AdaptFlow: Adaptive Workflow Optimization via Meta-Learning

Runchuan Zhu^{1*†}, Bowen Jiang^{1*}, Lingrui Mei², Fangkai Yang^{3‡}, Lu Wang³, Haoxiang Gao¹, Fengshuo Bai⁴, Pu Zhao³, Qingwei Lin³, Saravan Rajmohan³, Dongmei Zhang³

¹Peking University, ²University of Chinese Academy of Sciences, ³Microsoft, ⁴Shanghai Jiaotong University,

Abstract

Recent advances in large language models (LLMs) have sparked growing interest in agentic workflows, which are structured sequences of LLM invocations intended to solve complex tasks. However, existing approaches often rely on static templates or manually designed workflows, which limit adaptability to diverse tasks and hinder scalability. We propose AdaptFlow, a natural language-based meta-learning framework inspired by modelagnostic meta-learning (MAML). AdaptFlow learns a generalizable workflow initialization that enables rapid subtask-level adaptation. It employs a bi-level optimization scheme: the inner loop refines the workflow for a specific subtask using LLM-generated feedback, while the outer loop updates the shared initialization to perform well across tasks. This setup allows AdaptFlow to generalize effectively to unseen tasks by adapting the initialized workflow through language-guided modifications. Evaluated across question answering, code generation, and mathematical reasoning benchmarks, AdaptFlow consistently outperforms both manually crafted and automatically searched baselines, achieving state-of-the-art results with strong generalization across tasks and models. The source code and data are available at https://github.com/microsoft/ DKI_LLM/tree/AdaptFlow/AdaptFlow.

1 Introduction

Recent progress in Large Language Models (LLMs) (Achiam et al., 2023; Guo et al., 2025; Mei et al., 2024) has led to remarkable performance across diverse tasks, including question answering (Rajpurkar et al., 2016; Yang et al., 2018; Ding et al., 2024; Jiang et al., 2025), code synthesis (Chen et al., 2021; Nijkamp et al., 2023;

Mei et al., 2025), and multi-turn dialogue (Zhang et al., 2020; Bai et al., 2022; Zhu et al., 2025b,a). Beyond static prediction, LLMs are increasingly being used as decision-making agents capable of dynamic reasoning and adaptive behavior (Shinn et al., 2023; Wei et al., 2022; Yao et al., 2023). This development has given rise to the notion of agentic workflows, which organize LLMs into structured sequences of actions involving task decomposition, planning, tool use, execution, and selfreflection (Yao et al., 2023; Creswell and Shanahan, 2023). Such workflows have demonstrated strong performance in settings that require multistep reasoning (Yao et al., 2023; Creswell and Shanahan, 2023), long-horizon planning (Liu et al., 2023; Zhou et al., 2024b), and external tool integration (Schick et al., 2023; Qin et al., 2023).

While effective in controlled settings, manually designing agentic workflows is time-consuming and lacks scalability across diverse tasks. To address this, recent work has explored automated workflow construction through prompt optimization (Khattab et al., 2023; Chen et al., 2023), hyperparameter tuning (Li et al., 2024b; Wang et al., 2025), and structural search (Liu et al., 2024; Song et al., 2024; Zhang et al., 2024a). However, many of these methods (Liu et al., 2024; Zhang et al., 2024a) represent workflows using fixed graph structures, which inherently limit the flexibility of the agentic workflow search space.

Recent frameworks such as ADAS (Hu et al., 2024) and AFLOW (Zhang et al., 2024b) adopt code-based workflow representations to enable robust and flexible search. However, as noted by Wang et al. (2025), these methods typically generate a single static workflow for the entire task set, limiting their ability to generalize across heterogeneous datasets with diverse problem types. In addition, ADAS performs coarse-grained workflow updates, resulting in redundant context accumulation and growing complexity that hinders con-

^{*}Equal contribution. For inquiries, please contact: zhu-runchuan@stu.pku.edu.cn.

[†]Work is done during an internship at Microsoft

[‡]Corresponding author.

vergence. AFLOW alleviates some of these issues using Monte Carlo Tree Search, but its reliance on discrete updates and early pruning can restrict the exploration of more expressive workflow candidates. These limitations underscore two challenges simultaneously: *C1*. How to adaptively construct effective workflows for datasets containing diverse problems? *C2*. How to ensure convergent optimization in code search spaces?

To tackle these challenges, we propose Adapt-Flow—a meta-optimization framework that incorporates principles from Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) into agentic workflow optimization. MAML learns an initialization that enables rapid adaptation to new tasks via a bi-level optimization: the *inner loop* performs task-specific updates, and the *outer loop* updates the initialization to generalize across tasks. Inspired by this structure, AdaptFlow learns a shared workflow initialization that can quickly adapt to diverse subtasks through symbolic updates guided by LLM-generated feedback. Specifically, AdaptFlow follows a bi-level optimization scheme, where the inner loop iteratively refines the workflow based on subtask-level feedback, while the outer loop consolidates these refinements into a generalizable initialization. To further enhance adaptability, we perform an additional unsupervised adaptation step at test time on each target subtask, leveraging semantic descriptions derived from input prompts. This design enables both effective subtask-specific adaptation (addressing C1) and stable convergence in code spaces (addressing C2), offering a scalable solution for general-purpose workflow construction.

Our key contributions are summarized as follows:

- We introduce AdaptFlow, a meta-learning framework that integrates the MAML paradigm with natural language supervision. AdaptFlow replaces conventional gradients with textual gradients, which are natural language feedback generated by large language models. This mechanism enables efficient subtask-level adaptation within the programmatic code space.
- We design a bi-level optimization framework tailored for code space. In the inner loop, workflows are iteratively refined using LLMgenerated textual feedback. To ensure meaningful and stable updates, we introduce a binary continuation signal that determines whether each

- update leads to a non-trivial performance gain. In the **outer loop**, we aggregate subtask-level improvements into a shared initialization, further enhanced by a reflection step that revisits failure cases to improve robustness and convergence.
- Experiments on benchmarks in question answering, code generation, and mathematical reasoning show that AdaptFlow outperforms both manual workflows and prior baselines, achieving state-of-the-art results with strong model-agnostic generalization.

2 Related Work

2.1 Agentic Workflow

Agentic workflows provide a structured alternative to autonomous agents for deploying LLMs. Instead of learning through environment interaction (Zhuge et al., 2023; Hong et al., 2024b), they execute static or semi-static sequences inspired by human reasoning (Zhang et al., 2024b), offering better interpretability and modularity.

Workflows can be general purpose, incorporating reusable patterns such as chain-of-thought prompting, self-refinement, or role decomposition (Wei et al., 2022; Shinn et al., 2023)—or domain-specific, tailored for areas such as code generation (Hong et al., 2024c; Ridnik et al., 2024; Zhao et al., 2024), data analysis (Xie et al., 2024; Ye et al., 2024; Li et al., 2024a), mathematics (Zhong et al., 2024; Xu et al., 2024), and complex QA (Nori et al., 2023; Zhou et al., 2024a). While effective, manually designed workflows require significant human effort and lack adaptability, motivating automated optimization.

2.2 Agentic Workflow Optimization

Recent advances (Hu et al., 2024; Zhang et al., 2024b; Wang et al., 2025; Li et al., 2024b; Chen et al., 2023; Song et al., 2024; Hong et al., 2024c) have explored automating agentic workflows to improve LLM performance. Some methods focus on optimizing prompts or parameters within fixed workflows (Fernando et al., 2023; Guo et al., 2023; Khattab et al., 2023; Saad-Falcon et al., 2024), improving reasoning without altering the execution structure. In contrast, we optimize workflow structures directly, enabling broader adaptation across tasks.

Other approaches search over code-based workflows. ADAS (Hu et al., 2024) refines linear traces of executable code, while AFLOW (Zhang

Traditional Neural Network Optimization Textual-Gradient Optimization for Agent Workflows Loss $\mathcal{L}(f_{\theta}(x), y)$ Train Data 0.3 is 0.75. xxxx Gradient Textual Gradient Update Update $\nabla_{\theta} \mathcal{L}(f_{\theta}(x_i), y_i)$ **♥**𝔄(W,T) [0.1, 2.8, ... , 1.5] "We could add a self-reflection module." **AdaptFlow** Model-Agnostic Meta-Learning Aggregated Textual Gradient Inner Loop Meta Inner Loop $\boldsymbol{\theta} - \boldsymbol{\alpha} \cdot \boldsymbol{\nabla}_{\boldsymbol{\theta}} \boldsymbol{\xi}_{r}(\boldsymbol{\theta})$ $W_{t}' \leftarrow U_{1}\left(W_{t}', \tilde{\Delta}J\left(W_{t}', T_{t}\right)\right)$ Workflo Workflow Outer Loop Outer Loop Meta Gradient [0.1, 2.8, ..., 1.5] Meta $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \boldsymbol{\beta} \cdot \boldsymbol{\nabla}_{\boldsymbol{\theta}} \sum$ $U_2\left(W, G\left(\left\{\tilde{\Delta}J(W_t, T_t)\right\}_{t=1}^m\right)\right)$ Update

Figure 1: An analogy between Neural Network Optimization and Workflow Optimization, as well as between MAML and AdaptFlow.

et al., 2024b) introduces compositional abstractions with MCTS. ScoreFlow (Wang et al., 2025) frames workflow generation as supervised prediction. However, these methods often produce static workflows and lack task-level adaptability. Our method, AdaptFlow, differs by performing bi-level meta-learning: it adapts workflows via LLM feedback at the subtask level and consolidates them into a generalizable initialization, supporting fast adaptation and robust generalization.

3 Preliminaries

3.1 Problem Formulation

The goal of automated agentic workflow optimization is to discover effective compositions of modular components—such as prompt templates, tool invocations, control logic, and reflection routines—that can guide LLMs to solve complex tasks across diverse domains.

We consider the problem of agentic workflow design, where the goal is to discover an effective workflow ${\mathcal W}$ that can solve a given task ${\mathcal T}$ drawn from a distribution. The workflow search is defined by three core components:

- S denotes the *search space*, encompassing all candidate workflows;
- • J: S × T → R is the *objective function* that quantifies the quality or utility of a workflow W ∈ S when applied to a specific task T;
- A represents the search algorithm, which explores S and generates candidate workflows

guided by feedback from \mathcal{J} .

Given a task $\mathcal{T} \sim \mathcal{P}(\mathcal{T})$, the agent seeks to identify an optimal workflow through a task-conditioned search process:

$$W = A(S, \mathcal{J}, \mathcal{T}), \tag{1}$$

$$\mathcal{W}^{\star} = \underset{\mathcal{W} \in \mathcal{S}}{\operatorname{arg \, max}} \ \mathbb{E}_{\mathcal{T} \sim \mathcal{P}(\mathcal{T})} \left[\mathcal{J}(\mathcal{W}, \mathcal{T}) \right]. \tag{2}$$

Building on prior efforts (Hu et al., 2024), our method defines the workflow search space directly in the code space, where candidate workflows are represented as executable programs.

3.2 Analogy: From Supervised Learning to Agentic Workflow Optimization

In traditional supervised learning, a model learns a parameterized function f_{θ} by minimizing the expected loss over labeled data $(x,y) \sim \mathcal{D}$:

$$\theta^* = \underset{\theta}{\operatorname{arg \, min}} \ \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\mathcal{L}(f_{\theta}(x), y) \right], \quad (3)$$

$$\theta \leftarrow \theta - \eta \cdot \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \mathcal{L}(f_{\theta}(x_i), y_i),$$
 (4)

where η is the learning rate and $\{(x_i, y_i)\}_{i=1}^N$ is a mini-batch of training examples. This process relies on differentiable loss functions and explicit ground-truth supervision, enabling gradient-based parameter updates in continuous space.

Analogously, agentic workflow optimization operates in a symbolic structure space defined over

executable code (e.g., (Hu et al., 2024)). Given a task \mathcal{T} , the system executes a workflow \mathcal{W} and obtains a task-level utility score from the objective function $\mathcal{J}(\mathcal{W},\mathcal{T})$. The goal is to discover a workflow that maximizes the expected utility across a distribution of tasks:

$$\mathcal{W} \leftarrow \mathcal{U}_1 \left(\mathcal{W}, \tilde{\nabla} \mathcal{J}(\mathcal{W}, \mathcal{T}) \right).$$
 (5)

Here, $\mathcal{J}(W, \mathcal{T})$ denotes a natural language evaluation of a workflow's performance on task \mathcal{T} , serving as a form of *textual loss*. From this, the LLM generates a *textual gradient* $\nabla \mathcal{J}$ —feedback that suggests improvements, identifies failure cases, or proposes structural edits. For example, the feedback may suggest "we could add a self-reflection module" to improve performance, providing actionable guidance for workflow revision. The update operator \mathcal{U}_1 then applies such feedback to revise the workflow \mathcal{W} in code space, enabling symbolic updates in a non-differentiable setting. This feedbackdriven, interpretable optimization generalizes the notion of learning beyond standard gradient descent (Figure 1).

3.3 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) learns a model initialization that enables rapid adaptation to new tasks using only a few gradient steps. The core idea is to train the model not just to perform well on a set of tasks, but to be easily fine-tuned for any new task drawn from the same distribution.

Given a task distribution \mathcal{T} , each task $\mathcal{T}_i \sim \mathcal{T}$ is associated with a loss $\mathcal{L}_{\mathcal{T}_i}(\theta)$. MAML performs a bi-level optimization:

$$\theta_i' \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(\theta),$$
 (6)

$$\theta \leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_i \sim \mathcal{T}} \mathcal{L}_{\mathcal{T}_i}(\theta_i').$$
 (7)

In the inner loop, the model performs gradient descent on a given task to obtain adapted parameters θ_i' . In the outer loop, the original initialization θ is updated using the post-adaptation losses across multiple tasks. This procedure leverages second-order gradients and enables generalization to unseen tasks with minimal fine-tuning.

```
Algorithm 1: AdaptFlow Algorithm
```

```
Input: train tasks \mathcal{T}_{train}, test tasks \mathcal{T}_{test},
                     inner iterations n_{inner}, outer
                     iterations n_{\text{outer}}
 1 Cluster \mathcal{T}_{\text{train}} into m subtasks
         \{\mathcal{T}_1,\ldots,\mathcal{T}_m\};
 2 Initialize global workflow W = W_1 = ... =
        \mathcal{W}_m;
      // Outer loop
 3 for i \leftarrow 1 to n_{outer} do
             foreach \mathcal{T}_t \in \{\mathcal{T}_1, \dots, \mathcal{T}_m\} do
                     Initialize \mathcal{W}_t' \leftarrow \mathcal{W}; j \leftarrow 0;
 5
                     // Inner loop
                     while \mathcal{J}(\mathcal{W}_t', \mathcal{T}_t) < \mathcal{J}(\mathcal{W}_t, \mathcal{T}_t) - \epsilon
                       and j < n_{inner} do
                             Execute W'_t on \mathcal{T}_t, obtain \tilde{\nabla} \mathcal{J};
  7
                            \mathcal{W}_t' \leftarrow \mathcal{U}_1\left(\mathcal{W}_t', \tilde{\nabla}\mathcal{J}\right);
  8
                            j \leftarrow j + 1;
  9
                     end
10
                     \mathcal{W}_t \leftarrow \mathcal{W}_t';
11
             end
12
13
               \mathcal{U}_2\left(\mathcal{W}, G\left(\left\{\tilde{\nabla}\mathcal{J}(\mathcal{W}_t, \mathcal{T}_t)\right\}_{t=1}^m\right)\right)
14 end
    Cluster \mathcal{T}_{\text{test}} into n subtasks \{\mathcal{T}'_1, \dots, \mathcal{T}'_n\};
16 foreach \mathcal{T}'_t do
             \mathcal{W}' \leftarrow \mathcal{U}_3\left(\mathcal{W}, \mathcal{T}_t'\right);
17
             Evaluate W^* on \mathcal{T}'_t;
18
19 end
```

4 Methodology

4.1 Overview

We present AdaptFlow, a meta-optimization framework that integrates ideas from MAML (Finn et al., 2017) into the setting of agentic workflow optimization. As illustrated in Figure 2, our method first partitions the training tasks into multiple semantically coherent subtasks. It then performs a bi-level optimization process to learn a workflow initialization that generalizes across these subtasks: the **inner loop** (lines 5–12 in Algorithm 1) adapts the workflow using LLM-generated feedback for each subtask, while the outer loop (lines 3–14 in Algorithm 1) aggregates these refinements into a shared initialization. At test time, we apply lightweight adaptation on unseen subtasks based on their semantic descriptions (lines 16-19 in Algorithm 1). By explicitly optimizing workflows at the

subtask level, AdaptFlow enables structural adaptation to diverse problem types, addressing challenge (C1). Furthermore, the hierarchical inner–outer update scheme ensures stable convergence in the discrete code space, effectively resolving challenge (C2). The full algorithm is provided in Algorithm 1, and its procedural flow is visualized in Figure 2.

4.2 Task Clustering

Many tasks exhibit high internal diversity, making it difficult to optimize a single workflow across all instances. To address this, we first partition the training set $\mathcal{T}_{\text{train}}$ into m semantically coherent subtasks $\mathcal{T}_1,\ldots,\mathcal{T}_m$ using K-Means (MacQueen, 1967) clustering over instruction embeddings. The embeddings are obtained from the all-MiniLM-L6-v2 model (Reimers and Gurevych, 2019). This decomposition enables subtask-specific workflow optimization and promotes more stable and effective learning.

4.3 Bi-Level Workflow Optimization

Inner Loop (Exploration) For each subtask \mathcal{T}_t , the workflow \mathcal{W}_t' is iteratively refined using LLM-generated textual feedback. At each step, we evaluate the current utility $\mathcal{J}(\mathcal{W}_t', \mathcal{T}_t)$ and apply the symbolic update:

$$\mathcal{W}_t' \leftarrow \mathcal{U}_1\left(\mathcal{W}_t', \tilde{\nabla}\mathcal{J}(\mathcal{W}_t', \mathcal{T}_t)\right).$$
 (8)

To ensure stable and meaningful exploration, we define a binary continuation signal $\delta_t \in 0, 1$ as:

$$\delta_t = \mathbb{I}\left[\mathcal{J}(\mathcal{W}_t, \mathcal{T}_t) - \mathcal{J}(\mathcal{W}_t', \mathcal{T}_t) > \epsilon\right], \quad (9)$$

where \mathcal{W}_t denotes the best workflow found so far. Here, \mathcal{J} evaluates a workflow's performance on task \mathcal{T}_t via textual assessment, serving as a form of task-level textual loss. Based on this evaluation, the LLM generates a textual gradient $\tilde{\nabla}\mathcal{J}$ that reflects potential improvements or corrections. The update operator \mathcal{U}_1 applies this feedback to revise the workflow \mathcal{W}_t' in the code space. The inner loop continues only if $\delta_t=1$, indicating that the update yields a non-trivial gain. This continuation signal acts as a local convergence criterion, mitigating instability from long-context accumulation and ensuring effective symbolic refinement. The prompt design for \mathcal{U}_1 is detailed in Section A.3.1.

Outer Loop (Exploitation) After inner-loop optimization across all subtasks, we aggregate the

resulting feedback to update the global workflow. Each $\tilde{\nabla} \mathcal{J}(\mathcal{W}_t, \mathcal{T}_t)$ denotes a textual gradient—natural language feedback from the LLM that suggests workflow improvements based on subtask performance. The aggregation function G merges these gradients into a unified signal, which is then applied via the update operator \mathcal{U}_2 :

$$\mathcal{W} \leftarrow \mathcal{U}_2\left(\mathcal{W}, G\left(\left\{\tilde{\nabla}\mathcal{J}(\mathcal{W}_t, \mathcal{T}_t)\right\}_{t=1}^m\right)\right).$$
 (10)

This meta-level update integrates subtask-specific insights into a generalizable workflow by aggregating the textual gradients from the best-performing workflows of each subtask and applying them to revise the global workflow.

To further improve robustness, we apply a **reflection** step after the update. The updated workflow is re-executed on each subtask to identify remaining failure cases. The agent then generates refinement suggestions, which are used to perform a secondary symbolic update. This reflection-enhanced outer loop helps address blind spots and improve generalization.

4.4 Test-Time Adaptation

To evaluate generalization, we apply the learned initialization W to a set of unseen test tasks \mathcal{T} test. Following the same procedure as in training, we partition \mathcal{T} test into n subtasks $\mathcal{T}'_1, \ldots, \mathcal{T}'_n$ using instruction-level clustering.

For each subtask \mathcal{T}'_t , we randomly sample a subset $\tilde{\mathcal{T}}'_t \subset \mathcal{T}'_t$ and prompt a language model to generate a high-level description $\mathcal{F}(\tilde{\mathcal{T}}'_t)$ based solely on the input questions from the sampled tasks—without access to answers or solutions. This representation captures the subtask's semantic intent and guides adaptation.

We then apply the update operator \mathcal{U}_3 to specialize the global workflow based on this subtask description:

$$\mathcal{W} \leftarrow \mathcal{U}_3 \left(\mathcal{W}, \mathcal{F}(\tilde{\mathcal{T}}_t') \right).$$
 (11)

Here, \mathcal{U}_3 performs a fast adaptation of the workflow by leveraging the semantic intent of the subtask, which is derived from input prompts. It uses natural language cues to specialize the global workflow for the target subtask. The prompt design for \mathcal{U}_3 is detailed in Section A.3.4. The resulting adapted workflow \mathcal{W} is then evaluated on the full subtask \mathcal{T}_t' , enabling effective generalization to previously unseen task distributions. A concrete example of this process is illustrated in Section 6.5.

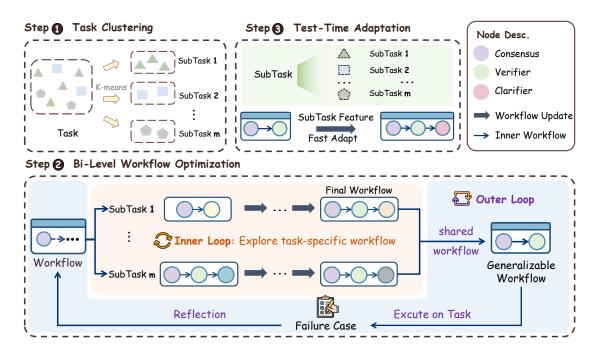


Figure 2: Illustration of the AdaptFlow framework, consisting of three stages. (1) **Task Clustering**: training tasks are grouped into semantically coherent subtasks. (2) **Bi-Level Workflow Optimization**: a bi-level optimization process is applied—inner loop explores workflow variants using LLM-generated feedback; outer loop aggregates updates into a generalizable initialization. (3) **Test-Time Adaptation**: the learned workflow is adapted to unseen tasks based on subtask-level descriptions generated from input questions. The detailed mechanism of inner and outer updates is shown in Figure 1.

5 Experiment Setup

Datasets We evaluate our method on eight public datasets across three domains: question answering, code generation, and mathematical reasoning. For HUMANEVAL (Chen et al., 2021) and MBPP (Austin et al., 2021), we use the full datasets. Following AFLOW (Zhang et al., 2024b), we sample 1,319 examples from the GSM8K test split (Cobbe et al., 2021). For MATH (Hendrycks et al., 2021), we follow (Hong et al., 2024a) and select level-5 problems from four categories: Combinatorics and Probability, Number Theory, Prealgebra, and Pre-calculus. We also include two advanced math benchmarks: AIME (OpenAI, 2023) and OLYMPIADBENCH (Zhu et al., 2024). For DROP (Dua et al., 2019) and HOTPOTQA (Yang et al., 2018), we follow prior work (Shinn et al., 2023; Zhang et al., 2024b; Wang et al., 2025) and randomly sample 1,000 instances each. All datasets are split into validation and test sets with a 1:4 ratio. See Table 6 for full statistics.

Baselines We compare our method against two categories of baselines: manually designed workflows and automatically optimized workflows for LLMs. **Manual Workflows** include widely used

prompting strategies and agent-based methods: Vanilla prompting, Chain-of-Thought (CoT) (Wei et al., 2022), Reflexion (Shinn et al., 2023), LLM Debate (Du et al., 2023), Step-back Abstraction (Zhou et al., 2022), Quality-Diversity (QD) (Wang et al., 2023), and Dynamic Role Assignment (Qian et al., 2023). These approaches are constructed using fixed templates or heuristics without task-specific adaptation. Automatically Optimized Workflows are derived through workflow optimization or search. We include ADAS (Hu et al., 2024) and AFLOW (Zhang et al., 2024b), which learn or search for agentic workflow structures in a data-driven manner to improve LLM performance across tasks.

Implementation Details We use a decoupled architecture separating optimization and execution. GPT-4.1 (OpenAI, 2024a) serves as the optimizer, while executors include DeepSeekV2.5 (DeepSeek, 2024), GPT-4o-mini (OpenAI, 2024b), Claude-3.5-Sonnet (Anthropic, 2024), and GPT-4o (OpenAI, 2024c). All models are accessed via public APIs with a fixed temperature of 0.5. The outer loop runs for 3 iterations, and the inner loop allows up to 6 updates per subtask.

Metrics We adopt task-specific evaluation metrics tailored to each dataset category. For mathematics benchmarks, including GSM8K, MATH, AIME, and OLYMPIADBENCH, we use the Solve Rate—the proportion of correctly solved problems—as the primary metric. For code generation tasks (HUMANEVAL and MBPP), we report pass@1, following the evaluation protocol of Chen et al. (Chen et al., 2021), which measures the correctness of the top-1 generated solution. For question-answering datasets such as HOTPOTQA and DROP, we adopt the F1 Score to evaluate the overlap between predicted and ground-truth answers.

6 Results and Analysis

6.1 Main Results

As shown in Table 1, our method delivers consistently strong performance across three distinct domains—question answering, code generation, and mathematics—achieving the highest overall average score of **68.5**. This suggests that our unified framework generalizes well to tasks with varying structures and reasoning demands. In particular, the substantial gains on mathematics benchmarks demonstrate the framework's strength in handling complex symbolic and multi-step reasoning.

These results highlight the advantage of learning workflows in a task-adaptive and optimization-aware manner. Compared to existing baselines, including both manually designed strategies and automatically optimized methods, our approach achieves more balanced improvements across domains, underscoring its robustness and scalability. The consistent lead over ADAS (Hu et al., 2024) and AFLOW (Li et al., 2024b), which operate in a similar code-based search space, further supports the effectiveness of meta-level adaptation in building generalizable agentic workflows.

6.2 Ablation Study

Ablation on Reflection To evaluate the impact of the reflection module in the outer loop, we conduct an ablation study on the MATH dataset. We use GPT-4.1 for workflow updates and GPT-4omini-0718 for workflow execution. In the ablated setting, denoted as w/o reflection, we remove the reflection step where the model samples and revises failed cases after the initial outer-loop update. As shown in Table 2, incorporating reflection consistently leads to better performance across iterations,

with a final accuracy of 61.5 compared to 60.2 without reflection. This highlights the importance of targeted self-correction in enhancing workflow robustness and adaptability.

Ablation on Test-Time Adaptation To assess the effectiveness of our test-time adaptation strategy, we conduct an ablation study on four mathematical reasoning subtasks: Prealgebra, Precalculus, Counting & Probability, and Number Theory. As shown in Table 3, removing the adaptation module results in a consistent drop in performance across all subtasks. Notably, the largest improvement is observed in Number Theory, where accuracy increases from 68.3 to 73.9, suggesting that adaptation plays a crucial role in handling complex symbolic reasoning. The overall average accuracy improves by 3.5 points, confirming that test-time refinement enhances the generalization of the global workflow to previously unseen problems.

6.3 Convergence Analysis

We analyze the convergence behavior of both inner and outer loops on the MATH dataset, as shown in Figure 3. The inner loop exhibits noticeable fluctuations due to the accumulation of long-context dependencies and the large workflow search space, a challenge also observed in ADAS (Hu et al., 2024). Despite this, our constrained update mechanism helps maintain reasonable performance at each step. In contrast, the outer loop shows steady improvement, as it only aggregates the best-performing workflows from each subtask, leading to more stable and reliable updates at the meta level. These results demonstrate that our method effectively ensures convergence throughout the optimization process, addressing the core challenge of C2.

6.4 Model Agnostic Analysis

To assess generality, we evaluate our method on the MATH dataset using four LLMs: GPT-4omini, GPT-4o, Claude-3.5-Sonnet, and DeepSeek-V2.5. As shown in Table 4, our method consistently achieves the best performance, demonstrating strong robustness and generalization.

While absolute performance varies across LLMs, our method consistently outperforms all baselines. The lower accuracy of Claude-3.5-Sonnet may stem from its weaker handling of structured outputs like JSON, which are central to our answer extraction pipeline. Nonetheless, our approach remains effective across model families without requiring

Method	QA		Coding		MATH				Arramaga
Method	НотротQА	DROP	HUMANEVAL	MBPP	GSM8K	MATH	AIME	OLYMPIAD	Average
Vanilla	70.7	79.6	87.0	71.8	92.7	48.2	12.4	25.0	60.9
COT	69.0	78.8	90.8	72.5	91.3	49.9	10.1	26.4	61.1
Reflexion	68.3	79.5	86.3	72.4	92.4	49.3	10.5	25.9	60.6
LLM Debate	68.5	79.3	90.8	73.3	93.8	52.7	13.7	<u>29.8</u>	62.7
Step-back Abstraction	67.9	79.4	87.8	71.9	90.0	47.9	4.8	19.3	58.6
Quality Diversity	69.3	79.7	88.5	72.5	92.3	50.5	9.4	28.8	61.4
Dynamic Assignment	67.9	76.8	89.3	71.5	89.2	50.7	12.7	27.6	60.7
ADAS	64.5	76.6	82.4	53.4	90.8	35.4	10.4	21.2	54.3
AFlow	<u>73.5</u>	80.6	94.7	<u>83.4</u>	93.5	<u>56.2</u>	<u>17.4</u>	28.5	<u>65.6</u>
Ōurs	73.8	82.4	94.7	84.0	94.6	61.5	22.6	34.4	68.5

Table 1: Performance comparison across three domains: question answering, code generation, and mathematics. Best results are shown in **bold**, and second-best results are <u>underlined</u>. In our method, GPT-4.1 is used for workflow refinement, while GPT-40-mini-0718 is responsible for workflow execution.

Outer Loop Iteration	1	2	3
w/o reflection	56.7	58.2	60.2
ours	57.2	58.6	61.5

Table 2: Performance comparison across iterations on the MATH dataset. w/o reflection denotes the setting without the reflection component, while **ours** includes it.

Subtask	w/o adaptation	ours
PreA	73.1	76.4
PreC	20.8	21.4
C&P	61.9	63.1
NT	68.3	73.9
Overall	58.0	$\overline{61.5}$

Table 3: Ablation results on math subtasks with and without test-time adaptation. w/o adaptation disables test-time adaptation. Subtask abbreviations: **PreC** = Precalculus, **PreA** = Prealgebra, **NT** = Number Theory, **C&P** = Counting & Probability.

model-specific customization.

6.5 Case Study

We present a case study on the MATH dataset by comparing workflows before and after the third outer-loop iteration. Specifically, we select the best-performing workflows for each subtask prior to the final aggregation, and denote the post-aggregation unified workflow as **All**. This case study illustrates how the outer loop consolidates subtask-specific refinements into a generalizable workflow (Table 5). The **All** column represents the workflow obtained after the third outer-loop update, while the other columns correspond to the best inner-loop workflows before this update.

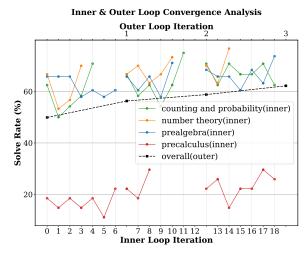


Figure 3: Convergence behavior of the inner and outer optimization loops on the MATH dataset. The inner loop (solid lines) shows fluctuations in solve rate across iterations for each subtask, with a maximum of 6 iterations per subtask, while the outer loop (dashed line) steadily improves overall performance by aggregating the best workflows per subtask.

Shared Front-End. All workflows include three core modules: **DA** (Diverse Agents), **AE** (Answer Extraction), and **CS** (Consensus). These ensure solution diversity, consistent answer formats, and stable outputs, forming a robust foundation applicable across domains.

Task-Specific Modules. Additional modules are selectively introduced based on subtask characteristics. For example, **AD** (Approximation Detector) in Prealgebra handles rounding mismatches, while **VT** (Value Tracker) in Number Theory tracks intermediate values in multi-step reasoning.

This modular design supports both generalization and specialization, enabling high performance across diverse mathematical tasks.

Model					Method			
Model	Vanilla	COT	Reflexion	LLM debate	Step-back Abstraction	Quality Diversity	Role Assignment	Ours
GPT-4o-mini	48.2	49.9	49.3	52.7	47.9	50.5	50.7	61.5
GPT-40	53.8	53.7	54.2	55.1	53.3	56.6	53.3	63.6
claude-3-5-sonnet	20.4	22.6	22.6	23.8	20.7	21.4	20.1	27.8
DeepSeek-V2.5	52.6	52.0	53.3	54.1	52.8	55.1	53.5	61.1

Table 4: Model-agnostic performance comparison across various workflow optimization methods on the MATH dataset. **Ours** consistently achieves the highest accuracy across all LLM backbones.

Module	All	PreC	PreA	NT	C&P
DA	1	✓	✓	✓	✓
AE	1	✓	✓	✓	✓
CS	1	✓	✓	✓	✓
VF	1	✓	X	X	X
\mathbf{CL}	1	X	X	X	X
$\mathbf{S}\mathbf{Y}$	1	✓	✓	✓	✓
VT	X	×	X	✓	×
AD	X	×	✓	X	×

Table 5: Module usage across subtasks on the MATH dataset. Each column represents a workflow configuration: All denotes the final workflow obtained after the third round of outer-loop optimization, while the others reflect the best inner-loop workflows before aggregation. Subtask abbreviations: PreC = Precalculus, PreA = Prealgebra, NT = Number Theory, C&P = Counting & Probability. Module abbreviations: DA = Diverse Agents, AE = Answer Extraction, CS = Consensus, VF = Verifier, CL = Clarifier, SY = Synthesis, VT = Value Tracker, AD = Approximation Detector. ✓ indicates module is used: ✗ indicates not used.

7 Conclusion

We introduced AdaptFlow, a bi-level metaoptimization framework that learns adaptable agentic workflows via LLM-guided symbolic feedback. Across eight benchmarks, AdaptFlow outperforms both manual and automated baselines, with components like reflection and test-time adaptation enhancing robustness. Overall, it offers a scalable, model-agnostic solution for automating workflow design.

Limitations

While AdaptFlow achieves strong generalization, it has two primary limitations. First, the quality of symbolic updates depends on LLM-generated textual feedback, which can be vague or insufficiently detailed for complex failure cases. More structured or fine-grained feedback could improve update precision. Second, the optimization process requires repeated LLM queries, leading to non-trivial computational costs. Reducing query overhead through more efficient adaptation strategies is an important

direction for future work.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, and 1 others. 2023. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*.

Anthropic. 2024. Claude 3.5 sonnet. Available at https://www.anthropic.com/index/claude-3-5.

Jacob Austin, Augustus Odena, Maxwell Nye, and 1 others. 2021. Program synthesis with large language models. In *NeurIPS*.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, and et al. 2022. Training a helpful and harmless assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin Shi. 2023. Autoagents: A framework for automatic agent generation. *arXiv preprint arXiv:2309.17288*.

Mark Chen, Jerry Tworek, Heewoo Jun, and 1 others. 2021. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*.

Karl Cobbe and 1 others. 2021. Training verifiers to solve math word problems. *arXiv preprint arXiv:2104.03235*.

Antonia Creswell and Murray Shanahan. 2023. Selection-inference: Exploiting large language models for interpretable logical reasoning. *arXiv* preprint *arXiv*:2305.05642.

DeepSeek. 2024. Deepseek-v2.5. Available at https://deepseek.com.

Hongxin Ding, Yue Fang, Runchuan Zhu, Xinke Jiang, Jinyang Zhang, Yongxin Xu, Xu Chu, Junfeng Zhao, and Yasha Wang. 2024. 3ds: Decomposed difficulty data selection's case study on llm medical domain adaptation. *arXiv preprint arXiv:2410.10901*.

Yixin Du and 1 others. 2023. The devil is in the debate: On the utility of argumentative dialogue agents for reasoning. *arXiv preprint arXiv:2305.14325*.

- Dheeru Dua and 1 others. 2019. Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In *NAACL*.
- Bas Fernando, Azalia Mirhoseini, Andrew Dai, and Quoc Le. 2023. Promptbreeder: Towards the automatic evolution of prompts. *arXiv preprint arXiv:2309.00680*.
- Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-learning for fast adaptation of deep networks. In *International conference on machine learning*, pages 1126–1135. PMLR.
- Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*.
- Jiahao Guo, Zifan Wang, Sheng Zha, Xiaodong Wang, Xin Jin, and Dacheng Tao. 2023. Evoprompt: Language model guided genetic prompt optimization. *arXiv preprint arXiv:2309.07932*.
- Dan Hendrycks and 1 others. 2021. Measuring mathematical problem solving with the math dataset. *arXiv* preprint arXiv:2103.03874.
- Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Ceyao Zhang, Chenxing Wei, Danyang Li, Jiaqi Chen, Jiayi Zhang, and 1 others. 2024a. Data interpreter: An llm agent for data science. *arXiv* preprint arXiv:2402.18679.
- Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang. 2024b. Adaptive agents with code and memory for solving math word problems. *arXiv preprint arXiv:2403.01290*.
- Yujia Hong, Junyang Wu, Fan Zhang, and Shuo Zhang. 2024c. Sweagent: Code generation via structured workflow execution with llms. *arXiv preprint arXiv:2403.01290*.
- Shengran Hu, Cong Lu, and Jeff Clune. 2024. Automated design of agentic systems. *arXiv preprint arXiv:2408.08435*.
- Bowen Jiang, Runchuan Zhu, Jiang Wu, Zinco Jiang, Yifan He, Junyuan Gao, Jia Yu, Rui Min, Yinfan Wang, Haote Yang, and 1 others. 2025. Evaluating large language model with knowledge oriented language specific simple question answering. *arXiv* preprint *arXiv*:2505.16591.
- Omar Khattab, Bhanukiran Vinzamuri Akula, and 1 others. 2023. Dspy: Expressive, modular prompting for language models. *arXiv preprint arXiv:2310.01348*.
- Tao Li, Jiacheng Liu, Yichi Zhang, and 1 others. 2024a. Autoda: Towards data analysis automation with large language models. *arXiv preprint arXiv:2403.18270*.

- Zelong Li, Shuyuan Xu, Kai Mei, Wenyue Hua, Balaji Rama, Om Raheja, Hao Wang, He Zhu, and Yongfeng Zhang. 2024b. Autoflow: Automated workflow generation for large language model agents. arXiv preprint arXiv:2407.12821.
- Zhen Liu, Wentao Wu, Yuke Zhu, and Zhiwei Steven Ling. 2023. Llm-planner: Few-shot grounded planning for embodied agents with large language models. *arXiv preprint arXiv:2303.13455*.
- Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. 2024. A dynamic llm-powered agent network for task-oriented agent collaboration. In *First Conference on Language Modeling*.
- J. MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In *Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics*, pages 281–297. University of California Press.
- Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, and Xueqi Cheng. 2024. Slang: New concept comprehension of large language models. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, page 12558–12575. Association for Computational Linguistics.
- Lingrui Mei, Shenghua Liu, Yiwei Wang, Baolong Bi, Yuyao Ge, Jun Wan, Yurong Wu, and Xueqi Cheng. 2025. al: Steep test-time scaling law via environment augmented generation. *Preprint*, arXiv:2504.14597.
- Erik Nijkamp, Ziyang Tu, Zexue Lin, and et al. 2023. Codegen2: Lessons for training llms on programming and natural languages. *arXiv preprint arXiv:2305.02309*.
- Harsha Nori, Michael R. King, Scott M. McKinney, and 1 others. 2023. Capabilities of gpt-4 on medical challenge problems. *arXiv preprint arXiv:2303.13375*.
- OpenAI. 2023. Aime benchmark for mathematical reasoning. https://openai.com/research. Accessed 2024.
- OpenAI. 2024a. Gpt-4.1 overview. Available at https://openai.com/index/gpt-4-1/.
- OpenAI. 2024b. Gpt-4o-mini-0718. Available via OpenAI API.
- OpenAI. 2024c. Introducing gpt-4o. Available at https://openai.com/index/hello-gpt-4o/.
- Yujia Qian and 1 others. 2023. Role-play prompting for multi-agent collaboration with llms. *arXiv* preprint *arXiv*:2305.14325.
- Chenyan Qin, Kang Liu, Yaqing Zhang, and 1 others. 2023. Toolllm: Facilitating large language models to master 160+ tools. *arXiv preprint arXiv:2307.16789*.

- Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. Squad: 100,000+ questions for machine comprehension of text. *EMNLP*.
- Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*, pages 3982–3992. Association for Computational Linguistics.
- Tomer Ridnik, Yuval Shalev, Achiya Noy, and 1 others. 2024. Coding agents: Interactive code generation via Ilm planning and execution. *arXiv* preprint *arXiv*:2402.03345.
- Javier Saad-Falcon, Ren Liu, Anthony Chan, and Allen Lin. 2024. Hyperparameter optimization in agentic llm pipelines. *arXiv preprint arXiv:2401.04903*.
- Timo Schick, Ananya Dwivedi-Yu, Hinrich Schütze, and Peter Prettenhofer. 2023. Toolformer: Language models can teach themselves to use tools. *arXiv* preprint arXiv:2302.04761.
- Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. 2023. Reflexion: Language agents with verbal reinforcement learning. *Advances in Neural Information Processing Systems*, 36:8634–8652.
- Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang, Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang. 2024. Adaptive in-conversation team building for language model agents. *arXiv preprint arXiv:2405.19425*.
- Yichi Wang and 1 others. 2023. Large language models as optimizers for quality-diversity search. *arXiv* preprint arXiv:2303.05832.
- Yinjie Wang, Ling Yang, Guohao Li, Mengdi Wang, and Bryon Aragam. 2025. Scoreflow: Mastering Ilm agent workflows via score-based preference optimization. *arXiv preprint arXiv:2502.04306*.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, and 1 others. 2022. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837.
- Jinyuan Xie, Yang Yang, Ziyang Zhang, and 1 others. 2024. Autonova: Generating llm pipelines for data science via prompt evolution. *arXiv preprint arXiv:2402.04002*.
- Yicheng Xu, Wei Zhang, Tao Li, and Shuo Zhang. 2024. Towards generalizable agents for mathematical reasoning. *arXiv preprint arXiv:2402.09399*.
- Zhilin Yang and 1 others. 2018. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. *arXiv preprint arXiv:1809.09600*.

- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 2023. Tree of thoughts: Deliberate problem solving with large language models. *Advances in neural information processing systems*, 36:11809–11822.
- Qinyuan Ye, Xiao Liu, Yichong Zhou, and Shuo Zhang. 2024. Llm-dp: Towards autonomous data processing agents. *arXiv preprint arXiv:2403.05923*.
- Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang, Tianlong Chen, and Dawei Cheng. 2024a. G-designer: Architecting multi-agent communication topologies via graph neural networks. *arXiv preprint arXiv:2410.11782*.
- Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, and 1 others. 2024b. Aflow: Automating agentic workflow generation. arXiv preprint arXiv:2410.10762.
- Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, and Bill Dolan. 2020. Dialogpt: Large-scale generative pretraining for conversational response generation. *ACL*.
- Yilun Zhao, Yuan Yang, Zecheng Hu, and 1 others. 2024. Agentcoder: Integrating planning and execution for code generation agents. arXiv preprint arXiv:2403.14260.
- Licheng Zhong, Yiding Li, Yichong Zhou, and Shuo Zhang. 2024. Mathagent: Math reasoning with retrieval-augmented code agents. *arXiv preprint arXiv:2402.03620*.
- Xuezhi Zhou and 1 others. 2022. Least-to-most prompting enables complex reasoning in large language models. *arXiv preprint arXiv:2205.10625*.
- Yichong Zhou, Bowen Zhang, Yujia Hong, and Shuo Zhang. 2024a. Reasoning agents: Llm-as-policy for compositional task solving. *arXiv preprint* arXiv:2404.01865.
- Yifan Zhou, Yecheng Li, Runzhe Xu, and 1 others. 2024b. Llm+p: Empowering large language models with planning for complex tasks. *arXiv preprint* arXiv:2403.03031.
- Runchuan Zhu, Zinco Jiang, Jiang Wu, Zhipeng Ma, Jiahe Song, Fengshuo Bai, Dahua Lin, Lijun Wu, and Conghui He. 2025a. Grait: Gradient-driven refusal-aware instruction tuning for effective hallucination mitigation. *arXiv preprint arXiv:2502.05911*.
- Runchuan Zhu, Zhipeng Ma, Jiang Wu, Junyuan Gao, Jiaqi Wang, Dahua Lin, and Conghui He. 2025b. Utilize the flow before stepping into the same river twice: Certainty represented knowledge flow for refusal-aware instruction tuning. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39, pages 26157–26165.

Zeyu Zhu and 1 others. 2024. Olympiadbench: A benchmark for mathematical reasoning at the olympiad level. *arXiv preprint arXiv:2402.00000*.

Yujia Zhuge, Qinyuan Ye, Xiao Liu, Shujie Wang, and Furu Wei. 2023. Gptswarm: Multi-agent collaboration via llm-based swarm intelligence. *arXiv preprint arXiv:2311.16688*.

A Appendix

A.1 Dataset Details

Our experiments span eight public benchmarks across three major domains: question answering, code generation, and mathematical reasoning. Table 6 summarizes the dataset statistics, including the number of validation/test instances and the number of subtasks for each dataset. Each subtask represents a semantically or structurally coherent group of problems, enabling more focused workflow specialization during meta-optimization.

For question answering, we use subsets of HOTPOTQA and DROP, each containing 1,000 examples in total, with a 1:4 split for validation and testing. The examples are clustered into six subtasks based on instruction similarity. Similarly, in the coding domain, HUMANEVAL and MBPP are divided into three and four subtasks, respectively, reflecting different code generation patterns.

In the mathematics domain, the datasets exhibit more diverse task structures. For GSM8K and AIME, we apply instruction-level clustering to derive six distinct subtasks per dataset, capturing variations in reasoning complexity and problem format.

Notably, two datasets—MATH and OLYMPIAD-BENCH—come with predefined topic categories, and thus do not undergo clustering. The MATH dataset contains high school-level math problems and is partitioned into four canonical categories: **Prealgebra**, **Precalculus**, **Number Theory**, and **Counting & Probability**, following the protocol introduced by Hendrycks et al. (2021). These categories capture distinct types of mathematical reasoning, from basic arithmetic to combinatorial logic.

Likewise, OLYMPIADBENCH is sourced from competitive mathematics exams and is naturally divided into four topics: **Algebra**, **Combinatorics**, **Geometry**, and **Number Theory**, as defined in the original benchmark by Zhu et al. (2024). These topics correspond to challenging mathematical reasoning tasks requiring manipulation, multi-step derivation, and rigorous abstraction.

Overall, our dataset setup provides a rich and heterogeneous landscape for evaluating workflow generalization, supporting both cluster-derived and taxonomy-preserving subtask definitions across domains.

A.2 Analogy Explanation

Figure 2 visualizes the analogy between neural network optimization and workflow optimization, which forms the conceptual foundation for our method. Here, we detail the core correspondences both at the structure level (parameters, updates, gradients) and at the algorithmic level (meta-learning procedure).

Structure-Level Analogy. In traditional supervised learning, model training involves continuous optimization of parameters θ using gradients $\nabla_{\theta}L$ derived from a differentiable loss. In contrast, our workflow optimization operates in a discrete, space, where the workflow \mathcal{W} is updated through textual feedback generated by LLMs. The following table presents the one-to-one mapping:

Meta-Learning Analogy: MAML vs. Adapt- Flow. At the algorithmic level, AdaptFlow is inspired by Model-Agnostic Meta-Learning (MAML), but adapted to the setting. While MAML learns a parameter initialization θ that can rapidly adapt via gradient updates, AdaptFlow learns a generalizable workflow \mathcal{W} that adapts via LLM-generated updates. The table below compares the two approaches step-by-step:

Together, these analogies highlight how Adapt-Flow generalizes the principles of meta-learning to the domain of agentic workflow optimization in spaces.

A.3 Prompt Templates

A.3.1 Inner Loop Workflow Optimization Prompt

Overview

You are an expert machine learning researcher testing various agentic systems. Your objective is to design building blocks such as prompts and control flows within these systems to solve complex tasks. Your aim is to design an optimal agent performing well on the MATH dataset, which evaluates mathematical problem-solving abilities across various mathematical domains including algebra, counting and probability, geometry, intermediate algebra, number theory, prealgebra and precalculus.

An example question from MATH:

	QA		Coding		MATH			
	НотротQА	DROP	HumanEval	MBPP	GSM8K	MATH	AIME	OLYMPIADBENCH
Validation Size	200	200	33	86	264	119	91	51
Val. Subtasks	6	6	3	4	6	4	6	4
Test Size	800	800	131	341	1055	486	373	212
Test Subtasks	6	6	3	4	6	4	6	4

Table 6: Dataset statistics for each domain and subtask. Validation/test sizes represent the number of instances used for evaluation, and subtask numbers denote the total distinct subtasks grouped under each benchmark.

Neural Network Optimization	Workflow Optimization (AdaptFlow)
Model parameters θ	Workflow structure \mathcal{W}
Loss function $L(f_{\theta}(x), y)$	Utility function $J(W,T)$
Gradient $\nabla_{\theta} L$	Textual gradient $\widetilde{\nabla} J$ (LLM feedback)
Gradient descent update $\theta \leftarrow \theta - \eta \nabla_{\theta} L$	Symbolic update $W' \leftarrow \mathcal{U}_1(W, \widetilde{\nabla} J)$
Batch of examples $\{(x_i, y_i)\}$	Batch of tasks or subtask data \mathcal{T}_t

Table 7: Structure-level analogy between differentiable model optimization and discrete workflow optimization.

instruction (Not Given): Solve the following
 problem and provide a detailed solution.
Present the final answer using the \boxed{}
format.

question: question

solution (Not Given): solution

Discovered architecture archive
Here is the archive of the discovered
 architectures:

[ARCHIVE]

The fitness value is defined as the accuracy on a validation question set. Your goal is to maximize this fitness. You should use your own judgment to decide whether to optimize on the latest architecture, as its performance may not necessarily be better.

Output Instruction and Example:

The first key should be ("thought"), and it should capture your thought process for designing the next function. In the "thought" section, first reason about what should be the next interesting agent to try, then describe your reasoning and the overall concept behind the agent design, and finally detail the implementation steps.

The second key ("name") corresponds to the name of your next agent architecture.

Finally, the last key ("code") corresponds to the exact âĂforward()âĂİ function in Python code that you would like to try. You must write a COMPLETE CODE in "code": Your code will be part of the entire project, so please implement complete, reliable, reusable code snippets.

Here is an example of the output format for the next agent architecture:

[EXAMPLE]

You must use the exact function interface used above. You need to specify the instruction, input information, and the required output fields for various LLM agents to do their specific part of the architecture. Also, it could be helpful to set the LLMâĂŹs role and temperature to further control the LLMâĂŹs response. Note that the LLMAgentBase() will automatically parse the output and return a list of âĂInfosâĂİ. You can get the content by Infos.content. DO NOT FORGET the taskInfo input to LLM if you think it is needed, otherwise LLM will not know about the task.

Your task

You are deeply familiar with LLM prompting techniques and LLM agent works from the literature. Your goal is to maximize "fitness" by proposing interestingly new agents.

Observe the discovered architectures carefully and think about what insights, lessons, or stepping stones can be learned from them.

Please focus on the architecture with the optimal fitness, and based on that, propose what you believe is the most likely next agent architecture. Note that each optimization step can involve adding one or two new modules to the current best solution, or proposing an entirely novel solution. However, it's important to ensure that each change remains relatively simple and not overly complex.

A.3.2 Outer Loop Workflow Optimization Prompt

Overview

You are an expert machine learning researcher testing various agentic systems. Your objective is to design building blocks such as prompts and control flows within these systems to solve complex tasks. Your aim is

MAML (Finn et al., 2017)	AdaptFlow (Ours)
Model initialization θ	Workflow initialization ${\cal W}$
Task-specific adaptation via $\theta' \leftarrow \theta - \alpha \nabla_{\theta} L_T$	Subtask-specific refinement via $\mathcal{W}' \leftarrow \mathcal{U}_1(\mathcal{W}, \widetilde{\nabla} J)$
Compute outer gradient from θ'	Aggregate textual feedback from refined workflows $\{\widetilde{\nabla}J_t\}$
Outer update: $\theta \leftarrow \theta - \beta \nabla_{\theta} \sum L_{T_i}(\theta_i')$	Meta update: $\mathcal{W} \leftarrow \mathcal{U}_2(\mathcal{W}, G(\{\widetilde{\nabla}J_t\}))$
Adaptation via differentiable gradient	Adaptation via textual feedback
Few-shot generalization to new tasks	Test-time adaptation via $\mathcal{W}^* \leftarrow \mathcal{U}_3(\mathcal{W}, \mathcal{F}(T_t'))$

Table 8: Algorithm-level comparison between MAML and AdaptFlow.

to design an optimal agent performing well on the MATH dataset, which evaluates mathematical problem-solving abilities across various mathematical domains including algebra, counting and probability, geometry, intermediate algebra, number theory, prealgebra and precalculus.

An example question from MATH:

instruction (Not Given): Solve the following
 problem and provide a detailed solution.
Present the final answer using the \\boxed{}
 format.

question: question

solution (Not Given): solution

Note: We divide the overall MATH task into seven distinct subtasks. Below is the performance of the Discovered Architecture Archive on each of these seven subtasks.

Discovered Architecture Archive

The following presents the archive of the discovered architectures on seven subtasks as well as the full MATH task:

[ARCHIVE_LIST]

The fitness value is defined as the accuracy on a validation question set. Your goal is to identify an architecture that either maximizes fitness across the seven subtasks or can quickly evolve toward that goal. Note that you should not limit yourself to only the most recently generated architecturesâĂŤyour objective is to maximize this fitness.

Output Instruction and Example:

The first key should be ("thought"), and it should capture your thought process for designing the next function. In the "thought" section, first reason about what should be the next interesting agent to try, then describe your reasoning and the overall concept behind the agent design, and finally detail the implementation steps.

The second key ("name") corresponds to the name of your next agent architecture.

Finally, the last key ("code") corresponds to the exact âĂforward()âĂİ function in Python code that you would like to try. You must write a COMPLETE CODE in "code": Your code will be part of the entire project, so please implement complete, reliable,

reusable code snippets.

Here is an example of the output format for the next agent architecture:

TEXAMPLE

You must use the exact function interface used above. You need to specify the instruction, input information, and the required output fields for various LLM agents to do their specific part of the architecture.

Also, it could be helpful to set the LLMâĂŹs role and temperature to further control the LLMâĂŹs response. Note that the LLMAgentBase () will automatically parse the output and return a list of âĂInfosâĂİ. You can get the content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you think it is needed, otherwise LLM will not know about the task.

WRONG Implementation examples:
Here are some mistakes you may make:

1. This is WRONG: ```

It is wrong to use "Info('feedback', 'Critic
 Agent', thinking, 0)". The returned "
 feedback" from LLMAgentBase is already Info.

Your task

You are well-versed in LLM prompting techniques and agent-based frameworks from the literature. You are tasked with designing a new agent architecture based on the best-performing solutions from each subtask of the MATH benchmark. The goal is for this new architecture to satisfy at least one of the following criteria:

It effectively integrates key modules and features from the optimal solutions of individual subtasks, resulting in a generalizable and adaptable architecture that performs well across all subtasks;

Alternatively, the architecture should exhibit strong adaptability and rapid update capabilities, allowing it to quickly evolve and converge toward the optimal solution for each specific subtask.

However, you should ensure that the newly generated frameworks is not significantly more complex than the original one, and you may also remove some redundant LLM invocation code.

A.3.3 Reflection Prompt

We noticed that the current agent is prone to making mistakes when handling the following cases:

[CASE_LIST]

Please analyze the reasons for these mistakes and propose improvements.

Your response should be organized as follows:

"reflection": Provide your thoughts on the mistakes in the implementation, and suggest improvements.

"thought": Revise your previous proposal or propose a new architecture if necessary, using the same format as the example response.

"name": Provide a name for the revised or new architecture. (Don't put words like "new" or "improved" in the name.)

"code": Provide the corrected code or an improved implementation. Make sure you actually implement your fix and improvement in this code

A.3.4 Test-Time Adaptation Workflow Optimization Prompt

Overview

You are an expert machine learning researcher testing various agentic systems. Your objective is to design building blocks such as prompts and control flows within these systems to solve complex tasks. Your goal is to design an optimal agent that performs well on the MATH dataset. You may analyze the characteristics of these problems and then design an agent capable of effectively solving them.

[TASK_DSC]

Note: Your goal is to design an improved agent based on the previous agent, tailored to the characteristics of the current task. We aim to rapidly enhance the performance of the current agent.

Output Instruction and Example:
The first key should be ("thought"), and it
 should capture your thought process for
 designing the next function. In the "thought
 " section, first reason about what should be
 the next interesting agent to try, then

describe your reasoning and the overall concept behind the agent design, and finally detail the implementation steps.

The second key ("name") corresponds to the name of your next agent architecture.

Finally, the last key ("code") corresponds to the exact âĂforward()âĂİ function in Python code that you would like to try. You must write a COMPLETE CODE in "code": Your code will be part of the entire project, so please implement complete, reliable, reusable code snippets.

Here is an example of the output format for the next agent architecture:

[EXAMPLE]

You must use the exact function interface used above. You need to specify the instruction, input information, and the required output fields for various LLM agents to do their specific part of the architecture.

Also, it could be helpful to set the LLMâĂŹs role and temperature to further control the LLMâĂŹs response. Note that the LLMAgentBase () will automatically parse the output and return a list of âĂInfosâĂİ. You can get the content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you think it is needed, otherwise LLM will not know about the task.

Your task

You are well-versed in LLM prompting techniques and agent-based frameworks from the literature. You are tasked with designing a new agent architecture based on the previous agent to solve the current task.

A.4 Workflow Case

To provide a concrete illustration of our system's output, we present the workflow code generated in the final outer-loop iteration on the MATH dataset. This example reflects the culmination of iterative refinement across subtasks and highlights the integration of shared and task-specific modules.

```
def forward(self, taskInfo):
   import re
   from collections import Counter
   def extract(text):
       for p in [r'\\boxed{([^}]*)}', r'\(([^)
           ]+)\)', r'\\frac{[^}]*}', r'(\
           d+)\s*$']:
          m = re.search(p, text)
          if m: return m.group(0).strip()
   roles = ['Math Professor', 'Grade School
       Teacher', 'Math Enthusiast', 'Math
       Olympiad Student', 'Helpful Assistant']
   agents = [LLMAgentBase(['thinking', 'solution
       '], f'A\{i\}', role=r, temperature=0.7 +
       0.1*i) for i, r in enumerate(roles)]
   sols = [a([taskInfo], "Please think step by
```

```
step and solve.", i) for i, a in
    enumerate(agents)]
ext_agent = LLMAgentBase(['extracted_answer
     '], 'Extractor', role='Answer Extractor',
     temperature=0.1)
answers, amap = [], {}
for i, (t, s) in enumerate(sols):
   ans = ext_agent([taskInfo, s], "Extract
        ONLY final boxed answer.", i)[0].
        content.strip() or extract(s.content)
   if ans: answers.append(ans); amap.
        setdefault(ans, (t, s))
top = Counter(answers).most_common()
if top:
   top_answers = [a for a, c in top if c ==
        top[0][1]]
   if len(top_answers) == 1:
       _, sol = amap[top_answers[0]]
   else:
       inputs = [taskInfo] + sum((list(amap[
            a]) for a in top_answers), []) +
            [Info('extracted_answer',
            -1) for a in top_answers]
       sol = LLMAgentBase(['thinking', '
            solution'], 'Final Decider',
            temperature=0.1)(inputs, "Choose
            best answer.")[1]
else:
   inputs = [taskInfo] + sum(([t, s] for t,
        s in sols), [])
   sol = LLMAgentBase(['thinking', 'solution
        '], 'Fallback Decider', temperature
        =0.1)(inputs, "Choose among all.")[1]
verifier = LLMAgentBase(['feedback', 'correct
    '], 'Verifier', role='Checker',
    temperature=0.1)
clarifier = LLMAgentBase(['clarification'], '
    Clarifier', role='Solver', temperature
synthesizer = LLMAgentBase(['thinking', '
    solution'], 'Synth', temperature=0.3)
for i in range(2):
   ext = ext_agent([taskInfo, sol], "Extract
         ONLY final boxed answer.", 100+i)[0]
   fb, ok = verifier([taskInfo, sol, ext], '
   Check correctness.", i)
if ok.content == 'True': return sol
   clar, = clarifier([taskInfo, sol, fb], "
        Respond to critique.", i)
   if ok2.content == 'True': return sol
   syn_inputs = [taskInfo, sol, fb2, clar] +
    sum(sols, []) + [Info('
        extracted_answer', '', a, -1) for a
        in answers if a]
   sol = synthesizer(syn_inputs, "Revise or
        synthesize.")[1]
return sol
```