FlowMalTrans: Unsupervised Binary Code Translation for Malware
Detection Using Flow-Adapter Architecture

Minghao Hu
George Mason University
mhu20@gmu. edu

Qiang Zeng
George Mason University
zeng@gmu. edu

Abstract

Applying deep learning to malware detection
has drawn great attention due to its notable per-
formance. As malware spreads across a wide
range of Instruction Set Architectures (ISAs),
it is important to extend malware detection ca-
pacity to multiple ISAs. However, training a
deep learning-based malware detection model
usually requires a large number of labeled mal-
ware samples. The process of collecting and
labeling sufficient malware samples to build
datasets for each ISA is labor-intensive and
time-consuming. To reduce the burden of data
collection, we propose to leverage the ideas of
Neural Machine Translation (NMT) and Nor-
malizing Flows (NFs) for malware detection.
Specifically, when dealing with malware in a
certain ISA, we translate it to an ISA with suf-
ficient malware samples (like X86-64). This
allows us to apply a model trained on one ISA
to analyze malware from another ISA. We have
implemented and evaluated the model on seven
ISAs. The results demonstrate the high transla-
tion capability of our model, enabling superior
malware detection across ISAs.

1 Introduction

Malware is defined as software intended to damage
computers or associated systems (Preda et al., 2008;
Li et al., 2025). In recent years, many malware de-
tection tools have been developed (Xie et al., 2024),
and their success largely depends on the underly-
ing techniques. Signature-based detection iden-
tifies malware by matching patterns from known
malware families (Sathyanarayan et al., 2008), but
it often fails to detect altered or novel malware.
In contrast, behavior-based detection analyzes pro-
gram execution to identify suspicious behavior (Liu
et al., 2011), yet this method lacks scalability.

The use of deep learning methods like LSTM
and CNNs in malware detection has garnered sig-
nificant interest because of their strong perfor-
mance (Sewak et al., 2018; Gopinath and Sethura-

Junzhe Wang
George Mason University
jwang69@gmu. edu

Weisen Zhao
George Mason University
wzhao9@gmu. edu

Lannan Luo *
George Mason University
1luo4@gmu.edu

man, 2023). However, there are two major chal-
lenges that hinder the broader adoption of deep
learning in this domain.

Challenges. Malware infects a broad range of In-
struction Set Architectures (ISAs). With the rise
in cyberattacks on IoT devices and computer sys-
tems (Wu et al., 2022b,a; Chen et al., 2025; Ma
et al., 2023; Tsai et al., 2024; Luo et al., 2021; Li
et al., 2020; Zhu et al., 2025; Wu and Arafin, 2025),
malware has begun targeting an increasing number
of ISAs (Davanian and Faloutsos, 2022; Caviglione
et al., 2020). Hence, it is essential to enable mal-
ware detection across ISAs. Currently, there are
numerous ISAs available (Wang et al., 2023a). Due
to this wide variety, training one model for each
ISA demands substantial time and effort. In addi-
tion, deep learning models rely heavily on having
enough malware samples during training, which
is problematic for low-resource ISAs where such
data is limited.

Our Approach. Malware is generally closed-
source whose original source code is typically in-
accessible. What is available is the binary form
of the malware. Once disassembled, this binary
can be represented in assembly language. Based
on this observation, we propose leveraging Neural
Machine Translation (NMT) techniques (Artetxe
et al., 2018) to facilitate malware analysis.

When handling a binary in a given ISA (referred
to as the source ISA), we translate it to an ISA with
rich malware samples, such as X86-64, which we
refer to as the rarget ISA. Once translated, we use
a model trained on the target ISA to test the trans-
lated code. This approach facilitates malware de-
tection across multiple ISAs using a model trained
exclusively on the target ISA, eliminating the need
for extensive malware samples in other ISAs.

In order to capture ISA-specific syntax and se-
mantic information, we leverage normalizing flows
(NFs), a class of invertible transformations that
models complex distributions while maintaining

3251

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3251-3272
November 4-9, 2025 ©2025 Association for Computational Linguistics

tractability. Traditional translation models often
struggle with capturing complex dependencies and
handling the variation in data distributions. NFs
address this challenge by modeling complex, high-
dimensional distributions through invertible trans-
formations, enabling more efficient learning of in-
tricate relationships between source and target data.
By doing so, we ensure a smooth and structured
mapping between ISAs, leading to more precise
and reliable translations. Furthermore, normalizing
flows enable efficient sampling and density esti-
mation, which improves the adaptability of our
model to unseen binaries and enhances generaliza-
tion across different architectures.

We design FlowMalTrans, which is a flow-
adapter-based unsupervised binary code transla-
tion architecture. This design allows for robust
feature alignment between different ISAs, improv-
ing translation fidelity and ultimately enhancing
malware detection across ISAs. To bridge the gap
between the latent space of the source and target
ISA, FlowMalTrans learns an invertible transfor-
mation of binary representations from one ISA to
another, facilitating robust feature alignment across
different ISAs and enhancing translation fidelity.
FlowMalTrans operates in a completely unsuper-
vised manner, eliminating the need for parallel
datasets. Notably, the training of FlowMalTrans
does not require any malware samples and re-
lies only on binaries compiled from the abun-
dance of opensource programs. Despite never en-
countering any malware samples during training,
FlowMalTrans is still capable of translating mal-
ware across ISAs with high translation quality.
Results. We have implemented FlowMalTrans,
and evaluated its performance on seven ISAs, in-
cluding X86-64, 1386, ARM32, ARM64, MIPS32,
PPC32 and MG68K. FlowMalTrans achieves
higher BLEU score than the baseline method
UnsuperBinTrans (Ahmad and Luo, 2023). Fur-
thermore, we apply FlowMalTrans to the malware
detection task and achieve exceptional results, high-
lighting its superior translation quality, which en-
ables highly effective malware detection across
ISAs. Below we highlight our contributions:

* We propose FlowMalTrans, a novel unsuper-
vised approach to translate binaries across
different ISAs. FlowMalTrans addresses the
data scarcity issue by enabling the detection of
malware in low-resource ISAs using a model
trained on the high-resource ISA.

* We leverage normalizing flows (NFs) to

capture ISA-specific features. With NFs,
FlowMalTrans captures code semantics and
properly decodes instruction sequences.

* The training of FlowMalTrans does not re-
quire any malware samples, yet the model
is still capable of translating malware across
ISAs and achieves high translation quality.

* We expand the evaluation to cover a broader
range of ISAs compared to prior work, show-
casing FlowMalTrans’s wider applicability
and improved performance.

2 Related Work

2.1 Malware Detection

Signature-Based Detection. Conventional mal-
ware detection methods primarily use signature-
based approaches, working by recognizing mali-
cious code patterns (Sebastio et al., 2020; Rohith
and Kaur, 2021; Sathyanarayan et al., 2008; Behal
et al., 2010). However, these methods are ineffec-
tive against newly developed or altered malware
that modifies its code to avoid being identified.
Behavior-Based Detection. This approach detects
malware by examining program behavior during
execution (Liu et al., 2011; Burguera et al., 2011;
Aslan et al., 2021; Saracino et al., 2016). However,
it may produce false negatives when malicious ac-
tions are not activated during observation.

Deep Learning-Based Detection. Deep learning
has been widely used for detecting malware. A
range of models, including CNNs and LSTMs,
have been utilized (Sewak et al., 2018; Gopinath
and Sethuraman, 2023; Wang et al., 2024; He et al.,
2023; Lei et al., 2022; Zhang et al., 2024; Zhao
et al., 2025). Nonetheless, these models generally
demand substantial datasets of malware samples for
training. Consequently, most existing methods con-
centrate on widely used ISAs like X86 and ARM,
leaving low-resource 1S As relatively unaddressed.

2.2 Normalizing Flows

Normalizing flows (NFs) are a family of generative
models that transform a simple base distribution
into a complex target distribution via a series of
invertible transformations (Ho et al., 2019). The
key idea is to apply a sequence of differentiable
mappings to a latent variable. Different types of
NFs include coupling layers (Dinh et al., 2014), au-
toregressive flows (Papamakarios et al., 2017), and
continuous normalizing flows (Chen et al., 2018).
The flow adapter architecture has been explored
in neural machine translation (NMT), such as vari-

3252

ational NMT (Calixto et al., 2019; Ma et al., 2019;
Eikema and Aziz, 2019). Flow adapters leverage
NFs to model complex posterior distributions in
sequence-to-sequence models, allowing for more
flexible latent representations and enhancing the
robustness of translation (Shu et al., 2020).

2.3 Source Code Translation

Source code translation converts source code in one
language to another. Early work uses transpilers
or transcompilers (Andrés and Pérez, 2017; Tripu-
ramallu et al., 2024), which rely on handcrafted
rules. However, they produce unidiomatic transla-
tions that prove hard for human programmers to
read. Another issue is incomplete feature support,
resulting in improper translations.

Deep learning has introduced new approaches to
source code translation (Roziere et al., 2020; Weisz
et al., 2021; Lachaux et al., 2020). Howeyver, since
malware is closed-source, source code translation
is inapplicable for malware.

2.4 Program Analysis-Based Binary Code
Translation

Several approaches leverage program analysis tech-
niques to convert binary code from one ISA to an-
other. They can be broadly categorized into static
analysis-based and dynamic analysis-based. Static
analysis-based translation analyzes and translates
the binary code before execution (Shen et al., 2012;
Cifuentes and Van Emmerik, 2000). But ensuring
all paths are accurately translated is challenging.

Dynamic analysis-based translation performs
translation during execution (Chernoff et al., 1998;
Ebcioglu et al., 2001), but it requires sophisticated
runtime environments. Plus, both approaches face
challenges related to architecture-specific features
and encounter difficulties in achieving accuracy,
performance, and compatibility.

Summary. We propose an unsupervised bi-
nary code translation approach leveraging deep
learning techniques. The state of the art,
UnsuperBinTrans (Ahmad and Luo, 2023), is the
first and only existing work applying deep learning
to binary code translation. However, it has sev-
eral limitations, which our model FlowMalTrans
aims to overcome (Section 3.2). Our evalua-
tion demonstrates that FlowMalTrans outperforms
UnsuperBinTrans in binary code translation and
achieves superior malware detection performance.

3 Overview

3.1 Motivation

Malware propagates over various instruction set ar-
chitectures (ISAs), highlighting the importance of
enabling malware detection across multiple ISAs.
Nonetheless, training deep learning models gen-
erally depends on extensive datasets of malware
samples. This requirement becomes more difficult
to fulfill with the diversity of ISAs, as low-resource
ISAs frequently lack adequate malware samples.

To alleviate the challenges of data collection and
tackle the problem of limited data, we propose
translating binaries from a low-resource ISA to a
high-resource ISA. Thus malware detection model
trained on the high-resource ISA can be applied
to the translated binaries, helping to overcome the
data scarcity faced by low-resource ISAs.

3.2 Limitations of the State of the Art

UnsuperBinTrans (Ahmad and Luo, 2023) is the
first and only existing work that applies deep learn-
ing techniques to binary code translation. While
InnerEye (Zuo et al., 2018) applies NMT tech-
niques for binary code similarity comparison, it
does not perform binary code translation across
ISAs. Instead, it employs two encoders from NMT
models to generate embeddings for binary pairs.
UnsuperBinTrans, however, has several limita-
tions, which our model aims to overcome.

Shared Encoder vs. Separated Encoders.
UnsuperBinTrans employs a shared encoder for
ISAs, which limits the model’s ability to capture
ISA-specific syntax and semantics, leading to sub-
optimal translation. In contrast, FlowMalTrans
employs a separate encoder for each ISA, allowing
each to learn specialized representations.

RNN vs. Transformer. UnsuperBinTrans relies
on RNNs, which suffer from vanishing gradients
and difficulties in capturing long-range dependen-
cies. In contrast, FlowMalTrans leverages Trans-
former, which employ self-attention mechanisms
to model long-range dependencies.

ISA-Agnostic vs. ISA-Specific Latent Represen-
tations. UnsuperBinTrans learns latent represen-
tations for binaries that are ISA-agnostic by ab-
stracting away ISA-specific details. In contrast,
FlowMalTrans learns ISA-specific latent represen-
tations that preserve crucial architectural distinc-
tions while maintaining alignment with a shared
cross-ISA space. This is achieved by employing
NFs. By transforming the source-ISA representa-

3253

;’ Use widely available open-source programs
to train FlowMalTrans

ISAdata || Source | |qraining i
x86-64) | (ISAdata | - FlowMalTrans | |

Mono-Arch Dataset

Translating
FlowMalTrans |[— ﬂ

' Use X86-64 malware and benign samples to train
i a deep learning-based malware detection model !

e X86-64 malware :
T 1
Malware raning || & benign samples :
Detection Model]
Task-Specific Dataset | |
Testing Malware
Detection Model

Malicious?

Source ISA

Target ISA: X86-64

FlowMalTrans translates a binary in the source ISA to the target ISA (X86-64). The translated
binary is analyzed by the malware detection model to check whether it is malicious.

Figure 1: Applying FlowMalTrans to detect malware in a source ISA using a malware detection model trained on

the target ISA (e.g., X86-64).

tions into the target-ISA representations via NFs,
the decoder can leverage the representations to gen-
erate better aligned target-ISA binary code.

Two ISAs vs. Broader ISAs. UnsuperBinTrans
is limited to only two ISAs (X86-64 and ARM32),
whereas FlowMalTrans extends its coverage, sup-
porting seven ISAs.

3.3 Model Applications

Figure 1 shows the workflow of applying
FlowMalTrans to detect malware across ISAs. In
step (1), we train FlowMalTrans to translate bina-
ries from the source ISA to the target ISA (such as
X86-64). The training dataset can be constructed
using various available opensource programs. The
training of FlowMalTrans does not require any
malware samples. It should be noted that malware
is typically a closed-source program; thus cross-
compilation that generates binaries across ISAs
Jrom source code does not apply to malware.

In step (2), we train a deep learning model us-
ing a task-specific dataset containing malware and
benign samples in the target ISA.

Finally, in step (3), when dealing with a binary in
the source ISA, we use FlowMalTrans to translate
the binary to the target ISA and reuse the malware
detection model trained on the target ISA to test
the translated code for detecting malware.

Note that due to the scarcity of malware samples
in a low-resource ISA, directly training a robust
malware detection model on such an ISA is chal-
lenging. Our approach overcomes this limitation
through code translation, making robust malware
detection feasible for low-resource ISAs.

4 Model Design

We present the design and training of
FlowMalTrans. Notably, training FlowMalTrans
requires only mono-architecture datasets for each
ISA, without the need for any malware samples.

4.1 Instruction Normalization

A binary, after being disassembled, is represented
as a sequence of instructions. An instruction in-
cludes an opcode and zero or more operands. We
regard opcodes/operands as words and basic blocks
as sentences. A basic block is a straight-line se-
quence of instructions with no branches inside it.

In Natural Language Processing (NLP), the out-
of-vocabulary (OOV) issue is a well-known prob-
lem. To mitigate the OOV problem, we employ the
normalization strategy.

* (R1): We use IDA Pro (IDA, 2023) to dis-
assemble binaries, which generates dummy
names (Dummy name, 2023). We replace
dummy names with their respective prefixes.
For example, of f_ and seg_ represent off-
set pointer value and segment address value.
They are replaced with <OFF> and <SEG>.

* (R2): Function names are replaced by <FUNC>.

* (R3): Number and hexadecimal constants are
replaced by <VALUE> and <HEX>, respectively.

We provide examples in Appendix A.2 that illus-
trate how these normalization rules are applied to
assembly code across different ISAs.

4.2 Normalizing Flows

We consider basic blocks as sentences, and in-
structions as words. The prior state-of-the-art,

3254

Src Decoder

Zgre /% ‘—>| B:;C
1
1
1
1

Src Encoder

Figure 2: Model architecture of FlowMalTrans, which
contains a pair of flow adapters for modeling the distri-
butions of basic block representations in the source ISA
and target ISA, respectively.

UnsuperBinTrans, assumes that the latent repre-
sentations of source and target basic blocks share a
common semantic space, and learns ISA-agnostic
latent representations, which abstract away ISA-
specific details. However, this can be overly restric-
tive, as different ISAs exhibit distinct syntactic and
structural characteristics that are not always eas-
ily aligned in a shared latent space. By enforcing
ISA-agnostic representations, UnsuperBinTrans
may lose critical ISA-specific features necessary
for accurate translation, leading to suboptimal per-
formance.

Our model FlowMalTrans assumes the repre-
sentations are different due to ISA-specific char-
acteristics. Thus, they are modeled separately for
each ISA, which makes it possible to better capture
basic-block semantics in an ISA-specific manner.
Specifically, FlowMalTrans uses a pair of NFs (i.e.,
source flow and target flow) to model the distribu-
tions of basic-block latent representations in the
source and target ISA. During translation, a latent
code transformation is performed to transform the
source representation zg,. into the target represen-
tation zy4¢, which is fed to the decoder to generate a
better basic block in the target ISA. Figure 2 shows
how NFs are employed in our model.

Modeling Latent Representations by NFs. We
use a pair of NFs to model the distribution of the
basic block latent representations in different ISAs,
ie., Pz, (2sre) and pz,,, (24gt), Where zgc and zgg
are the latent representation of the source basic
block and target basic block, respectively. Through
NFs, we transform the distributions of the source
and target representations to the base distribution
€ (e.g., standard normal distribution), which can
be viewed as the “true” underlying semantic space,
abstracting away from ISA specifics. We denote
such mappings as G, ;) and G, , s¢)-

Designing NFs. We use Real-valued Non-volume

Preserving (RealN'VP), a type of NFs designed for
efficient density estimation and sampling (Dinh
et al., 2022), to build the source and target flow.

Two key components of RealNVP are: Multi-
scale Architecture and Affine Coupling Layer. With
them, RealNVP can: (1) capture ISA-specific rep-
resentations for each ISA at both local and global
scales; (2) transform these encoded latent represen-
tations from one ISA to another invertibly; and (3)
train using maximum likelihood estimation (MLE)
with a tractable Jacobian determinant.

We construct FlowMalTrans with two RealNVP
models for the source flow and target flow. Each
RealNVP model consists of three sequential flows
to perform the latent code transformation. We ex-
plicitly model the source and target blocks with K
sequential flows (where K = 3 in our case):

K (@) i)y |~
_ afsrc(z)
peveliare) = pe(e) [Ldet =551
K (OINONE
H 8ftgt(z)
Pzrgi (2tgt) = Pe(€) i=1 det 920 @)

where p(€) is a base distribution. We select stan-
dard Gaussian distribution A/(0, 1) as our base dis-

tribution here. fs(f«)c is the ¢-th transformations for
the source blocks. z(") is the intermediate variable
where z(1) = ¢ and 2(5) = Zsre-

We denote the mapping process in Equation (1)
as G(c2,,.) and Equation (2) as G(._,,). Given
the invertibility feature of NFs, the mappings are
also invertible. Thus, we have: G(_,.,,.)
(_zirc—w) and G(c;.,,,) = G(_zigt—m)' To achieve
latent code transformation from source to target,
we can formalize the transformation process as the
composition of G, ¢) and G(c,)
= G(zsrcﬂe) © G(e%ztgt) 3)

G(Zs'rcg)ztgt)

Therefore, we can learn a transformation
G(zipe—szy) Dy learning the transformation
G(z,pose) and Gz,). We also notice that
G(.yposzg) and G,y z,,,) are invertible be-
cause they are compositions of two invertible map-
pings. Thus, We can follow a similar procedure

and learn G, ,, ».,,.)-

4.3 Encoder & Decoder for Code Translation

For binary code translation, different ISAs exhibit
significant syntactic and semantic differences. To
capture and align these variations, we propose a

3255

separated-encoder design, where each ISA is as-
signed a dedicated encoder. The source encoder
and decoder are responsible for encoding and gen-
erating basic blocks in the source ISA, while the
target encoder and decoder handle basic blocks
in the target ISA. FlowMalTrans employs a multi-
layer bi-directional Transformer (Vaswani, 2017) to
construct the encoders and decoders for the source
and target ISA, as shown in Figure 2.

Encoding. Here we describe how the source en-
coder encodes the source basic block and generates
the source basic block representation zg.. A sim-
ilar procedure is applied to the target basic block
representation generation.

The source encoder processes the source basic
block B, = {bg, - - - , bs}, and generates the hid-
den representations { hg, - - - hg}. The basic block-
level representation zg,.. is computed using Equa-
tion (4). The target encoder follows a similar pro-
cess to encode the target basic block.

Zsre = W (max-pool([hg, ..., hg])
+ mean-pool([hg, . .., hg])
+ ho) “4)

Cross-lingual Translation. To enable the decoder
to better leverage ISA-specific latent representa-
tions, we perform a latent code transformation. For
example, as shown in Figure 2, after calculating
Zgre Using Equation (4), we employ the source flow
to transform zg,. to €, and then the target flow to
transform € to 24, which is in the target latent
representation space. Then, the target decoder can
decode z¢4; to generate the target basic block.

In contrast, the prior work UnsuperBinTrans in-

discriminately uses the same representational space
for both source and target, without performing la-
tent code transformation.
Decoding. To capture the semantics and mitigate
improper alignments between the source and target
ISA, we follow the procedure in (Setiawan et al.,
2020) to generate the decoded representation:

0,=(1-g,)08+g,0z 5

where g; = o([s;; z]), o(-) is the sigmoid function.
0; denotes Hadamard product between two tensors.
The values in g; control the contribution of 2z to o;.

4.4 Model Training

We first employ the causal language modeling
(CLM) and masked language modeling (MLM)
objectives to pretrain the encoders and decoders.

We then train FlowMalTrans in an unsupervised
manner using three objectives: denoising auto-
encoding (DAE), back translation (BT), and max-
imum likelihood estimation (MLE). The DAE re-
constructs a basic block from its noised version,
as illustrated in steps (1) and (2) in Figure 2. The
BT process, shown in steps (3) and (4), involves
performing the latent code transformation twice
while jointly training the encoders and decoders.
For example, in BT for the source ISA, the trans-
formation first occurs in the source-to-target di-
rection, followed by the target-to-source direction.
Appendix A.1 provides further details.

Maximum Likelihood Estimation (MLE). The
NFs are directly trained by maximum likelihood
estimation (MLE) of basic-block level latent rep-
resentations. The objective can be formulated as:

EMLE(G(ZW‘(’%E)) = EszzS»,«c [log pzsrc(z)] (6)

where F.p, _ is approximated by sampling mini-
batches of latent representations generated by the
encoder during training. By minimizing the loss,
we can construct G, ..z,) and G,z)-

Trained with the DAE, BT, and MLE objectives,
FlowMalTrans effectively translates basic blocks
across ISAs. During testing, it translates each basic
block of a given binary from the source ISA and
then concatenates the translated blocks to form a
translated binary for the target ISA.

5 Evaluation

5.1 Experimental Settings

We implement FlowMalTrans using Transformer
with 64 hidden units, 4 heads, ReLLU activations,
a dropout rate of 0.1, and learned position embed-
dings. Appendix A.4 presents the details. All
the experiments were conducted on a computer
with a 64-bit 3.6 GHz Intel Core 19-CPU, a Nvidia
GeForce RTX 4090 and 64GB RAM.

Model Comparison. We consider four baseline

models and one Same-ISA model for comparison.
* Baseline Model 1: UnsuperBinTrans (Ah-

mad and Luo, 2023) is the first and only exist-
ing work that focuses on binary code transla-
tion leveraging deep learning (Section 3.2).

* Baseline Model 2: UniMap (Wang et al.,
2023a) also aims to resolve the data scarcity
issue in malware detection. UniMap learns
transfer knowledge to enable the reuse of a
model across ISAs. In contrast, we focus on
binary code translation to enable model reuse.

3256

* Baseline Model 3: CrossIns2Vec (Wang
et al., 2024), similar to UniMap, aims to learn
transfer knowledge to enable model reuse.

* Baseline Model 4: IR-based malware detec-
tion model. Intermediate representation (IR)
can abstract away ISA differences and repre-
sent binaries in a uniform style (angr, 2024).

* Same-ISA model. We consider a model trained
and tested on the same ISA, without employ-
ing any translation, as the Same-ISA model.
As expected, this model, if trained with suf-
ficient data, is likely to outperform a model
trained on one ISA and tested on another, rep-
resenting the best-case scenario.

5.2 Training FlowMalTrans

We consider seven ISAs: X86-64, 1386, ARM64,
ARM32, MIPS32, PPC32 and M68K. We translate
binaries from other ISAs to X86-64.

Training Datasets. We collect various open-source
programs, including openssl, binutils, findutils, and
libgpg-error, which are widely used in prior bi-
nary analysis works (Ding et al., 2019; Li et al.,
2021). We compile them for each ISA using GCC
with different optimization levels (O0-O3) and dis-
assemble the binaries using IDA Pro (IDA, 2023)
to extract basic blocks, which are normalized and
deduplicated. Finally, we create a training dataset
for each ISA. The adequacy of these datasets is
evaluated in Appendix A.3.

Byte Pair Encoding. We use byte pair encoding
(BPE) to process the datasets. We set the BPE
merge times based on the principles derived from
empirical experiments and theoretical insights:

» The vocabulary size discrepancy between the
source and target ISA should < 15%. A large
vocabulary discrepancy can lead to an imbal-
anced learning problem, resulting in inefficien-
cies and overfitting (Gowda and May, 2020).

* The vocabulary size of each ISA should <
12k, to balance capturing word semantics with
computational resource constraints. A large
vocabulary size can negatively impact model
performance due to increased complexity and
sparse token distributions (Jean et al., 2014).

As shown in Table 1, we can see that the vocabu-
lary discrepancy within each pair is small, making
them well-suited for training. Note that these prin-
ciples are tailored to our specific scenarios.

Model Training. We first pre-train FlowMalTrans
and then train it on the DAE, BT and MLE tasks

Table 1: Vocabulary size, BPE merge times, and joint
vocabulary size for each pair of ISAs.

ISA Pair Vocab. Size Vocab. Size Merge Joint Vocab.
(src <> tgt) (src) (tgt) Time Size
1386 <> X86-64 7,135 7,104 10, 000 9,688
ARM32 +» X86-64 9,416 9,236 22,000 17,262
ARM64 +» X86-64 5,142 4,455 9,000 7,104
MIPS32 +» X86-64 10,995 11,620 14,000 12,685
PPC32 + X86-64 8,691 9,504 17,000 13,032
M68K <+ X86-64 7,148 6,484 9,000 8, 386
Table 2: BLEU scores of FlowMalTrans & baseline.
ISA Pair FlowMalTrans UnsuperBinTrans
(src — tgt) (our work) (baseline)
1386 — X86-64 0.41 0.35
ARM32 — X86-64 0.40 0.28
ARM64 — X86-64 0.37 0.32
MIPS32 — X86-64 0.36 0.27
PPC32 — X86-64 0.31 0.25
M68K — X86-64 0.39 0.31

until the loss drops < 0.3. The training time
takes around 23h, 22h, 25h, 23h, 22k and 22h, for
13864>X86-64, ARM32++X86-64, ARM64+4+X86-
64, MIPS32++X86-64, PPC32++X86-64, and
M68K <+ X86-64, respectively.

5.3 Testing on Binary Code Translation

We use the Bilingual Evaluation Understudy
(BLEU) (Papineni et al., 2002) to evaluate the trans-
lation performance, which is often used to evaluate
the quality of machine-generated translations by
measuring the n-gram overlap between the trans-
lation and reference. We set the tokenization of
SacreBLEU (Post, 2018) to None, apply add-one
smoothing, and use the default settings

Testing Datasets. @ We use three packages,
zlib-1.2.11, coreutils-9.0, and diffutils-3.7, to
test FlowMalTrans. Note that these packages
are not included in the training dataset of
FlowMalTrans. We compile them on the six ISAs
using GCC-11.4.0 with different optimization lev-
els (0O0-0O3) and use IDA Pro to disassemble them.
Translation Results. We consider six ISAs, 1386,
ARM32, ARM64, MIPS32, PPC32 and M68K, as
the source ISAs, and X86-64 as the target ISA. For
each binary B; in the source ISA, there exists a se-
mantically equivalent binary By in X86-64. We use
FlowMalTrans to translate B into X86-64, result-
ing in a translated binary Bs in X86-64. The BLEU
score is computed between B3z and By. We report
the average BLEU score for all binaries. The re-
sults are shown in Table 2. Appendix A.11 presents
some translation examples.

We compare FlowMalTrans to the baseline
UnsuperBinTrans. We use the open-source
trained model of UnsuperBinTrans for this
comparison. Note that UnsuperBinTrans fo-

3257

cuses solely on two ISAs (X86-64 and ARM32).
To ensure a comprehensive comparison, we
train UnsuperBinTrans on the same mono-
architecture training datasets for the additional
ISA pairs. We can see that FlowMalTrans out-
performs UnsuperBinTrans across all ISA pairs
and demonstrates satisfactory performance. Thus,
FlowMalTrans has good translation quality and
can effectively translate binaries across ISAs.

The average time to translate a basic block from
one ISA to X86-64 is 10~%s, and the average num-
ber of blocks in a binary is 12, 320. Thus, translat-
ing a binary takes around 1.2s. This demonstrates
the good scalability of our approach.

5.4 Malware Detection Task

We train a malware detection model on X86-64
(where abundant malware samples are available),
and reuse the trained model for other ISAs by trans-
lating binaries using FlowMalTrans !.
Malware Detection Model. We use the LSTM
model (HaddadPajouh et al., 2018) to detect mal-
ware, designed as two layers. The model details are
provided in Appendix A.5. We first extract the to-
ken embeddings from FlowMalTrans and integrate
them into the input layer of LSTM. As a result,
when a binary is fed into LSTM, each input token
is represented as its embedding. To further enrich
the task, we also apply a CNN model, with the re-
sults presented in Appendix A.6. In the following,
we focus on the results related to LSTM.
Task-Specific Training Datasets. We collect 2140,
1740, 1581, 1430, 962, 545, and 128 malware sam-
ples from VirusShare.com (VirusShare, 2020) for
X86-64, 1386, ARM32, MIPS32, PPC32, M68K,
and ARM64, respectively. We spend significant
efforts in collecting malware, especially for PPC32,
M68K, and ARM64. Notably, our approach only
needs malware in a high-resource ISA to train a
malware detection model, significantly reducing
the data collection burden for low-resource ISAs.
As we compare the results to the Same-ISA
model trained and tested on the same ISA (Sec-
tion 5.1), we build task-specific training datasets
for each ISA. We split the malware samples into
two parts: 80% are used for training and 20% for
testing. Each training dataset also includes an equal
number of benign samples, randomly selected from

'We are aware that ARM32 is also a high-resource ISA;
due to its importance, our evaluation involves it. However,
whether our approach can be applied to translate other ISAs
to ARM32 requires further experiments.

openssl, binutils, findutils, and libgpg-error.

We also evaluate the performance when testing

on all malware samples (without comparison to the
Same-ISA model baseline) in Appendix A.7.
Task-Specific Zesting Datasets. The testing
dataset for each ISA includes equal numbers of mal-
ware and benign samples. The benign samples are
randomly selected from zlib, coreutils, and diffutils.
Note that neither the benign nor malware samples
are seen during the training of FlowMalTrans or
the malware detection model.
Result Analysis. We first train LSTM on X86-64,
and reuse it to test binaries in the other ISAs. The
results in Table 3(a) show when the model trained
on X86-64 is transferred to 1386, ARM32, ARMO64,
MIPS32, PPC32 and M68K, it achieves AUC =
0.996, 0.981, 0.965, 0.971, 0.973 and 0.931, re-
spectively. The high accuracies demonstrate the
superior translation quality of FlowMalTrans.

Next, we analyze how FlowMalTrans preserves
code semantics through translation. We visualize
the token embeddings from different ISAs and find
that tokens performing similar operations, regard-
less of their ISAs, have close embeddings. This
demonstrates that FlowMalTrans effectively cap-
tures code semantics across ISAs. Further details
are provided in Appendix A.8.

5.5 Model Comparison

We compare FlowMalTrans to the baselines and
Same-ISA model (as described in Section 5.1).
Comparison with Baseline Methods. The first
baseline is UnsuperBinTrans. As it focuses solely
on two ISAs (X86-64 and ARM32), we train it on
the same training datasets for the additional ISA
pairs. We use it to translate binaries from other
ISAs to X86-64 and test the translated binaries.
The results in Table 3(a) show that FlowMalTrans
achieves better translation quality, leading to im-
proved malware detection performance.

The second baseline is UniMap (Wang et al.,
2023a), which also aims to resolve the data scarcity
issue in malware detection across ISAs. UniMap
learns transferable knowledge for model reuse.
It covers four ISAs, including X86-64, ARM32,
MIPS32, and PPC32. To ensure a comprehensive
comparison, we train it on the same datasets to
cover the three additional ISAs (1386, ARM64 and
M68K). Table 3(a) show that FlowMalTrans out-
performs UniMap across all ISA pairs.

The third baseline is CrossIns2Vec (Wang et al.,
2024), which supports four ISAs (X86-64, ARM32,

3258

Table 3: Malware detection results using LSTM. In Table (a), we compare the detection performance by translating
malware using FlowMalTrans and UnsuperBinTrans. Then we evaluate it against UniMap, CrossIns2Vec and the
IR-based model. In Table (b), we give results of the Same-ISA Model, which is trained and tested on the same ISA.

(a) FlowMalTrans vs. Four baselines.

(b) The Same-ISA model.

ISA Pair FlowMalTrans | UnsuperBinTrans UniMap CrossIns2Vec | IR-based Model Train & Teston | Same-ISA
(src — tgt) (Our Work) (Baseline 1) (Baseline 2) (Baseline 3) (Baseline 4) the same ISA Model
1386 — X86-64 0.996 0.723 0.953 - 0.819 1386 0.998
ARM32 — X86-64 0.981 0.818 0.953 0.976 0.815 ARM32 0.986
ARMO64 — X86-64 0.965 0.638 0.910 - 0.825 ARM64 0.705
MIPS32 — X86-64 0.971 0.725 0.933 0.964 0.791 MIPS32 0.974
PPC32 — X86-64 0.973 0.722 0.919 0.967 0.639 PPC32 0.849
M68K — X86-64 0.931 0.689 0.893 - 0.476 M68K 0.790

MIPS32, and PPC32). As it is not open-sourced,
the comparison is limited to these four ISAs. The
results show that FlowMalTrans achieves better
performance than CrossIns2Vec.

The fourth baseline analyzes IR code. We as-
sess whether a model trained on X86-64 IR code
can be reused to test IR code in other ISAs. We
use angr (angr, 2024) to lift binaries into IR. We
train LSTM using the same task-specific training
dataset in X86-64, and apply the model to test the
same task-specific datasets in other ISAs. The AUC
scores are 0.819, 0.815, 0.825, 0.791, 0.639 and
0.476 for 1386, ARM32, ARM64, MIPS32, PPC32
and M68K, respectively. This indicates IR alone
does not magically allow a model trained on one
ISA to be reused for other ISAs. (more explanation
is discussed in Appendix A.10).

Comparison with Same-ISA Model. The results
of the Same-ISA model are shown in Table 3(b).
When the LSTM model is trained and tested on
the same ISA, it achieves AUC of 0.998, 0.986,
0.705, 0.952, 0.949 and 0.790 for 1386, ARM32,
ARMO64, MIPS32, PPC32 and M68K, respectively.
Comparing the results with our model in Table 3(a),
we observe: (1) our model achieves performance
close to Same-ISA model for 1386, ARM32 and
MIPS32; (2) our model significantly outperforms
Same-ISA model for ARM64, PPC32 and M68K.

For 1386, ARM32, and MIPS32, the results
align with expectations: the Same-ISA model,
trained and tested on the same ISA, outperforms
FlowMalTrans, which is trained on X86-64 and
tested on other ISAs (via translation). However,
for ARM64, PPC32, and M68K, our model outper-
forms the Same-ISA model due to the insufficient
malware samples used to train the Same-ISA model.
For example, for M68K, only 80% of 545 malware
samples are used for training. This highlights the
importance of sufficient training data to achieve
desirable performance. While including more data
could enhance the model’s performance, collect-
ing malware samples for low-resource ISAs can be

challenging. Our approach—translating binaries to
X86-64—addresses data scarcity effectively. In an
extreme case, if only one binary in a given ISA is
available, we can still detect whether it is malware
using the X86-64-trained model.

5.6 Hyperparameter and Ablation Study

We conduct hyperparameter and ablation studies.
Normalizing Flows. We 1) explore different types
of NFs, including scf (Scaling and Coupling Flow)
and glow (Generative Flow), 2) vary the number of
sequential flows, and 3) remove the flow adapter.
The results show that 1) using scf with 3 sequential
flows yields the best performance, and 2) when the
flow adapter is removed, the performance degrades,
highlighting the crucial role of normalizing flows.
Normalization Rules. We conduct ablation study
to evaluate the impacts of normalization rules (Sec-
tion 4.1). The results show that: (1) When all rules
are applied, we achieve the best performance. (2)
When a subset of rules is applied, the AUC values
are reduced, indicating each rule mitigates the OOV
issue and positively impacts translation quality.
More details are presented in Appendix A.9.

6 Conclusion and Future Work

We proposed FlowMalTrans, a flow-adapter-
based unsupervised binary code translation model.
FlowMalTrans incorporates normalizing flows
(NFs) to model the basic block-level representa-
tions, enhancing its code translation capability.
We train FlowMalTrans to translate binaries from
other ISAs to X86-64, and reuse a malware detec-
tion model trained on X86-64 to test the translated
code. Our approach effectively reduces the bur-
den of data collection and achieves better malware
detection across ISAs than prior state of the arts.

Large language Models (LLMs) show extraor-
dinary capability at coding tasks and are widely
utilized (Xu et al., 2025; Ma et al., 2024; Sun et al.,
2025a,b). We leave using LLM for binary code
translation as future work.

3259

Limitations

Generalizability. Our evaluation encompasses
malware detection across seven distinct ISAs,
demonstrating the broad applicability of our
method. However, our experimental valida-
tion is constrained to Linux-based malware sam-
ples. The transferability of our binary code
translation framework to alternative operating sys-
tems—including Windows, iOS, and Android en-
vironments—remains an open question that war-
rants dedicated empirical investigation. Addition-
ally, while our experiments focus on translating
from various ISAs to X86-64, exploring ARM32
as an alternative target architecture presents an in-
teresting direction, given its substantial malware
dataset availability.

Beyond malware detection, our translation
framework shows promise for broader binary anal-
ysis applications. The underlying code transfor-
mation capabilities could be leveraged for tasks
such as vulnerability discovery and code similarity
analysis. The strong performance demonstrated
in malware detection validates the core technical
approach, establishing a foundation for future re-
search directions. Expanding this methodology
to additional security analysis tasks represents a
natural progression that could unlock significant
research opportunities in cross-ISA binary analysis.
Malware Packing and Obfuscation. The prac-
tice of malware packing entails hiding malicious
code inside files that appear benign. Our research
excludes malware packing from consideration, as
it lies beyond our analytical scope. Our investiga-
tion centers on examining how well malware de-
tection models transfer across different instruction
set architectures (ISAs) through binary translation.
The malware specimens employed in our detection
experiments are uncompressed, enabling their ex-
amination and reverse engineering using analytical
tools such as IDA Pro (IDA, 2023).

Additionally, when dealing with compressed
malware, one approach involves utilizing so-
phisticated decompression utilities, including
PEiD (PEiD, 2008) and OllyDbg (OllyDbg, 2000),
to initially decompress the malware before analyz-
ing the resulting content.

Code obfuscation methods present significant
obstacles for malware identification systems. The
malware specimens utilized in our research origi-
nated from VirusShare.com (VirusShare, 2020), a
collection platform that gathers malware encoun-

tered in real-world environments. It is commonly
understood that such malware frequently imple-
ments obfuscation strategies to circumvent detec-
tion systems. Nevertheless, we do not possess
definitive information about the particular obfusca-
tion methods employed in each malware sample,
which complicates evaluating resistance against
specific obfuscation approaches.

Our research primarily tackles the problem of
limited data availability in resource-constrained
ISAs by converting binaries from these ar-
chitectures to a well-resourced ISA through
FlowMalTrans.

Subsequent research could methodically inves-
tigate how obfuscation techniques affect detection
capabilities. A significant obstacle is the lack of
a reliable, high-quality dataset that correlates mal-
ware samples with their corresponding obfuscation
methods. Addressing this deficiency will be a pri-
ority in our upcoming investigations.

Ethical Considerations

To train and test our translation model
FlowMalTrans, we first collect various open-
source programs and compile them for different
ISAs using cross compilers. Given the wide
availability of open-source programs, this requires
minimal effort. Moreover, we strictly adhere
to the licensing agreements and intellectual
property rights associated with each program when
collecting them and building the training and
testing datasets.

For evaluation within the security domain, we
utilized malicious software specimens obtained
from the VirusShare.com platform (VirusShare,
2020), a well-established digital repository that
serves the cybersecurity research community. We
acknowledge the substantial ethical responsibilities
accompanying the use of such security-sensitive
materials. Our research protocols emphasized legit-
imate scientific inquiry, prevention of inadvertent
threat proliferation, and careful attention to confi-
dentiality and regulatory compliance.

In the interest of scientific reproducibility and
community advancement, we intend to distribute
our developed model architecture, implementation
code, and experimental datasets through a pub-
lic repository under GPL licensing terms. The
compiled open-source program collections will be
made fully accessible in their original form. Re-
garding security-critical materials, we will exclu-

3260

sively share cryptographic hash identifiers and file
references from VirusShare.com, enabling verifi-
cation and retrieval by qualified researchers while
avoiding direct transmission of potentially danger-
ous executable content.

Acknowledgement

This work was supported in part by the US Na-
tional Science Foundation (NSF) under grant CNS-
2304720, and in part by the Commonwealth Cy-
ber Initiative. The authors would like to thank
the anonymous reviewers for their invaluable com-
ments.

References

Iftakhar Ahmad and Lannan Luo. 2023. Unsupervised
binary code translation with application to code clone
detection and vulnerability discovery. In Findings
of the Association for Computational Linguistics:
EMNLP 2023, Singapore. Association for Computa-
tional Linguistics.

Bastidas F Andrés and Maria Pérez. 2017. Transpiler-
based architecture for multi-platform web applica-
tions. In 2017 IEEE Second Ecuador Technical Chap-
ters Meeting (ETCM), pages 1-6. IEEE.

angr. 2024. Intermediate representation. https://

docs.angr.io/advanced-topics/ir.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018. Unsupervised neural ma-
chine translation. In ICLR.

Omer Aslan, Merve Ozkan-Okay, and Deepti Gupta.
2021. Intelligent behavior-based malware detection
system on cloud computing environment. /EEE Ac-
cess.

Sunny Behal, Amanpreet Singh Brar, and Krishan Ku-
mar. 2010. Signature-based botnet detection and
prevention. In Proceedings of International Sym-
posium on Computer Engineering and Technology,
pages 127-132.

Iker Burguera, Urko Zurutuza, and Simin Nadjm-
Tehrani. 2011. Crowdroid: behavior-based malware
detection system for android. In Proceedings of the
1st ACM workshop on Security and privacy in smart-
phones and mobile devices.

ITacer Calixto, Miguel Rios, and Wilker Aziz. 2019. La-
tent variable model for multi-modal translation. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6392—
6405.

Luca Caviglione, Michat Choras, Igino Corona, Ar-
tur Janicki, Wojciech Mazurczyk, Marek Pawlicki,
and Katarzyna Wasielewska. 2020. Tight arms race:
Overview of current malware threats and trends in
their detection. IEEE Access, 9:5371-5396.

Junming Chen, Xiaoyue Ma, Lannan Luo, and Qiang
Zeng. 2025. Tracking you from a thousand miles
away! turning a bluetooth device into an apple
{AirTag} without root privileges. In 34th USENIX
Security Symposium (USENIX Security 25), pages
4345-4362.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt,
and David K Duvenaud. 2018. Neural ordinary dif-
ferential equations. Advances in neural information
processing systems, 31.

Anton Chernoff, Mark Herdeg, Ray Hookway, Chris
Reeve, Norman Rubin, Tony Tye, S Bharadwaj Ya-
davalli, and John Yates. 1998. Fx! 32: A profile-
directed binary translator. /EEE Micro, 18(02):56—
64.

3261

https://doi.org/10.18653/v1/2023.findings-emnlp.971
https://doi.org/10.18653/v1/2023.findings-emnlp.971
https://doi.org/10.18653/v1/2023.findings-emnlp.971
https://docs.angr.io/advanced-topics/ir
https://docs.angr.io/advanced-topics/ir

Cristina Cifuentes and Mike Van Emmerik. 2000. Uqbt:
Adaptable binary translation at low cost. Computer,
33(3):60-66.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzman, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Associa-
tion for Computational Linguistics.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. Advances in
neural information processing systems.

Ali Davanian and Michalis Faloutsos. 2022. Malnet: A
binary-centric network-level profiling of iot malware.
In Proceedings of the 22nd ACM Internet Measure-
ment Conference, pages 472-487.

Jimmy Ba. Diederik P. Kingma. 2014. Adam: A method
for stochastic optimization.

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe
Charland. 2019. Asm2vec: Boosting static repre-
sentation robustness for binary clone search against
code obfuscation and compiler optimization. In 2019
IEEE Symposium on Security and Privacy (SP).

Laurent Dinh, David Krueger, and Yoshua Bengio. 2014.
Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio.
2022. Density estimation using real nvp. In Interna-
tional Conference on Learning Representations.

Dummy name. 2023. Dummy name pre-
fixes. https://hex-rays.com/blog/
igors-tip-of-the-week-34-dummy-names/.

Kemal Ebcioglu, Erik Altman, Michael Gschwind, and
Sumedh Sathaye. 2001. Dynamic binary translation

and optimization. IEEE Transactions on computers,
50(6):529-548.

Bryan Eikema and Wilker Aziz. 2019. Auto-encoding
variational neural machine translation. In Proceed-
ings of the 4th Workshop on Representation Learning
for NLP (RepL4NLP-2019), pages 124—-141.

Isaac Feldman and Rolando Coto-Solano. 2020. Neu-
ral machine translation models with back-translation
for the extremely low-resource indigenous language
bribri. In Proceedings of the 28th International Con-
ference on Computational Linguistics, pages 3965—
3976.

Mohana Gopinath and Sibi Chakkaravarthy Sethura-
man. 2023. A comprehensive survey on deep learn-
ing based malware detection techniques. Computer
Science Review.

Thamme Gowda and Jonathan May. 2020. Finding the
optimal vocabulary size for neural machine transla-
tion. arXiv preprint arXiv:2004.02334.

Hamed HaddadPajouh, Ali Dehghantanha, Raouf
Khayami, and Kim-Kwang Raymond Choo. 2018.
A deep recurrent neural network based approach for
internet of things malware threat hunting. Future
Gener. Comput. Syst., 85(C).

Jianfeng He, Xuchao Zhang, Shuo Lei, Abdulaziz Al-
hamadani, Fanglan Chen, Bei Xiao, and Chang-Tien
Lu. 2023. Clur: Uncertainty estimation for few-shot
text classification with contrastive learning. In Pro-
ceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 698—
710.

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and
Pieter Abbeel. 2019. Flow++: Improving flow-based
generative models with variational dequantization
and architecture design. In International conference
on machine learning, pages 2722-2730. PMLR.

IDA. 2023. 1IDA Pro: A powerful disassembler
and a versatile debugger. https://hex-rays.com/
ida-pro/.

Sébastien Jean, Kyunghyun Cho, Roland Memisevic,
and Yoshua Bengio. 2014. On using very large target
vocabulary for neural machine translation. arXiv
preprint arXiv:1412.2007.

Marie-Anne Lachaux, Baptiste Roziere, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. arXiv
preprint arXiv:2006.03511.

Shuo Lei, Xuchao Zhang, Jianfeng He, Fanglan Chen,
and Chang-Tien Lu. 2022. Uncertainty-aware cross-
lingual transfer with pseudo partial labels. In Find-
ings of the Association for Computational Linguistics:
NAACL 2022, pages 1987-1997.

Xiang Li, Ying Meng, Junming Chen, Lannan Luo,
and Qiang Zeng. 2025. Rowhammer-based trojan
injection: One bit flip is sufficient for backdooring
dnns. In USENIX Security Symposium.

Xiaopeng Li, Qiang Zeng, Lannan Luo, and Tongbo
Luo. 2020. T2pair: Secure and usable pairing for het-
erogeneous iot devices. In Proceedings of the 2020
acm sigsac conference on computer and communica-
tions security, pages 309-323.

Xuezixiang Li, Yu Qu, and Heng Yin. 2021. Palmtree:
Learning an assembly language model for instruc-
tion embedding. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communica-
tions Security.

Wu Liu, Ping Ren, Ke Liu, and Hai-xin Duan. 2011.
Behavior-based malware analysis and detection. In
2011 first international workshop on complexity and
data mining. IEEE.

Lannan Luo, Qiang Zeng, Bokai Yang, Fei Zuo, and
Junzhe Wang. 2021. Westworld: Fuzzing-assisted
remote dynamic symbolic execution of smart apps
on iot cloud platforms. In Proceedings of the 37th

3262

https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://doi.org/10.1109/SP.2019.00003
https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/
https://hex-rays.com/blog/igors-tip-of-the-week-34-dummy-names/
https://doi.org/10.1016/j.future.2018.03.007
https://doi.org/10.1016/j.future.2018.03.007
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/

Annual Computer Security Applications Conference,

pages 982-995.

Xiaoyue Ma, Lannan Luo, and Qiang Zeng. 2024. From
one thousand pages of specification to unveiling hid-
den bugs: Large language model assisted fuzzing
of matter {IoT} devices. In 33rd USENIX Security
Symposium (USENIX Security 24), pages 4783-4800.

Xiaoyue Ma, Qiang Zeng, Haotian Chi, and Lannan Luo.
2023. No more companion apps hacking but one don-
gle: Hub-based blackbox fuzzing of iot firmware. In
Proceedings of the 21st Annual International Confer-
ence on Mobile Systems, Applications and Services,

pages 205-218.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 4282-4292.

OllyDbg. 2000. OllyDbg. Url=https://www.ollydbg.de.

George Papamakarios, Theo Pavlakou, and Iain Murray.
2017. Masked autoregressive flow for density esti-
mation. Advances in neural information processing
systems, 30.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics. Association for Computational
Linguistics.

PEID. 2008.
Url=https://github.com/wolfram77web/app-
peid?tab=readme-ov-file.

PEiD.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, Belgium,
Brussels. Association for Computational Linguistics.

Mila Dalla Preda, Mihai Christodorescu, Somesh Jha,
and Saumya Debray. 2008. A semantics-based ap-
proach to malware detection. ACM Transactions on
Programming Languages and Systems (TOPLAS).

Cheerala Rohith and Gagandeep Kaur. 2021. A compre-
hensive study on malware detection and prevention
techniques used by anti-virus. In 2021 2nd inter-
national conference on intelligent engineering and
management (iciem). IEEE.

Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanus-
sot, and Guillaume Lample. 2020. Unsupervised
translation of programming languages. Advances
in neural information processing systems, 33:20601—
20611.

Andrea Saracino, Daniele Sgandurra, Gianluca Dini,
and Fabio Martinelli. 2016. Madam: Effective and
efficient behavior-based android malware detection
and prevention. /IEEE Transactions on Dependable
and Secure Computing.

V Sai Sathyanarayan, Pankaj Kohli, and Bezawada
Bruhadeshwar. 2008. Signature generation and detec-
tion of malware families. In Information Security and
Privacy: 13th Australasian Conference, ACISP 2008,
Wollongong, Australia, July 7-9, 2008. Proceedings
13. Springer.

Stefano Sebastio, Eduard Baranov, Fabrizio Biondi,
Olivier Decourbe, Thomas Given-Wilson, Axel
Legay, Cassius Puodzius, and Jean Quilbeuf. 2020.
Optimizing symbolic execution for malware behavior
classification. Computers & Security, 93.

Hendra Setiawan, Matthias Sperber, Udhyakumar Nal-
lasamy, and Matthias Paulik. 2020. Variational neu-
ral machine translation with normalizing flows. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7771—
7777.

Mohit Sewak, Sanjay K Sahay, and Hemant Rathore.
2018. An investigation of a deep learning based
malware detection system. In Proceedings of the 13th
International Conference on Availability, Reliability
and Security.

Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and
Wuu Yang. 2012. Llbt: an llvm-based static binary
translator. In Proceedings of the 2012 international
conference on Compilers, architectures and synthesis
for embedded systems, pages 51-60.

Raphael Shu, Jason Lee, Hideki Nakayama, and
Kyunghyun Cho. 2020. Latent-variable non-
autoregressive neural machine translation with deter-
ministic inference using a delta posterior. In Proceed-
ings of the aaai conference on artificial intelligence,
volume 34, pages 8846-8853.

Yu Sun, Zachary Coalson, Shiyang Cheng, Hang Liu,
Sanghyun Hong, Zhao Zhang, Bo Fang, and Lishan
Yang. 2025a. Demystifying the resilience of large
language model inference: An end-to-end perspec-
tive.

Yu Sun, Zhu Zhu, Cherish Mulpuru, Roberto Gioiosa,
Zhao Zhang, Bo Fang, and Lishan Yang. 2025b. Ft2:
First-token-inspired online fault tolerance on critical
layers for generative large language models.

Dhiren Tripuramallu, Swapnil Singh, Shrirang Desh-
mukh, Srinivas Pinisetty, Shinde Arjun Shivaji, Raja
Balusamy, and Ajaganna Bandeppa. 2024. Towards
a transpiler for c/c++ to safer rust. arXiv preprint
arXiv:2401.08264.

Tung-Tso Tsai, Han-Yu Lin, Wei-Ning Huang, Sachin
Kumar, Kadambari Agarwal, and Chien-Ming Chen.
2024. Anomaly detection through outsourced revoca-
ble identity-based signcryption with equality test for

3263

https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319

sensitive data in consumer iot environments. /[EEE
Transactions on Consumer Electronics.

A Vaswani. 2017. Attention is all you need. Advances
in Neural Information Processing Systems.

VirusShare. 2020. Virusshare: An open-source repos-
itory of malware samples. https://virusshare.
com/.

Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang
Zeng, and Lannan Luo. 2023a. Can a deep learn-
ing model for one architecture be used for others?
Retargeted-Architecture binary code analysis. In
32nd USENIX Security Symposium (USENIX Secu-
rity 23), Anaheim, CA. USENIX Association.

Junzhe Wang, Matthew Sharp, Chuxiong Wu, Qiang
Zeng, and Lannan Luo. 2023b. Can a deep
learning model for one architecture be used for
others?{Retargeted-Architecture} binary code analy-
sis. In 32nd USENIX Security Symposium (USENIX
Security 23), pages 7339-7356.

Junzhe Wang, Qiang Zeng, and Lannan Luo. 2024.
Learning cross-architecture instruction embeddings
for binary code analysis in low-resource architectures.
In Findings of the Association for Computational Lin-
guistics: NAACL 2024, pages 1320-1332.

Justin D Weisz, Michael Muller, Stephanie Houde, John
Richards, Steven I Ross, Fernando Martinez, Mayank
Agarwal, and Kartik Talamadupula. 2021. Perfection
not required? human-ai partnerships in code transla-
tion. In Proceedings of the 26th International Confer-
ence on Intelligent User Interfaces, pages 402—412.

Chuxiong Wu, Xiaopeng Li, Lannan Luo, and Qiang
Zeng. 2022a. G2auth: secure mutual authentication
for drone delivery without special user-side hardware.
In Proceedings of the 20th Annual International Con-
ference on Mobile Systems, Applications and Ser-
vices, pages 84-98.

Chuxiong Wu, Xiaopeng Li, Fei Zuo, Lannan Luo, Xi-
aojiang Du, Jia Di, and Qiang Zeng. 2022b. Use it-no
need to shake it! accurate implicit authentication for
everyday objects with smart sensing. Proceedings
of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 6(3):1-25.

Yanze Wu and Md Tanvir Arafin. 2025. Arkane: Ac-
celerating kolmogorov-arnold networks on reconfig-
urable spatial architectures. I[EEE Embedded Systems
Letters.

Yucheng Xie Xie, Xiaonan Guo, Yan Wang, Jerry Q
Cheng, Tianfang Zheng, Yingying Chen, Yi Wei, and
Yuan Ge. 2024. mmpalm: Unlocking ubiquitous
user authentication through palm recognition with
mmwave signals. IEEE Conference on Communica-
tions and Network Security (CNS).

Xiaoyu Xu, Minxin Du, Qingqing Ye, and Haibo Hu.
2025. Obliviate: Robust and practical machine un-
learning for large language models. arXiv preprint
arXiv:2505.04416.

Zheyu Zhang, Jianfeng He, Avinash Kumar, and Saifur
Rahman. 2024. Ai-based space occupancy estima-
tion using environmental sensor data. In 2024 IEEE
Power and Energy Society Innovative Smart Grid
Technologies Conference.

Yue Zhao, Farhan Ullah, Chien-Ming Chen, Mo-
hammed Amoon, and Saru Kumari. 2025. Efficient
malware detection using hybrid approach of transfer
learning and generative adversarial examples with
image representation. Expert Systems, 42(2):e13693.

Zhu Zhu, Yu Sun, Dhatri Parakal, Bo Fang, Steven
Farrell, Gregory H Bauer, Brett Bode, Ian T Foster,
Michael E Papka, William Gropp, et al. 2025. Under-
standing the landscape of ampere gpu memory errors.
arXiv preprint arXiv:2508.03513.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo,
Qiang Zeng, and Zhexin Zhang. 2018. Neural
machine translation inspired binary code similarity
comparison beyond function pairs. arXiv preprint
arXiv:1808.04706.

3264

https://virusshare.com/
https://virusshare.com/
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junzhe
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junzhe
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junzhe
https://doi.org/10.1109/ISGT59692.2024.10454176
https://doi.org/10.1109/ISGT59692.2024.10454176

A Appendix
A.1 Model Training Details

Model Pretraining. Pretraining is a key ingredient
of unsupervised neural machine translation. Stud-
ies have shown that the pre-trained cross-lingual
word embeddings which are used to initialize the
lookup table, have a significant impact on the per-
formance of an unsupervised machine translation
model (Conneau et al., 2020; Conneau and Lample,
2019). We adopt this and pre-train both the en-
coders and decoders of FlowMalTrans to bootstrap
the iterative process of our binary translation model.
We employ causal language modeling (CLM) and
masked language modeling (MLM) objectives to
train the encoder and decoder.

(1) The CLM objective trains the model to pre-
dict a token e, given the previous (¢ — 1) tokens in
a basic block P(e¢leq, ..., et—1,0). (2) For MLM,
we randomly sample 15% of the tokens within the
input block and replace them with [MASK] 80% of
the time, with a random token 10% of the time, or
leave them unchanged 10% of the time.

The first and last token of an input basic block
is a special token [/s], which marks the start and
end of a basic block. We add position embedding
and architecture embedding to token embedding,
and use this combined vector as the input to the
bi-directional Transformer network. Position em-
beddings represent different positions in a basic
block, while architecture embeddings specify the
architecture of a basic block. Both position and
architecture embeddings are trained along with the
token embeddings and help dynamically adjust the
token embeddings based on their locations.
Denoising Auto-Encoding (DAE). The DAE re-
constructs a basic block from its noised version,
as depicted in the process (1) and 2) in Figure 2.
Given the input source block, Bg,., we introduce
random noise into it (e.g., altering the token order
by making random swaps of tokens), resulting in
the noised version, B;TC. Then, B;m is fed into
the target encoder, whose output is analyzed by the
source decoder. The training aims to optimize both
the target encoder and source decoder to effectively
recover Bg,.. Through this, the model can better
accommodate the inherent token order divergences.
Similarly, the source encoder and source decoder
are optimized when the input is a target basic block,
By 4¢. The training procedure of DAE involves only
a single ISA at each time, without considering the
final goal of translating across ISAs nor the latent

code transformation.

Back Translation (BT). We adopt the back-
translation approach (Feldman and Coto-Solano,
2020) to train our model in a translation setting,
as shown in Figure 2. As an example, given an
input basic block in one ISA N, we use the model
in the inference mode to translate it to the other
ISA M (i.e. applying the encoder of N and the
decoder of M). This way, we obtain a pseudo-
parallel basic block pair. We then train the model
to predict the original basic block (i.e. applying
the encoder of M and the decoder of N) from this
synthetic translation. As training progresses and
the model improves, it will produce better synthetic
basic block pairs through backtranslation, which
will serve to further improve the model in the subse-
quent iterations. In BT, the latent code transforma-
tion is performed twice and trained along with the
encoders/decoders; taking BT for the source ISA as
an example: first in the source-to-target direction,
then in the target-to-source direction as shown in
the steps of (3) and (4) in Figure 2.

A.2 Examples of Normalized Assembly Code

Table 4 shows some randomly selected examples
for instruction normalization. For each sub-table,
the code on the left side represents the original
version, while the code on the right side shows the
normalized version.

A.3 Dataset Adequacy

To train FlowMalTrans, we create a training
dataset for each ISA: 2,789,119 blocks for
X86-64, 2,803,557 blocks for 1386, 7,413,083
blocks for ARM64, 5, 812, 795 blocks for ARM32,
4,813,685 blocks for MIPS32, 3,964,237
blocks for PPC32, and 5,463,395 blocks for
M68K. It should be noted that the training of
FlowMalTransis unsupervised.

In NLP, it is widely recognized that a compre-
hensive dataset, which ensures that the vocabulary
covers a wide range of words, is crucial for train-
ing effective code translation models. We assess
the adequacy of our mono-architecture datasets.
Specifically, we study the vocabulary growth as
we incrementally include programs. Our findings
indicate that while the vocabulary size initially in-
creases with the inclusion of more programs, it
eventually stabilizes. Take X86-64 as an example,
including openssl-1.1.1p results in a vocabulary
size of 23,029. The size increases to 36,770 (a
60% growth) when binutils-2.34 is added, and then

3265

Table 4: Comparison of original and normalized assembly code.

call <FUNC>

sbb al <VALUE>

mov esi <HEX>+<TAG>
lea rdi <STR>

sub rdx <TAG>

(a) X86-64

ADD R12 R12 0x1B000@
LDR PC memcpy-0x2B7C

call _gpgrt_log_info
sbb al o

mov esi QACh+_bss_start
lea rdi str_LogWithPid
sub rdx buffer

ADD R12 R12 <HEX>
LDR PC <FUNC>-<HEX>

BEQ.W loc_109B4 BEQ.W <LOC>
BL gz_uncompress BL <FUNC>
CMP R2 @ CMP R2 <VALUE>
(c) ARM32
lw $fp 0x40+var_20 1w $fp <HEX>+<VAR>
bal usage bal <FUNC>

beqz $v0 loc_1358

move $a2 $s3+1 move $a2 $s3+<VALUE>

sw $s0 0x40+path($sp) sw $s0 <HEX>+<TAG>($sp)
(e) MIPS32

move.l #$DB3EF do
sub.w a2 d4-stream_23
tst.b loc_5H

beqz $v@ <LOC>

cmp.l #$352A #23+mem_name

divs.w #16 d2

add esp oCh
call _dcgettext
lea eax [ebx-5D40h]
jmp short loc_37C3
mov eax [150h+domainname]
(b) 1386

LDR X0 [SP #0xCo@+stream_68]
TBZ WO #@ loc_AF38

ADRL X1 str_ErrorInitia

B _gmon_start_

MOV X19 #0

add esp <HEX>

call <FUNC>

lea eax [ebx-<HEX>]
jmp short <LOC>

mov eax [<HEX>+<TAG>]

LDR X0 [SP <HEX>+<TAG>]
TBZ WO <HEX> <LOC>
ADRL X1 <STR>

B <FUNC>

MOV X19 <HEX>

(d) ARM64

addi r3 r4 <VALUE>
cmpwi <VALUE>+<VAR>
beq <TAG>
stw r6 r2 <VALUE>+<HEX>
1wz r3 <HEX>+<STR>

(f) PPC32

addi r3 r4 8

cmpwi r2 8+var_12
beq _str_branch_
stw r6 r2 6+0x1C5
1wz r3 Ox3H+str_56

move.l <HEX> do

sub.w a2 d4-<TAG>

tst.b <LOC>

cmp.l <HEX> <VALUE>+<TAG>
divs.w <VALUE> d2

(2) M68K

increases to 39,499 (a 7.4% growth) and 39, 892
(a 0.9% growth) when findutils-4.8.0, libpgp-error-
1.45 are included, respectively. The growth trend is
similar for other ISAs. It shows that the vocabulary
barely grows in the end when more programs are
added. According to the vocabulary growth trend
and the high performance achieved, our mono-arch
datasets are adequate to cover instructions and en-
able effective code translation.

Note that the datasets used for training
FlowMalTrans have no overlap with (1) the
dataset used for testing the translation capability
of FlowMalTrans and (2) the testing dataset used
in the malware detection task. The details of these
datasets are introduced in the following sections.

A.4 Model Parameters of FlowMalTrans

The encoders and decoders of FlowMalTrans are
implemented using the Transformer model. Table 5
shows the details of the model parameters.

A.5 Model Parameters of Malware Detection
LSTM Model

We use the LSTM model to detect malware. Table 6

shows the parameters details of the LSTM model.

A.6 Malware Detection Using a CNN model

We use a 1-dimensional Convolutional Neural Net-
work (CNN) model to detect malware. The param-
eters of the CNN model are presented in Table 7.

We use the same task-specific training and test-
ing datasets described in Section 5.4. Moreover,
we compare our results against four baseline meth-
ods and the Same-ISA model. Table 8 presents the
malware detection results using the CNN model.

When the CNN model trained on X86-64 is
transferred to 1386, ARM32, ARM64, MIPS32,
PPC32 and M68K, it achieves AUC values of
0.993, 0.984, 0.973, 0.952, 0.942 and 0.937, re-
spectively. These high accuracies highlight the
superior translation quality of FlowMalTrans, out-
performing both UnsuperBinTrans and the IR-
based model. Compared to the Same-ISA model,
we have the following observation. (1) First, our
model achieves performance close to the Same-ISA
model when testing malware on 1386, ARM32, and
MIPS32. This outcome is expected, as the Same-
ISA model is trained and tested on the same ISA,
while our model is trained on X86-64 and tested
on other ISAs through translation. (2) Second,
our model significantly outperforms the Same-ISA
model on ARM64, PPC, and M68K. This is due to
the limited malware samples available for training
the Same-ISA model on the two ISAs, highlight-
ing the value of our approach. By reusing a model
trained on a high-resource ISA, we enable robust
detection for low-resource ISAs that would other-
wise face significant challenges.

3266

Table 5: Parameter Details of FlowMalTrans.

Parameter Value

Description

32/64/128
4* Emb. Dimension

Emb. Dimension
Hidden Dimension

Num. Layers 4
Num. Heads 4
Regu. Dropout 0.1
Attn. Dropout 0.1
Batch Size 256
Max. Length 512
Optimizer Adam
Clip Grad. Norm 5
Act. Function ReLU
Pooling Mean
Accumulate Grad. 8

Embedding layer size for tokens
Transformer FFN hidden dimension
Number of transformer layers
Number of attention heads per layer
Dropout rate for regularization
Dropout rate in attention layers
Number of sentences per batch
Maximum length of one sentence after BPE
Adam optimizer with sqrt decay
Maximum gradient norm for clipping
Use ReLU for activation
Use mean pooling for sentence embeddings
Accumulate gradients over N iterations

Table 6: Parameter Details of the malware detection LSTM model.

Parameter Value Description
Emb. Dimension 32/64/128 Input feature dimension for sequence embedding
Num. of Layers 3 Number of stacked LSTM layers in the network
Hidden Units 16 Number of hidden units in each LSTM layer
Output Units 1 Dimension of the output layer
Batch Size 36 Number of samples processed in one batch
Optimizer Adam Adaptive optimization algorithm with momentum
Loss Function BCEWithLogitsLoss Binary cross-entropy with logits
Pooling Max Maximum value across temporal dimension

Table 7: Parameter Details of the malware detection CNN model.

Parameter Value Description
Emb. Dimension 64 Input feature dimension for sequence embedding
Conv. Layers 2 Number of convolutional layers in the CNN network
Conv. Kernel 3 Kernel size of the convolutional layers
Output Units 1 Dimension of the output layer
Batch Size 64 Number of samples processed in one batch
Optimizer Adam Adam optimizer with a learning rate of 0.001
Loss Function BCEWithLogitsLoss Binary cross-entropy with logits
Pooling Max Maximum pooling to reduce spatial dimensions

A.7 Malware Detection Using All Malware
Samples for Testing

We train the LSTM model exclusively on X86-64,
and reuse the trained model to test binaries in other
ISAs, including 1386, ARM32, ARM64, MIPS32,
PPC32 and M68K. It is important to note the key
difference between the experiment described in
this Appendix and that in Section 5.4. Here, we use
all malware samples from 1386, ARM32, ARM64,
MIPS32, PPC32 and M68K for testing. In contrast,
in Section 5.4, only 20% of the malware samples
from these ISAs are used for testing, as the remain-
ing 80% are reserved for training.

Result Analysis. We first train LSTM on X86-64,
and reuse the model to test binaries in the other
ISAs. The results are shown in Table 9. We can
see that when the model trained on X86-64 is trans-
ferred to 1386, ARM32, ARM64, MIPS32, PPC32
and M68K, it achieves AUC = 0.997, 0.982, 0.963,
0.974, 0.978 and 0.940 respectively. The high ac-
curacies demonstrate the superior translation qual-

DRBW
LDR MOVZXE pop
MOV.W PUSH.W
MOV | MOSD POP
PUSH | MOVQ

LEA MOVSXD MOVS
MOVSx | _PUSH
LDRB

Logical

Opcodes MOV

Data Movement

Control Flow

Opcodes
Opcodes
a2
e
5 o muLw | Abc
[200 SUBS | IMUL
f - SUB SUBSW

L

Figure 3: Visualization of opcode embeddings.

ity of FlowMalTrans.

A.8 Semantic Transfer Analysis

We analyze how FlowMalTrans is able to preserve
the code semantics through translation. Specifi-
cally, we visualize the embeddings of opcode to-
kens from different ISAs. We take the X86-64 and
ARM32 pair as an example. Opcodes, which deter-
mine the operation to be performed, capture more

3267

Table 8: Malware detection results using CNN. In Table (a), we compare the detection performance by translating
malware using FlowMalTrans and UnsuperBinTrans. Then we evaluate it against UniMap, the IR-based and
Same-ISA model. In Table (b), we give the results of the Same-ISA model, which is trained and tested on the same

ISA.
(a) FlowMalTrans vs. Four baselines. (b) The Same-ISA model.
ISA Pair FlowMalTrans | UnsuperBinTrans UniMap CrossIns2Vec | IR-based Model Train & Test on | Same-ISA
(src — tgt) (Our Work) (Baseline 1) (Baseline 2) (Baseline 3) (Baseline 4) the same ISA Model
1386 — X86-64 0.993 0.745 0.953 - 0.823 386 0.997
ARM32 — X86-64 0.984 0.826 0.953 0.976 0.842 ARM32 0.988
ARM64 — X86-64 0.973 0.641 0.910 - 0.818 ARM64 0.714
MIPS32 — X86-64 0.974 0.762 0.933 0.964 0.774 MIPS32 0.956
PPC32 — X86-64 0.972 0.736 0.919 0.967 0.642 PPC32 0.853
M68K — X86-64 0.931 0.696 0.893 - 0.483 M68K 0.780

Table 9: Malware detection results. We use all the malware samples in 1386, ARM32, ARM64, MIPS32, PPC32
and M68K for testing. We compare the detection performance by translating malware using FlowMalTrans and
UnsuperBinTrans, and evaluate it against the IR-based model.

ISA Pair FlowMalTrans | UnsuperBinTrans UniMap CrossIns2Vec | IR-based Model
(src — tgt) (Our Work) (Baseline 1) (Baseline 2) (Baseline 3) (Baseline 4)

1386 — X86-64 0.997 0.728 0.949 - 0.821
ARM32 — X86-64 0.982 0.821 0.951 0.975 0.813
ARM64 — X86-64 0.963 0.641 0.913 - 0.822
MIPS32 — X86-64 0.974 0.731 0.931 0.968 0.796
PPC32 — X86-64 0.978 0.732 0.916 0.973 0.641
M68K — X86-64 0.940 0.682 0.894 - 0.480

Table 10: Impacts of different types of normalizing
flows on the malware detection task.

Type || 1386 | ARM32 | ARM64 | MIPS32 | PPC32 | M68K

3-scf 0.996 0.981 0.965 0.971 0973 | 0931
3-glow || 0.994 0.983 0.924 0.823 0.873 | 0.873
5-scf 0.957 | 0.875 0.817 0.910 0.832 | 0.824
5-glow || 0.919 0.891 0.843 0.804 0.821 | 0.760
None 0.854 | 0.871 0.784 0.769 0.811 | 0.752

semantics compared to operands; we thus focus on
opcodes for this demonstration. We extract the em-
beddings of 138 X86-64 opcodes and 247 ARM32
opcodes from FlowMalTrans, and visualize them
using t-SNE, as shown in Figure 3. Four categories
of opcodes are selected for demonstration. We can
see that opcodes performing similar operations, re-
gardless of their ISAs, are close together. Thus,
FlowMalTrans can successfully capture semantic
relationships of opcodes across ISAs and preserve
code semantics.

A.9 Hyperparameter and Ablation Study

Normalizing Flows. We conduct an experiment to
analyze the impact of normalizing flows on trans-
lation capability based on the following aspects:
(1) exploring different flow-adapter architectures,
such as Glow (Diederik P. Kingma, 2014); (2)
varying the number of sequential flows to build
the source/target flow; and (3) removing the flow-
adapter architecture in FlowMalTrans.

The results are shown in Table 10. We use two
types of normalizing flows: scf (Scaling and Cou-

pling Flow) and glow (Generative Flow), each con-
figured with different numbers of sequential flows
(e.g., 3 and 5). For instance, 5-glow represents
the scenario where five consecutive glow flows are
utilized to construct the source/target flow. The
last row, None, represents the scenario in which no
normalizing flows are incorporated into the model
FlowMalTrans.

We can observe that: (1) Using 3-scf to construct

the normalizing flows yields the best performance
across all ISAs except for ARM32. However, the
result for ARM32 remains satisfactory, being close
to the highest value. (2) When the flow-adapter
architecture is removed from FlowMalTrans, the
performance degrades, highlighting the crucial role
of normalizing flows in enhancing translation capa-
bility.
Normalization Rules. Each instruction in the
datasets is normalized by applying the three rules
(R1, R2, and R3) discussed in Section 4.1. Nor-
malization is a vital step in our approach. In this
experiment, we conduct ablation study by remov-
ing certain rules and evaluating their influence on
malware detection. We consider these cases:

* (C1): Applying all rules to the data.
* (C2): Removing R1, applying R2 and R3.
* (C3): Removing R2, applying R1 and R3.

* (C4): Removing R3, applying R1 and R2.

3268

Table 11: AUC when varying normalizing strategies.
Case # || 1386 | ARM32 | ARMG64 | MIPS32 | PPC32 | M68K

Case 1 || 0.996 0.981 0.965 0.971 0.973 | 0.931
Case 2 || 0.862 0.521 0.624 0.623 0.617 | 0.638
Case 3 || 0.883 0.575 0.617 0.570 0.503 | 0.642
Case 4 || 0.827 0.533 0.613 0.422 0.451 | 0.546
Case 5 || 0.793 0.453 0.523 0.422 0.473 | 0.471

Table 12: AUC when varying dimension size.

ISA Pair Dimension: Dimension: Dimension:
(src — tgt) 32 64 128

1386— X86-64 0.995 0.996 0.994
ARM32—X86-64 0.978 0.981 0.972
ARM64—X86-64 0.857 0.965 0.860
MIPS32—X86-64 0.912 0.971 0.869
PPC32—X86-64 0.917 0.973 0.892
M68K—X86-64 0.832 0.931 0.917

* (CS): Not applying any rules to the data.

Table 11 shows the results. We can observe

that: (1) When all normalization rules are applied
(C1), we achieve the best performance. (2) When a
subset of normalization rules is applied (C2-4), the
AUC values are lower than in C1, indicating that
each normalization rule mitigates the OOV issue
and has an impact on translation quality, thereby
influencing malware detection performance. (3)
When no normalization rule is applied (C5), the
results are the lowest.
Embedding Dimension. We evaluate the impacts
of the embedding dimension. We test different
dimension sizes, including 32, 64, and 128, to train
FlowMalTrans. We then apply FlowMalTrans to
translate binaries from the source ISA to X86-64
for malware detection. The results are shown in
Table 12. We observe that when the dimension
is set to 64, the AUC values are higher compared
to other dimensions. Moreover, as the dimension
increases, the training time also increases. We thus
choose a dimension of 64, considering both the
translation quality and training efficiency.

A.10 Discussion on IR-based model

Although IR can abstract away many architectural
differences among ISAs, significant variations per-
sist across IR code from different ISAs. Given two
binary executables from different ISAs, compiled
from the same source code, their corresponding IR
representations can still appear quite different. This
issue is discussed in Section 4.3.1 of the UniMap
paper. Consequently, existing approaches that use
IR for cross-ISA binary analysis often require addi-
tional advanced techniques, such as fuzzing or re-
optimization, to bridge these differences. Similarly,
in our evaluation, the IR-based baseline, which
trains a model on X86 IR code and reuses it for test-
ing on IR code from other ISAs, performs poorly

due to these variations.

Decompilation, which converts binary code into
readable C-like code, is inherently a lossy process
with limited accuracy (e.g., complex constructs
such as optimized loops, switch statements, and in-
lined functions are often not recovered accurately).
Moreover, while IDA Pro’s decompiler is among
the best available, it supports only a limited set of
ISAs, restricting its generalization to only those ar-
chitectures. In contrast, our binary code translation
approach does not suffer from these limitations.
Thus, decompilation is an unsuitable solution for
our needs.

A.11 Translation Demonstration

Table 13 and Table 14 shows some randomly se-
lected examples. In each example, (1) the source
ISA is the original basic block in the source ISA,
which could be 1386, ARM32, ARM64, MIPS32,
PPC32 or M68K; (2) the target ISA is the basic
block in the target ISA, X86-64, that is similar to
the original basic block in the source ISA; and (3)
the translated ISA is the X86-64 basic block trans-
lated from the original basic block in the source
ISA by our model FlowMalTrans.

By comparing the translated X86-64 block
with the target X86-64 block, we observe that
FlowMalTrans (1) accurately predicts almost all
opcodes, and (2) while a few operands are pre-
dicted incorrectly, these errors are reasonable. Note
that an instruction consists of an opcode (which
specifies the operation) and zero or more operands
(which specifies registers, memory locations, or
literal data). Thus, opcodes, which determine the
operation to be performed, capture more seman-
tic information compared to operands. On the
other hand, different registers or memory locations
can store data while preserving code functionality,
which reduces the significance of operands.

Consider the first example of the ISA pair
1386—X86-64. In the target X86-64 basic
block, the second instruction is: add rbp
[state+<HEX>], whereas in the translated X86-
64 basic block, the predicted instruction is: add
rdx [s+<HEX>]. Here, FlowMalTrans success-
fully predicts the opcode add, and predicts a dif-
ferent register and memory cell for the operands,
while preserving the functionality of the code.

A.12 Uniqueness of Our Work

We propose an entirely different approach com-
pared to the prior works (Wang et al., 2023b, 2024),

3269

such as UniMap (Wang et al., 2023b), which also
aims to reuse models across ISAs in order to re-
solve the data scarcity issue in low-resource ISAs.

A key limitation of UniMap is its reliance on a lin-
ear transformation to map instruction embeddings
between ISAs. This approach assumes that the em-
bedding spaces of different ISAs exhibit structural
similarity (i.e., are isomorphic). However, this as-
sumption may not hold, particularly for ISAs with
significantly different vocabulary sizes, making it
infeasible to find a suitable linear transformation.
In contrast, FlowMalTrans does not rely on such
an assumption, making it more broadly applicable
across diverse ISAs.

While UniMap learns cross-architecture instruc-
tion embeddings, our method focuses on translating
binary code across ISAs. By translating code to
a high-resource ISA, our approach offers several
advantages. First, it allows the direct application of
existing downstream models—trained on the high-
resource ISA—to other ISAs through testing the
translated code. In contrast, the works in (Wang
et al., 2023b, 2024) require retraining the model us-
ing cross-architecture instruction embeddings. Fur-
thermore, translating code from one ISA to another
assists human analysts in understanding code from
unfamiliar ISAs, supporting broader applications
in code comprehension.

InnerEye (Zuo et al., 2018) applies neural ma-
chine translation (NMT) techniques for binary code
similarity comparison but does not perform binary
code translation across ISAs. It uses two encoders
from NMT models, where each encoder generates
an embedding for a piece of binary code of a given
pairs, and measures similarity based on embed-
ding distance. In contrast, our approach focuses on
translating binary code across ISAs.

Intermediate Representation (IR) is an
architecture-agnostic representation that abstracts
away various architectural differences among
ISAs. However, despite this abstraction, significant
variations still exist across IR code from different
ISAs. Consequently, even when binaries from
different ISAs—compiled from the same source
code—are converted into a common IR, the
resulting IR code often differs significantly, as
discussed in (Ahmad and Luo, 2023). We compare
malware detection performance across ISAs by
translating binaries using FlowMalTrans against
an approach that analyzes the IR code of binaries
across ISAs. The results show our model enables
superior cross-ISA malware detection (see the

evaluation). An interesting direction is exploring
translation based on IR code, which we leave for
future work.

3270

Source i386

Table 13: Examples for code translation.

i386 2

—

Translated X86-64

sub esp <VALUE> add edx [s+<HEX>] mov ebx esi push len push edx
push [esp+<HEX>+dictionary] call <FUNC> add esp <HEX> jmp <LOC>

Target X86-64

sub rsp <VALUE> add rdx [s+<HEX>] mov rbx rbp push len
mov r8 [rsp+<HEX>+datalen] mov rcx len call <FUNC> jmp <ADDR>

Source i386

sub rsp <VALUE> add rbp [state+<HEX>] mov eax <HEX> push <TAG>
mov [state+<HEX>] rdi mov rdi state call <FUNC> jmp short <TAG>

Translated X86-64

mov edx [edi+<VALUE>] mov edp <VALUE> cmp edx <HEX> lea ecx [edx-<HEX>]
setnz al and ecx <HEX> lea ecx [edx-<HEX>]

Target X86-64

mov rdx [abfd+<VALUE>] mov ebp <VALUE> cmp rdx <HEX> lea rcx [ri1+rax+<VALUE>]
setnz al and ecx <HEX> lea rcx [ril+rax+<VALUE>]

Source i386

mov rdx rsp mov rsp <HEX> cmp rax rdx lea r8 <TAG>
setnz al and ecx <TAG> lea rcx [rax+<HEX>]

3 | Translated X86-64

sub esp <VALUE> lea eax [esi+<VALUE>] push eax push [esp+<HEX>+buf]
call <FUNC> mov edi eax mov c [esp+<HEX>+<TAG>]

Target X86-64

sub rsp <VALUE> lea rax <TAG>+<HEX> mov cs:<TAG> rax mov rax [abfd+<VALUE>]
call <FUNC> mov rsi rsp mov rdi abfd call <FUNC> add rsp <VALUE>

Source ARM32

sub rsp <HEX> lea eax <HEX> mov rax rs:<HEX> mov [rsp+<HEX>+<VAR>]
call <FUNC> mov rcx rsp mov rsi <VALUE> call <FUNC> add eax <HEX>

ARM32

—

Translated X86-64

XOR RO R2 MOV R1 R1 <VALUE> SUBS R3 RO R3
LDP R6 R6 have BNE <TAG> CMP copy R7

Target X86-64

xor edi edi mov rcx rdx and esi <VALUE> sub <TAG> <VALUE>
mov [rax+rdx-<VALUE>] cl mov ecx <VALUE>

Source ARM32

xor edi edi mov [rax+rcx-<VALUE>] di and edi <TAG> sub init curr

mov [s+<HEX>] rdx mov rsp <VALUE>

2 | Translated X86-64

LDR R2 [R3] MOVS RO <VALUE> BNE <LOC>
LDR RO [R2+<TAG>] MOV R1 <TAG> BL <FUNC>

Target X86-64

mov rsi [rsp+<HEX>+p] movsxd rdi eax
lea rcx [rsp+<HEX>+id] call <FUNC>

Source ARM32

mov rdi in movsxd rdi file
lea rax [rsi+<VALUE>] call <FUNC>

3 | Translated X86-64

MOV RO strm MOVS R1 <VALUE> BL <FUNC> ADDS err <VALUE>
MOVS R2 <TAG> LDR R1 <HEX> BNE <ADDR>

Target X86-64

mov edi ebx lea rcx <TAG> movsxd rax ds:<TAG> call <FUNC>
add rax rcx lea rdx <TAG> jmp <ADDR>

Source ARM64

mov edi ebx lea rsi <HEX> movzx rax <TAG> call <FUNC>
add eax ecx lea rbp <LOC> jmp <TAG>

ARMO64

—

Translated X86-64

MOV W2 <VALUE> MOV W@ W2 LDP X2 <VALUE> [SP+<HEX>+<TAG>]
LDR X2 [SP+<HEX>+<TAG>] LDP X2 X3 [SP+<HEX>+<TAG>]

Target X86-64

mov gword ptr [rax] <VALUE> mov rax [rbp+p]
mov rdi rax call <FUNC> test eax eax jnz <ADDR>

Source ARM64

mov gword ptr [rcx+<HEX>] <VALUE> mov [rdx+<HEX>] <VALUE>
mov [rdx+<HEX>] rcx call <FUNC> test rax rax jnz <TAG>

2

Translated X86-64

ADD W2 W2 <VALUE> ADD X3 X0 X3 SUB W2 W2 <VALUE>
MOV W@ <VALUE> STRB W@ [X1+<HEX>] MOV X@ X2 <VALUE>

Target X86-64

mov r1 g mov rsi p movzx ri byte ptr [p]
sub r1 <VALUE> add p <HEX> mov rax [p] jmp short <LOC>

Source ARM64

mov r14 rsp mov rsip movzx rax <HEX>
sub r10 <VALUE> add q <HEX> mov r11 <VALUE> jmp <TAG>

LDR W5 <VALUE> LDR X9 <HEX> SUB Wo W5 W@ ADD W1 W@ <VALUE> LDP W1 <VALUE>

SUB W@ W5 WO ADD W1 W@ <VALUE> LDP W1 <VALUE> LDRB W2 <TAG>

Translated X86-64

Target X86-64

mov rdx <HEX> mov [rsp+<HEX>+n] rdx movzx edx [r1+<HEX>]
mov esi edx mov r9 [r1+<HEX>] lea r1 [rdx+<TAG>]

mov rdx [rbp+mode] mov ecx [rbp+fd] movzx rax [rbp+path] mov esi ecx

mov rdi rax mov [rbp+gz] rax lea r1 [rax+<VALUE>]

3271

Table 14: Examples for code translation.

MIPS32

Source MIPS32

1i $t9 <VALUE> 1w $ra <HEX>+<VAR> ($sp)
addiu $t9 <FUNC> b <FUNC> addiu $sp <HEX>

Translated X86-64

mov r8 <VALUE> mov rbx rsp+<HEX>+<TAG>
lea r10 r8+<ADDR> call <FUNC> add rbp <VALUE>

Target X86-64

mov r1@ <VALUE> mov rax rsp+<HEX>+<VAR>
lea r10 r10+<TAG> jmp <FUNC> add rsp <HEX>

Source MIPS32

1i $al <VALUE> addiu $al <STR> move $a0@ $s0@
la $t9 <FUNC> jalr $t9 1w $gp <HEX>+<VAR> ($sp)

Translated X86-64

mov rsi <HEX> lea rbp rbp+<ADDR> mov rdi rax
mov r11 <FUNC> call <FUNC> mov rap rsp

Target X86-64

mov rsi <VALUE> lea rsi rsi+<STR> mov rdi, rbx
mov r1@ <ADDR> call <FUNC> mov rbp rsp

Source MIPS32

1i $a2 <VALUE> 1li $al <VALUE> addiu $al <STR> move $a@ $zero la $t9 <FUNC>
jalr $t9 1w $gp <HEX+<VAR> ($sp) move $al $s1 move $a@ $vo

Translated X86-64

mov rbx <HEX> mov rsi <ADDR> lea rsi rsi+<TAG> xor rsi rsi
mov r10 r9 call <FUNC> mov rbp rap mov rsi r14+<TAG>+<HEX> mov rdi rax

Reference X86-64

mov rdx <VALUE> mov rsi <VALUE> lea rsi rsi+<STR> xor rdi rdi
mov r10 ri11 call <FUNC> mov rbp rsp+<HEX>+<VAR> mov rsi r14 mov rdi rax

Source PPC32

lis r13 r2@ha addi r3 r3 at1@l lis r9 <VAR>+<HEX>@ha lwz r1 <TAG>+<LOC>@1(r9)
add r10 r7 r8 add r10 r6 r10 lwz r3 <HEX>(r1) bl <FUNC>

Translated X86-64

mov rbi rax movsz rbp [<HEX>+<VALUE>] mov rdx rax lea [rax r1+<TAG>]
mov rdx [rsi+<LOC>] call <FUNC> test rax rax jz <TAG>

Target X86-64

mov rbi <LOC> mov rbx <VALUE> lea [rdi+<LOC>]
mov rdx [rbx+<VALUE>] call <FUNC> test rdx rdx jnz <LOC>

Source PPC32

mr r3 r7 1li r3 <VAR> lis <FUNC>
1i r6 <TAG> mr r5 r4 stwu r31 -4(r1) b <LOC>

movsx r2 ri13 mov rbi <VAR> call <FUNC>

PPC32 Translated X86-64 . .
mov rbx <TAG> mov rax rdi push rbx jmp <ADDR>
mov r12 rbi movsz rsi mov rbx <LOC> lea <HEX>+<TAG>
Target X86-64 X
mov r12 r7 mov rbx (<VALUE>+<HEX>) mov r8 <HEX> jmp <HEX>
extsh r2 r13 1i r9 <VAR> bl <FUNC> lis r5 <TAG>@h
Source PPC32 % . rer Lr s @
addi r5 r5 <TAG>@l mr r6 r3 stwu r5 -4(r1) b <ADDR>
Translated X86-64 mov .rbx <LOC>+<HEX> movsx rbx rax mov eax [ecx+<HEX>]
mov ebi [ecx+<HEX>] mov r5 [r2+<VALUE>] lea r7 [rax+<HEX>]
mov rax [<VALUE>+<HEX>] mov eax <VAR> mov rbp [rsi+<VALUE>] mov eax ebx
Reference X86-64 . .
mov rsi rdx mov rax (rax+<VAR>) 1 rbi [r3+<VAR>]
move.l at2 a® move.l <VALUE>+<TAG> a7 move.l al d2 add.l a2 d3
Source M68K A
add.1l a3 d2 move.l <HEX>(a7) a@ jsr <FUNC> tst.l d@ bne <LOC>
Translated X86-64 mov rsi at3 mov rsp [<HEX>+<TAG>] mov rax rex lea Fr4 r10+r3]
mov rbx [rbp+<VALUE>] call <FUNC> test rax rax jz <LOC>
mov rsi <TAG> mov rbp <VALUE> lea [rdx+<HEX>
Target X86-64 - . : : !
mov rdi [rax+<VALUE>] call <FUNC> test rax rax jnz <TAG>
.1 d3 d2 .1 <HEX> a@ lea <FUNC> a1l
Source M68K move 3 move a0 lea <FUI a
move.b <TAG> d4 ext.l d4 move.l d1 do move.l a6 a7 b <LOC>
M68K Translated X86-64 mov r12 rbx mov rdi <HEX> lea <FUNC> movsx rax <TAG>

mov rbx rdx push rbp jmp short <LOC>

Target X86-64

mov r12 rbp mov rsp movsx rcx <LOC> lea <TAG>
mov r2 r4 mov rbp (<KTAG>+<HEX>) mov r11 <VALUE> jmp <ADDR>

Source M68K

move.l <VALUE>+<VAR> d@ move.l d2 d1 move.l <VALUE>(d1) d2 move.l d1 a@
move.s d3 <VALUE> move.l <HEX>(al) d3 lea <TAG>(a2) al

Translated X86-64

mov rax <VAR>+<HEX> mov rcx rbx mov ebx [ecx+<VALUE>]
mov ebi ecx mov r9 [r1+<HEX>] lea r1 [rdx+<TAG>]

Reference X86-64

mov rax [<VALUE>+<HEX>] mov eax <VAR> mov rbp [rsi+<VALUE>] mov eax ebx
mov rsi rbx mov rax (rax+<TAG>) lea rsi [r2+<VAR>]

3272

