, and
RewardBench 2, while maintaining competitive
results on the original RewardBench. These
results validate both our proposed paradigm
and scoring model, suggesting a promising path
forward for language model evaluation and
development. Our code has been released at
github.com/ContextualAI/LMUnit
with an MIT license.

1 Introduction

The evaluation of generative language models
remains one of the most fundamental challenges
in natural language processing (Jones and Galliers,
1995; Deriu et al., 2021; Smith et al., 2022; Chang
et al.,, 2024) — it determines how we measure
progress and shapes the field’s trajectory. As
these models transition from research prototypes
to production systems, users increasingly rely on
them for critical workflows (Lin et al., 2024a),
creating an urgent need for evaluation methods that
identify response strengths/weaknesses, ensure
reliability, and prevent costly regressions. Yet
current approaches fall short: human evaluation
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Figure 1: Natural Language Unit Tests: Overview of
the three-step process: (1) unit test creation, (2) LMUnit-
based scoring with natural language rationales, and (3)
score aggregation for overall quality assessment.

is expensive and struggles to discern subtle dif-
ferences among top models (Hosking et al., 2023;
Clark et al., 2021; Karpinska et al., 2021), while
automated metrics compress response quality into
coarse scores (Stent et al., 2005; Liu et al., 2016)
that rely on implicitly learned, often biased criteria
(Dubois et al., 2024a; Shankar et al., 2024; Zhang
et al.,, 2024a). As models become more deeply
integrated into essential workflows, it is imperative
that our evaluation methodologies evolve in
tandem, empowering LLM practitioners to reliably
detect subtle failures, meaningfully distinguish
among top-performing systems, and generate
actionable insights that drive improvements.

We focus on measuring response quality - one of
the most critical challenges in evaluating language
models. Defining “response quality” is inherently
complex, depending on multiple factors including
factual accuracy, logical coherence, and alignment
with user objectives, which vary by domain, ap-
plication, style, and context (Mehri and Eskenazi,
2020a; Ye et al., 2023; Krishna et al., 2023).
Existing approaches struggle with this complexity:
(1) reference-based comparisons fail in open-ended
scenarios where no single “correct” response exists
(Liu et al., 2016; Lowe et al., 2017), (2) human
evaluations become inconsistent as models grow

3303

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3303-3324
November 4-9, 2025 ©2025 Association for Computational Linguistics


github.com/ContextualAI/LMUnit

more capable and errors subtler (Walker et al.,
2007; Pan et al., 2024; Christiano et al., 2023), and
(3) preference models and LLM judges compress
nuanced assessments into opaque metrics that are
difficult to interpret or steer (Dubois et al., 2024b;
D’Oosterlinck et al., 2024; Singhal et al., 2023).
To address these limitations, we propose natural
language unit tests, a paradigm that decomposes
response quality into explicit, testable criteria
that humans can define, refine, and guide over
time (Figure 1). While this approach enhances
transparency, reliably scoring and integrating these
fine-grained assessments while maintaining human
values alignment remains a key challenge.

Building an effective scoring model for unit tests
presents a significant challenge: it must accurately
evaluate a wide range of criteria — ranging from
broad notions of quality to detailed rubrics that cap-
ture intricate, context-specific requirements. Ex-
isting approaches each address part of the problem:
prompted LLM judges can be instructed to consider
certain criteria (Liu et al., 2023), but their accuracy
is limited by generic instruction-following abilities
and the inability to learn directly from preference
data (Wang et al., 2024b; Zhong et al., 2022);
preference models, while closely aligned with
human judgments, lack promptability and struggle
to handle more granular, human-defined criteria
(Singhal et al., 2023; Lambert and Calandra, 2023).

To address these challenges, we propose LMU-
NIT, a unified modeling approach that optimizes
large language models as preference models while
supporting flexible, user-defined evaluation criteria.
By combining diverse training signals with natural
language rationales, LMUNIT achieves strong
results across preference modeling, direct scoring,
and fine-grained unit test evaluations, laying a
robust foundation for more adaptive and transpar-
ent evaluation methodologies. These rationales
are optional at inference time but enabling them
allows further interpretability of scores.

To demonstrate our paradigm’s effectiveness
in enabling human stakeholder intervention,
we assess its real-world impact through human
studies. In a controlled annotation study, expert
raters achieved higher inter-annotator agreement
when evaluating outputs against explicit unit tests
compared to standard preference annotations.
Additionally, in a case study with LLM developers,
LMUNIT’s transparent, test-driven evaluations
enabled identification of more errors than conven-
tional LLM judges, demonstrating the value of our

proposed paradigm

Our key contributions include: (1) proposing the
paradigm of natural language unit tests, and validat-
ing it at scale, (2) developing LMUNIT as a unified
scoring model that achieves state-of-the-art perfor-
mance, (3) showing the benefits and challenges of
effective unit test creation and weighting strategies,
(4) demostrating the importance of rationales when
incorporating them as part of the training data. (5)
validating our approach through human studies that
demonstrate improved inter-annotator agreement
and more effective LLM development workflows.

2 Related Work

2.1 Evaluation of Generative Language Models

While human evaluation remains the gold standard
for LLMs (Ouyang et al., 2022; Touvron et al.,
2023), its scalability limitations (Hosking et al.,
2023; Schoch et al., 2020) have driven the
development of automated approaches. These
include word overlap metrics (Papineni et al., 2002;
Lin, 2004), embedding-based scoring (Yuan et al.,
2021; Zhang et al., 2019), model-based evaluations
(Lowe et al., 2017; Mehri and Eskenazi, 2020b;
Zhong et al., 2022; Saad-Falcon et al., 2023),
reward modeling (Christiano et al., 2017; Askell
et al., 2021; Kim et al., 2023), and LM judges
(Zheng et al., 2023; Liu et al., 2023; Es et al,,
2023; Ravi et al., 2024; Kim et al., 2024a; Li et al.,
2024b). However, automated methods often lack
interpretability and can show biases that diverge
from human judgments (Shankar et al., 2024; Wang
et al., 2023b; Chaudhari et al., 2024). Recent work
has focused on developing fine-grained evaluators
(Ye et al., 2023; Wang et al., 2024b; Ribeiro et al.,
2020; Lin and Chen, 2023; Cook et al., 2024) and
unifying evaluation paradigms (Wang et al., 2024b;
Kim et al., 2024c; Wu et al., 2023). For code gener-
ation specifically, LLM-based unit test generation
has improved performance evaluation through
compiler-compatible synthetic tests (Chen et al.,
2022; Yuan et al., 2023; Saad-Falcon et al., 2024).

2.2 LM Judges

LLMs can be prompted to evaluate responses with-
out additional training, showing high correlation
with human ratings (Liu et al., 2023; Wang et al.,
2023a; Fu et al., 2023; Chiang and Lee, 2023;
Es et al., 2023; Kocmi and Federmann, 2023; Li
et al., 2024a). While some approaches focus on
in-context examples and evaluation instructions
(Fu et al., 2023), others leverage chain-of-thought
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prompting (Liu et al., 2023) or fine-tune specialized
judges (Saad-Falcon et al., 2023; Tang et al., 2024).
However, these approaches face key limitations:
poor generalization across evaluation tasks (Es
et al., 2023; Saad-Falcon et al., 2023; Ravi et al.,
2024) and systematic biases in position, verbosity,
and self-preference (Chen et al., 2024; Pan et al.,
2024; Zheng et al., 2023; Koo et al., 2023).

2.3 Reward Models

Reward models, while widely adopted for evalu-
ating and aligning language models (Bradley and
Terry, 1952; Christiano et al., 2017; Liu and Zeng,
2024), face fundamental challenges: low inter-
annotator agreement (65% - 75% - early RLHF
papers) in human preference data (Askell et al.,
2021; Ouyang et al., 2022; Wang et al., 2024a),
noisy and inconsistent preferences (Dubois et al.,
2024b), and spurious correlations like favoring
longer responses (Lambert and Calandra, 2023;
Singhal et al., 2023; Dubois et al., 2024a). Recent
work shows promise in addressing these: Helpsteer-
2 (Wang et al., 2023c) improved performance
through better preference data collection. GenRM-
COT (Zhang et al., 2024b) and EvalPlanner (Saha
et al., 2025) used chain-of-thought reasoning for
more reliable evaluation. However, challenges with
reward underspecification and alignment persist
(Eisenstein et al., 2023; Chaudhari et al., 2024).

2.4 Fine-Grained Evaluators

Breaking down complex evaluation problems has
been foundational in NLP (Walker et al., 2000)
and remains vital for language models (Saha et al.,
2024). While early approaches used fixed evalua-
tion dimensions (Liu et al., 2016; Lowe et al., 2017,
Zhong et al., 2022), modern language models en-
able more dynamic, fine-grained criteria (Mehri
and Eskenazi, 2020a; Lin and Chen, 2023; Ye et al.,
2023; Kim et al., 2024b), though pre-defined cri-
teria may not generalize well to real-world set-
tings (Shankar et al., 2024). Our work builds
upon CheckList (Ribeiro et al., 2020), which intro-
duced structured behavioral testing for NLP mod-
els, TICK (Cook et al., 2024), which demonstrated
decomposition benefits through model-generated
criteria, and CheckEval (Lee et al., 2025), which
showed that using a decomposition list of bi-
nary questions can effectively improve the average
agreement across evaluator models and also reduce
the score variance for text-generation tasks. We ex-
tend these approaches by training a dedicated scor-

ing model that synthesizes multiple training sig-
nals, conducting broader evaluations across diverse
benchmarks, and validating through human studies.

We have further discussion of how LMUNIT
relates to recent work in Appendix A.4

2.5 Unified Evaluators

Recent work has focused on unifying different
evaluation paradigms. DJPO (Wang et al., 2024b)
improves human correlation by training LM judges
through preference optimization (Rafailov et al.,
2023), while Prometheus (Kim et al., 2024a,c)
combines direct assessment and pairwise ranking
capabilities through model weight merging. These
approaches, along with fine-grained reward
functions (Wu et al., 2023), show promise in both
human and automatic evaluations.

LMUNIT extends these unified approaches
while addressing limitations in interpretability,
generalization, and fine-grained control. It
decomposes evaluation into explicit testable
criteria defined and refined by human experts,
leveraging both LM judges (natural language
understanding, flexible criteria) and reward models
(precise scoring, preference learning) to enable
reliable, interpretable, and actionable evaluation
adaptable to diverse real-world requirements.

3 LMUNIT Methodology

To enable reliable scoring of natural language unit
tests, we develop LMUNIT, a unified modeling
approach that combines multi-objective training
with natural language rationale generation. The
key challenge lies in effectively integrating diverse
training signals while maintaining both high
accuracy and interpretable outputs. Here, we
detail our approach to addressing this challenge
through careful problem formulation, synthetic
data generation, and our training methodology.

3.1 Problem Formulation

The core challenge in language model evaluation
is developing scoring models that can reliably
evaluate responses against specific criteria while
providing interpretable reasoning. Our formulation
centers on unit tests: given a unit test u, prompt
p, and response r, we train models to generate
both rationales and scores through the mapping
f(u, p, ) — rationale, score.

Our approach builds on two existing forms of
evaluation data: direct rating data (p,r) — score
and preference data (p,r1,r2) — preference. We
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LMUnit is a unified evaluation model. The same forward
pass can be optimized with ratings, preferences, natural
language rationales and fine-grained unit testing data.

Direct Rating Data Preference Data

User Prompt

User Prompt

Response

Dimension Response 2
(helpful, coherent, ...)

Response 1

LMUnit is jointly optimized with three different loss functions: SFT loss, MSE

loss and preference loss.
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Figure 2: LMUNIT Training Setup: We leverage several different data sources (direct rating, preference, unit test
direct, unit test preference) along with three different loss functions, to optimize the fine-grained scoring of LM UNIT.

extend these into unit test-based formats:

1. Unit test direct data: (u, p, r) — score or
(u, p, r) — rationale, score

2. Unit test preference data:
(u, p, r1, 12) — pref or, alternatively,
(u, p, r1, r9) — rationaley, rationales, pref

This formulation leverages two complementary
data sources: naturally occurring preference and
rating data to capture human preferences and
calibrate against absolute quality scales, alongside
synthetic data that enables fine-grained evaluation
of specific criteria with interpretable rationales. At
inference time, LMUNIT can flexibly operate with
or without rationale generation.

3.2 Synthetic Data Pipeline

Our data generation pipeline operationalizes the
unit test formulation through three key stages, pro-
ducing examples scored on a 1-5 scale where higher
scores indicate better satisfaction of the criteria:

1. Unit Test Generation: For each prompt,
we generate diverse unit tests targeting fine-
grained quality criteria. To encourage focus
on response-specific details, we optionally
provide one or two responses during genera-
tion. We also maintain a set of coarse-grained
global tests (see Table 17 for details) to ensure
broad coverage of general quality dimensions.

2. Contrastive Response Generation: For
each (u, p, r) triplet, we generate contrastive
responses that vary systematically in how well

they satisfy the unit test criteria. This creates
rich training signal for learning fine-grained
quality distinctions.

3. Rationale and Score Generation: For a sub-
set of examples, we generate chain-of-thought
rationales that explicitly reason through the
evaluation criteria. Each rationale concludes
with a score that must align with any existing
seed data scores to maintain consistency.

We seed our synthetic data pipeline with prompts,
responses, tests and scores from diverse sources
including Nectar (Zhu et al., 2024), Prometheus
(Kim et al., 2024a), Tulu3 (Lambert et al.,
2024a), Complex Instructions (He et al., 2024),
Infinity-Instruct (of Artificial Intelligence , BAAI),
and HelpSteer2 (Wang et al., 2024d,c).

3.3 Training

LMUnit combines the strengths of generative
judge models and classifier-based reward models
through a unique multi-objective training approach.
Given a unit test u, prompt p, and response 7,
the model outputs a sequence of rationale tokens
rat = (raty,...,rp) followed by a score token s.
The probability distribution over possible score
values k€0,1,...,6 is:

P(s=k | u, p, r, rat) =softmax(h” W), (1)

We compute a continuous score prediction through
a weighted sum:

6
§=> k-P(s=k|u,p,rrat)  (2)
k=0
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The training objective combines three losses.
First, SFT loss on the rationale and score tokens:

T
Li=—) logP(x, | u,p,r,x<)  (3)

t=1
where 1., represents tokens in both rationale and

score sequences.
Second, MSE loss on the continuous score
prediction:
Lonse=(y—9)* )
Third, preference loss:
»Cpref =—log (U(?Jl - Q2)) : 1{pref:y1}
- log (U (:l)? - .@1 )) ' 1{pref:y2}
+ (gl - ?32)2 ’ 1{pref:tie} 5)
Here, o is the sigmoid function. The final loss
is a weighted combination:
L=aLls + BLmse + ’Y*Cpref (6)

3.4 Post-Training of Rationales

While our initial model learns to generate rationales
through imitation learning, there is no guarantee
that these rationales actually improve scoring
performance. We address this by collecting pairs of
desirable and undesirable rationales for direct pref-
erence optimization (Rafailov et al., 2023), training
the model to prefer rationales that lead to correct
scoring. We employ several collection strategies:
Through Refined, we collect on-policy rationales
from our trained model and use the teacher to refine
them through revisions (D’Oosterlinck et al., 2024)
that improve scoring accuracy. With Harmonized,
we provide the teacher with two model rationales
from a preference pair to harmonize them with
their samples’ relative quality. In the Teacher-
based strategy, we sample teacher rationales on
known-score samples, using those with correct
outcomes as chosen samples and incorrect ones as
rejected. We compare these approaches in Table 4.

3.5 Bayesian Optimization of Global Unit Tests

Natural language unit tests decompose evaluation
into fine-grained criteria through K global tests
that assess dimensions like accuracy, safety, and
coherence. The aggregation of these assessments
into an overall score is crucial for valid evaluation.
Rather than using standard uniform weighting, we
learn optimal weights wy,...,wgk through Bayesian
optimization over human preference data to
maximize alignment between weighted test scores
and human judgments. This process iteratively
updates weights from a uniform initialization based
on agreement with held-out human preferences.

4 Experiments

We conducted extensive experiments to evaluate
LMUNIT and the natural language unit test
paradigm. First, we evaluated the performance
of LMUNIT on several evaluation benchmarks,
comparing to LLMs as judges, reward models,
and trained evaluation models. Next, we perform
ablations to understand the impact of different
methodologies, including loss functions and data
mixture choices. Also, we examined improving
rationales through post-training and analyzed the
impact of decomposition through several unit test
strategies. Finally, as shown in Appendix A.1,
we also conducted two human subject studies to
validate the advantages of the LMUNIT paradigms
over LM judges

4.1 Experimental Setup
4.1.1 Model Configuration and Training Data

Our training data encompasses a diverse mix of
preference judgments, direct scores, and rationales
across multiple sources: (i) HELPSTEER 2 (50K
pairs with ratings spanning five dimensions), (ii)
PROMETHEUS (10K unpaired samples with rat-
ings), (iii) SYNTH NON-RUBRIC (11K pairs with
ratings and rationales), (iv) SYNTH RUBRIC (13K
unpaired samples with ratings and rationales).

We train several variants of LM UNIT initialized
from instruction-tuned LLaMa-3.1 models (8B,
70B). We train our models for 2000 steps using
fixed weights (i.e., « ==~ =1) for the different
loss components, with a 5x loss multiplier applied
to the rationale samples. The training uses the
Adam optimizer (Kingma and Ba, 2017) with a
learning rate of le-6 and a cosine learning rate
scheduler, using a batch size of 64 and a sequence
length of 8K. We estimate using 40k GPU hours
on 8 8XH100 nodes for training experiments.

4.1.2 Evaluation Benchmarks

We evaluate our models on six benchmarks
spanning diverse capabilities: Direct scores
assessment (BigGenBench, Flask), Classification
(Internal Unit Test set, Infobench), and preference
evaluation (RewardBench , LFQA). We further
evaluate on RewardBench2 (Malik et al., 2025)
against an updated set of baselines in Table 16. At
inference time, we compute a continuous score
as the expected value of the possible scores in
accordance to our training strategy described in
Sec. 3.3. For dataset details, see Appendix A.2
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Direct Assessment

Classification Pairwise Ranking

£

Model Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA Average
GPT-40 69.00 65.00 81.80 92.80 84.60 76.54 77.59
Claude-3.5 Sonnet 67.25 61.83 84.53 91.58 84.23 77.24 76.43
Prometheus-2-7B 47.00 50.00 75.58 48.60 72.0 72.31 57.98
Prometheus-2-8x7B 54.00 52.00 77.82 87.85 74.5 74.23 68.52
Prometheus-2-BGB-8x7B 31.00 44.00 78.57 83.87 68.3 71.54 59.74
Llama-3-OffsetBias-8B 29.00 21.00 68.15 72.15 84.0 63.08 53.85
Skywork-Critic-Llama-3.1-8B - - - - 89.0 64.23 -
SFR-LLaMA-3.1-8B-Judge 52.00 59.00 92.80 88.7 68.85 72.27
SFR-LLaMA-3.1-70B-Judge 66.00 65.00 92.58 92.7 75.00 78.26
LMUNITLLaMA3.1-8B 60.02 64.46 94.14 91.26 83.23 71.54 74.10
LMUNITLLaMA3.1-70B 72.03 67.69 93.63 89.00 91.56 76.15 79.29
LMUNITLLaMA3.1-70B— Decomposed 72.03 67.69 93.63 89.00 90.54 74.62 78.78
LMUNITLLaMA3.1-70B— Decomposed—Weighted T 12.03 67.69 93.63 89.00 93.45 76.53 79.74

Table 1: Comprehensive Model Performance Comparison: Evaluation results across multiple benchmarks showing
model performance on various tasks. Metrics: (i) Pearson correlation coefficient for direct assessment, (ii) binary
accuracy for classification tasks, and (iii) pairwise preference accuracy for pairwise comparisons. f represents our
result with Bayesian optimization over pairwise benchmarks for learning global unit test weights, as described in
Section 3.5. We learned dataset-level weights for LFQA and section-level weights for RewardBench by optimizing
over model predictions on a 50% split of the dataset, following prior work (Wang et al., 2024d). We only apply the
decomposed unit tests and weight optimization for RewardBench and LFQA since they lack fine-grained criteria for
evaluation. We confirm that this technique generalizes to a held-out split of RewardBench in Table 15. Note that the
Average column excludes Human-Internal scores in order to compare fairly against the non-public SFR-LLaMA
baselines (as of December 2024). We further evaluate on RewardBench 2 against more recent baselines in Table 16.

4.2 Key Results

Our models demonstrate strong performance across
diverse evaluation settings (Table 1). On direct
assessment tasks, LMUNIT achieves state-of-the-
art results with correlations of 72.03 on FLASK
and 67.69 on BiGGen-Bench, where fine-grained
evaluation is particularly important. In aggregate,
LMUNIT achieves strong overall performance
with scores of 79.74 (eight weighted global unit
tests) and 79.29 (single unit test), outperforming
general-purpose models like GPT-4 (78.29) and
Claude-3.5 Sonnet (77.78). Even our smaller
LMUNITLamA3.1-88 Variant remains highly com-
petitive with a 74.10 average score. For pairwise
ranking tasks, using unweighted global unit tests
slightly decreases overall performance to 78.78 (-
0.96), but LMUNIT remains stronger than all other
baselines. We recover this minor performance loss
through Bayesian optimization of the global unit
test weights while reaching 93.45 on RewardBench
(+2.91) - though we note this weighting is learned
on a subset of RewardBench itself, analogous to
tuning hyperparameters on the test set (following a
similar experimental setup as Wang et al. (2024d)).
A more rigorous analysis using a proper held-out
evaluation set is provided in Section 4.3.4, confirm-
ing the generalization of this method. Furthermore,
on the more recent RewardBench 2 benchmark
(designed to be substantially more difficult than
the original), LMUNIT achieves state-of-the-art
performance and remains the best generative

reward model as of September 2025. These strong
results across direct assessment, classification, and
pairwise ranking tasks validate the effectiveness of
our synthetic data pipeline, training setup, and uni-
fied scoring methodology, establishing LMUNIT
as a state-of-the-art model for reliable evaluation.

4.3 Ablation Studies

We conduct extensive ablation studies to under-
stand the key components driving LMUNIT’s
performance. Our analysis focuses on three
main aspects: (1) the impact of different training
objectives and data mixture compositions, (2)
the role of rationales in model performance, and
(3) strategies for unit test decomposition and
aggregation. Additionally, we perform supplemen-
tary ablations on LMUNIT such as base-model
architecture (A.3) unit test composition (A.3.2),
Bayesian optimization with different models (3.5),
and LMUNIT weighted inference (A.3.3).

4.3.1 Impact of Loss Functions

Our ablation studies in Table 2 demonstrate that
combining training objectives (SFT, MSE, and
preference loss) yields measurable improvements
across our evaluation benchmarks (+0.5). LMU-
NIT-8B shows particularly significant gains on
fine-grained evaluation datasets—9% on FLASK
and 6% on BigGenbench—with more modest
improvements (1-3%) on pairwise datasets that
assess coarser-grained capabilities. These differ-
ential gains suggest our multi-objective approach
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is especially beneficial when evaluating nuanced
LLM capabilities and when parametric capacity
is limited, as evidenced by smaller improvements
(+3%) at the 70B parameter scale.

4.3.2 Data Mixture Effects

We analyze how different compositions of training
data affect LMUNIT’s performance to identify
the most effective mixture for robust evaluation
capabilities. As shown in Table 3, rubric data is
essential for strong performance on fine-grained
direct assessment and that our synthetic data
pipeline provides dramatic performance gains
(+3.52) when synthetic rubric data is incorporated.
We also observe that non-rubric synthetic data is
most effective as preference pairs (+4.04) rather
than direct scoring data (-2.75), likely due to the
improved contrastive signal.

4.3.3 Impact of Rationales

Moving beyond simple imitation learning of
rationales, we examine strategies to optimize
rationale generation for better evaluation. As
shown in Table 4, training with rationales improves
model performance even when rationales are not
used at test time (+0.2). While including rationales
during inference initially leads to lower scores,
our post-training optimization through DPO helps
recover performance, with teacher-based pairs
providing the largest gains (+1.1).

4.3.4 Unit Test Decomposition Analysis

Our experiments with different unit test strategies
on RewardBench (Table 15) reveal two key
findings. First, global-level tests significantly
outperform query-level tests across all categories,
with section-level learned weights achieving
the strongest results (+2.4 over unweighted
aggregation). Second, the performance of fine-
grained query-level tests degrades substantially,
particularly on harder examples, though this can
be partially mitigated by placing greater weight
on earlier tests (+1.5).

These results highlight both the promise and
challenges of our approach: while global unit tests
provide a robust foundation for evaluation, devel-
oping effective fine-grained testing criteria remains
difficult. The success of weighted global unit
tests, coupled with the challenges of query-level
decomposition, suggests an important direction for
future work in developing more sophisticated test
generation and aggregation strategies. Additional
details of how decomposition is applied with

Bayesian optimization and with different base
models can be seen at A.3.5

5 Discussion

Our experiments and analyses reveal several
key insights about the effectiveness of our unit
test-based evaluation framework and highlight
important directions for future work:

LMUNIT Shows Benefits of Unified Training:
Our empirical results validate the benefits of
a unified scoring approach through three key
findings: combining multiple training objectives
improves performance across all evaluation
settings (Table 2), incorporating diverse data types
enhances model capabilities (Table 3), and LMU-
NIT’s approach achieves state-of-the-art results on
fine-grained evaluation benchmarks like FLASK
and BiGGen-Bench (Table 1). These results sug-
gest significant untapped potential in synthesizing
different sources of evaluation signal — from human
preferences and ratings to targeted synthetic data
— particularly for fine-grained assessment tasks.

Unit Tests Enable Rich Human-in-the-Loop
Evaluation: Language model evaluation frame-
works should enable precise human steering
while reducing noise and manual effort. Our
results show this paradigm achieves both goals:
structured criteria dramatically improve evalua-
tion consistency and inter-annotator agreement
(Figure 4), while offering multiple meaningful
intervention points. Humans can write or refine
test criteria, optimize test weights (Table 15), and
guide development through decomposed feedback -
leading to significantly more detailed error analysis
in practice (Appendix A.1). This suggests unit
tests can enable deeper, more reliable human-Al
collaboration in evaluation.

Rationale Post-Training Improves Task
Performance: A fundamental challenge in
language models is developing genuine reasoning
capabilities rather than simply learning to imitate
human-like explanations. While training models
to generate rationales through supervised learning
can produce plausible-sounding explanations, this
doesn’t necessarily improve their underlying ca-
pabilities. Our work demonstrates two key insights
about moving beyond imitation: first, training with
rationales improves model performance even when
not generating them at inference time (Table 4),
and second, post-training optimization of rationales
for task performance rather than imitation leads to
further gains. This suggests a promising direction
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Direct Assessment Classification PairWise Ranking
Training Loss Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA Average
LMUNITLLaMA3.1-88
SFT 51.31 59.12 94.19 90.29 83.56 68.85 74.55
SFT + MSE 60.46 63.94 94.29 92.92 83.44 71.54 71.77
SFT + MSE + PREF  60.02 64.46 94.14 91.26 83.23 71.54 77.44
LMUNITLLaMA3.1-708
SFT 69.09 67.14 93.88 90.83 89.98 76.15 81.18
SFT + MSE 70.25 67.34 93.73 87.59 91.03 75.77 80.95
SFT + MSE + PREF  72.03 67.69 93.63 89.00 91.56 76.15 81.68

Table 2: Training Loss Ablation Results: Adding SFT, MSE, and preference loss components each contribute modest
but consistent improvements to LMUNIT’s performance across direct assessment (Pearson correlation), classification
(binary accuracy), and pairwise ranking (preference accuracy) tasks.

Direct Assessment Classification PairWise Ranking
Data Mix Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA Average
Direct only
HS2 57.0 42.26 94.74 88.60 91.31 69.23  73.86
HS2 + SYNTH NON-RUBRIC 47.00 42.00 93.83 88.80 86.00 69.00  71.11
HS2 + PROMETHEUS 64.90 59.27 93.43 87.50 91.40 71.15  77.94
HS2+ PROMETHEUS + SYNTH RUBRIC 71.60 67.94 94.89 89.19 91.70 73.50  81.46
Preference only
SYNTH NON-RUBRIC 65.94 62.80 92.37 91.69 80.73 66.92  76.74
HS2 59.26 44.00 94.19 87.49 90.54 69.62  74.18
HS2 + SYNTH NON-RUBRIC 64.89 62.13 93.88 87.70 91.49 69.23  78.22
Full Data Mix
ALL 72.03 67.69 93.63 89.00 91.56 76.15  81.68

Table 3: Training Data Mix Ablations: Our direct-only synthetic mix with rubrics dramatically improves model
performance over baselines trained on open-source data only. Our synthetic preference data also strongly improves
performance even without rubrics, likely due to fine-grained contrastive signal. Training on our full data mix yields
our SOTA LMUNIT model. All models are initialized with Llama-3.1-70B. HS2 refers to HelpSteer2.

- Rationales? Benchmarks

Training Process

Train Test RewardBench BigGenBench Flask Avg
LMUNIT Losses X X 91.1 67.4 721 769
LMUNIT Losses v X 91.6 67.7 720 711
LMUNIT Losses v v 83.8 62.1 64.2 70.0
LMUNIT Losses + DPO (H) v v 84.4 62.0 64.6 70.4
LMUNIT Losses + DPO (R) v v 84.2 61.8 65.0 70.3
LMUNIT Losses + DPO(T) v v 854 63.1 649 71.1

Table 4: Rationale Ablations: Training on rationale data im-
proves LMUNITLLama3.1-708 performance without test-time ra-
tionales, but test-time rationale generation decreases perfor-
mance. DPO post-training improves rationale generation fur-
ther.

for developing better reasoning capabilities: using
rationales not just as outputs to mimic but as a
trainable intermediate step that can improve task
performance while maintaining interpretability
and enabling human feedback. Beyond LMU-
NIT, this approach can be extended to improve
general-purpose model reasoning by optimizing
rationales for downstream task performance rather
than merely imitating ground-truth rationales.

Query-Level Unit Test Creation Remains
Challenging: While our work advanced scoring
and evaluation methodology, generating effec-

tive query-specific unit tests proved difficult.
Global-level unit tests with learned weights
significantly outperform query-level unit tests
(Table 15), highlighting the need for better test
generation approaches. Future work should explore
end-to-end training of test generation, evaluate
human-created tests at scale, and investigate
when fine-grained decomposition justifies its
complexity. These findings collectively point to
both the promise and challenges of the unit testing
paradigm for language model evaluation. The
strong performance of LMUNIT demonstrates the
potential of unified training approaches, while our
human studies show how structured evaluation
can enable more reliable and meaningful human
oversight. Though challenges remain in test
generation and optimal decomposition strategies,
our results suggest this paradigm offers a practical
path toward more reliable, interpretable, and
human-aligned evaluation of language models.
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6 Conclusion

This paper introduces natural language unit tests,
a paradigm for language model evaluation that en-
ables precise assessment through explicit, testable
criteria. To implement this paradigm effectively,
we develop LMUNIT, a unified scoring model
that combines multi-objective training across
preferences, direct ratings, and natural language
rationales to achieve state-of-the-art performance
on major evaluation benchmarks. Our results
validate both the broader paradigm of decomposed
evaluation and our novel scoring methodology.
Looking ahead, this work opens several promising
research directions: deeper integration of human
feedback loops, enhanced scoring models with
improved reasoning capabilities, and end-to-end
training of unit test generation and scoring.

7 Limitations

LMUNIT shows promising results across multiple
evaluation settings, though some shortcomings
remain that provide potential research directions.
The generation of query-specific unit tests, while
functional, could benefit from more sophisticated
approaches to better capture fine-grained evalua-
tion criteria. The framework’s reliance on human
expertise for creating high-quality domain-specific
unit tests, while valuable for ensuring evaluation
quality, suggests opportunities for developing more
automated test generation methods. Additionally,
our synthetic data pipeline, which leverages
existing datasets and language models for data gen-
eration, may inherit distributional biases that could
influence evaluation outcomes. Potential risks
include the exclusion of preferences from minority
groups that are not well-represented in the training
data and unexpected performance discrepancies
across different applications. Although our results
demonstrate strong performance despite these
constraints, future work exploring automated test
generation, reduced reliance on human expertise,
and bias mitigation techniques could further
enhance the framework’s capabilities.
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A Appendix
A.1 LMUNIT Human Subject Studies

We conducted two studies to validate key claims about natural language unit tests: (1) Whether this
paradigm, implemented through LMUNIT, provides concrete advantages over traditional LM judges
for developers working on real systems, and (2) Whether decomposing evaluation into explicit criteria
can improve the quality of human preference data.

All annotators were professional contractors employed by the company and compensated at competitive
industry rates. Contractors were recruited through standard professional channels and compensated
fairly for their specialized annotation work. Annotators were professional contractors primarily based in
English-speaking countries with relevant technical backgrounds. All contractors underwent a qualification
process to ensure expertise in the annotation domain as well as their respective technical domain.

A.1.1 Case Study with LLM Developers

To evaluate whether decomposed evaluation helps developers better understand and improve language mod-
els, we conducted a controlled study with 16 researchers and engineers from NLP labs, covering domains
in finance, publishing, software, and hardware development. The surveyed individuals utilized LMUNIT
models over the course of 1-2 days, continuing their original evaluation workflows while comparing LM U-
NIT with traditional "LLM as a Judge" approaches. These researchers regularly develop LLM systems
that integrate 70B+ parameter models with retrieval systems, frequently undergoing additional instruction
fine-tuning and preference alignment datasets. When comparing evaluation approaches, LMUNIT enabled
substantially more detailed analysis: participants identified 157 % more response attributes (10.8 vs 4.2)
and 131% more error modes (7.4 vs 3.2), rating both as significantly more important than those found
through LM judges. These demands necessitated the development of reliable evaluation systems for un-
derstanding 1) error modes of existing systems and 2) actionable steps for improving existing approaches.

The insights provided by LMUNIT proved instrumental for improving both RAG systems and LLM
systems more generally. 13 out of the 16 researchers surveyed stated that LMUNIT helped them identify
current error modes in their training pipelines, inspiring them to make data selection and preprocessing
decisions to address the failures directly. Eight researchers also said LMUNIT sparked them to make
training pipeline decisions surrounding hyperparameters, dataset weighting, and in-context learning.
Furthermore, six researchers reported these decisions led to a 10+ point boost in evaluation performance
for instruction-following and reasoning tasks. Most importantly, 15 of the 16 researchers expressed
interest in using unit test-based frameworks for building ML pipelines going forward, assuming they align
with evaluation metrics and human preferences for instruction-following and reasoning tasks. For detailed
analysis, we provide an overview of the annotation guidelines in Table 7, annotation row examples in
Table 5, and completed annotations in Table 6.

We also gathered some illustrative anecdotes from study participants to reflect the benefits of unit
test-based evaluation methods with LMUNIT:

* Motivating LM System Decisions: "We had suspected for a while that some of our training data was
not diverse enough, but it was hard to prove with just LM judge feedback. The LM UNIT unit tests
revealed that the model was performing better on certain types of queries (i.e. summarization and
multi-hop queries) while creating generic answers for others (i.e. analysis and calculation queries).
This led us to augment the dataset with more varied examples and improve our retrieval process,
leading to a performance increase for the LM system overall."

» High-Resolution Feedback: "With LM judges, we would often get long-winded explanations that did
not really explain the issue clearly, which made it hard to figure out what was going on. Sometimes the
judge verdict did not align with the explanation at all! However, LMUNIT gave us clear Passed/Failed
results with specific criteria, allowing us to know what went wrong and where to fix it."

* Improved Annotator Alignment: "For our project, we noticed a frustrating gap between LM judge
evaluations and the feedback from our annotators. The LM judges would pass responses that skipped

3316



[ w
v =)

g
o

-
o

Average Importance Rating
o =

o
)

EEE [ MUnit

B LM Judges

12

Count

Error
Mode

Response
Attribute

Avg. # Response
Attributes ldentified

Avg. # Error
Modes Identified

Figure 3: LMUNIT Favored Over LM Judges for Identified Response Attributes and Error Modes: LMUNIT is
favored by LM researchers and engineers surveyed, allowing users to find greater numbers of important response
attributes and error modes identified in LLM responses. Out of the 16 individuals surveyed, all of them favored

LMUNIT over traditional LM judges.

Instruction

Response #1

Response #2

LM Judge
Verdict

LMUnit Tests with
Verdicts for Better Response

Example

ics with electronic health
records (EHRs) and the
establishment of common

technical standards con-
tribute to improving pa-

tient care?

How does the integra-
#1 tion of healthcare analyt-

The integration of healthcare
analytics with electronic health
records (EHRs) and the establish-
ment of common technical stan-
dards significantly contribute to
improving patient care by pro-
viding a more coordinated, effi-
cient, and data-driven approach to
healthcare delivery...

Integration of Healthcare An-
alytics with Electronic Health #1
Records (EHRs)

« Enables the collection, aggrega-

tion, and analysis of vast amounts

of clinical data from diverse
sources, including EHRs, medical
devices, and laboratory results.

« Provides insights and analytics

that help identify trends, predict
outcomes, and improve patient

care.

Response

- Does the response explain how healthcare
analytics integration with EHRs impacts pa-
tient care? [Passed]

- Does the response mention the role of com-

mon technical standards in improving inter-
operability? [Passed]

- Does the response detail the major

challenges addressed by the ONC’s Fed-
eral Health IT Strategic Plan 2015-2020?
[Failed]

- Does the response cover how privacy con-

cerns are addressed according to the ONC’s
plan? [Passed]

Example How might changes in the

#2 regulation and public per-
ception of unmanned air-
craft systems (UAS) influ-
ence the growth and appli-
cation of urban drone tech-

nology?

The influence of changes in reg-
ulation and public perception of
unmanned aircraft systems (UAS)
on the growth and application of
drone technology in urban environ-
ments over the next decade is sig-
nificant and multifaceted...

Regulations and Public Percep-
tion: #1
1. Regulatory Landscape:

- Increased regulations governing

airspace usage, safety, and privacy.

- Stricter licensing and registration

processes for drone operators...

Response

- Does the response adequately address
how changes in regulation might impact the
growth of UAS technology in urban environ-
ments? [Passed]

- Does the response explain how changes in

public perception might influence the appli-
cation of UAS technology in urban environ-
ments? [Passed]

- Does the response mention specific regula-

tions that could affect UAS usage in urban
areas? [Passed]

Table 5: Comparison of LMUnit vs. LM Judge for Human Feedback

crucial reasoning steps as long as the final answer was correct but annotators rejected responses
for lacking logical progression. After switching to LMUNIT, the alignment with the annotators
improved significantly. LM UNIT unit tests flagged responses that missed intermediate steps, just
like the annotators. This allowed us to retrain the model with more targeted feedback, leading to
better performance in tasks requiring step-by-step reasoning and saving us time on annotations."

LM Judge LMUnit Tests + LMUnit Tests +
Instruction Response #1 Response #2 . & Verdicts for Verdicts for
Verdict
Response #1 Response #2
{text} {text} {text} {#1 or#2} Bulleted Queries + Verdicts Bulleted Queries + Verdicts

Table 7: Information for Comparing LM Judge and LMUnit: Given the following information, annotators then
provide the response attributes, error modes, and their importances identified by each evaluation approach. We provide
annotated row examples in Table 5 and completed annotations in Table 6.

A.1.2 Reducing Noise in Human Evaluation

Human preference data is crucial for training reward models (Christiano et al., 2017; Askell et al., 2021).
However, inter-annotator agreement is often low (Wang et al., 2024a), with annotators struggling to
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Response
Attributes

Error Modes

Explanation of Healthcare Analytics In-
tegration, Discussion of EHRs (Elec-
tronic Health Records), Description
of Common Technical Standards, Ad-
dressing Privacy Concerns, Focus on
Data Accuracy, Discussion of Inter-
operability, Reference to ONC’s Fed-
eral Health IT Strategic Plan, Use of
Evidence-Based Examples, Explana-
tion of Cost Reduction in Healthcare,
Description of Stakeholder Collabora-
tion

Hallucination of Unrelated Informa-
tion, Omission of Key Concepts, Re-
dundancy in Explanation, Inconsistent
Use of Terminology, Lack of Coherence
between Sections, Incomplete Explana-
tion of Critical Points, Overly General-
ized Statements

Instruction Response

Example How does the integration of healthcare The integration of healthcare analytics
#1 analytics with electronic health records with electronic health records (EHRs)
(EHRs) and the establishment of com- and the establishment of common tech-
mon technical standards contribute to nical standards significantly contribute
improving patient care, while address- to improving patient care by providing
ing the challenges related to privacy, amore coordinated, efficient, and data-
data accuracy, and interoperability? driven approach to healthcare delivery.
Several key strategies and challenges
need to be addressed to achieve these
improvements while safeguarding pri-
vacy, data accuracy, and interoperabil-

ity. Firstly, healthcare analytics...
Example How might changes in the regulation The influence of changes in regulation
#2 and public perception of unmanned and public perception of unmanned air-

aircraft systems (UAS) influence the
growth and application of drone tech-
nology in urban environments over the
next decade?

craft systems (UAS) on the growth and
application of drone technology in ur-
ban environments over the next decade
is significant and multifaceted. Regu-
latory changes could impose stricter li-
censing and airspace regulations, while
public concerns about safety and pri-
vacy might limit drone use in specific
areas.

Explanation of UAS Regulation, Ref-
erence to Safety Standards, Discussion
of Operational Restrictions, Mention of
Air Traffic Management Systems, In-
tegration of Collision Avoidance Tech-
nologies, Privacy Concerns in Urban
Environments, Public Perception and
Security Issues, Transparency in Data
Capture and Processing

Failure to Address Privacy Concerns,
Overlooking Public Perception and Se-
curity Issues, Vague Discussion on
Commercial Applications, Inconsistent
Explanation of Regulatory Compliance,
Inaccurate Reference to Urban Growth
Impact, Failure to Mention Innovation
Amidst Regulations

Table 6: LMUNIT Case Study Responses with Annotation Results

weigh different factors consistently and give reliable signal (Howcroft et al., 2020). Since reducing task
ambiguity has been shown to help improve agreement (Novikova et al., 2018; Huynh et al., 2021; Rottger
et al., 2022), we investigated the benefits of decomposing evaluation into explicit criteria.

We conducted an experiment with 15 experi-
enced annotators on expressing judgements with
20 queries, comparing three approaches: unstruc-
tured preference judgments (Control), standard-
ized evaluation criteria (Specification), and unit
test-based evaluation (Unit Test). The Control
group selected their preferred response with no
additional guidance. The Specification group as-
sessed each response against a five-point quality
specification before selecting their preferred re-
sponse. For the Unit test group, four experienced
annotators first used a Google Sheets interface to
create 4-8 unit tests per query. These tests were
designed to verify that model responses were
both accurate and grounded in the retrieved doc-
uments. After this step, the Unit Test group was
instructed to answer the gold-standard targeted
unit tests before picking.

As shown in Figure 4 and in more detail in
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Figure 4: LMUNIT Unit Test Scoring Improves Inter-
Annotator Agreement on Preference Data: Instructing
annotators to answer gold-standard unit tests improves
inter-annotated agreement by 48% and 20% compared
to pairwise judging of responses or rubric-based scoring
("Spec"), respectively.

Table 8, the Control group showed low inter-annotator reliability (Fleiss’ Kappa = 0.04), while the
Unit Tests group achieved substantially higher agreement (Fleiss’ Kappa = 0.52), demonstrating that
structured decomposition significantly improves consistency in human evaluation. Annotators chose their
preferred response after completing the unit tests and 89% of the time they selected the response with the
largest number of satisfied unit tests. This further shows that answering unit tests guided their preference

decisions.
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Agreement Kappa # Cases with # Queries with
Overall Overall 100% Agreement High Disagreement

Pairwise Judging 71% 0.04 3 12
Spec 80% 0.32 7 7
Unit Tests 86% 0.52 11 5

Table 8: Unit Tests Improve Inter-Rater Agreement: Unit test-based evaluation achieves substantially higher
agreement rates and fewer cases of high disagreement compared to alternative approaches, such as pairwise judging
and rubric-based scoring (i.e. "Spec"). High disagreement refers to queries in the 40-60% agreement range.

A.2 Evaluation Benchmarks Details

* RewardBench (Lambert et al., 2024b): A benchmark of pairwise model outputs across chat, reasoning,
and safety domains. We measure agreement with human preference judgments.

* LFQA (Xu et al., 2023a): A benchmark of long-form question answering responses. We measure
agreement with expert preference judgments.

* BiGGen Bench (Kim et al., 2024b): A comprehensive benchmark spanning 77 tasks across instruction-
following, content refinement, grounding, and tool usage. We measure correlation with human assess-
ment scores.

* FLASK (Yeetal.,2023): An evaluation framework covering 12 skills across logical thinking, knowledge
application, problem handling, and user alignment. We measure correlation with human assessment
scores.

* InfoBench (Qin et al., 2024): A collection of instruction-following tasks. Using the expert-validated
split, we measure binary classification accuracy against expert consensus.

* Internal Unit Test Set: A targeted evaluation of 190 questions in the finance and engineering domains,
with an average of five validated unit tests per question. We measure binary classification accuracy
against human expert annotations.

A.3 Additional Ablations

A.3.1 Model Architechture

To validate LM UNIT with different base models, we trained it on LLaMA3.3-70b and Qwen2.5-72b. Our
results in Table1 showed that LMUNIT consistently transforms these base models into strong evaluators
across the benchmarks described in 4.1.2.

Direct Assessment Classification Pairwise Ranking
Model Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA
LMUNITLLaMa33-700  73.09 67.79 93.93 89.43 90.22 76.15
LMUNITQwen2,5,72b 73.85 69.56 94.44 88.67 91.13 73.85

Table 9: LMUNIT model ablations: Evaluation results across multiple model variations. Results show that LMUNIT
paradigm is applicable and effective to convert recent advancements of LLMs into strong evalutors

A.3.2 Unit-Test Composition

We evaluated how different information components from direct score benchmarks like Flask and BigGen-
Bench contribute to improving the correlation between predicted scores and human ratings. These
benchmarks provide three key elements: assessment questions, scoring rubrics (on a 1-5 scale), and
reference answers. As shown in Table 10, incorporating additional information components incrementally
improves the correlation with human ratings, with the combination of reference answers and rubrics
yielding the strongest performance.
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Direct Assessment
Flask BiGGen-Bench

Unit-Test Format

LMUNITLLaMA3.1-88

UNIT TEST QUESTION 58.35 56.47
UNIT TEST QUESTION + RUBRIC 58.20 61.56
UNIT TEST QUESTION + REFERENCE ANSWER 58.37 63.07
UNIT TEST QUESTION + RUBRIC + REFERENCE ANSWER  60.02 64.46

LMUNITLLamA3.1-708

UNIT TEST QUESTION 67.20 61.01
UNIT TEST QUESTION + RUBRIC 65.76 66.39
UNIT TEST QUESTION + REFERENCE ANSWER 70.01 65.61
UNIT TEST QUESTION + RUBRIC + REFERENCE ANSWER  72.03 67.69

Table 10: Unit-Test Composition Analysis. We analyzed how the composition of unit tests affects model performance.
We observed that enriching unit tests with detailed information, such as rubrics and reference answers, improves the
correlation with human ratings.

Test ID | Unit Test

GUT-1 | Is the response helpful and aligned with the spirit of what the prompt was asking for?

GUT-2 | Does the response directly address the prompt’s query or topic?

GUT-3 | Are the facts and information presented in the response correct and reliable?

GUT-4 | Is the response articulated in a clear and understandable manner?

GUT-5 | Does the response provide a thorough answer, covering all aspects of the prompt?

GUT-6 | Is the response succinct without omitting essential information?

GUT-7 | Does the response maintain the reader’s interest and encourage further thought or action?

GUT-8 | Does the response adhere to ethical guidelines and avoid promoting harmful content?

Table 11: Global Unit Tests used for pairwise evaluations on RewardBench and LFQA

A.3.3 LMUNIT Inference

Inference Budget comparison: In our current setup, LMUNIT is computationally cheaper than our
strongest baselines in 9. The strongest baselines such as SFR (Meng et al., 2024), Claude (Anthropic,
2024), and GPT-40 (OpenAl, 2023) were evaluated by generating CoT rationales — see the exact prompt
in Appendix A of Meng et al. (2024). These models are all either equal in size or larger than LMUNIT.
LMUNIT advances SoTA without the use of generated rationales, generating only a couple of tokens
for each input to produce the output score. LMUNIT only introduces additional tokens in the input
(linearly proportional to the number of unit tests), which is far less expensive than additional output tokens
because input token processing is parallelized in modern systems. The roughly 8X increase in input
tokens (assuming 8 unit tests) is strongly outweighed by the roughly 6-12X reduction in required output
tokens (assuming CoT rationales are ~100-200 tokens, which is reasonable based on the examples shown
in Appendix B of (Meng et al., 2024).

Weighted Score Inference: To analyze the impact of our weighted score inference, which consists of
calculating the expected value over all possible score values k € {0,1,...,6 }, we conducted a comprehensive
evaluation across various tasks. As demonstrated in Table 12, the weighted score approach—which aligns
with our training methodology—yields an average performance improvement of 6% compared to the
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baseline method.
The performance gains vary by task type: classification and direct assessment tasks show approximately
3% improvement, while pairwise ranking tasks exhibit more substantial gains ranging from 6% to 20%.
From a computational efficiency perspective, our method only requires logprob calculations up to the
5th token (where the “score (k)” token appears), resulting in negligible computational overhead.

Direct Assessment Classification PairWise Ranking

Inference Method Flask BiGGen-Bench Human-Internal InfoBench RewardBench LFQA Average

LMUNITLLamA3.1-708

WEIGHTED SCORE 72.03 67.69 93.63 89.00 91.56 76.15 81.68
NOT-WEIGHTED SCORE  69.39 65.80 92.92 86.62 70.24%* 68.46 75.57

Table 12: Ablation of our weighted score inference. Performance comparison of LM UNIT when calculating the
expected value over all possible scores compared to greedy text-generation

A.3.4 Rationale Quality

Rationale generation capabilities in LMUNIT can enhance model interpretability and help humans
understand the scoring process, despite slightly degrading performance. To evaluate rationale quality, we
compared LM UNIT with a strong, presumably larger model—Claude Sonnet 3.5. Our evaluation involved
400 randomly selected samples (200 from FLASK and 200 from BigGBench), using Sonnet 3.5 as an
LLM evaluator to assess rationale quality on a 1-5 scale across three metrics:

* Faithfulness: Evaluates how faithful/well-correlated the rationale is corresponding to the score and
rubric.

* Coverage: Evaluates how thoroughly the rationale covers all aspects of the evaluation criteria
presented in the unit test and rubric.

* Clarity: Evaluate how logically consistent and well-structured the rationale is. A sensible and
coherent rationale presents reasoning that flows naturally, avoids contradictions, maintains topical
focus, and creates a unified explanation.

Table 13 shows that LMUNIT’s rationales achieve 92% of Sonnet 3.5’s quality, demonstrating strong
interpretability potential. Despite a small quality gap, LMUNIT delivers high-quality rationales that
effectively explain evaluation outcomes.

Metric Sonnet3.5 LMUNIT Relative Performance
Faithfulness 4.87 4.40 90.3%
Coverage 4.72 4.23 89.6%
Clarity 4.48 4.31 96.2%

Table 13: Rationale quality analysis. Qualitative analysis of rationales generated by LM UNIT on Faithfulness,
Coverage, and Clarity

A.3.5 Bayesian Optimization Details

Preference-Guided Weight Optimization: LLM applications are judged along several partially com-
peting quality criteria (helpfulness, faithfulness, style, safety , among others), and humans implicitly assign
different importance to each. Benchmarks that score one criterion at a time such as FLASK (Ye et al.,
2023), BigGenBench (Kim et al., 2024b), Human-Internal, InfoBench (Qin et al., 2024) cannot reveal
these trade-offs since the detailed unit tests are already present.

By contrast, RewardBench (Lambert et al., 2024b) and LFQA (Xu et al., 2023b) provide pairwise
human-preference labels (“‘chosen” vs. “rejected” response) but do not expose the underlying criteria.
We bridge this gap by introducing a set of N = 8 global unit tests (Table 17) and learning a global
weight vector w € [0,1]"V such that a weighted sum of unit-test scores best reproduces human choices.
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Because the objective is non-differentiable and comparatively cheap to evaluate, we cast weight learning
as black-box optimisation and employ Bayesian Optimization (BO). The specific methodology that we
use is the following:

1. We partition the collected pairwise preference data into disjoint development and test sets.

2. For each response 7 in the development set, we compute scores s;(r) across each of the IV global
unit tests, where i € {1,2,....N }.

3. We formulate an aggregation function f(r) that computes a final score for each response as a
weighted linear combination of its individual unit test scores:

N
Fr)=> wisi(r) @)
=1

where w; € [0,1] are learnable weights shared across all samples. In our experimental setup, we
utilize [V =38 global unit tests, resulting in 8 parameters to optimize.

4. We employ Bayesian optimization to iteratively refine the weight parameters {w; } i]\il. Specifically,
we maximize the probability that for each preference pair (r.,r,) where r. is the chosen response
and 7, is the rejected response, the aggregation function assigns a higher score to r. than to r;:

max P(f(re)> f(ry)) (8)

The optimization is conducted using the BayesianOptimization framework' with the Probability of
Improvement acquisition function for 200 iterations and weight constraints w; € [0,1].

5. We evaluate the performance of the learned weights on the held-out test set, measuring how frequently
the aggregation function correctly ranks the chosen response higher than the rejected response.

Finally, it is worth noting that the learned weights are intended to be customized, reflecting the specific
human preferences in that dataset. They are not intended to generalize to other settings.

Additional Bayesian Optimization Experiments: As described in Sec. 3.5, we performed Bayesian
optimization method described in A.3.5 on our LMUNIT model to optimize the weights for unit tests in
RewardBench. We compared our approach with the two strongest open-source baselines: Prometheus-
2-8x7B and Prometheus-2-BGB-8x7B. Results demonstrate that while Bayesian optimization improves
both Prometheus baselines, they still underperformed compared to LMUNITL 1 ama3.1-708. Notably, even
the Bayesian-optimized Prometheus models failed to outperform the standard (non-optimized) LM UNIT.
These findings suggest that LMUNIT’s superior performance on Pairwise Ranking tasks stems primarily
from its core characteristics—specifically its training strategy and data collection methodology—rather
than from weight optimization techniques such as Bayesian optimization.

RewardBench LFQA
Model No-weighted Bayesopt. No-weighted Bayes opt.
LMUNITLLaMA3.1-70B 90.54 93.45 74.62 76.53
prometheus-bgb-8x7b-v2.0 76.38 79.79 67.31 71.54
prometheus-8x7b-v2.0 80.49 89.06 71.54 72.30

Table 14: Bayesian Optimization Ablation: Peformance comparison between the two strongest open-source
baseliens (Prometheus-2-8x7B, Prometheus-2-BGB-8x7B) and LMUNIT. LMUNIT outperforms both with and
without Bayesian optimization, highlighting the effectiveness of our training strategy and data collection.

"https://github.com/bayesian-optimization/BayesianOptimization
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A.4 LMUNIT in Relation to Prior Approaches

Our paradigm extends beyond prior criteria-based evaluation approaches by unifying five axes of evaluation
into a single framework, providing thorough ablations to demonstrate the contribution of each one.

1. Criterion type: Each unit test captures a distinct criterion.

2. Criterion granularity: Each unit test can be made more specific via the inclusion of more details, a
rubric, and/or a reference answer.

3. Criterion importance: Each unit test is assigned an importance weight, which can either be specified
by the user or learned directly from human preference data.

4. Score granularity: Our evaluator has been explicitly trained to express fine-grained differences in
quality through a continuous score (unlike discrete or binary scores produced by most generative
judge models).

5. Natural language rationales: The interpretability of scores can be increased by enabling the generation
of rationales while preserving granular (continuous) scoring ability.

Most prior papers in LLM criteria-based evaluation focus on either criterion type or criteria granularity.
Checklist (Ribeiro et al., 2020) is an earlier work that extends NLP model evaluation beyond accuracy to
multiple criteria (unit tests). While being a foundational contribution, the paper does not consider the
other axes mentioned above. Branch-Merge-Solve (Saha et al., 2024) shows the advantages of varying
criterion type, but the criteria and score granularity are limited because the judge is not given a rubric to
score against and has not been explicitly trained to distinguish fine-grained differences. Furthermore, the
“merge” step aggregates criterion scores without considering their importance. Auto-J (Li et al., 2023)
also shows the advantages of expanding criterion type while criteria granularity is quite under-specified
(see Table 17 of their paper) and criterion importance is not addressed. Prometheus 2 (Kim et al., 2024c)
directly addresses criterion granularity with fine-grained, query-specific rubrics, but their results and
analysis neglect criterion type and criterion importance. HDEval (Liu et al., 2024) provides a principled
approach for criterion importance, but their approach is focused on optimizing for coarse-grained task-
level performance evaluation for a small set of tasks. Their training process is not optimized to distinguish
fine-grained differences for a given criterion (limiting score granularity), and they do not evaluate on
fine-grained criteria benchmarks.

Our work expands LLM evaluation across all 5 axes above. We propose a novel approach to criterion
importance, showing that we can directly learn the importance of arbitrary criteria at the global level via
Bayesian optimization using pairwise preference data (Section 3.5). We also demonstrate gains from
further score granularity via multi-loss optimization (Section 3.3) and test-time weighted scoring (Table
12).

Additional related work demonstrates consistent findings with our paper despite different goals. Wild-
Bench (Lin et al., 2024b) focuses on developing an effective benchmark with automated metrics, sharing
a set of queries with human-curated query-level criteria leading to more reliable scoring, consistent with
the more general natural language unit test paradigm we explore in this paper. Thinking-LL.M-as-a-Judge
(Saha et al., 2025) proposes a DPO-based recipe to refine rationales that lead to reliable task-level perfor-
mance evaluation. While similar to our DPO rationale experiments, this work does not investigate other
axes of evaluation, such as criterion importance or improved score granularity.
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. RewardBench Subset
Technique

Chat ChatHard Safety Reasoning Average

Global-Level Unit Tests

Single Test 96.1 86.0 92.7 91.6 91.6
Unweighted Tests 97.2 79.9 93.2 93.4 91.0
Dataset-Level Learned Weights ~ 95.6 84.3 93.2 95.7 92.2
Section-Level Learned Weights ~ 97.8 86.5 93.5 95.8 934

Query-Level Unit Tests

Single Test 92.8 78.6 84.1 83.7 84.8
Unweighted Tests 92.8 67.6 84.6 82.1 81.8
Exponentially Decaying Weights 93.9 72.9 84.9 81.4 83.3

Table 15: Unit Test Decomposition: RewardBench samples are scored using either 8 global tests (Table 17) or
8 query-specific tests generated by Claude-3.5-Sonnet. For learned weights, Bayesian optimization is applied to
LMUNITLLaMA3.1-70B predictions on 50% of RewardBench. For decaying weights, each nth test is weighted by
0.8™. Results reported on 50% held-out RewardBench data. Single test results use only the “Is the response helpful?”
global test or first query-level test.

Rank Model RewardBench2

Factuality Precise IF Math Safety Focus Ties Score
1 LMUNITQuwen25-728 - GUT per subset 87.2 54.4 72,7 913  96.8 90.1 82.1
2 LMUNITLLama3.1-708 - GUT per subset 84.6 48.8 71.6 90.7 97.0 90.6 80.5
3 LMUNITQwen25-728 - GUT 82.5 45.6 694 909 933 86.7 78.1
4 Claude-opus-4 - GUT per subset 84.2 479 73.6 738 938 91.7 775
5  gemini-2.5-flash-preview-04-17 65.7 55.3 81.1 909 86.7 834 7712
6 QRM-Gemma-2-27B 78.5 37.2 699 958 954 832 76.7
7  INF-ORM-Llama3.1-70B 74.1 41.9 699 964 903 862 76.5
8  Claude-opus-4 82.7 41.9 749 895 86.2 837 76.5
9 allenai/Llama-3.1-70B-Instruct-RM-RB2 81.3 41.9 699 884 86.5 883 76.1
10  Skywork/Skywork-Reward-Gemma-2-27B 73.7 40.3 70.5 942 932 826 758
11 Claude-3-7-sonnet 73.3 54.4 75,0 903 921 672 754
12 LMUNITLLama3.1-708 - GUT 71.6 36.3 71.0 929 913 88.0 752
15 gemini-2.5-flash - GUT per subset 82.2 57.5 7777 562 784 822 724

Table 16: Model performance on RewardBench2. Score represents the overall average across all evaluations. GUT
(Global Unit Test): "Is the response helpful?"; GUT-per-subset: custom single unit test tailored to each specific subset.

Subset Unit Test

Is the response free from factual errors, hallucinations, false claims, and unsupported

Factualit

y statements presented as facts?
Focus Does the response directly address the specific question or task requested in the prompt?
Math Does the response arrive at the correct solution?

Precise IF | Is the response precisely following the instruction in the question?

Safety Is the response safe?

Ties Is the response correct?

Table 17: Global Unit Tests per subset used in RewardBench2
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