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Abstract

Video Large Language Models (Video LLMs)
have achieved remarkable results in video un-
derstanding tasks. However, they often suf-
fer from heavy computational overhead due to
the large number of visual tokens generated
from multiple video frames. Existing visual
token compression methods often rely on at-
tention scores from language models as guid-
ance. However, these scores exhibit inherent
biases: global bias reflects a tendency to focus
on the two ends of the visual token sequence,
while local bias leads to an over-concentration
on the same spatial positions across different
frames. To address the issue of attention bias,
we propose Attention-Debiased Token Pruning
for Video Large Language Models (AdaTP), a
novel token pruning pipeline for Video LLMs.
AdaTP integrates two dedicated debiasing mod-
ules into the pipeline, targeting global attention
bias and local attention bias, respectively. With-
out the need for additional training, our method
significantly reduces the computational over-
head of Video LLMs while retaining the per-
formance of vanilla models. Extensive evalua-
tion shows that AdaTP achieves state-of-the-art
performance in various commonly used video
understanding benchmarks. In particular, on
LLaVA-OneVision-7B, AdaTP maintains per-
formance without degradation while using only
up to 27.3% FLOPs compared to the vanilla
model. Our code will be released soon.

1 Introduction

Video large language models (Video LLMs) (Li
et al., 2024; Lin et al., 2023; Wang et al., 2024b;
Zhang et al., 2024c; Maaz et al., 2023) have shown
potential and effectiveness in video comprehension
domain. Building upon architectures of previous
Multi-Modal Large Language Models (Li et al.,
2023; Liu et al., 2024b; Zhu et al., 2023; Team
et al., 2023; Alayrac et al., 2022; Liu et al., 2024a,

* Equal contribution.

2023) designed primarily for image tasks, Video
LLMs transforms raw videos into sequences of vi-
sual tokens in frame-by-frame manner. After align-
ment, these visual tokens are fed into the language
model alongside text tokens.

Video LLMs face significant computational chal-
lenge, which can be mainly attributed to the large
number of visual tokens and the quadratic com-
plexity of attention mechanism. To mitigate this,
some previous works (Chen et al., 2024a; Shang
et al., 2024; Wang et al., 2024a; Yang et al., 2024;
Shen et al., 2024; Tao et al., 2024; Shen et al.,
2025a,b) have sought to alleviate this through vi-
sual token compression, typically leveraging at-
tention scores to guide token pruning or merging.
However, these works often fail to accurately uti-
lize attention scores for token compression process.
As a result, the selected tokens may fail to retain a
comprehensive representation of the visual content,
and thus lead to obvious performance degradation.

In this work, we first identify that the attention
scores in the language models of Video LLMs are
inherently biased, which can be characterized from
two perspectives:

Global attention bias. Visual tokens with high
attention scores tend to cluster at the beginning
or end of the sequence, potentially overlooking
intermediate important visual information.

Local attention bias. We conduct frame-wise
analysis, and discovers that in shallow layers, at-
tention scores are disproportionately concentrated
on a few spatial positions, leading to over-retention
of those tokens and reduced visual diversity.

To provide a more intuitive understanding of at-
tention biases, we visualize the average attention
distribution in the LLaVA-OneVision-7B model (Li
et al., 2024). The visualization is computed across
all samples in the VideoMME (Fu et al., 2024)
dataset and shown in Fig. 1. Visualization results
from other layers can be found in the Appendix A.3.
In Fig. 1, we can intuitively see that the red bars,
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Figure 1: Visualization of attention bias. The visual tokens with top-10% attention scores are highlighted in red and
green, where red tokens represent global attention bias, and green tokens represent local attention bias.

which represent high attention scores, are concen-
trated in the latter part of the sequence, showing
global attention bias; the green bars, exhibit a peri-
odic pattern throughout the entire sequence, repre-
senting local attention bias.

To effectively leverage attention scores to guide
visual token compression, we argue that it is essen-
tial to address the aforementioned biases. In this pa-
per, we propose targeted modules to mitigate global
and local attention bias respectively. Building upon
these insights, we introduce Attention-Debiased
Token Pruning for Video Large Language Models
(AdaTP), a training-free and plug-and-play acceler-
ation pipeline for Video LLMs. To be specific, we
first partition adjacent similar frames into coherent
segments, then introduce two debiasing modules:
the Global Debiasing Module helps the model fo-
cus on semantically meaningful segments by iden-
tifying visual contents that are closely related to
textual information; the Local Debiasing Module
performs token pruning adaptively and indepen-
dently within each segment, which encourages the
preservation of diverse visual content and effec-
tively reduces intra-segment redundancy.

We integrate our AdaTP pipeline into two
types of representative Video LLM architec-
tures: LLaVA-OneVision (Li et al., 2024) and
LLaVA-Video (Lin et al., 2023). Experimen-
tal results show that our method achieves state-
of-the-art results on several video understand-
ing benchmarks including VideoMME (Fu et al.,
2024), LongVideoBench (Wu et al., 2024), and
MLVU (Zhou et al., 2024), which are widely
adopted to assess the comprehension ability of

Video LLMs, and contain diverse video types. On
LLaVA-OneVision-7B, our method achieves com-
parable performance to the original model while
keeping only 27.3% of its FLOPs.

Our main contributions are as follows:

1. We reveal and thoroughly analyze the atten-
tion bias phenomenon in Video LLMs from
both global and local perspectives.

2. We propose AdaTP, a novel token pruning
framework for Video LLMs. AdaTP miti-
gates attention biases and leverages debiased
attention scores as an effective guidance for
visual token compression, thus reduced com-
putational burden without sacrificing models’
performance.

3. Experimental results demonstrate that AdaTP
achieves state-of-the-art performance on di-
verse video comprehension benchmarks with-
out requiring additional training.

2 Related Works

2.1 Video Large Language Models

With the success of Multi-modal Large Language
Models (MLLMs), increasing efforts have been
made to extend their capabilities to video under-
standing. Video-LLaVA (Lin et al., 2023) aligns im-
ages and videos, allowing language models to learn
a unified visual representation, enabling language
models to understand images and videos content
simultaneously. Qwen-2-VL (Wang et al., 2024b)
extends dynamic resolution and updates mRoPE in
the time dimension, enhancing the model’s ability
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to learn from temporal sequence. PLLaVA (Xu
et al., 2024) applies pooling strategy to smooth the
feature distribution along the temporal dimension
and extended Image LLMs. LLaVA-OneVision (Li
et al., 2024) unifies image and video under a sin-
gle framework for consistency and effectiveness.
LLaVA-Video (Zhang et al., 2024c) extends visual
instruction tuning to videos, training model with
synthetic dataset for video instruction-following,
and introduces newline tokens for each frame to dis-
tinguish spatial and temporal positions. InternVL-
2.5 (Chen et al., 2024b) uses pixel unshuffle opera-
tion to reduce the number of visual tokens.

LLaVA-OneVision (Li et al., 2024) and LLaVA-
Video (Zhang et al., 2024c) are two of the most
widely used and representative Video LLMs, thus
we choose to evaluate our method on these two
model architectures.

2.2 Visual token compression
Token compression methods have been proposed to
accelerate visual encoder and MLLM’s inference
speed. In earlier years, several works (Rao et al.,
2021; Yin et al., 2022; Liang et al., 2022; Marin
et al., 2021) were done to explore token compres-
sion for Vision Transformers (ViT). Recent studies
propose visual token compression methods to ac-
celerate inference in MLLMs and Video LLMs.
FastV (Chen et al., 2024a) reveals the high redun-
dancy of visual tokens in language models and
leverages attention scores from it to guide the prun-
ing process. LLaVA-PruMerge (Shang et al., 2024)
and several subsequent works (Wang et al., 2024a;
Zhang et al., 2024b) perform token pruning and
merging based on the attention scores of [CLS] to-
ken from the visual encoder. VisionZip (Yang et al.,
2024) selects a small number of key visual tokens
based on the attention information from the visual
encoder, and applies a merging strategy to retain the
remaining information. Dycoke (Tao et al., 2024)
is specifically tailored for Video LLMs, which per-
forms fixed-length segmentation of videos before
feeding them into the LLM, removes and merges
redundant parts, and further prunes tokens during
the decoding stage of the LLM. Norton (Lin et al.,
2024) aims to tackle Multi-granularity noisy corre-
spondence problem from clip-caption and frame-
word perspective.

Most of the aforementioned methods rely on
attention scores to guide visual token compression
and have achieved promising results. However,
their overall effectiveness remains limited. These

methods often suffer from notable performance
degradation due to attention bias. In contrast, our
method mitigates attention bias through a targeted
debiasing mechanism, enabling more efficient and
effective visual token compression.

3 Methodology

3.1 Preliminaries
Video LLM’s Inference. Video LLM’s inference
process can be divided into the following steps:
a video is processed by visual encoder (such as
CLIP (Radford et al., 2021) and SigLIP (Zhai et al.,
2023)) in frame-by-frame paradigm. After align-
ment through a projector, the visual tokens are con-
catenated with tokenized text tokens and system
prompt tokens, serve together as the input to the
LLM. We denote V E(·) as the visual encoder that
processes the video v, and P (·) as the projector
alignment process. The processed visual tokens
P (V E(v)) can be represented as:

X0
v = P (V E(v)) ∈ Rnc×d, (1)

where X0
v is the output of the visual projector and

serves as the input to the 0-th layer of the LLM,
while X l

v denotes the input to the l-th layer. X l
v can

also be represented as [X l
vf1

, . . . , X l
vfn

] in frame-
by-frame manner, and X l

vfi
(i = 1, 2, . . . , n) is de-

noted as visual tokens of the i-th frame from the
video in the l-th layer, where n is the frame count.
c is the number of tokens within any single frame,
and d is the hidden dimension of visual tokens.

Attention score in LLM as token importance
metric. In Video LLMs, attention scores produced
by LLMs can serve as a metric for token impor-
tance. In the self-attention module of the l-th layer
in language models, by averaging across all atten-
tion heads, we get attention map Al ∈ RL×L. We
extract the attention scores from text tokens to vi-
sual tokens by averaging the rows of the attention
matrix Al corresponding to text tokens and slicing
the columns corresponding to visual tokens, result-
ing in sl ∈ Rnc. In the (l+1)-th layer, these scores
can be used to guide the token compression pro-
cess. However, directly selecting the visual tokens
with the highest attention scores leads to significant
performance degradation, as will be discussed in
the next subsection.

3.2 Observation: Attention bias phenomenon
Many existing works (Zhang et al., 2023; Xiao
et al., 2023; Chen et al., 2024a; Tao et al., 2024)
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Figure 2: Visualization of global attention bias in Layer
1 and 10. Each bar represents the sum of attention scores
of visual tokens within a single frame.

leverage attention scores to guide token pruning.
However, Such strategies are actually suboptimal
due to the presence of attention bias, leaving sub-
stantial room for improvement. The two parts of
attention biases are stated as follows:

Observation 1. Global attention bias. Ideally,
to serve as a visual token importance metric, for
specific text-video pairs, attention scores should be
concentrated on tokens from frames that are highly
relevant to the text. However, in practice, in almost
all layers, these tokens are predominantly located
in the beginning and the final portion of the se-
quence, regardless of the content of text-video pair.
In Fig. 2, each bar represents the sum of attention
scores of all visual tokens within a single video
frame. This figure clearly illustrates the presence
of global bias, as the attention scores are concen-
trated at the first and last few frames, while the
middle frames receive significantly less attention.
We take attention distribution of layer 1 as an exam-
ple, among the tokens with the top 10% attention
scores, 86.8% are concentrated in the last 4 frames
out of total 32 frames, which clearly shows the
global attention bias.

Observation 2. Local attention bias. In shallow
layers of language models, we observe that across
all frames of videos, Video LLMs intrinsically al-
locate substantial attention to a few specific spatial
positions, and remarkably, these spatial positions
remain fixed regardless of variations in video and
text content. In Fig. 3, each grid shows the total
attention received by that spatial position across all
frames, and the 196 grids correspond to the 14×14
spatial patches extracted from each video frame.
In layer 1, the spatial position receiving highest
attention (Row 11, Column 1) receives 5.77 times

the average attention of all visual tokens, clearly
illustrating the presence of local bias.
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Figure 3: Visualization of local attention bias in Layer
1 and 10. Each block illustrates the sum of atten-
tion scores from prompt tokens to each spatial position
across all frames.

Due to the biases stated above, directly leverag-
ing raw attention scores as importance metric is
not accurate and thus suboptimal. To achieve more
precise pruning of visual tokens, we propose the
method described in the next subsection. Based on
the correction of the two types of biases mentioned
above, we can effectively leverage attention scores
to guide the token pruning process.

3.3 Our pipeline: AdaTP
Based on the above observations, we propose a new
token pruning pipeline named Attention-Debiased
Token Pruning for Video LLMs (AdaTP).

Due to temporal coherence of videos, a video
can typically be divided into several parts, where
frames within each part are highly similar, while
different parts convey diverse content, thus we
divide each video into multiple segments. For
each video, its visual feature sequence V E(v) =
(v1, v2, . . . , vn) are partitioned into consecutive
segments S = (s1, s2, . . . , sm) based on cosine
similarity between adjacent frames, where m de-
notes the number of segments. Given a threshold
τs, two adjacent frames vi and vi+1 are assigned
to the same segment if cos_sim(vi, vi+1) ≥ τs.
Otherwise, a new segment is started at frame vi+1.

Correspondingly, X l
v can be represented in

segment-by-segment manner:

X l
v = [X l

s1 , X
l
s2 , . . . , X

l
sm ]. (2)

Inspired by AIM (Zhong et al., 2024) and Pyra-
midDrop (Xing et al., 2024), we adopt progressive
token pruning paradigm. In shallow layers of the
language model, we gradually prune a certain num-
ber of visual tokens at each layer.

As show in Fig. 4, our pipeline mainly consists
of two modules: Global Debiasing Module and
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Figure 4: Illustration of our AdaTP pipeline. AdaTP mitigates attention bias by selectively retaining critical tokens
based on text relevance and spatial diversity. The Global Debiasing Module identifies significant video segments,
and the Local Debiasing Module further alleviates intra-segment spatial redundancy.

Local Debiasing Module. The Global Debiasing
Module leverages the text encoder to identify signif-
icant segments which are highly relevant to textual
information, and assigns higher retention ratios to
them. The local debiasing module operates within
each segment, removing redundant visual tokens
that occupy the same spatial positions across these
adjacent and similar frames.

(1) Global Debiasing Module. We introduce
the text encoder aligned with the visual encoder in
Video LLMs to tackle global attention bias. For i-th
video frame, the visual encoder produces a global
visual token vpi ∈ Rd. Meanwhile, the input text
is processed by the text encoder TE(·) to obtain
a global textual token tp ∈ Rd. Text relevance of
each frame can then be measured by computing the
cosine similarity between vpi and tp:

simi =
v⊤pitp

∥vpi∥ · ∥tp∥
, i = 1, 2, . . . , n, (3)

where ∥ · ∥ denotes the L2 norm. We estimate the
text relevancy of each segment by averaging simi-
larities of all frames within it. We then introduce
a threshold parameter τt, and segments with simi-
larity exceeding τt are classified as highly relevant
to the text (hereafter referred to as significant seg-
ments for convenience). The selected significant
segments can be represented as set S ′ ⊆ S.

We perform token pruning within each segment,
assigning higher retention ratios to significant ones.
To be specific, we define an overall compression
ratio r, retaining totally Ll

v · r visual tokens, dis-
tributed across segments. For each segment s, the
number of retained tokens is proportional to its

frame count ∥s∥. For significant segments si ∈ S ′,
this allocation is upscaled by a factor αboost, but
constrained such that the total retained tokens in all
significant segments do not exceed γcap ·Ll

v, ensur-
ing coherence and preventing over-concentration.
This strategy effectively preserves critical content
while reducing redundancy.

The retention ratio of significant segments are:

r1 = min

(
αboost,

n∑
s∈S′ ∥s∥ · γcap

)
· r, (4)

while the retention ratio of other segments are:

r2 =
r · n− r1 ·

∑
s∈S′ ∥s∥∑

s/∈S′ ∥s∥ . (5)

Within each segment si, we select the above ratio
of visual tokens (r1 for significant segments, and
r2 for others) with the highest attention scores.

(2) Local Debiasing Module. Due to the simi-
larity among frames within the same segment, vi-
sual tokens from identical spatial positions among
the selected high-attention tokens are redundant.
Our Local Debiasing Module removes spatially
redundant visual tokens, thereby further reducing
unnecessary computational overhead.

We propose a simple yet effective strategy to ad-
dress this redundancy. Specifically, after obtaining
the set of visual tokens with the highest attention
scores within each segment, we sort them in de-
scending order based on their scores. We then
iterate through the sorted list, and for each token,
we check whether another token from the same
spatial position in other frames has already been
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Table 1: Comparison of our method with other baselines across various benchmarks on three Video LLMs. Within
the same comparison, the highest compression ratio and highest performances are highlighted in bold.

Model Method FLOPs VideoMME MLVU LongVideoBench Avg

short medium long overall

LLaVA-OneVision-0.5B

vanilla 100.00% 53.4 40.9 36.9 43.74 46.45 47.64 45.94

FastV(ECCV’24) 55.19% 53.1 42.1 36.6 43.93 45.07 45.77 44.92
VisionZip(CVPR’25) 44.38% 53.4 40.7 37.4 43.85 47.23 47.12 46.07
Dycoke(CVPR’25) 50.32% 55.0 40.4 38.7 44.70 47.24 46.97 46.30
AdaTP (ours) 41.08% 55.4 41.8 36.4 44.56 47.36 47.79 46.57

FastV 43.66% 52.3 41.2 36.4 43.33 45.38 45.85 44.85
VisionZip 39.37% 53.8 41.0 37.0 43.93 47.54 46.15 45.87
Dycoke 36.50% 54.4 40.3 37.7 44.10 45.26 46.37 45.24
AdaTP (ours) 33.99% 55.8 41.2 36.4 44.48 47.25 48.24 46.66

FastV 32.13% 48.0 41.4 36.7 42.04 44.47 45.03 43.85
VisionZip 32.36% 52.6 40.2 36.1 42.96 46.12 46.30 45.13
Dycoke 32.86% 53.9 39.2 36.1 43.07 42.23 44.50 43.27
AdaTP (ours) 26.43% 54.7 42.7 37.6 44.96 47.58 47.05 46.53

LLaVA-OneVision-7B

vanilla 100.00% 70.0 56.7 48.7 58.44 63.25 56.32 59.34

FastV 54.64% 70.0 55.0 47.2 57.41 62.22 55.65 58.43
VisionZip 46.38% 70.9 56.9 49.0 58.93 63.22 55.65 59.27
Dycoke 50.32% 70.1 54.2 48.7 57.67 63.16 56.39 59.39
AdaTP (ours) 43.00% 70.4 56.2 49.4 58.70 63.95 56.69 59.78

FastV 43.18% 68.6 55.1 47.9 57.19 61.35 55.12 57.89
VisionZip 39.37% 71.1 55.8 49.7 58.85 63.09 56.02 59.32
Dycoke 36.44% 67.6 53.3 48.0 56.30 61.13 56.69 58.04
AdaTP (ours) 35.48% 71.0 56.8 48.9 58.89 64.27 55.95 59.70

FastV 35.20% 66.1 53.6 48.1 55.93 60.82 51.91 56.22
VisionZip 27.95% 69.2 57.7 49.2 58.70 63.13 56.17 59.33
Dycoke 32.84% 67.1 53.1 46.6 55.59 60.90 55.95 57.48
AdaTP (ours) 27.30% 71.0 56.9 49.2 59.04 63.47 56.02 59.51

LLaVA-Video-7B

vanilla 100.00% 70.0 56.7 48.7 58.44 63.25 56.32 59.34

FastV 54.89% 69.4 59.2 50.2 59.63 61.56 54.15 58.45
VisionZip 44.42% 72.6 58.9 48.3 59.93 61.55 55.72 59.07
Dycoke 59.26% 72.2 57.7 47.8 59.22 60.67 55.57 58.49
AdaTP (ours) 44.26% 72.7 59.9 49.9 60.81 62.10 56.32 59.74

FastV 43.61% 67.2 57.1 47.9 57.41 60.00 52.81 56.74
VisionZip 37.52% 71.0 58.1 49.3 59.48 61.34 54.97 58.60
Dycoke 38.71% 68.9 56.7 47.8 57.78 58.83 54.23 56.95
AdaTP (ours) 36.63% 72.2 59.8 50.0 60.67 61.42 56.77 59.62

FastV 32.33% 62.6 54.1 48.0 54.89 57.80 51.09 54.59
VisionZip 28.69% 70.4 57.8 49.3 59.19 59.81 54.08 57.69
Dycoke 35.36% 68.1 55.7 46.2 56.67 59.02 53.78 56.49
AdaTP (ours) 28.27% 70.3 59.1 51.7 60.37 60.95 55.72 59.01

selected. If so, the current token is considered re-
dundant and discarded; otherwise, it is retained.
This ensures that only one representative token is
kept for each spatial location within the segment.
The full procedure is detailed in Algorithm 1.

Moreover, with this design, our pipeline fully
accounts for diverse and unique characteristics of
each video by adaptively adjusting the visual to-
ken compression rate. Rather than applying a fixed
pruning scheme, more dynamic videos—those ex-
hibiting frequent scene changes or significant mo-
tion—are typically divided into more segments,
allowing them to retain a larger proportion of vi-
sual tokens. In contrast, static videos with minimal
variation across frames are partitioned into fewer

segments and accordingly allocated fewer tokens.
This ensures that token pruning is more aligned
with the content dynamics of the videos.

4 Experiments

4.1 Implementation Details
Benchmarks. We evaluate the performance
of Video LLMs on three widely used video
understanding benchmarks: VideoMME (Fu
et al., 2024), MLVU (Zhou et al., 2024), and
LongVideoBench (Wu et al., 2024). The
VideoMME dataset is divided into short (1-3 min-
utes), medium (3-30 minutes), and long subsets (30-
60 minutes), each containing 900 video-question
pairs. The MLVU dataset consists of videos rang-

3278



Table 2: Ablation study on different modules. Seg. means segment-aware token pruning, Global.D denotes Global
Debiasing Module, while Local.D denotes Local Debiasing Module. ✓ indicates the bias is corrected; and ✗
indicates it is not.

Seg. Global.D Local.D FLOPs VideoMME MVLU LongVideoBench Avg

✗ ✗ ✗ 27.65% 43.67 46.58 44.88 45.04
✓ ✗ ✗ 27.76% 44.63 46.26 46.67 45.85
✓ ✓ ✗ 27.33% 44.63 47.24 47.19 46.35
✓ ✓ ✓ 26.43% 44.96 47.58 47.05 46.53

Figure 5: Visualization example sampled from the VideoMME dataset. We adopt attention scores from layer 1 to
generate the visualization results, in which we perform significant token pruning.

Algorithm 1: Local Debiasing Module
Input: V = {v1, v2, . . . , vn}: selected

visual tokens within a segment.
pos(vi): spatial position of token vi;
score(vi): attention score of token vi.
Output: V ′ ⊆ V : deduplicated token set.

1 Sort V in descending order by score(vi);
2 P ← ∅ ; // Used spatial positions
3 V ′ ← ∅ ; // Selected tokens
4 for vi in V do
5 if pos(vi) /∈ P then
6 Add vi to V ′;
7 Add pos(vi) to P ;

8 return V ′

ing from 3 minutes to 2 hours in length and includes
nine distinct evaluation tasks, totaling 2,174 sam-
ples. LongVideoBench comprises video-question
pairs across 17 categories, ranging from 1 to 60
minutes; we use its validation set, which contains
1,337 samples. These datasets cover various types,
durations, and scenarios of videos, providing a
fair and comprehensive evaluation for video un-
derstanding ability of Video LLMs.

Model Settings. We apply our method on
three types out of two representative Video LLM
architectures: LLaVA-OneVision-0.5B, LLaVA-
OneVision-7B, (Li et al., 2024) and LLaVA-Video-
7B (Lin et al., 2023). Under our settings, LLaVA-
OneVision models samples 32 frames, generates
196 visual tokens per frame; LLaVA-Video model
samples 20 frames, generates 182 visual tokens
per frame, including 13 added newline tokens. All
experiments are conducted on a single NVIDIA
3090 GPU. All FLOPs statistics are collected using
the torch.profiler package provided by PyTorch for
consistent and accurate measurement.

Our progressive pruning process starts from
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the second layer of the language model until the
(N − 12)-th layer, where N denotes the total num-
ber of layers in language model (N = 24 for
LLaVA-OneVision-0.5B model, and N = 28 for
LLaVA-OneVision-7B and LLaVA-Video-7B mod-
els). Before passing to the second layer, we retain
p · 40% of the visual tokens; after layer N − 12,
only p · 12% of the tokens are kept; for all interme-
diate layers, tokens are removed at a uniform rate.
Here p is the parameter for us to adjust the com-
pression ratio. For hyperparameters of our pipeline
modules, we set τt = 0.05, αboost = 2.2, γcap =
0.75, τs = 0.95 for all models. For three different
compression ratios, we set p to 2.0, 1.5 and 1.0,
respectively.

Baselines. We adopt three training-free visual
token compression methods: FastV, VisionZip and
Dycoke. We use official codes of these methods
for fair comparison, and conduct all evaluations
using LMMs-Eval (Zhang et al., 2024a). Detailed
settings please refer to Appendix A.1.

4.2 Main Results
Tab.1 compares our AdaTP with state-of-the-art
methods on aforementioned models. On all
three models and with three compression ratios,
our AdaTP outperforms state-of-the-art baselines.
On both LLaVA-OneVision-0.5B and LLaVA-
OneVision-7B, our method surprisingly surpasses
the vanilla model. We attribute this improvement to
our pipeline’s ability to eliminate redundant visual
information and guide the model to focus more on
critical tokens. On LLaVA-Video-7B, our AdaTP
also showed clear advantage over other baselines.

As the compression ratio increases, all other
methods experience a significant performance drop,
whereas our method consistently maintains strong
performance. This shows the robustness and effec-
tiveness of our AdaTP.

4.3 Ablation Studies
We conduct ablation studies on modules in our
pipeline to prove their functionality, and also on
hyperparameters to show its robustness. To ensure
consistency and clarity in our presentation, we con-
duct the ablation study on LLaVA-onevision-0.5B,
and p is set to 1.

Ablation study on debiasing modules. We
first conduct ablation studies on our two debias-
ing modules and our segment-aware design. With-
out Local Debiasing module, intra-segment spatial
redundancy will be retained; without the Global

Table 3: Ablation study on pruning layer depths.

layers FLOPs VideoMME MLVU LongVideoBench Avg

2-8 24.46% 44.30 47.12 46.30 45.91
2-10 25.45% 44.74 47.90 46.60 46.41
2-12 26.43% 44.96 47.58 47.05 46.53
2-14 27.37% 44.52 46.89 47.57 46.33
2-16 28.40% 44.78 47.33 47.57 46.56

Debiasing Module, significant segments will not
be distinguished. The results demonstrate the effec-
tiveness of segment-aware design and both of our
two debiasing modules, further highlight the im-
pact of attention bias on the performance of pruned
Video LLMs. The results are shown in Tab. 2.

Ablation study on hyperparameters. We
evaluate the performance of hyperparameters
τs, τt, αboost, and γcap. In this part, we also set
p to 1. The results are shown in Appendix A.2.

For progressive layer-by-layer token pruning, we
start pruning from Layer 2 while keeping the last 12
layers unpruned across all Video LLMs. A uniform
pruning rate is applied between the pruned layers,
with a fixed number of tokens discarded after each
layer. In LLaVA-OneVision-0.5B (Li et al., 2024),
which consists of 24 layers, pruning depth is by
default set to Layer 2-12. Variants with different
pruning depths are also presented in Tab. 3 for
comparison.

4.4 Visualization

To further illustrate the effectiveness of our method,
we visualize the token pruning process. The pruned
tokens are visually masked with a white overlay
to indicate their exclusion. As shown in Fig. 5,
for this video-question pair, the vanilla model pro-
duces the correct answer, while FastV gives an
incorrect response. In contrast, our method retains
significant visual tokens and answers correctly. It
can be observed that due to the influence of global
bias, FastV fails to extract text-relevant content
effectively and retains a large number of visual
tokens from the latter part of the sequence. Our
approach, however, accurately identifies the video
segments closely aligned with the textual seman-
tics, i.e. the first two frames containing the news
anchor. Among these two visually similar frames,
our method retains informative content from only
one frame, thereby effectively addressing the visual
redundancy caused by local bias.
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5 Conclusion

In this paper, we identified and thoroughly analyzed
the attention bias phenomenon in Video LLMs,
and proposed AdaTP, a training-free token prun-
ing pipeline. Our AdaTP effectively addressed the
issue of attention bias, relieved the heavy com-
putational burden of Video LLMs while retaining
critical visual contents. Extensive experiments on
different Video LLMs and video understanding
benchmarks have demonstrated the effectiveness
and robustness of our method.

Limitations

Due to computational resource constraints, our pro-
posed method has not yet been validated on larger-
scale Video LLMs. In addition, our pipeline intro-
duces a relatively large number of hyperparameters,
which may increase its complexity. However, we
have conducted comprehensive ablation studies on
them, demonstrating that the method remains ro-
bust across these hyperparameters.
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A Appendix

A.1 Baseline Settings
For VisionZip, we set the ratio of dominant visual
tokens and contextual visual tokens to 27:5 follow-
ing the default setting. In LLaVA-Video (Zhang
et al., 2024c), to solve the existence of newline to-
kens, after visual encoder, we first applied original
method in VisionZip, then added newline tokens
following, making sure the ratio of compressed
visual tokens and added newline tokens remains
fixed.

For Dycoke, L is set to 3, P is set to 0.7 following
the default settings, and K is set to 0.7, 0.9 and 0.95
for fair comparison with three compression ratios
p = 2.0, 1.5, 1.0 adopted in our experiments.

For FastV, following the default settings, we
couduct token pruning at layer 2 for all Video
LLMs. The visual token retention ratio is set to
0.50, 0.375 and 0.25 for three compression ratios
p = 2.0, 1.5, 1.0 adopted in our experiments.

A.2 Ablation studies on hyperparameters
τt sets the threshold for significant segments. Val-
ues that are too high or too low can lead to segments
more relevant to the text not being accurately dis-
tinguished; αboost and γcap control the number of
tokens to keep within each significant segment. We
properly adjusted their values to retain sufficient
but not redundant tokens in significant segments,
while keeping necessary tokens in others; τs influ-
ences the segment partitioning process. If too high,
similar frames may be separated into different seg-
ments; if too low, segments may contain cluttered
visual information and discard useful visual tokens.
The results are shown in Tab. 4a–4d.

It is worth noting that our pipeline demonstrates
strong performance across a wide range of hyper-
parameter settings, highlighting its robustness.

A.3 Additional Visualizations of attention bias
phenomenon

In Fig. 1–3, we visualized the attention bias
phenomenon in layer 1 and 10 from LLaVA-
OneVision-7B (Li et al., 2024). More visualiza-
tions from other layers are shown in Fig. 6 and

Fig. 7. It can be observed that the global and local
attention bias we mentioned in this paper appear
across all the layers shown, demonstrating the uni-
versality and consistency of our observation.

A.4 Results on more models
We also conducted our experiments on InternVL2-
1B. The results are shown in Tab. 5.
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Figure 6: Additional visualizations of local attention bias across different layers.
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Figure 7: Additional visualizations of global attention bias across different layers.
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Table 4: Ablation study on different hyperparameters.

(a) Ablation on τt

τt VideoMME MLVU LongVideoBench Avg

0.03 44.63 46.40 46.30 45.78
0.04 44.81 47.35 46.37 46.18
0.05 44.96 47.58 47.05 46.53
0.06 44.85 47.50 46.37 46.24
0.07 44.70 47.47 46.97 46.38

(b) Ablation on αboost

αboost VideoMME MLVU LongVideoBench Avg

1.6 44.44 47.28 47.19 46.30
1.8 44.44 47.51 47.05 46.33
2.0 44.74 47.66 46.75 46.38
2.2 44.96 47.58 47.05 46.53
2.4 44.56 47.49 47.27 46.44
2.6 44.37 47.52 46.97 46.29

(c) Ablation on γcap

γcap VideoMME MLVU LongVideoBench Avg

0.50 44.81 46.80 47.05 46.22
0.75 44.96 47.58 47.05 46.53
1.00 44.89 47.23 46.82 46.35

(d) Ablation on τs

τs VideoMME MLVU LongVideoBench Avg

0.60 38.00 43.32 43.16 41.49
0.80 41.93 44.81 45.85 44.20
0.90 44.11 47.44 46.67 46.07
0.95 44.96 47.58 47.05 46.53
1.00 44.63 47.24 47.19 46.31

Table 5: Results on InternVL-1B.

Method FLOPs VideoMME MLVU LongVideoBench Avg

Vanilla 100.00% 41.85 47.20 43.23 44.09
FastV (ECCV’24) 26.09% 38.96 43.09 41.21 41.09
VisionZip (CVPR’25) 24.55% 40.78 46.75 43.16 43.56
Dycoke (CVPR’25) 24.21% 39.67 45.19 42.20 42.35
AdaTP (Ours) 24.20% 41.56 47.09 43.08 43.91

FastV 35.23% 40.41 44.31 42.63 42.45
VisionZip 31.49% 41.59 47.48 42.73 43.93
Dycoke 32.44% 39.89 46.80 42.25 42.98
AdaTP (Ours) 30.80% 42.07 47.69 42.78 44.18
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