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Abstract

Recent advances in large language models
(LLMs) have sparked growing interest in agen-
tic workflows, which are structured sequences
of LLM invocations intended to solve com-
plex tasks. However, existing approaches of-
ten rely on static templates or manually de-
signed workflows, which limit adaptability
to diverse tasks and hinder scalability. We
propose AdaptFlow, a natural language-based
meta-learning framework inspired by model-
agnostic meta-learning (MAML). AdaptFlow
learns a generalizable workflow initialization
that enables rapid subtask-level adaptation. It
employs a bi-level optimization scheme: the
inner loop refines the workflow for a spe-
cific subtask using LLM-generated feedback,
while the outer loop updates the shared ini-
tialization to perform well across tasks. This
setup allows AdaptFlow to generalize effec-
tively to unseen tasks by adapting the initialized
workflow through language-guided modifica-
tions. Evaluated across question answering,
code generation, and mathematical reasoning
benchmarks, AdaptFlow consistently outper-
forms both manually crafted and automatically
searched baselines, achieving state-of-the-art
results with strong generalization across tasks
and models. The source code and data are avail-
able at https://github.com/microsoft/
DKI_LLM/tree/AdaptFlow/AdaptFlow.

1 Introduction

Recent progress in Large Language Models
(LLMs) (Achiam et al., 2023; Guo et al., 2025;
Mei et al., 2024) has led to remarkable perfor-
mance across diverse tasks, including question an-
swering (Rajpurkar et al., 2016; Yang et al., 2018;
Ding et al., 2024; Jiang et al., 2025), code syn-
thesis (Chen et al., 2021; Nijkamp et al., 2023;

*Equal contribution. For inquiries, please contact: zhu-
runchuan@stu.pku.edu.cn.

†Work is done during an internship at Microsoft
‡Corresponding author.

Mei et al., 2025), and multi-turn dialogue (Zhang
et al., 2020; Bai et al., 2022; Zhu et al., 2025b,a).
Beyond static prediction, LLMs are increasingly
being used as decision-making agents capable of
dynamic reasoning and adaptive behavior (Shinn
et al., 2023; Wei et al., 2022; Yao et al., 2023). This
development has given rise to the notion of agen-
tic workflows, which organize LLMs into struc-
tured sequences of actions involving task decom-
position, planning, tool use, execution, and self-
reflection (Yao et al., 2023; Creswell and Shana-
han, 2023). Such workflows have demonstrated
strong performance in settings that require multi-
step reasoning (Yao et al., 2023; Creswell and
Shanahan, 2023), long-horizon planning (Liu et al.,
2023; Zhou et al., 2024b), and external tool inte-
gration (Schick et al., 2023; Qin et al., 2023).

While effective in controlled settings, manually
designing agentic workflows is time-consuming
and lacks scalability across diverse tasks. To ad-
dress this, recent work has explored automated
workflow construction through prompt optimiza-
tion (Khattab et al., 2023; Chen et al., 2023), hy-
perparameter tuning (Li et al., 2024b; Wang et al.,
2025), and structural search (Liu et al., 2024; Song
et al., 2024; Zhang et al., 2024a). However, many
of these methods (Liu et al., 2024; Zhang et al.,
2024a) represent workflows using fixed graph struc-
tures, which inherently limit the flexibility of the
agentic workflow search space.

Recent frameworks such as ADAS (Hu et al.,
2024) and AFLOW (Zhang et al., 2024b) adopt
code-based workflow representations to enable
robust and flexible search. However, as noted
by Wang et al. (2025), these methods typically gen-
erate a single static workflow for the entire task
set, limiting their ability to generalize across het-
erogeneous datasets with diverse problem types. In
addition, ADAS performs coarse-grained workflow
updates, resulting in redundant context accumu-
lation and growing complexity that hinders con-
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vergence. AFLOW alleviates some of these issues
using Monte Carlo Tree Search, but its reliance
on discrete updates and early pruning can restrict
the exploration of more expressive workflow candi-
dates. These limitations underscore two challenges
simultaneously: C1. How to adaptively construct
effective workflows for datasets containing di-
verse problems? C2. How to ensure convergent
optimization in code search spaces?

To tackle these challenges, we propose Adapt-
Flow—a meta-optimization framework that in-
corporates principles from Model-Agnostic Meta-
Learning (MAML) (Finn et al., 2017) into agentic
workflow optimization. MAML learns an initial-
ization that enables rapid adaptation to new tasks
via a bi-level optimization: the inner loop performs
task-specific updates, and the outer loop updates
the initialization to generalize across tasks. In-
spired by this structure, AdaptFlow learns a shared
workflow initialization that can quickly adapt to di-
verse subtasks through symbolic updates guided by
LLM-generated feedback. Specifically, AdaptFlow
follows a bi-level optimization scheme, where the
inner loop iteratively refines the workflow based
on subtask-level feedback, while the outer loop
consolidates these refinements into a generalizable
initialization. To further enhance adaptability, we
perform an additional unsupervised adaptation step
at test time on each target subtask, leveraging se-
mantic descriptions derived from input prompts.
This design enables both effective subtask-specific
adaptation (addressing C1) and stable convergence
in code spaces (addressing C2), offering a scalable
solution for general-purpose workflow construc-
tion.

Our key contributions are summarized as fol-
lows:

• We introduce AdaptFlow, a meta-learning frame-
work that integrates the MAML paradigm with
natural language supervision. AdaptFlow re-
places conventional gradients with textual gradi-
ents, which are natural language feedback gener-
ated by large language models. This mechanism
enables efficient subtask-level adaptation within
the programmatic code space.

• We design a bi-level optimization framework
tailored for code space. In the inner loop,
workflows are iteratively refined using LLM-
generated textual feedback. To ensure meaning-
ful and stable updates, we introduce a binary
continuation signal that determines whether each

update leads to a non-trivial performance gain.
In the outer loop, we aggregate subtask-level
improvements into a shared initialization, further
enhanced by a reflection step that revisits failure
cases to improve robustness and convergence.

• Experiments on benchmarks in question answer-
ing, code generation, and mathematical rea-
soning show that AdaptFlow outperforms both
manual workflows and prior baselines, achiev-
ing state-of-the-art results with strong model-
agnostic generalization.

2 Related Work

2.1 Agentic Workflow

Agentic workflows provide a structured alterna-
tive to autonomous agents for deploying LLMs.
Instead of learning through environment interac-
tion (Zhuge et al., 2023; Hong et al., 2024b), they
execute static or semi-static sequences inspired by
human reasoning (Zhang et al., 2024b), offering
better interpretability and modularity.

Workflows can be general purpose, incorpo-
rating reusable patterns such as chain-of-thought
prompting, self-refinement, or role decomposi-
tion (Wei et al., 2022; Shinn et al., 2023)—or
domain-specific, tailored for areas such as code
generation (Hong et al., 2024c; Ridnik et al.,
2024; Zhao et al., 2024), data analysis (Xie et al.,
2024; Ye et al., 2024; Li et al., 2024a), mathemat-
ics (Zhong et al., 2024; Xu et al., 2024), and com-
plex QA (Nori et al., 2023; Zhou et al., 2024a).
While effective, manually designed workflows re-
quire significant human effort and lack adaptability,
motivating automated optimization.

2.2 Agentic Workflow Optimization

Recent advances (Hu et al., 2024; Zhang et al.,
2024b; Wang et al., 2025; Li et al., 2024b; Chen
et al., 2023; Song et al., 2024; Hong et al., 2024c)
have explored automating agentic workflows to im-
prove LLM performance. Some methods focus
on optimizing prompts or parameters within fixed
workflows (Fernando et al., 2023; Guo et al., 2023;
Khattab et al., 2023; Saad-Falcon et al., 2024), im-
proving reasoning without altering the execution
structure. In contrast, we optimize workflow struc-
tures directly, enabling broader adaptation across
tasks.

Other approaches search over code-based work-
flows. ADAS (Hu et al., 2024) refines linear
traces of executable code, while AFLOW (Zhang
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Figure 1: An analogy between Neural Network Optimization and Workflow Optimization, as well as between
MAML and AdaptFlow.

et al., 2024b) introduces compositional abstrac-
tions with MCTS. ScoreFlow (Wang et al., 2025)
frames workflow generation as supervised predic-
tion. However, these methods often produce static
workflows and lack task-level adaptability. Our
method, AdaptFlow, differs by performing bi-level
meta-learning: it adapts workflows via LLM feed-
back at the subtask level and consolidates them
into a generalizable initialization, supporting fast
adaptation and robust generalization.

3 Preliminaries

3.1 Problem Formulation
The goal of automated agentic workflow opti-
mization is to discover effective compositions of
modular components—such as prompt templates,
tool invocations, control logic, and reflection rou-
tines—that can guide LLMs to solve complex tasks
across diverse domains.

We consider the problem of agentic workflow
design, where the goal is to discover an effective
workflowW that can solve a given task T drawn
from a distribution. The workflow search is defined
by three core components:

• S denotes the search space, encompassing all
candidate workflows;

• J : S × T → R is the objective function that
quantifies the quality or utility of a workflow
W ∈ S when applied to a specific task T ;

• A represents the search algorithm, which ex-
plores S and generates candidate workflows

guided by feedback from J .

Given a task T ∼ P(T ), the agent seeks
to identify an optimal workflow through a task-
conditioned search process:

W = A(S,J , T ), (1)

W⋆ = argmax
W∈S

ET ∼P(T ) [J (W, T )] . (2)

Building on prior efforts (Hu et al., 2024), our
method defines the workflow search space directly
in the code space, where candidate workflows are
represented as executable programs.

3.2 Analogy: From Supervised Learning to
Agentic Workflow Optimization

In traditional supervised learning, a model learns
a parameterized function fθ by minimizing the ex-
pected loss over labeled data (x, y) ∼ D:

θ⋆ = argmin
θ

E(x,y)∼D [L(fθ(x), y)] , (3)

θ ← θ − η · 1
N

N∑

i=1

∇θL(fθ(xi), yi), (4)

where η is the learning rate and {(xi, yi)}Ni=1 is
a mini-batch of training examples. This process
relies on differentiable loss functions and explicit
ground-truth supervision, enabling gradient-based
parameter updates in continuous space.

Analogously, agentic workflow optimization op-
erates in a symbolic structure space defined over
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executable code (e.g., (Hu et al., 2024)). Given
a task T , the system executes a workflowW and
obtains a task-level utility score from the objective
function J (W, T ). The goal is to discover a work-
flow that maximizes the expected utility across a
distribution of tasks:

W ← U1
(
W, ∇̃J (W, T )

)
. (5)

Here, J (W, T ) denotes a natural language evalua-
tion of a workflow’s performance on task T , serv-
ing as a form of textual loss. From this, the LLM
generates a textual gradient ∇̃J—feedback that
suggests improvements, identifies failure cases, or
proposes structural edits. For example, the feed-
back may suggest “we could add a self-reflection
module” to improve performance, providing action-
able guidance for workflow revision. The update
operator U1 then applies such feedback to revise the
workflowW in code space, enabling symbolic up-
dates in a non-differentiable setting. This feedback-
driven, interpretable optimization generalizes the
notion of learning beyond standard gradient de-
scent (Figure 1).

3.3 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) (Finn
et al., 2017) learns a model initialization that en-
ables rapid adaptation to new tasks using only a
few gradient steps. The core idea is to train the
model not just to perform well on a set of tasks,
but to be easily fine-tuned for any new task drawn
from the same distribution.

Given a task distribution T , each task Ti ∼ T is
associated with a loss LTi(θ). MAML performs a
bi-level optimization:

θ′i ← θ − α∇θLTi(θ), (6)

θ ← θ − β∇θ

∑

Ti∼T
LTi(θ′i). (7)

In the inner loop, the model performs gradient
descent on a given task to obtain adapted param-
eters θ′i. In the outer loop, the original initializa-
tion θ is updated using the post-adaptation losses
across multiple tasks. This procedure leverages
second-order gradients and enables generalization
to unseen tasks with minimal fine-tuning.

Algorithm 1: AdaptFlow Algorithm
Input: train tasks Ttrain, test tasks Ttest,

inner iterations ninner, outer
iterations nouter

1 Cluster Ttrain into m subtasks
{T1, . . . , Tm};

2 Initialize global workflowW =W1 = ... =
Wm;

// Outer loop
3 for i← 1 to nouter do
4 foreach Tt ∈ {T1, . . . , Tm} do
5 InitializeW ′

t ←W; j ← 0;
// Inner loop

6 while J (W ′
t, Tt) < J (Wt, Tt)− ϵ

and j < ninner do
7 ExecuteW ′

t on Tt, obtain ∇̃J ;

8 W ′
t ← U1

(
W ′

t, ∇̃J
)

;

9 j ← j + 1;
10 end
11 Wt ←W ′

t;
12 end
13 W ←

U2
(
W, G

({
∇̃J (Wt, Tt)

}m

t=1

))

14 end
15 Cluster Ttest into n subtasks {T ′

1 , . . . , T ′
n};

16 foreach T ′
t do

17 W ′ ← U3 (W, T ′
t );

18 EvaluateW∗ on T ′
t ;

19 end

4 Methodology

4.1 Overview

We present AdaptFlow, a meta-optimization
framework that integrates ideas from MAML (Finn
et al., 2017) into the setting of agentic workflow op-
timization. As illustrated in Figure 2, our method
first partitions the training tasks into multiple se-
mantically coherent subtasks. It then performs
a bi-level optimization process to learn a work-
flow initialization that generalizes across these sub-
tasks: the inner loop (lines 5–12 in Algorithm 1)
adapts the workflow using LLM-generated feed-
back for each subtask, while the outer loop (lines
3–14 in Algorithm 1) aggregates these refinements
into a shared initialization. At test time, we apply
lightweight adaptation on unseen subtasks based
on their semantic descriptions (lines 16–19 in Algo-
rithm 1). By explicitly optimizing workflows at the
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subtask level, AdaptFlow enables structural adapta-
tion to diverse problem types, addressing challenge
(C1). Furthermore, the hierarchical inner–outer
update scheme ensures stable convergence in the
discrete code space, effectively resolving challenge
(C2). The full algorithm is provided in Algorithm 1,
and its procedural flow is visualized in Figure 2.

4.2 Task Clustering

Many tasks exhibit high internal diversity, mak-
ing it difficult to optimize a single workflow
across all instances. To address this, we first
partition the training set Ttrain into m seman-
tically coherent subtasks T1, . . . , Tm using K-
Means (MacQueen, 1967) clustering over instruc-
tion embeddings. The embeddings are obtained
from the all-MiniLM-L6-v2 model (Reimers and
Gurevych, 2019). This decomposition enables
subtask-specific workflow optimization and pro-
motes more stable and effective learning.

4.3 Bi-Level Workflow Optimization

Inner Loop (Exploration) For each subtask Tt,
the workflowW ′

t is iteratively refined using LLM-
generated textual feedback. At each step, we eval-
uate the current utility J (W ′

t, Tt) and apply the
symbolic update:

W ′
t ← U1

(
W ′

t, ∇̃J (W ′
t, Tt)

)
. (8)

To ensure stable and meaningful exploration, we
define a binary continuation signal δt ∈ 0, 1 as:

δt = I
[
J (Wt, Tt)− J (W ′

t, Tt) > ϵ
]
, (9)

whereWt denotes the best workflow found so far.
Here, J evaluates a workflow’s performance on
task Tt via textual assessment, serving as a form
of task-level textual loss. Based on this evaluation,
the LLM generates a textual gradient ∇̃J that re-
flects potential improvements or corrections. The
update operator U1 applies this feedback to revise
the workflowW ′

t in the code space. The inner loop
continues only if δt = 1, indicating that the update
yields a non-trivial gain. This continuation signal
acts as a local convergence criterion, mitigating
instability from long-context accumulation and en-
suring effective symbolic refinement. The prompt
design for U1 is detailed in Section A.3.1.

Outer Loop (Exploitation) After inner-loop op-
timization across all subtasks, we aggregate the

resulting feedback to update the global work-
flow. Each ∇̃J (Wt, Tt) denotes a textual gradi-
ent—natural language feedback from the LLM that
suggests workflow improvements based on subtask
performance. The aggregation function G merges
these gradients into a unified signal, which is then
applied via the update operator U2:

W ← U2
(
W, G

({
∇̃J (Wt, Tt)

}m

t=1

))
. (10)

This meta-level update integrates subtask-specific
insights into a generalizable workflow by aggregat-
ing the textual gradients from the best-performing
workflows of each subtask and applying them to
revise the global workflow.

To further improve robustness, we apply a reflec-
tion step after the update. The updated workflow is
re-executed on each subtask to identify remaining
failure cases. The agent then generates refinement
suggestions, which are used to perform a secondary
symbolic update. This reflection-enhanced outer
loop helps address blind spots and improve gener-
alization.

4.4 Test-Time Adaptation
To evaluate generalization, we apply the learned
initializationW to a set of unseen test tasks T test.
Following the same procedure as in training, we
partition T test into n subtasks T ′

1 , . . . , T ′
n using

instruction-level clustering.
For each subtask T ′

t , we randomly sample a
subset T̃ ′

t ⊂ T ′
t and prompt a language model

to generate a high-level description F(T̃ ′
t ) based

solely on the input questions from the sampled
tasks—without access to answers or solutions. This
representation captures the subtask’s semantic in-
tent and guides adaptation.

We then apply the update operator U3 to spe-
cialize the global workflow based on this subtask
description:

W ← U3
(
W,F(T̃ ′

t )
)
. (11)

Here, U3 performs a fast adaptation of the workflow
by leveraging the semantic intent of the subtask,
which is derived from input prompts. It uses natural
language cues to specialize the global workflow for
the target subtask. The prompt design for U3 is
detailed in Section A.3.4. The resulting adapted
workflowW is then evaluated on the full subtask
T ′
t , enabling effective generalization to previously

unseen task distributions. A concrete example of
this process is illustrated in Section 6.5.
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Figure 2: Illustration of the AdaptFlow framework, consisting of three stages. (1) Task Clustering: training tasks
are grouped into semantically coherent subtasks. (2) Bi-Level Workflow Optimization: a bi-level optimization
process is applied—inner loop explores workflow variants using LLM-generated feedback; outer loop aggregates
updates into a generalizable initialization. (3) Test-Time Adaptation: the learned workflow is adapted to unseen
tasks based on subtask-level descriptions generated from input questions. The detailed mechanism of inner and
outer updates is shown in Figure 1.

5 Experiment Setup

Datasets We evaluate our method on eight pub-
lic datasets across three domains: question an-
swering, code generation, and mathematical rea-
soning. For HUMANEVAL (Chen et al., 2021)
and MBPP (Austin et al., 2021), we use the full
datasets. Following AFLOW (Zhang et al., 2024b),
we sample 1,319 examples from the GSM8K test
split (Cobbe et al., 2021). For MATH (Hendrycks
et al., 2021), we follow (Hong et al., 2024a) and
select level-5 problems from four categories: Com-
binatorics and Probability, Number Theory, Pre-
algebra, and Pre-calculus. We also include two ad-
vanced math benchmarks: AIME (OpenAI, 2023)
and OLYMPIADBENCH (Zhu et al., 2024). For
DROP (Dua et al., 2019) and HOTPOTQA (Yang
et al., 2018), we follow prior work (Shinn et al.,
2023; Zhang et al., 2024b; Wang et al., 2025) and
randomly sample 1,000 instances each. All datasets
are split into validation and test sets with a 1:4 ratio.
See Table 6 for full statistics.

Baselines We compare our method against two
categories of baselines: manually designed work-
flows and automatically optimized workflows for
LLMs. Manual Workflows include widely used

prompting strategies and agent-based methods:
Vanilla prompting, Chain-of-Thought (CoT) (Wei
et al., 2022), Reflexion (Shinn et al., 2023),
LLM Debate (Du et al., 2023), Step-back Ab-
straction (Zhou et al., 2022), Quality-Diversity
(QD) (Wang et al., 2023), and Dynamic Role As-
signment (Qian et al., 2023). These approaches
are constructed using fixed templates or heuristics
without task-specific adaptation. Automatically
Optimized Workflows are derived through work-
flow optimization or search. We include ADAS (Hu
et al., 2024) and AFLOW (Zhang et al., 2024b),
which learn or search for agentic workflow struc-
tures in a data-driven manner to improve LLM
performance across tasks.

Implementation Details We use a decoupled ar-
chitecture separating optimization and execution.
GPT-4.1 (OpenAI, 2024a) serves as the optimizer,
while executors include DeepSeekV2.5 (DeepSeek,
2024), GPT-4o-mini (OpenAI, 2024b), Claude-3.5-
Sonnet (Anthropic, 2024), and GPT-4o (OpenAI,
2024c). All models are accessed via public APIs
with a fixed temperature of 0.5. The outer loop
runs for 3 iterations, and the inner loop allows up
to 6 updates per subtask.
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Metrics We adopt task-specific evaluation met-
rics tailored to each dataset category. For mathe-
matics benchmarks, including GSM8K, MATH,
AIME, and OLYMPIADBENCH, we use the Solve
Rate—the proportion of correctly solved prob-
lems—as the primary metric. For code genera-
tion tasks (HUMANEVAL and MBPP), we report
pass@1, following the evaluation protocol of Chen
et al. (Chen et al., 2021), which measures the
correctness of the top-1 generated solution. For
question-answering datasets such as HOTPOTQA
and DROP, we adopt the F1 Score to evaluate
the overlap between predicted and ground-truth
answers.

6 Results and Analysis

6.1 Main Results

As shown in Table 1, our method delivers consis-
tently strong performance across three distinct do-
mains—question answering, code generation, and
mathematics—achieving the highest overall aver-
age score of 68.5. This suggests that our unified
framework generalizes well to tasks with varying
structures and reasoning demands. In particular,
the substantial gains on mathematics benchmarks
demonstrate the framework’s strength in handling
complex symbolic and multi-step reasoning.

These results highlight the advantage of learn-
ing workflows in a task-adaptive and optimization-
aware manner. Compared to existing baselines,
including both manually designed strategies and
automatically optimized methods, our approach
achieves more balanced improvements across do-
mains, underscoring its robustness and scalability.
The consistent lead over ADAS (Hu et al., 2024)
and AFLOW (Li et al., 2024b), which operate in a
similar code-based search space, further supports
the effectiveness of meta-level adaptation in build-
ing generalizable agentic workflows.

6.2 Ablation Study

Ablation on Reflection To evaluate the impact
of the reflection module in the outer loop, we con-
duct an ablation study on the MATH dataset. We
use GPT-4.1 for workflow updates and GPT-4o-
mini-0718 for workflow execution. In the ablated
setting, denoted as w/o reflection, we remove the
reflection step where the model samples and revises
failed cases after the initial outer-loop update. As
shown in Table 2, incorporating reflection consis-
tently leads to better performance across iterations,

with a final accuracy of 61.5 compared to 60.2
without reflection. This highlights the importance
of targeted self-correction in enhancing workflow
robustness and adaptability.

Ablation on Test-Time Adaptation To assess
the effectiveness of our test-time adaptation strat-
egy, we conduct an ablation study on four math-
ematical reasoning subtasks: Prealgebra, Precal-
culus, Counting & Probability, and Number The-
ory. As shown in Table 3, removing the adaptation
module results in a consistent drop in performance
across all subtasks. Notably, the largest improve-
ment is observed in Number Theory, where accu-
racy increases from 68.3 to 73.9, suggesting that
adaptation plays a crucial role in handling complex
symbolic reasoning. The overall average accuracy
improves by 3.5 points, confirming that test-time re-
finement enhances the generalization of the global
workflow to previously unseen problems.

6.3 Convergence Analysis

We analyze the convergence behavior of both inner
and outer loops on the MATH dataset, as shown in
Figure 3. The inner loop exhibits noticeable fluctu-
ations due to the accumulation of long-context de-
pendencies and the large workflow search space, a
challenge also observed in ADAS (Hu et al., 2024).
Despite this, our constrained update mechanism
helps maintain reasonable performance at each step.
In contrast, the outer loop shows steady improve-
ment, as it only aggregates the best-performing
workflows from each subtask, leading to more sta-
ble and reliable updates at the meta level. These
results demonstrate that our method effectively en-
sures convergence throughout the optimization pro-
cess, addressing the core challenge of C2.

6.4 Model Agnostic Analysis

To assess generality, we evaluate our method on
the MATH dataset using four LLMs: GPT-4o-
mini, GPT-4o, Claude-3.5-Sonnet, and DeepSeek-
V2.5. As shown in Table 4, our method consis-
tently achieves the best performance, demonstrat-
ing strong robustness and generalization.

While absolute performance varies across LLMs,
our method consistently outperforms all baselines.
The lower accuracy of Claude-3.5-Sonnet may
stem from its weaker handling of structured outputs
like JSON, which are central to our answer extrac-
tion pipeline. Nonetheless, our approach remains
effective across model families without requiring
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Method QA Coding MATH AverageHOTPOTQA DROP HUMANEVAL MBPP GSM8K MATH AIME OLYMPIAD
Vanilla 70.7 79.6 87.0 71.8 92.7 48.2 12.4 25.0 60.9
COT 69.0 78.8 90.8 72.5 91.3 49.9 10.1 26.4 61.1

Reflexion 68.3 79.5 86.3 72.4 92.4 49.3 10.5 25.9 60.6
LLM Debate 68.5 79.3 90.8 73.3 93.8 52.7 13.7 29.8 62.7

Step-back Abstraction 67.9 79.4 87.8 71.9 90.0 47.9 4.8 19.3 58.6
Quality Diversity 69.3 79.7 88.5 72.5 92.3 50.5 9.4 28.8 61.4

Dynamic Assignment 67.9 76.8 89.3 71.5 89.2 50.7 12.7 27.6 60.7
ADAS 64.5 76.6 82.4 53.4 90.8 35.4 10.4 21.2 54.3
AFlow 73.5 80.6 94.7 83.4 93.5 56.2 17.4 28.5 65.6
Ours 73.8 82.4 94.7 84.0 94.6 61.5 22.6 34.4 68.5

Table 1: Performance comparison across three domains: question answering, code generation, and mathematics.
Best results are shown in bold, and second-best results are underlined. In our method, GPT-4.1 is used for workflow
refinement, while GPT-4o-mini-0718 is responsible for workflow execution.

Outer Loop Iteration 1 2 3

w/o reflection 56.7 58.2 60.2
ours 57.2 58.6 61.5

Table 2: Performance comparison across iterations on
the MATH dataset. w/o reflection denotes the setting
without the reflection component, while ours includes
it.

Subtask w/o adaptation ours

PreA 73.1 76.4
PreC 20.8 21.4
C&P 61.9 63.1
NT 68.3 73.9

Overall 58.0 61.5

Table 3: Ablation results on math subtasks with and
without test-time adaptation. w/o adaptation disables
test-time adaptation. Subtask abbreviations: PreC =
Precalculus, PreA = Prealgebra, NT = Number Theory,
C&P = Counting & Probability.

model-specific customization.

6.5 Case Study

We present a case study on the MATH dataset by
comparing workflows before and after the third
outer-loop iteration. Specifically, we select the best-
performing workflows for each subtask prior to the
final aggregation, and denote the post-aggregation
unified workflow as All. This case study illustrates
how the outer loop consolidates subtask-specific re-
finements into a generalizable workflow (Table 5).
The All column represents the workflow obtained
after the third outer-loop update, while the other
columns correspond to the best inner-loop work-
flows before this update.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Inner Loop Iteration
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Inner & Outer Loop Convergence Analysis

counting and probability(inner)
number theory(inner)
prealgebra(inner)
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overall(outer)

1 2 3
Outer Loop Iteration

Figure 3: Convergence behavior of the inner and outer
optimization loops on the MATH dataset. The inner
loop (solid lines) shows fluctuations in solve rate across
iterations for each subtask, with a maximum of 6 iter-
ations per subtask, while the outer loop (dashed line)
steadily improves overall performance by aggregating
the best workflows per subtask.

Shared Front-End. All workflows include three
core modules: DA (Diverse Agents), AE (Answer
Extraction), and CS (Consensus). These ensure
solution diversity, consistent answer formats, and
stable outputs, forming a robust foundation appli-
cable across domains.

Task-Specific Modules. Additional modules are
selectively introduced based on subtask character-
istics. For example, AD (Approximation Detector)
in Prealgebra handles rounding mismatches, while
VT (Value Tracker) in Number Theory tracks inter-
mediate values in multi-step reasoning.

This modular design supports both generaliza-
tion and specialization, enabling high performance
across diverse mathematical tasks.
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Model Method
Vanilla COT Reflexion LLM debate Step-back Abstraction Quality Diversity Role Assignment Ours

GPT-4o-mini 48.2 49.9 49.3 52.7 47.9 50.5 50.7 61.5
GPT-4o 53.8 53.7 54.2 55.1 53.3 56.6 53.3 63.6

claude-3-5-sonnet 20.4 22.6 22.6 23.8 20.7 21.4 20.1 27.8
DeepSeek-V2.5 52.6 52.0 53.3 54.1 52.8 55.1 53.5 61.1

Table 4: Model-agnostic performance comparison across various workflow optimization methods on the MATH
dataset. Ours consistently achieves the highest accuracy across all LLM backbones.

Module All PreC PreA NT C&P
DA ✓ ✓ ✓ ✓ ✓

AE ✓ ✓ ✓ ✓ ✓

CS ✓ ✓ ✓ ✓ ✓

VF ✓ ✓ ✗ ✗ ✗

CL ✓ ✗ ✗ ✗ ✗

SY ✓ ✓ ✓ ✓ ✓

VT ✗ ✗ ✗ ✓ ✗

AD ✗ ✗ ✓ ✗ ✗

Table 5: Module usage across subtasks on the MATH
dataset. Each column represents a workflow configura-
tion: All denotes the final workflow obtained after the
third round of outer-loop optimization, while the others
reflect the best inner-loop workflows before aggregation.
Subtask abbreviations: PreC = Precalculus, PreA =
Prealgebra, NT = Number Theory, C&P = Counting
& Probability. Module abbreviations: DA = Diverse
Agents, AE = Answer Extraction, CS = Consensus, VF
= Verifier, CL = Clarifier, SY = Synthesis, VT = Value
Tracker, AD = Approximation Detector. ✓ indicates
module is used; ✗ indicates not used.

7 Conclusion

We introduced AdaptFlow, a bi-level meta-
optimization framework that learns adaptable agen-
tic workflows via LLM-guided symbolic feedback.
Across eight benchmarks, AdaptFlow outperforms
both manual and automated baselines, with com-
ponents like reflection and test-time adaptation en-
hancing robustness. Overall, it offers a scalable,
model-agnostic solution for automating workflow
design.

Limitations

While AdaptFlow achieves strong generalization,
it has two primary limitations. First, the quality of
symbolic updates depends on LLM-generated tex-
tual feedback, which can be vague or insufficiently
detailed for complex failure cases. More structured
or fine-grained feedback could improve update pre-
cision. Second, the optimization process requires
repeated LLM queries, leading to non-trivial com-
putational costs. Reducing query overhead through
more efficient adaptation strategies is an important

direction for future work.
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A Appendix

A.1 Dataset Details

Our experiments span eight public benchmarks
across three major domains: question answering,
code generation, and mathematical reasoning. Ta-
ble 6 summarizes the dataset statistics, including
the number of validation/test instances and the num-
ber of subtasks for each dataset. Each subtask repre-
sents a semantically or structurally coherent group
of problems, enabling more focused workflow spe-
cialization during meta-optimization.

For question answering, we use subsets of HOT-
POTQA and DROP, each containing 1,000 exam-
ples in total, with a 1:4 split for validation and
testing. The examples are clustered into six sub-
tasks based on instruction similarity. Similarly, in
the coding domain, HUMANEVAL and MBPP are
divided into three and four subtasks, respectively,
reflecting different code generation patterns.

In the mathematics domain, the datasets exhibit
more diverse task structures. For GSM8K and
AIME, we apply instruction-level clustering to de-
rive six distinct subtasks per dataset, capturing vari-
ations in reasoning complexity and problem format.

Notably, two datasets—MATH and OLYMPIAD-
BENCH—come with predefined topic categories,
and thus do not undergo clustering. The MATH
dataset contains high school-level math problems
and is partitioned into four canonical categories:
Prealgebra, Precalculus, Number Theory, and
Counting & Probability, following the protocol
introduced by Hendrycks et al. (2021). These
categories capture distinct types of mathematical
reasoning, from basic arithmetic to combinatorial
logic.

Likewise, OLYMPIADBENCH is sourced from
competitive mathematics exams and is naturally
divided into four topics: Algebra, Combinatorics,
Geometry, and Number Theory, as defined in the
original benchmark by Zhu et al. (2024). These top-
ics correspond to challenging mathematical reason-
ing tasks requiring manipulation, multi-step deriva-
tion, and rigorous abstraction.

Overall, our dataset setup provides a rich and
heterogeneous landscape for evaluating workflow
generalization, supporting both cluster-derived and
taxonomy-preserving subtask definitions across do-
mains.

A.2 Analogy Explanation
Figure 2 visualizes the analogy between neural
network optimization and workflow optimization,
which forms the conceptual foundation for our
method. Here, we detail the core correspondences
both at the structure level (parameters, updates, gra-
dients) and at the algorithmic level (meta-learning
procedure).

Structure-Level Analogy. In traditional super-
vised learning, model training involves continuous
optimization of parameters θ using gradients ∇θL
derived from a differentiable loss. In contrast, our
workflow optimization operates in a discrete, space,
where the workflowW is updated through textual
feedback generated by LLMs. The following table
presents the one-to-one mapping:

Meta-Learning Analogy: MAML vs. Adapt-
Flow. At the algorithmic level, AdaptFlow
is inspired by Model-Agnostic Meta-Learning
(MAML), but adapted to the setting. While MAML
learns a parameter initialization θ that can rapidly
adapt via gradient updates, AdaptFlow learns a
generalizable workflow W that adapts via LLM-
generated updates. The table below compares the
two approaches step-by-step:

Together, these analogies highlight how Adapt-
Flow generalizes the principles of meta-learning
to the domain of agentic workflow optimization in
spaces.

A.3 Prompt Templates
A.3.1 Inner Loop Workflow Optimization

Prompt

# Overview
You are an expert machine learning researcher

testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your aim is
to design an optimal agent performing well
on the MATH dataset, which evaluates
mathematical problem-solving abilities
across various mathematical domains
including algebra, counting and probability,
geometry, intermediate algebra, number
theory, prealgebra and precalculus.

## An example question from MATH:
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QA Coding MATH
HOTPOTQA DROP HUMANEVAL MBPP GSM8K MATH AIME OLYMPIADBENCH

Validation Size 200 200 33 86 264 119 91 51
Val. Subtasks 6 6 3 4 6 4 6 4
Test Size 800 800 131 341 1055 486 373 212
Test Subtasks 6 6 3 4 6 4 6 4

Table 6: Dataset statistics for each domain and subtask. Validation/test sizes represent the number of instances used
for evaluation, and subtask numbers denote the total distinct subtasks grouped under each benchmark.

Neural Network Optimization Workflow Optimization (AdaptFlow)
Model parameters θ Workflow structureW
Loss function L(fθ(x), y) Utility function J(W, T )

Gradient∇θL Textual gradient ∇̃J (LLM feedback)
Gradient descent update θ ← θ − η∇θL Symbolic updateW ′ ← U1(W, ∇̃J)
Batch of examples {(xi, yi)} Batch of tasks or subtask data Tt

Table 7: Structure-level analogy between differentiable model optimization and discrete workflow optimization.

**instruction (Not Given)**: Solve the following
problem and provide a detailed solution.

Present the final answer using the \boxed{}
format.

**question**: question

**solution (Not Given)**: solution

# Discovered architecture archive
Here is the archive of the discovered

architectures:

[ARCHIVE]

The fitness value is defined as the accuracy on
a validation question set. Your goal is to
maximize this fitness. You should use your
own judgment to decide whether to optimize
on the latest architecture, as its
performance may not necessarily be better.

# Output Instruction and Example:
The first key should be ("thought"), and it

should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be
the next interesting agent to try, then

describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name") corresponds to the name
of your next agent architecture.

Finally, the last key ("code") corresponds to
the exact âĂforward()âĂİ function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code": Your code
will be part of the entire project, so
please implement complete, reliable,
reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture. Also, it
could be helpful to set the LLMâĂŹs role and
temperature to further control the LLMâĂŹs
response. Note that the LLMAgentBase() will
automatically parse the output and return a
list of âĂInfosâĂİ. You can get the content
by Infos.content. DO NOT FORGET the taskInfo
input to LLM if you think it is needed,
otherwise LLM will not know about the task.

# Your task
You are deeply familiar with LLM prompting

techniques and LLM agent works from the
literature. Your goal is to maximize "
fitness" by proposing interestingly new
agents.

Observe the discovered architectures carefully
and think about what insights, lessons, or
stepping stones can be learned from them.

Please focus on the architecture with the
optimal fitness, and based on that, propose
what you believe is the most likely next
agent architecture. Note that each
optimization step can involve adding one or
two new modules to the current best solution
, or proposing an entirely novel solution.
However, it's important to ensure that each
change remains relatively simple and not
overly complex.

A.3.2 Outer Loop Workflow Optimization
Prompt

# Overview
You are an expert machine learning researcher

testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your aim is
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MAML (Finn et al., 2017) AdaptFlow (Ours)
Model initialization θ Workflow initializationW
Task-specific adaptation via θ′ ← θ − α∇θLT Subtask-specific refinement viaW ′ ← U1(W, ∇̃J)
Compute outer gradient from θ′ Aggregate textual feedback from refined workflows {∇̃Jt}
Outer update: θ ← θ − β∇θ

∑
LTi(θ

′
i) Meta update: W ← U2(W, G({∇̃Jt}))

Adaptation via differentiable gradient Adaptation via textual feedback
Few-shot generalization to new tasks Test-time adaptation viaW∗ ← U3(W,F(T ′

t ))

Table 8: Algorithm-level comparison between MAML and AdaptFlow.

to design an optimal agent performing well
on the MATH dataset, which evaluates
mathematical problem-solving abilities
across various mathematical domains
including algebra, counting and probability,
geometry, intermediate algebra, number

theory, prealgebra and precalculus.

## An example question from MATH:

**instruction (Not Given)**: Solve the following
problem and provide a detailed solution.

Present the final answer using the \\boxed{}
format.

**question**: question

**solution (Not Given)**: solution

Note: We divide the overall MATH task into seven
distinct subtasks. Below is the performance
of the Discovered Architecture Archive on

each of these seven subtasks.
Discovered Architecture Archive
The following presents the archive of the

discovered architectures on seven subtasks
as well as the full MATH task:

[ARCHIVE_LIST]

The fitness value is defined as the accuracy on
a validation question set. Your goal is to
identify an architecture that either
maximizes fitness across the seven subtasks
or can quickly evolve toward that goal. Note
that you should not limit yourself to only

the most recently generated
architecturesâĂŤyour objective is to
maximize this fitness.

# Output Instruction and Example:
The first key should be ("thought"), and it

should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be
the next interesting agent to try, then

describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name") corresponds to the name
of your next agent architecture.

Finally, the last key ("code") corresponds to
the exact âĂforward()âĂİ function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code": Your code
will be part of the entire project, so
please implement complete, reliable,

reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture.

Also, it could be helpful to set the LLMâĂŹs
role and temperature to further control the
LLMâĂŹs response. Note that the LLMAgentBase
() will automatically parse the output and
return a list of âĂInfosâĂİ. You can get the
content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you
think it is needed, otherwise LLM will not
know about the task.

## WRONG Implementation examples:
Here are some mistakes you may make:

1. This is WRONG: ```
feedback, correct = critic_agent([taskInfo,

thinking, answer], critic_instruction, i)
feedback_info = verifier_agent([taskInfo, Info('

feedback', 'Critic Agent', thinking, 0)],
verification_instruction)

```
It is wrong to use "Info('feedback', 'Critic

Agent', thinking, 0)". The returned "
feedback" from LLMAgentBase is already Info.

# Your task
You are well-versed in LLM prompting techniques

and agent-based frameworks from the
literature. You are tasked with designing a
new agent architecture based on the best-
performing solutions from each subtask of
the MATH benchmark. The goal is for this new
architecture to satisfy at least one of the
following criteria:

It effectively integrates key modules and
features from the optimal solutions of
individual subtasks, resulting in a
generalizable and adaptable architecture
that performs well across all subtasks;

Alternatively, the architecture should exhibit
strong adaptability and rapid update
capabilities, allowing it to quickly evolve
and converge toward the optimal solution for

3300



each specific subtask.
However, you should ensure that the newly

generated frameworks is not significantly
more complex than the original one, and you
may also remove some redundant LLM
invocation code.

A.3.3 Reflection Prompt

We noticed that the current agent is prone to
making mistakes when handling the following
cases:

[CASE_LIST]

Please analyze the reasons for these mistakes
and propose improvements.

Your response should be organized as follows:

"reflection": Provide your thoughts on the
mistakes in the implementation, and suggest
improvements.

"thought": Revise your previous proposal or
propose a new architecture if necessary,
using the same format as the example
response.

"name": Provide a name for the revised or new
architecture. (Don't put words like "new" or
"improved" in the name.)

"code": Provide the corrected code or an
improved implementation. Make sure you
actually implement your fix and improvement
in this code.

A.3.4 Test-Time Adaptation Workflow
Optimization Prompt

# Overview
You are an expert machine learning researcher

testing various agentic systems. Your
objective is to design building blocks such
as prompts and control flows within these
systems to solve complex tasks. Your goal is
to design an optimal agent that performs

well on the MATH dataset. You may analyze
the characteristics of these problems and
then design an agent capable of effectively
solving them.

[TASK_DSC]

Note: Your goal is to design an improved agent
based on the previous agent, tailored to the
characteristics of the current task. We aim
to rapidly enhance the performance of the

current agent.

# Output Instruction and Example:
The first key should be ("thought"), and it

should capture your thought process for
designing the next function. In the "thought
" section, first reason about what should be
the next interesting agent to try, then

describe your reasoning and the overall
concept behind the agent design, and finally
detail the implementation steps.

The second key ("name") corresponds to the name
of your next agent architecture.

Finally, the last key ("code") corresponds to
the exact âĂforward()âĂİ function in Python
code that you would like to try. You must
write a COMPLETE CODE in "code": Your code
will be part of the entire project, so
please implement complete, reliable,
reusable code snippets.

Here is an example of the output format for the
next agent architecture:

[EXAMPLE]

You must use the exact function interface used
above. You need to specify the instruction,
input information, and the required output
fields for various LLM agents to do their
specific part of the architecture.

Also, it could be helpful to set the LLMâĂŹs
role and temperature to further control the
LLMâĂŹs response. Note that the LLMAgentBase
() will automatically parse the output and
return a list of âĂInfosâĂİ. You can get the
content by Infos.content.

DO NOT FORGET the taskInfo input to LLM if you
think it is needed, otherwise LLM will not
know about the task.

# Your task
You are well-versed in LLM prompting techniques

and agent-based frameworks from the
literature. You are tasked with designing a
new agent architecture based on the previous
agent to solve the current task.

A.4 Workflow Case
To provide a concrete illustration of our system’s
output, we present the workflow code generated in
the final outer-loop iteration on the MATH dataset.
This example reflects the culmination of iterative
refinement across subtasks and highlights the inte-
gration of shared and task-specific modules.

def forward(self, taskInfo):
import re
from collections import Counter

def extract(text):
for p in [r'\\boxed{([^}]*)}', r'\(([^)

]+)\)', r'\\frac{[^}]*}{[^}]*}', r'(\
d+)\s*$']:
m = re.search(p, text)
if m: return m.group(0).strip()

roles = ['Math Professor', 'Grade School
Teacher', 'Math Enthusiast', 'Math
Olympiad Student', 'Helpful Assistant']

agents = [LLMAgentBase(['thinking', 'solution
'], f'A{i}', role=r, temperature=0.7 +
0.1*i) for i, r in enumerate(roles)]

sols = [a([taskInfo], "Please think step by
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step and solve.", i) for i, a in
enumerate(agents)]

ext_agent = LLMAgentBase(['extracted_answer
'], 'Extractor', role='Answer Extractor',
temperature=0.1)

answers, amap = [], {}
for i, (t, s) in enumerate(sols):

ans = ext_agent([taskInfo, s], "Extract
ONLY final boxed answer.", i)[0].
content.strip() or extract(s.content)

if ans: answers.append(ans); amap.
setdefault(ans, (t, s))

top = Counter(answers).most_common()
if top:

top_answers = [a for a, c in top if c ==
top[0][1]]

if len(top_answers) == 1:
_, sol = amap[top_answers[0]]

else:
inputs = [taskInfo] + sum((list(amap[

a]) for a in top_answers), []) +
[Info('extracted_answer', '', a,
-1) for a in top_answers]

sol = LLMAgentBase(['thinking', '
solution'], 'Final Decider',
temperature=0.1)(inputs, "Choose
best answer.")[1]

else:
inputs = [taskInfo] + sum(([t, s] for t,

s in sols), [])
sol = LLMAgentBase(['thinking', 'solution

'], 'Fallback Decider', temperature
=0.1)(inputs, "Choose among all.")[1]

verifier = LLMAgentBase(['feedback', 'correct
'], 'Verifier', role='Checker',
temperature=0.1)

clarifier = LLMAgentBase(['clarification'], '
Clarifier', role='Solver', temperature
=0.4)

synthesizer = LLMAgentBase(['thinking', '
solution'], 'Synth', temperature=0.3)

for i in range(2):
ext = ext_agent([taskInfo, sol], "Extract

ONLY final boxed answer.", 100+i)[0]
fb, ok = verifier([taskInfo, sol, ext], "

Check correctness.", i)
if ok.content == 'True': return sol

clar, = clarifier([taskInfo, sol, fb], "
Respond to critique.", i)

fb2, ok2 = verifier([taskInfo, sol, ext,
clar], "Recheck solution.", 100+i)

if ok2.content == 'True': return sol

syn_inputs = [taskInfo, sol, fb2, clar] +
sum(sols, []) + [Info('
extracted_answer', '', a, -1) for a
in answers if a]

sol = synthesizer(syn_inputs, "Revise or
synthesize.")[1]

return sol
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