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Abstract

Adapting general multimodal large language
models (MLLMs) to specific domains, such as
scientific and industrial fields, is highly signifi-
cant in promoting their practical applications.
This paper systematically investigates domain
adaptation of MLLMs via post-training, focus-
ing on data synthesis, training pipeline, and task
evaluation. (1) Data Synthesis: Using only
open-source models, we develop a generate-
then-filter pipeline that curates diverse visual in-
struction tasks based on domain-specific image-
caption pairs. The resulting data surpass the
data synthesized by manual rules or strong
closed-source models in enhancing domain-
specific performance. (2) Training Pipeline:
Unlike general MLLMs that typically adopt
a two-stage training paradigm, we find that a
single-stage approach is more effective for do-
main adaptation. (3) Task Evaluation: We
conduct extensive experiments in high-impact
domains such as biomedicine, food, and remote
sensing, by post-training a variety of MLLMs
and then evaluating MLLM performance on
various domain-specific tasks. Finally, we fully
open-source our models, code, and data to en-
courage future research in this area.

1 Introduction

General multimodal large language models
(MLLMs; Alayrac et al., 2022; Liu et al., 2024c)
have shown impressive capabilities in general sce-
narios. However, their expertise plummets in
specialized domains due to insufficient domain-
specific training (Cheng et al., 2024b; Li et al.,
2025; Lee et al., 2025). For instance, scientific
fields require learning from specialized images not
commonly found in general scenarios (Luo et al.,
2023a); and industrial applications face privacy
constraints that limit data access for general train-
ing (Bhatia et al., 2024).
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Figure 1: Domain-Specific Task Performance of
General MLLM and AdaMLLM. For each domain,
we conduct post-training to adapt the general MLLM
and evaluate MLLM performance on various domain-
specific tasks. Biomedicine, food and remote sensing
tasks are colored gray, orange and purple, respectively.

Domain-specific training for MLLMs requires
diverse visual instruction tasks infused with domain
knowledge (Li et al., 2023a). For domain-specific
instruction synthesis, while using closed- or open-
source models to synthesize data is common in
training general MLLMs, challenges arise when
applying this approach to domain-specific MLLMs
due to privacy concerns with closed-source mod-
els (OpenAl, 2023) and the lack of domain exper-
tise in open-source models. For domain-specific
training, the two-stage pipeline—first training on
image-caption pairs, then on visual instruction
tasks—is widely adopted for developing general
MLLMs (Liu et al., 2024c). However, tasks in
specialized domains are often limited, and split-
ting them into two stages can further reduce task
diversity within each stage.

In this paper, we systematically investigate
domain-specific instruction synthesis and training
pipelines for MLLM post-training, referred to as
domain-adaptive training. Specifically, we aim
to (1) leverage only open-source models for data
synthesis to avoid the privacy concerns of closed-
source models and (2) maintain domain-specific
task diversity throughout the post-training stage.
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For instruction synthesis with open-source
models, we propose a generate-then-filter pipeline
to address the lack of domain expertise. First,
an open-source MLLM is fine-tuned to output
instruction-response pairs based on input domain-
specific image-caption pairs. To ensure diver-
sity, we curate a seed data collection encompass-
ing various domains and tasks based on existing
datasets, without the need for additional expert an-
notation. The fine-tuned MLLM can effectively
leverage domain knowledge in the image-caption
source to generate diverse instruction-response
pairs. Then, to ensure synthetic response accuracy,
instead of directly verifying each response based
on the instruction—which requires significant ex-
pertise—we propose selecting tasks with inherently
consistent responses. This significantly improves
accuracy while reducing the need for expert an-
notation. Although generated from open-source
models, our synthetic tasks improve model perfor-
mance more effectively than those generated by
manual rules and strong closed-source models. For
training pipeline, in the area of domain-adaptive
post-training of MLLMs, two-stage training re-
mains mainstream (Li et al., 2024a; Chen et al.,
2024b; Mohbat and Zaki, 2024). However, we
find that splitting the training data into two sepa-
rate stages may hinder training task diversity and
efficiency. Therefore, we apply a single-stage train-
ing pipeline that combines the synthetic task with
its corresponding image-caption pair. This simple
method enriches task diversity during training and
leads to better performance.

In contrast to previous works (Moor et al., 2023;
Zhang et al., 2023b; Ma et al., 2024) which focus
on a single domain or a single series of MLLMs
per work, we conduct experiments across a vari-
ety of high-impact domains, such as biomedicine,
food, and remote sensing, on general MLLMs of
different sources and scales, such as Qwen2-VL-
2B (Wang et al., 2024), LLaVA-v1.6-8B (Liu et al.,
2024b), and Llama-3.2-VL-11B (Dubey et al.,
2024). As shown in Figure 1, our resulting model,
AdaMLLM (short for Adapted Multimodal Large
Language Model), consistently outperforms gen-
eral MLLMs across various domain-specific tasks.

In summary, our contributions include:

* To the best of our knowledge, we present the
first systematic investigation of domain-adaptive
post-training of MLLMs through extensive ex-
periments across diverse domains and MLLM:s.

* We comprehensively analyze the data synthesis

pipeline and training strategy, revealing that task
diversity and domain knowledge are key to the
success of our method.

* We fully open-source our models, code, and data
to facilitate future research and easy adaptation
to new MLLMs and domains.

2 Related Work

Our work is related to domain-specific
MLLM (Zhan et al., 2025; Liu et al., 2025;
Hu et al., 2025; Cui et al., 2025), instruction
synthesis, and MLLM training strategy. This
section focuses on domain-specific MLLM, and
the other topics are discussed in Appendix A.

Domain-Specific Data Initially, Moor et al.
(2023) utilized multimodal interleaved data. With
the rise of visual instruction tuning, research has
shifted to synthesizing visual instructions (Li et al.,
2023a). The approaches fall into two categories:
(1) transforming existing datasets into visual in-
struction formats (Mohbat and Zaki, 2024; Yin
et al., 2023) (2) prompting closed-source models
to generate tasks from images/annotations (Zhang
et al., 2023b; Li et al., 2024a; Chen et al., 2024b).
Our work aligns with the second in synthesizing
domain-specific data based on image-caption pairs,
but we utilize open-source models to avoid privacy
concerns and lead to even better performance.

Domain-Specific Training One type of domain-
specific training begins with an unaligned LLM and
visual encoder (Zhang et al., 2023b). Another type
is post-training which starts with a well-aligned
general MLLM (Li et al., 2024a). Compared to the
first type, post-training is more efficient in terms
of data and computation, making it our preferred
method. In domain-specific post-training, previous
works (Li et al., 2024a; Mohbat and Zaki, 2024;
Chen et al., 2024b) adopt the two-stage training
pipeline originally proposed for general MLLMs.
We simplify this into a single stage to enhance task
diversity within the training phase.

3 Method

We adapt MLLMs to domains via post-training.
Figure 2 provides the method overview: we begin
by synthesizing domain-specific tasks using a uni-
fied visual instruction synthesizer, followed by a
consistency-based data filter. The synthetic tasks
are then combined with image-captioning tasks into
a single stage for post-training.
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Figure 2: Method Overview. (A) We fine-tune a unified visual instruction synthesizer that generates diverse tasks
based on image-caption pairs across various domains. (B) Using this synthesizer, we synthesize tasks based on
domain-specific image-caption pairs and then apply a consistency-based data filter. The filtered synthetic tasks,
combined with the original image captioning tasks, are employed to train general MLLMs through a single-stage
post-training process, MLLM training loss is computed only on the part colored in orange.

3.1 Domain Visual Instruction Synthesis

The effectiveness of visual instruction tasks de-
pends on diversity and accuracy, with domain
knowledge being essential for domain adapta-
tion (Li et al., 2023a). To meet these requirements,
we propose a data synthesis approach comprising
two components: a synthesizer that generates di-
verse tasks infused with domain knowledge, and a
consistency-based filter to enhance accuracy.

3.1.1 Visual Instruction Synthesizer

We fine-tune an open-source MLLM to generate
diverse tasks based on image-caption pairs across
various domains, developing a visual instruction
synthesizer. Instead of generating domain-specific
tasks from scratch, which requires significant ex-
pertise, our synthesizer extracts tasks from exist-
ing data (Cheng et al., 2024a), thus reducing the
reliance on domain experts. Furthermore, we incor-
porate specific designs to balance the utilization of
image and text modalities.

Seed Data across Domains and Tasks We con-
vert existing datasets (Xu et al., 2024; Chen et al.,

User: <Image>Describe the image.

Assistant: {Caption}

User: Answer with a precise response. {Instruction}
Assistant: {Precise Response}

User: Answer with an informative response. {Instruction}
Assistant: {Informative Response}

Table 1: Data Format for Synthesizer Tuning. Tuning
loss is computed only on the part colored in orange.

2024a) into the seed data for fine-tuning our synthe-
sizer, without any additional annotation. As shown
in part (A) of Figure 2, each seed data example in-
cludes an image-caption pair as input and a related
task triplet—comprising an instruction, an informa-
tive response, and a precise response—as output.
Compared to the precise response which is often
a single phrase, the informative response contains
more reasoning steps. The seed data cover a wide
range of 20 image domains and 191 tasks. Details
on data construction are in Appendix B.

Modality-Balanced Multitask Tuning We fine-
tune an open-source MLLM on the seed data to
generate task triplets from image-caption pairs.

276



As shown in Table 1, each seed data example
is converted into a multi-turn conversation to fit
the MLLM’s conversational format. During fine-
tuning, we calculate the tuning loss only on the
conversational turns related to the task triplet, en-
suring the synthesizer focuses on them.

Furthermore, since the task instruction annota-
tions in the seed data (Xu et al., 2024) rely solely on
images—biasing the fine-tuned synthesizer toward
over-reliance on visual inputs—we replace 10%
of the fine-tuning images with blank ones. This
modality-balancing strategy encourages the model
to leverage textual captions when visual inputs are
ambiguous or uninformative, while preserving the
quality of synthetic tasks for both complete and
text-corrupted inputs. A detailed analysis is pro-
vided in Appendix F.

Task Synthesis for Target Domain After tuning,
we use the synthesizer to generate task triplets from
image-pairs in the target domain. For each image-
caption pair, we input it into the synthesizer using
the conversational format in Table 1 and extract the
task triplet from the output accordingly.

3.1.2 Consistency-Based Filter

Developed from an open-source model without suf-
ficient domain expertise, our synthesizer inevitably
produces some inaccurate responses, necessitating
data filtering. We propose a filtering method based
on inherent consistency, which improves data qual-
ity while reducing the need for expert validation.

As shown in part (B) in Figure 2, we prompt an
open-source language model to classify each task
triplet into one of three categories: consistent, in-
consistent, or open. The consistent and inconsistent
categories indicate whether the precise and infor-
mative responses align, while the open category
indicates tasks that request open-ended responses
(e.g., background information). The prompt tem-
plate is in Figure 6 in Appendix. We discard triplets
classified as inconsistent, and those classified as
open due to their ambiguity. In contrast to ensem-
ble methods (multi-model voting; Dietterich, 2000)
and self-consistency (multi-output sampling; Wang
et al., 2022), we select each task triplet based on a
single output from a single synthesizer, leveraging
internal consistency within that output.

For consistent triplets, we combine the informa-
tive and precise responses into a chain-of-thought
(CoT; Wei et al., 2022) format. The informative
response serves as the reasoning process, and the

precise response serves as the final conclusion, en-
suring both informativeness and accuracy.

3.2 Single-Stage Post-Training

Domain-specific post-training for MLLMs (Li
et al., 2024a; Chen et al., 2024b; Mohbat and Zaki,
2024) typically follows the multi-stage paradigm
used in general MLLM training: first on image-
caption pairs, then on visual instruction tasks (Liu
et al., 2024c). However, task diversity in domain-
specific training is often more limited than in gen-
eral training, and splitting the training into two
stages may further reduce diversity within each
stage, negatively impacting the task generalization
of the trained models (Wei et al., 2021). To mitigate
this, we propose combining the training data into

a single stage. As shown in part (B) of Figure 2,

each training example includes two tasks:

* Image Captioning Task: A question prompting
the MLLM to describe the image is randomly
chosen from a pool in (Chen et al., 2024a) as the
task instruction, with the original caption as the
ground-truth response.

o Synthetic Visual Instruction Task: For each
image-caption pair with a synthetic task after
filtering, we combine it with the image caption-
ing task in a multi-turn format. If no synthetic
task remains, only the captioning task is used.

Following (Liu et al., 2024c), we train on the data

using the next-token prediction objective (Radford

et al., 2018), computing loss only on the response
part of each instruction-response pair.

4 Experiment Settings

We conduct experiments in high-impact domains
including biomedicine, food, and remote sensing,
because they are the only ones for which we can
access public data without raising ethical concerns.
For each domain, we perform post-training to adapt
general MLLMs and evaluate model performance
on various domain-specific tasks.

Note that our implementation is fully open-
source, and the only required change for apply-
ing our method to a new domain is to replace the
image-caption source with that of the new domain.

Image-Caption Data Source For biomedicine
domain, we use two sources: PMCHew in Li
et al. (2024a) and PMCFefmed in Chen et al.
(2024b). For food domain, we collect data from
RecipelM (Salvador et al., 2017). For remote
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. . . SLAKE PathVQA VQA-RAD
Biomedicine PMC-VQA
OPEN CLOSED OPEN CLOSED OPEN CLOSED
LLaVA-v1.6-8B 49.2 62.3 15.2 47.7 459 56.3 36.5
LLaVA-Med-8B 43.4 50.2 10.1 59.2 35.0 62.5 37.1
PubMedVision-8B 50.0 68.3 17.0 67.5 433 67.3 40.4
AdaMLLM-8B from PMC?® 56.8 76.4 19.7 79.3 51.0 80.5 443
AdaMLLM-8B from PMCRefined 580 73.3 22.9 78.6 59.8 81.3 47.9
Qwen2-VL-2B 50.0 52.4 17.8 38.7 37.0 46.7 45.8
LLaVA-Med-2B 43.4 55.5 11.8 60.1 37.1 58.8 41.2
PubMedVision-2B 452 63.2 18.2 64.7 413 67.3 432
AdaMLLM-2B from PMCRe® 53.2 75.2 20.1 63.8 49.8 74.6 435
AdaMLLM-2B from PMCRefined 60,2 75.0 20.6 53.6 58.0 76.1 46.5
Llama-3.2-11B 56.2 63.9 22.7 72.1 46.9 63.6 519
LLaVA-Med-11B 47.6 58.7 14.6 69.5 38.0 69.1 475
PubMedVision-11B 49.1 743 19.3 70.9 46.2 73.9 47.1
AdaMLLM-11B from PMC 56.7 77.6 222 87.3 55.0 76.1 49.9
AdaMLLM-11B from PMCFefned 595 76.4 243 84.9 57.4 79.8 51.9

Table 2: Biomedicine Task Performance of general MLLMs and MLLMs after domain-adaptive post-training.
The image-caption sources for AdaMLLM from PMC?*® and AdaMLLM from PMC?¢/m¢d are PMCR*® and

PMCRefined regpectively.

sensing domain, we collect data from five image-
captioning tasks. Data details are in Appendix C.

Visual Instruction Synthesis Our synthesizer
is fine-tuned from LLaVA-v1.6-Llama3-8B. For
the consistency-based filter, we prompt Llama-3-
8B (Dubey et al., 2024) to evaluate the consistency
of each synthesized task triplet. Detailed imple-
mentations and costs are in Appendix D.

Post-Training & Task Evaluation Using syn-
thetic data from the LLaVA-v1.6-Llama3-8B-based
synthesizer, we conduct post-training on LLaVA-
v1.6-Llama3-8B itself. Besides, we use the same
synthetic data to post-train Qwen2-VL-2B-Instruct
and Llama-3.2-11B-Vision-Instruct to assess effec-
tiveness across different models and scales. Train-
ing hyper-parameters and costs are in Appendix E.

After post-training, we evaluate MLLMs on
domain-specific tasks without further fine-tuning.
Evaluation details are in Appendix H.

Baseline For biomedicine domain, we compare
with two baselines: (1) LLaVA-Med (Li et al.,
2024a) which uses text-only GPT-4 to synthesize
tasks from PMCT*  and (2) PubMedVision (Chen
et al., 2024b) which uses GPT-4V to synthesize
tasks from PMCTef™med  To ensure a fair com-
parison, we reproduce their methods using up-
dated backbone models, and the original results of
LLaVA-Med and PubMedVision are reported in Ta-
ble 16 in the Appendix. For food domain, we com-
pare with LLaVA-Chef (Mohbat and Zaki, 2024)

Food Recipe Nutrition Food101 FoodSeg
LLaVA-v1.6-8B 18.6 29.6 47.9 38.9
LLaVA-Chef-8B 23.1 29.1 46.8 14.5
AdaMLLM-8B 24.8 36.1 65.3 42.0
Owen2-VL-2B 18.2 36.4 73.9 19.9
LLaVA-Chef-2B 24.1 24.5 68.8 7.7
AdaMLLM-2B 24.0 41.2 72.0 23.9
Llama-3.2-11B 23.7 40.0 80.8 47.6
LLaVA-Chef-11B  25.7 26.2 82.1 16.7
AdaMLLM-11B 26.1 41.0 82.2 42.0
Remote Sensing CLRS UC Merced FloodNet NWPU
LLaVA-v1.6-8B 54.3 64.9 70.0 26.1
RS-40-8B 50.3 64.5 58.1 74.2
AdaMLLM-8B 66.9 72.1 72.0 72.1
Owen2-VL-2B 48.9 61.0 55.7 26.0
RS-40-2B 51.2 67.0 53.7 56.7
AdaMLLM-2B 55.0 61.8 62.2 56.0
Llama-3.2-11B 55.7 74.2 60.8 20.8
RS-40-11B 59.3 57.6 51.5 71.9
AdaMLLM-11B  64.9 81.5 62.1 67.8

Table 3: Food and Remote Sensing Task Performance
of general MLLMs and MLLMs after domain-adaptive
post-training.

which uses manual rules to transform image-recipe
pairs from Recipe1M into multiple tasks. LLaVA-
Med, PubMedVision and LLaVA-Chef all employ
two-stage post-training. For remote sensing, we
compare with a baseline that uses GPT-40 (Hurst
et al., 2024) to synthesize instructions based on
the same image-caption pairs as ours, and train
MLLMs using the same single-stage post-training.
The resulting model is referred to as RS-4o.
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Image-Caption RecipelM PMCFav PMCliefined

Train Pipeline Two-stage Single-stage Two-stage Single-stage Two-stage Single-stage
Instruction Rule Ours Rule Ours GPT-4 Ours GPT-4 Ours GPT-4V Ours GPT-4V  Ours
LLaVA-v1.6-8B 284 29.0 341 4201 425 556 46.1 5837 50.5 58.6 55.5 60.3 1
Qwen2-VL-2B 313 382 319 4031 440 555 413 543 49.0 59.5 51.6 55.71
Llama-3.2-11B 377 409 36.6 47817 493 59.2 488 60.71 544 60.3 53.7 62.0 1

Table 4: Domain-Specific Task Performance of MLLLMs after Post-Training with different synthetic data and
training pipelines. We report the average performance in each domain, with detailed results in Table 17 in Appendix.
When the image-caption source and training pipeline are fixed, synthetic data of better performance are marked in
bold. When the image-caption source is fixed and our synthetic data are used, numbers marked with 7 indicate that
single-stage training outperforms two-stage training, while | indicates the opposite.

SLAKE PathVQA VQA-RAD

PMC-VQA AVERAGE IMPROV.
OPEN CLOSED OPEN CLOSED OPEN CLOSED
Qwen2.5-VL-3B-Ins. 544 63.5 19.0 55.1 44.3 57.0 49.2 48.9
AdaMLLM-3B 62.2 79.8 18.7 83.6 54.4 82.4 514 61.8 +12.9
Gemma-3-4B-it 44.5 75.2 22.5 62.4 36.0 61.4 30.9 47.6
AdaMLLM-4B 58.5 79.1 20.7 72.5 52.3 77.2 46.6 58.1 +10.5
InternVL3-1B 574 63.7 18.7 65.1 40.6 64.7 353 49.4
AdaMLLM-1B 60.6 67.8 20.9 67.7 50.9 73.2 41.2 54.6 +5.2

Table 5: Biomedicine Task Performance of general MLLMs and MLLMs after domain-adaptive post-training
using our method. The image-caption source is PMCT¢/imed,

5 Main Results

Overall Performance As shown in Tables 2
and 3, ours consistently enhances MLLM per-
formance, outperforming baselines across various
domain-specific tasks. Although our synthesizer
is based on LLaVA-v1.6-8B, we observe consis-
tent improvements on Qwen2-VL-2B and Llama-
3.2-11B, demonstrating its effectiveness across dif-
ferent models and scales. Among the evaluated
tasks, VQA-RAD, RecipelM and NWPU can be
regarded as partially seen tasks, with VQA-RAD
included in our seed data for fine-tuning the synthe-
sizer, Recipe 1M and NWPU included in the image-
caption source'. Nevertheless, AdaMLLM shows
consistent gains on other unseen tasks, demonstrat-
ing strong task generalization in the target domain.

Comparison of Synthetic Task and Training
Pipeline In addition to the overall comparison,
we assess the effectiveness of our synthetic tasks
and single-stage training separately by varying one
factor at a time. As shown in Table 4, we con-
duct both two-stage and single-stage post-training
with synthetic tasks generated by different methods:
manual rules in LLaVA-Chef, GPT-4 in LLaVA-
Med, and GPT-4V in PubMedVision. Our syn-

ITest/validation sets of VQA-RAD, RecipelM and NWPU
are not included.

thetic tasks consistently outperform others across
both training pipelines. Furthermore, with our syn-
thetic tasks, single-stage training surpasses two-
stage training in most of the experiments.

Extended Experiments on More MLLMs De-
spite the results on three MLLMs in Tables 2 and 3,
we further validate our method on three more re-
cent MLLMs: Qwen2.5-VL-3B-Instruct (Bai et al.,
2025), Gemma-3-4B-it (Team et al., 2025), and
InternVL3-1B (Zhu et al., 2025). As shown in Ta-
ble 5, our models consistently outperform the latest
MLLMs, achieving improvements of up to +12.9
points on average.

6 Ablations

To evaluate the effectiveness of each component,
we conduct ablations to post-train LLaVA-v1.6-8B
with different settings. We report the average task
performance within each domain for the trained
models in Table 6.

Domain Knowledge, Task (CoT) Format & Seed
Data Our synthetic tasks are designed to inte-
grate both (1) domain knowledge and (2) a visual
instruction task format with Chain-of-Thought re-
sponse. To assess the role of domain knowledge,
we compare our method with general tasks that pre-
serve the same CoT response format but exclude
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Ours General  General CoT Task + w/o w/o Consistency Filter Image Caption Synthetic Task Two-Stage
CoT Task Domain Caption  Blank Image Precise  Informative Only Only Reuse Caption
BioMed. 58.3 49.8 553 55.8 31.2 44.4 26.7 54.2 54.9
Food 42.0 36.0 38.6 35.9 37.9 37.6 25.6 36.8 36.6

Table 6: Ablation Results. “General CoT Task™ trains on seed data processed into our task format,“General CoT
Task + Domain Caption” mixes the processed seed data with domain-specific image-caption pairs. “w/o Blank

Image” fine-tunes the synthesizer without replacing 10% of images with blank ones. “w/o Consistency Filter’
removes the consistency-based filter and trains with either precise or informative responses. “Image Caption Only
removes synthetic task, and “Synthetic Task Only” removes image captioning task. “Two-Stage Reuse Caption’

bl

t1)

i

conducts two-stage training with the second stage reusing the caption data from the first stage.

domain-specific knowledge. As shown in Table 6,
our method outperforms the “General CoT Task”,
underscoring the importance of domain knowledge.

Importantly, “General CoT Task” is constructed
from our seed data—originally used to fine-
tune the synthesizer—and filtered using the same
consistency-based method. This suggests that the
performance gain of our method is not simply due
to knowledge distillation from the seed data.

Moreover, our method outperforms “General
CoT Task + Domain Caption”, indicating that
naively combining domain-specific image-caption
pairs with general tasks is insufficient. In contrast,
our synthesis pipeline effectively transforms the do-
main knowledge embedded in image-caption pairs
into a format that general MLLMs can learn from
more effectively.

Visual Instruction Synthesis To balance
modality-utilization, we replace some of the
images with blank images during the fine-tuning
of synthesizer. The effectiveness of this strategy
on MLLM performance is demonstrated in “w/o
Blank Image”.

To improve response accuracy, we design a
consistency-based filter. As shown in Table 6, re-
moving this filter results in decreased model perfor-
mance, regardless of whether the response contains
only precise or informative content.

Single-Stage Post-Training Our motivation for
combining data into a single stage is to enhance
training task diversity. This efficacy is evident in
the ablation results in Table 6, where removing ei-
ther the synthetic task (“Image Caption Only”) or
the image captioning task (“Synthetic Task Only”)
degrades model performance, even when the cap-
tion data is reused in the second stage (““Two-Stage
Reuse Caption”).

Finetune Input - Image Caption Image + Caption
Blank Image - - - X v
Diversity 525  68.0 75.2 81.0 85.5
Knowledge 725 950 93.8 97.5 98.1
Complexity 438 779 75.3 80.0 83.2
Accuracy 63.8  60.0 65.6 66.3 71.3

Table 7: Quality of Synthetic Tasks by Different Vi-
sual Instruction Synthesizers. Column 1 presents re-
sults from the MLLM without fine-tuning (i.e., the base
LLaVA in our experiment settings). Columns 2-5 show
results after fine-tuning the MLLM using our seed data
to synthesize tasks based on different inputs. Besides,
Column 5 replaces 10% of the images with blank ones.

w/o Filter w/ Filter
Consist. Precise Acc Info. Acc  Consist. Acc
BioMed. 30.3 64.3 61.0 92.2 75.1
Food 35.7 77.2 75.5 97.1 84.3

Table 8: Quality of Responses with/without Using
Consistency-Based Filter, assessed in terms of consis-
tency between precise and informative responses (Con-
sist.), accuracy of precise responses (Precise Acc), accu-
racy of informative responses (Info. Acc), and accuracy
of combined responses (Acc).

7 Analysis

We conduct a detailed analysis on the synthesis
pipeline and the synthesized data

7.1 Domain Visual Instruction Synthesis

Visual Instruction Synthesizer We compare
tasks generated by synthesizers with different de-
signs using a validation set from our seed data.
Specifically, we conduct human evaluation of data
quality in the following aspects: task diversity, do-
main knowledge utilization, task complexity and
response accuracy (detailed definition and scoring
criteria are in Appendix G).

The results in Table 7 indicate that fine-tuning
for task synthesis using either image (Zhao et al.,
2023) or caption (Cheng et al., 2024a) inputs yields
improvements in most aspects. Our design, which
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Image-Caption  RecipelM PMC /v PMC Refined

Instruction Rule Ours GPT-4 Ours GPT-4V  Ours
Diversity 235 529 47.1 58.8 64.7 76.5
Knowledge 209 219 449 589 67.7 63.2
Complexity 384 699 417 832 49.6 80.5
Accuracy 98.7 843 844 751 87.5 79.6

Table 9: Quality of Synthetic Tasks by our method,
manual rules, GPT-4, and GPT-4V.

\

Task-Oriented Image Recognition
Attribute and Context Recognition
Object Recognition
Data Representation
Step-by-Step Guidance

= Anomaly Detection

® /mage-Text Matching

m Caption Generation

m Text Detection and OCR

m Scene Classification

® Domain Classification

= Sentiment Analysis

m Pose and Activity Recognition
Face and Expression Classification

m Utility and Affordance Recognition

Figure 3: Task Type Distribution of all our synthetic
tasks based on all image-caption sources.

employs both image and caption inputs, leads to
even higher performance. Besides, replacing 10%
of the images with blank ones achieves the highest
quality (further analysis is in Appendix F).

Consistency-Based Filter Our consistency-
based filter is designed to select tasks with inherent
consistency, thereby increasing data accuracy. As
shown in Table 8, using the filter significantly
increases the consistency between precise and
informative responses, making the combination of
them in the CoT format reasonable. As a result,
the filter successfully increase response accuracy.

7.2 Domain-Specific Synthetic Data

Quantitative Analysis Table 9 presents the data
quality scores for synthetic tasks generated by dif-
ferent methods. Our tasks are diverse and com-
plex, demonstrating a high utilization of domain
knowledge. The distribution of task types for all
our instruction-response pairs is displayed in Fig-
ure 3. This explains the effectiveness of our method
in enhancing MLLM performance across domain-
specific tasks. However, our method underper-
forms the baselines in terms of response accuracy,
with manual rules achieving nearly 100% accu-
racy and GPT-4 and GPT-4V reaching around 85%.
This may because of the increased complexity of
our synthesized tasks, which make generating ac-
curate responses more challenging. These results

indicate the need for further improvements to en-
hance response accuracy, even with complex tasks.

Qualitative Analysis Figure 4 presents cases of
synthetic tasks by different methods when given
the same image-caption pair. In case (A), the rule-
based task is a simple transformation of the recipe
caption, ignoring the image information. In con-
trast, our task conducts a detailed analysis of the
food’s state in the image and accurately matches it
with the cooking step in the caption, demonstrating
a higher level of domain knowledge utilization. In
case (B), both our task and the GPT-4 synthesized
task focus on interpreting intent. While the GPT-
4 task straightforwardly asks for the intent, our
task increases task complexity by requiring infer-
ence from the context to make a “yes/no/not sure”
choice. In case (C) with multiple sub-images, our
task type is distinct in requiring the identification
of the least similar image among the group, show-
casing task diversity. More cases are provided in
Figure 8 in Appendix.

8 Conclusion

This paper investigates adapting general MLLMs
to specific domains via post-training. To synthe-
size domain-specific visual instruction tasks, we
develop a unified visual instruction synthesizer
that generates instruction-response pairs based on
domain-specific image-caption data, and then ap-
ply a consistency-based filter to improve data accu-
racy. This enables us to effectively synthesize di-
verse tasks with high domain knowledge utilization.
For the post-training pipeline, we propose combin-
ing the synthetic tasks with image-captioning tasks
into a single training stage to enhance task diver-
sity. In multiple high-impact domains, our resulting
model, AdaMLLM, consistently outperforms gen-
eral MLLMs across various domain-specific tasks.

Limitations

While synthetic data reduce the need of expert an-
notation, it is crucial to acknowledge the poten-
tial limitations. Our work, along with other works
utilizing synthetic data (Liu et al., 2024d), is in-
evitably constrained by the possibility of introduc-
ing hallucinations. As shown in our analysis in
Section 7.2, the accuracy of our synthetic tasks re-
mains imperfect, underscoring the need for further
improvements to enhance response reliability, even
with highly complex tasks.

281



(A)

@

data. Image (a) and (b) are
MRI scans in the coronal

section showing the pelvic
area, depicting a thin
white line (thin arrow)
passing near a denser
bundle (thick arrow),
assumed to be the
obturator bundle in the
right obturator fossa.
Image (c) shows an axial
section of an MRI scan
presenting detailed
internal anatomy of the
pelvic. (...)

GPT-4V Instruction-Response Pair

Instruction: | noticed a thin white line in the ultrasound image (e); what does that represent?
Response: In the ultrasound image (e), the thin white line you see represents a type of internal
structure, possibly a medical device or tape, used in procedures related to the pelvic region. (...)
Our Instruction-Response Pair

Instruction: The given image contains 6 image choices numbered A through F. Select the least
similar image among the group.

Response: The task is to identify the least similar image among the group. Images (a), (b), and (c)
are MRI scans of the pelvic region, (...) Image (f) is a graph representing electromyography data,
which is significantly different from the other images as it does not depict anatomical structures
but rather physiological data. Therefore, the least similar image among the group is image (f).

Caption (8)
The dish in this image is called Serrano Creamed Spinach Stuffed
Tomatoes. Step-by-step instructions: Clinical Staging:
1. Cook spinach according to package directions then drain and squeeze CT and PET-Scan
Di ic VATS and
out water. (...)
5. Stuff tomatoes with spinach and sprinkle with more cheese. (...)
v A \ A
. . I lusiy
Rule-Based Instruction-Response Pair Histology positive  "15t°(o9Y positive B i Histology negative
. . . . for MPM o
Instruction: Detail the steps for cooking Serrano Creamed Spinach Stuffed Tomatoes. PET Scan negative PE;‘?"C:':SI:BO::SWB % PET Scan positive
Response: 1. Cook spinach according to package directions then drain and squeeze out (...) for metastases oiPaleEhas Wait and See for metastases
5. Stuff tomatoes with spinach and sprinkle with more Parmesan cheese |...) sarcomatoid or
. . subtype EPD in case of
Our Instruction-Response Pair _' Progression -
og!
- - Induction CHT v Further investigation
Instruction: What is the step?
Response: The step depicted in the image is the preparation of a stuffed tomato, (...) The tomato Re-Slva e Talcum-pleurodesis v A
has been hollowed out and is being filled with a mixture that includes cooked spinach, cream CT& ,?E?‘ h;‘"f' h'sFliL:IIal
cheese, Parmesan cheese, salt, and garlic powder. The answer is stuffing the tomato. y — an'd e I;O:m?,gsy nlegazez
- PET negative or v v
Caption 20 soleblofit for Mroecy; BSC Adjuvant
. " A4
The image displays a EPP or EPD andior  FollowUp
collection of medical adjuvant RT if feasible RT
imaging and graphical Caption

Algorithm of the treatment approach used in our institution. BSC best supportive
care, CHT chemotherapy, CT computed tomography, EPD extended
pleurectomy/decortication, EPP extrapleural pneumonectomy, MPM malignant
pleural mesothelioma, PET positron emission tomography Scan, RT radiotherapy.

GPT-4 Instruction-Response Pair

Instruction: What is the purpose of the algorithm?

Response: The purpose of the algorithm is to outline the treatment approach
used in the institution for managing a specific medical condition. It provides a
step-by-step guide for healthcare professionals to follow, helping them make
decisions about the most appropriate course of action for each patient based on
their individual circumstances, such as their response to neoadjuvant
chemotherapy, suitability for surgery, and the feasibility of radiotherapy.

Our Instruction-Response Pair

Instruction: Context: Our institution has a standardized treatment approach for
malignant pleural mesothelioma (MPM). The algorithm is based on the
histological subtype and the clinical stage.

Can the context support "Surgery is not recommended for mesothelioma"?
Options: (a) no (b) yes (c) not sure

Response: The context provided does not support the statement “Surgery is not
recommended for mesothelioma”. The algorithm presented in the image outlines
a specific treatment approach for malignant pleural mesothelioma (MPM) that
includes surgical options, such as extra pleural pneumonectomy (EPP) and
extended pleurectomy/decortication (EPD). (...) The correct answer to the
question is: (a) no

Figure 4: Cases of Instruction-Response Pairs synthesized by our method, manual rules, GPT-4, and GPT-4V.

Furthermore, future research may take into ac-
count the preferences of the specific domain. For in-
stance, when dealing with animals, semantic-level
information might be more important, while for
medical images, local detail information should be
given greater attention.

Ethics Statement

All the datasets and models used in this work are
publicly available.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc,
Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm
Reynolds, and 1 others. 2022. Flamingo: a visual
language model for few-shot learning. Advances in
neural information processing systems, 35:23716—
23736.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, and 1 others. 2025. Qwen2. 5-vl
technical report. arXiv preprint arXiv:2502.13923.

Gagan Bhatia, El Moatez Billah Nagoudi, Hasan Cavu-
soglu, and Muhammad Abdul-Mageed. 2024. Fintral:
A family of gpt-4 level multimodal financial large lan-
guage models. arXiv preprint arXiv:2402.10986.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
2014. Food-101-mining discriminative components
with random forests. In Computer vision—-ECCV
2014: 13th European conference, zurich, Switzer-
land, September 6-12, 2014, proceedings, part VI 13,
pages 446—461. Springer.

Tom B Brown. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Guiming Hardy Chen, Shunian Chen, Ruifei Zhang,
Junying Chen, Xiangbo Wu, Zhiyi Zhang, Zhihong
Chen, Jianquan Li, Xiang Wan, and Benyou Wang.
2024a. Allava: Harnessing gpt4v-synthesized data
for a lite vision-language model. arXiv preprint
arXiv:2402.11684.

Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian
Chen, Guiming Hardy Chen, Xidong Wang, Ruifei
Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, and 1
others. 2024b. Huatuogpt-vision, towards injecting
medical visual knowledge into multimodal Ilms at
scale. arXiv preprint arXiv:2406.19280.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang,
Conghui He, Jiaqi Wang, Feng Zhao, and Dahua

282



Lin. 2023. Sharegpt4dv: Improving large multi-
modal models with better captions. arXiv preprint
arXiv:2311.12793.

Lin Chen and Long Xing. 2024. Open-llava-next: An
open-source implementation of llava-next series for
facilitating the large multi-modal model commu-
nity. https://github.com/xiaocachen98/
Open—-LLaVA-NeXT.

Daixuan Cheng, Yuxian Gu, Shaohan Huang, Junyu Bi,
Minlie Huang, and Furu Wei. 2024a. Instruction pre-
training: Language models are supervised multitask
learners. arXiv preprint arXiv:2406.14491.

Daixuan Cheng, Shaohan Huang, and Furu Wei. 2024b.
Adapting large language models via reading compre-
hension. In The Twelfth International Conference on
Learning Representations.

Qimin Cheng, Haiyan Huang, Yuan Xu, Yuzhuo Zhou,
Huanying Li, and Zhongyuan Wang. 2022. Nwpu-
captions dataset and mlca-net for remote sensing im-
age captioning. /EEE Trans. Geosci. Remote. Sens.,
60:1-19.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, and 1 others. 2023. Palm: Scaling
language modeling with pathways. Journal of Ma-
chine Learning Research, 24(240):1-113.

Haotian Cui, Alejandro Tejada-Lapuerta, Maria Br-
bi¢, Julio Saez-Rodriguez, Simona Cristea, Hani
Goodarzi, Mohammad Lotfollahi, Fabian J Theis,
and Bo Wang. 2025. Towards multimodal foun-
dation models in molecular cell biology. Nature,
640(8059):623-633.

Thomas G Dietterich. 2000. Ensemble methods in ma-
chine learning. In International workshop on multi-
ple classifier systems, pages 1-15. Springer.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The 1lama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Yuxian Gu, Pei Ke, Xiaoyan Zhu, and Minlie Huang.
2022. Learning instructions with unlabeled data for
zero-shot cross-task generalization. In Proceedings
of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 1617-1634.

Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and
Pengtao Xie. 2020. Pathvga: 30000+ questions for
medical visual question answering. arXiv preprint
arXiv:2003.10286.

Yuan Hu, Jianlong Yuan, Congcong Wen, Xiaonan Lu,
Yu Liu, and Xiang Li. 2025. Rsgpt: A remote sens-
ing vision language model and benchmark. ISPRS
Journal of Photogrammetry and Remote Sensing,
224:272-286.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao,
Saksham Singhal, Shuming Ma, Tengchao Lv, Lei
Cui, Owais Khan Mohammed, Barun Patra, and 1
others. 2023. Language is not all you need: Align-
ing perception with language models. Advances in
Neural Information Processing Systems, 36:72096—
72109.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Jason J Lau, Soumya Gayen, Asma Ben Abacha, and
Dina Demner-Fushman. 2018. A dataset of clini-
cally generated visual questions and answers about
radiology images. Scientific data, 5(1):1-10.

Nicholas Lee, Thanakul Wattanawong, Sehoon Kim,
Karttikeya Mangalam, Sheng Shen, Gopala Anu-
manchipali, Michael W Mahoney, Kurt Keutzer, and
Amir Gholami. 2024. LIm2llm: Boosting llms with
novel iterative data enhancement. arXiv preprint
arXiv:2403.15042.

Seowoo Lee, Jiwon Youn, Hyungjin Kim, Mansu Kim,
and Soon Ho Yoon. 2025. Cxr-llava: a multimodal
large language model for interpreting chest x-ray
images. European Radiology, pages 1-13.

Chen Li, Yixiao Ge, Dian Li, and Ying Shan. 2023a.
Vision-language instruction tuning: A review and
analysis. arXiv preprint arXiv:2311.08172.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto
Usuyama, Haotian Liu, Jianwei Yang, Tristan Nau-
mann, Hoifung Poon, and Jianfeng Gao. 2024a.
Llava-med: Training a large language-and-vision
assistant for biomedicine in one day. Advances in
Neural Information Processing Systems, 36.

Haifeng Li, Hao Jiang, Xin Gu, Jian Peng, Wenbo Li,
Liang Hong, and Chao Tao. 2020. CLRS: continual
learning benchmark for remote sensing image scene
classification. Sensors, 20(4):1226.

Haoran Li, Qingxiu Dong, Zhengyang Tang, Chaojun
Wang, Xingxing Zhang, Haoyang Huang, Shaohan
Huang, Xiaolong Huang, Zeqiang Huang, Dongdong
Zhang, and 1 others. 2024b. Synthetic data (almost)
from scratch: Generalized instruction tuning for lan-
guage models. arXiv preprint arXiv:2402.13064.

Junxian Li, Di Zhang, Xunzhi Wang, Zeying Hao, Jingdi
Lei, Qian Tan, Cai Zhou, Wei Liu, Yaotian Yang, Xin-
rui Xiong, and 1 others. 2025. Chemvlm: Exploring
the power of multimodal large language models in

283


https://doi.org/10.5281/zenodo.13935471
https://doi.org/10.5281/zenodo.13935471
https://doi.org/10.5281/zenodo.13935471
https://doi.org/10.5281/zenodo.13935471
https://github.com/xiaoachen98/Open-LLaVA-NeXT
https://github.com/xiaoachen98/Open-LLaVA-NeXT
https://openreview.net/forum?id=y886UXPEZ0
https://openreview.net/forum?id=y886UXPEZ0

chemistry area. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
415-423.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer
Levy, Luke Zettlemoyer, Jason E Weston, and Mike
Lewis. 2023b. Self-alignment with instruction back-
translation. In The Twelfth International Conference
on Learning Representations.

Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and
Xiao-Ming Wu. 2021. Slake: A semantically-labeled
knowledge-enhanced dataset for medical visual ques-
tion answering. In 2021 IEEE 18th International
Symposium on Biomedical Imaging (ISBI), pages
1650-1654. IEEE.

Dongyang Liu, Renrui Zhang, Longtian Qiu, Siyuan
Huang, Weifeng Lin, Shitian Zhao, Shijie Geng, Ziyi
Lin, Peng Jin, Kaipeng Zhang, Wenqi Shao, Chao Xu,
Conghui He, Junjun He, Hao Shao, Pan Lu, Yu Qiao,
Hongsheng Li, and Peng Gao. 2024a. SPHINX-X:
scaling data and parameters for a family of multi-
modal large language models. In ICML. OpenRe-
view.net.

Fenglin Liu, Zheng Li, Qingyu Yin, Jinfa Huang, Jiebo
Luo, Anshul Thakur, Kim Branson, Patrick Schwab,
Bing Yin, Xian Wu, and 1 others. 2025. A multi-
modal multidomain multilingual medical foundation
model for zero shot clinical diagnosis. npj Digital
Medicine, 8(1):86.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan
Zhang, Sheng Shen, and Yong Jae Lee. 2024b. Llava-
next: Improved reasoning, ocr, and world knowledge.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024c. Visual instruction tuning. Advances in
neural information processing systems, 36.

Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe
Zhang, Jinmeng Rao, Steven Zheng, Daiyi Peng, Diyi
Yang, Denny Zhou, and 1 others. 2024d. Best prac-
tices and lessons learned on synthetic data for lan-
guage models. arXiv preprint arXiv:2404.07503.

Xiaoqgiang Lu, Bingiang Wang, Xiangtao Zheng, and
Xuelong Li. Exploring models and data for remote
sensing image caption generation. IEEE Transac-
tions on Geoscience and Remote Sensing, 56(4):2183—
2195.

Yizhen Luo, Jiahuan Zhang, Siqi Fan, Kai Yang,
Yushuai Wu, Mu Qiao, and Zaiqing Nie. 2023a.
Biomedgpt: Open multimodal generative pre-trained
transformer for biomedicine. arXiv preprint
arXiv:2308.09442.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023b. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Yingzi Ma, Yulong Cao, Jiachen Sun, Marco Pavone,
and Chaowei Xiao. 2024. Dolphins: Multimodal
language model for driving. In ECCV (45), volume
15103 of Lecture Notes in Computer Science, pages
403-420. Springer.

Fnu Mohbat and Mohammed J Zaki. 2024. Llava-chef:
A multi-modal generative model for food recipes. In
Proceedings of the 33rd ACM International Confer-
ence on Information and Knowledge Management,
pages 1711-1721.

Michael Moor, Qian Huang, Shirley Wu, Michihiro
Yasunaga, Yash Dalmia, Jure Leskovec, Cyril Za-
kka, Eduardo Pontes Reis, and Pranav Rajpurkar.
2023. Med-flamingo: a multimodal medical few-shot
learner. In Machine Learning for Health (ML4H),
pages 353-367. PMLR.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

OpenAl. 2023. Gpt-4v(ision) system card.

Zhiliang Peng, Wenhui Wang, Li Dong, Yaru Hao, Shao-
han Huang, Shuming Ma, Qixiang Ye, and Furu Wei.
2024. Grounding multimodal large language models
to the world. In The Twelfth International Confer-
ence on Learning Representations.

Bo Qu, Xuelong Li, Dacheng Tao, and Xiaoqgiang Lu.
2016. Deep semantic understanding of high reso-
lution remote sensing image. In CITS, pages 1-5.
IEEE.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark, and
1 others. 2021. Learning transferable visual models
from natural language supervision. In International
conference on machine learning, pages 8748-8763.
PMLR.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, and 1 others. 2018. Improving language
understanding by generative pre-training.

Maryam Rahnemoonfar, Tashnim Chowdhury, Argho
Sarkar, Debvrat Varshney, Masoud Yari, and
Robin Roberson Murphy. 2021. Floodnet: A high
resolution aerial imagery dataset for post flood scene
understanding. /IEEE Access, 9:89644-89654.

Amaia Salvador, Nicholas Hynes, Yusuf Aytar, Javier
Marin, Ferda Ofli, Ingmar Weber, and Antonio Tor-
ralba. 2017. Learning cross-modal embeddings for
cooking recipes and food images. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 3020-3028.

Mixed-
CoRR,

Chameleon Team. 2024. Chameleon:
modal early-fusion foundation models.
abs/2405.09818.

284


https://doi.org/10.1109/TGRS.2017.2776321
https://doi.org/10.1109/TGRS.2017.2776321
https://api.semanticscholar.org/CorpusID:263218031

Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya
Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane
Riviere, and 1 others. 2025. Gemma 3 technical
report. arXiv preprint arXiv:2503.19786.

Quin Thames, Arjun Karpur, Wade Norris, Fangting
Xia, Liviu Panait, Tobias Weyand, and Jack Sim.
2021. NutritionSk: Towards automatic nutritional
understanding of generic food. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8903—8911.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, and 1 others. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, and 1 others. 2024. Qwen2-
vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Cong Wei, Yujie Zhong, Haoxian Tan, Yingsen Zeng,
Yong Liu, Zheng Zhao, and Yujiu Yang. 2024. In-
structseg: Unifying instructed visual segmentation
with multi-modal large language models. CoRR,
abs/2412.14006.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824—
24837.

Xiongwei Wu, Xin Fu, Ying Liu, Ee-Peng Lim,
Steven CH Hoi, and Qianru Sun. 2021. A large-scale
benchmark for food image segmentation. In Proceed-
ings of the 29th ACM international conference on
multimedia, pages 506-515.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2023. Wizardlm: Empowering
large pre-trained language models to follow complex
instructions. In The Twelfth International Conference
on Learning Representations.

Zhiyang Xu, Chao Feng, Rulin Shao, Trevor Ashby,
Ying Shen, Di Jin, Yu Cheng, Qifan Wang, and Lifu
Huang. 2024. Vision-flan: Scaling human-labeled
tasks in visual instruction tuning. arXiv preprint
arXiv:2402.11690.

Yi Yang and Shawn Newsam. 2010. Bag-of-visual-
words and spatial extensions for land-use classifi-
cation. In ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Sys-
tems (ACM GIS).

Yuehao Yin, Huiyan Qi, Bin Zhu, Jingjing Chen, Yu-
Gang Jiang, and Chong-Wah Ngo. 2023. Foodlmm:
A versatile food assistant using large multi-modal
model. arXiv preprint arXiv:2312.14991.

Zhiqgiang Yuan, Wenkai Zhang, Kun Fu, Xuan Li, Chubo
Deng, Hongqi Wang, and Xian Sun. 2022. Explor-
ing a fine-grained multiscale method for cross-modal
remote sensing image retrieval. IEEE Trans. Geosci.
Remote. Sens., 60:1-19.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548.

Yang Zhan, Zhitong Xiong, and Yuan Yuan. 2025.
Skyeyegpt: Unifying remote sensing vision-language
tasks via instruction tuning with large language
model. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 221:64-77.

Sheng Zhang, Yanbo Xu, Naoto Usuyama, Jaspreet
Bagga, Robert Tinn, Sam Preston, Rajesh Rao,
Mu Wei, Naveen Valluri, Cliff Wong, and 1 oth-
ers. 2023a. Large-scale domain-specific pretraining
for biomedical vision-language processing. arXiv
preprint arXiv:2303.00915, 2(3):6.

Wei Zhang, Miaoxin Cai, Tong Zhang, Yin Zhuang,
and Xuerui Mao. 2024. Earthgpt: A universal multi-
modal large language model for multi-sensor image
comprehension in remote sensing domain. IEEE
Transactions on Geoscience and Remote Sensing.

Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weix-
iong Lin, Ya Zhang, Yanfeng Wang, and Weidi
Xie. 2023b. Pmc-vqa: Visual instruction tuning for
medical visual question answering. arXiv preprint
arXiv:2305.10415.

Henry Hengyuan Zhao, Pan Zhou, and Mike Zheng
Shou. 2023. Genixer: Empowering multimodal large
language models as a powerful data generator. arXiv
preprint arXiv:2312.06731.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yonggiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

285


http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu,
Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan,
Weijie Su, Jie Shao, and 1 others. 2025. Internvl3:
Exploring advanced training and test-time recipes
for open-source multimodal models. arXiv preprint
arXiv:2504.10479.

A Extended Related Work

Text-only/Visual-language Instruction Synthe-
sis For text-only instruction synthesis, the most
notable distinction between our work and these
previous works is our inclusion of images as an
additional source of information. In addition to
the input modality, our method also differs in sev-
eral key aspects. Instead of distilling knowledge
from strong models (Xu et al., 2023; Mukherjee
et al., 2023; Li et al., 2024b), we focus on learning
from image-caption sources. Additionally, we out-
perform rule-based methods (Cheng et al., 2024b;
Gu et al., 2022) by increasing instruction diver-
sity. Iterative techniques (Li et al., 2023b; Yue
etal., 2024; Lee et al., 2024) could complement our
method. Among all text-only instruction synthesis
works, we draw the most inspiration from Instruct
Pre-Training (Cheng et al., 2024a). However, we
introduce a consistency filter that significantly im-
proves accuracy and reduces the need for domain
expert annotation, allowing us to surpass synthesiz-
ers based on closed-source models. Additionally,
we incorporate several design choices to balance
the generalization challenge between image and
text inputs.

For visual-language instruction synthesis, us-
ing closed-source/open-source models to generate
data is common in general MLLM training (Li
et al., 2023a). Notable works include LLaVA (Liu
et al.,, 2024c), which uses text-only GPT-4 to
generate instructions based on captions as if the
model could “see” the image, leading to excep-
tional general-task performance. Additionally,
ALLaVA (Chen et al., 2024a) leverages GPT-4V to
generate large-scale visual instructions from image-
caption pairs while also augmenting answers from
Vision-FLAN (Xu et al., 2024). However, for
domain-specific MLLMs, particularly in private
domains, closed-source models pose privacy con-
cerns. Thus, we focus on open-source models for
instruction synthesis. Even with this focus, our
method still outperforms LLaVA-Med (which uses
text-only GPT-4) and PubMedVision (which uses
GPT-4V), as shown in Section 5, due to our su-
perior utilization of domain knowledge, task di-
versity, and complexity (discussed in Section 7).

The most relevant open-source model approach is
Genxier (Zhao et al., 2023), which fine-tunes open-
source MLLMs to synthesize instructions from im-
ages. However, whereas Genxier focuses on gen-
eral training, our work is specifically dedicated to
domain-specific adaptation. Moreover, we repro-
duce a Genxier-like baseline (Column 2, Table 7),
where image-only utilization underperforms our
method.

Multi/Single-Stage MLLM Training The train-
ing of general MLLMs typically starts with
an unaligned LLM (Brown, 2020; Chowdhery
et al., 2023; Touvron et al., 2023) and visual en-
coder (Radford et al., 2021), and often proceeds
in two stages. One representative example is
LLaVA (Liu et al., 2024c), which first trains on
image-caption pairs, and then on visual instruc-
tions. Note that “native multimodal language mod-
els" also exist, such as Kosmos (Huang et al., 2023;
Peng et al., 2024) and Chameleon (Team, 2024),
where all modalities are trained end-to-end from
scratch. In this paper, we mainly focus on the
first type which is more commonly used, possibly
due to its training efficiency which avoids the need
for pre-training LLMs. In addition to multi-stage
training, some works have explored the benefits
of single-stage training, such as SPHINX-X (Liu
et al., 2024a) and InstructSeg (Wei et al., 2024).
However, the primary motivation behind SPHINX-
X is to simplify the process by eliminating the
intensive effort of assigning tunable parameters
and dataset combinations to different stages. Fur-
thermore, neither SPHINX-X nor InstructSeg pro-
vides the detailed comparison of the impacts on
downstream tasks with different training strate-
gies that we present. Additionally, two-stage train-
ing remains the mainstream approach for domain-
specific training of MLLMs.

B Seed Data Construction and
Distribution

We convert the combination of VisionFLAN (Xu
et al., 2024) and ALLaVA (Chen et al., 2024a) into
our required format. Each seed data example con-
sists of an image-caption pair as the input and a
related task triplet as the output, which includes
an instruction, an informative response, and a pre-
cise response. VisionFLAN is a visual instruction
task dataset containing 191 tasks, each with 1K
examples. ALLaVA builds on VisionFLAN by
generating a caption for each image and regenerat-
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ing a response for each instruction. In our format,
the image, instruction, and response from Vision-
FLAN are used as the image, instruction, and pre-
cise response, respectively, while the caption and
re-generated response from ALLaVA are used as
the caption and informative response. Benefiting
from the diversity of existing datasets, our seed
data encompass a wide range of image domains
and task types, as shown in Figure 5.

Image Domain
Objects/General Items
Animal
Celebrity/Human
Nature
Art & Culture
Vehicles

m Abstract/Diagrammatic

® Landmark/Environment

® food

u Sketch/Drawing

®m Emotion/Sentiment
Textual Content

® Educational/Instructional
Software/Digital Content
Historical
Transportation
Architecture
Medical

u Sports

u Fashion/Clothing

Task Type

Image-Text Matching
Object Recognition
Caption Generation
Domain Classification
Style Classification
m Scene Classification
® Face and Expression Classification
m Data Representation
u Attribute and Context Recognition
m Task-Oriented Image Recognition
u Step-by-Step Guidance
® Anomaly Detection
m Pose and Activity Recognition
Text Detection and OCR
u Sentiment Analysis
Logo Detection
Utility and Affordance Recognition

Figure 5: Distribution of Image Domains and Task
Types in Seed Data.

C Image-Caption Data Source

For the biomedicine domain, we use two datasets
from PubMed Central under the MIT License:
(1) PMCR* (Zhang et al., 2023a), which com-
prises 470K publicly available images with human-
annotated captions, and (2) PMCRefined \which
contains 510K image-caption pairs with captions
refined by an MLLM. For the food domain,
we collect 130K single-image examples from
RecipelM (Salvador et al., 2017), which is licensed
under CC-BY-4.0. For the remote sensing do-
main, we collect 40K image-caption pairs from
NWPU-Captions (Cheng et al., 2022), RSICD (Lu
et al.), RSITMD (Yuan et al., 2022), Sydney-
Captions (Qu et al., 2016), and UCM-Captions (Qu
etal., 2016).

D Implementations and Costs of Visual
Instruction Synthesis

Table 10 presents the hyper-parameters used for
synthesizer tuning. We employ the vLLM infer-
ence framework (Kwon et al., 2023) to speed up
task synthesis and consistency checks. On a sin-
gle A100-80GB GPU, it takes approximately 10
hours to synthesize task triplets and an additional
2.5 hours to perform consistency-based filtering
for every 100K image-caption pairs. On average,
about 30% of the task triplets are reserved after
filtering. Specifically, we collect 150K, 144K, and
32K, 15K instruction-response pairs for PMCH%®,
PMCPRefined RecipelM and remote sensing image-
caption pairs, respectively.

Hyper-Parameter Assignment
Base Model LLaVA-v1.6-8B
Trainable Full Model
Epoch 2

Batch Size 128

Max Seq Length 6144

LRprojector & LLM 2e-5

LRyisual encoder 2e-6

LR Scheduler Cosine

Weight Decay 0

Warm-Up Ratio 0.03

Computing Infrastructure 8 A100-80GB GPUs
Training Time 13 Hours

Table 10: Hyper-Parameters for Synthesizer Tuning

MLLM LLaVA-vl.6 Qwen2-VL Llama-3.2
Trainable Full Model Full Model  Full Model
Epoch 1 1 1

Batch Size 128 128 128

Max Seq Length 6144 6144 6144
LRprojecIor & LLM 2e-5 le-5 5e-6
LRyisual encoder 2e-6 le-5 5e-6

LR Scheduler Cosine Cosine Cosine
Weight Decay 0 0.1 0.1
Warm-Up Ratio  0.03 0.1 0.1

Table 11: Hyper-Parameters for MLLM Single-Stage
Post-Training.

Image-Caption PMCT*” PMCRe/7¢d  RecipelM Remote.
LLaVA-v1.6-8B 21 23 6 2
Qwen2-VL-2B 3.5 4 1 0.5
Llama-3.2-11B 29 31 9 3

Table 12: Training Time (Hours) for MLLM Single-
Stage Post-Training on 8 A100-80GB GPUs.
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E MLLM Post-Training Settings and
Costs

Tables 11 and 12 present the hyper-parameters and
training time for the single-stage post-training of
MLLMs. In the two-stage training experiments,
we employ two common approaches for the first
stage on image-caption pairs: (1) unfreezing only
the vision-language projector (Liu et al., 2024c)
for LLaVA-v1.6-8B, and (2) unfreezing the full
model (Chen et al., 2023) for Qwen2-VL-2B and
Llama-3.2-11B. During the second stage on vi-
sual instruction tasks, we unfreeze the full model
across all setups. The hyperparameters for both
stages on Qwen2-VL-2B and Llama-3.2-11B are
the same as those listed in the table. For LLaVA-
v1.6-8B, the first stage differs only in the trainable
module, which is the vision-language projector, us-
ing a learning rate of 2e-3. The hyper-parameters
for the second stage are the same as those listed
in Table 11. We use the code implementations
from (Chen and Xing, 2024) for experiments on
LLaVA-v1.6-8B and from (Zheng et al., 2024)
for experiments on Qwen2-VL-2B and Llama-3.2-
11B.

F Further Analysis on Fine-tuning with
Blank Images

In our initial synthesizer fine-tuning using 100%
intact image-caption pairs, we observe two key
limitations when testing on out-of-distribution im-
ages: (1) the synthesizer generates overly sim-
ple questions with low task diversity, and (2) it
largely ignores caption information despite its rich
knowledge content. Upon examining the seed data
source— VisionFlan (Xu et al., 2024), we find that
the task instructions are annotated based solely on
images without using captions. This explains why
our synthesizer learns to prioritize visual informa-
tion while neglecting textual input.

To balance the utilization of both modalities, we
introduce blank images by replacing 10% of train-
ing images. This modification forces the synthe-
sizer to rely on caption information when visual in-
formation becomes unavailable. Empirical results
(Table 6 in Section 6 and Table 7 in Section 7.1)
demonstrate the effectiveness of this strategy. We
further validate our design through robustness test-
ing with corrupted inputs. Table 13 reveals that
fine-tuning with blank images produces two key
benefits: first, it yields significant quality improve-
ments for corrupted images while maintaining com-

parable performance on intact inputs; second, it pre-
serves task quality for text-corrupted cases. These
results demonstrate that our approach successfully
balances multimodal utilization while enhancing
robustness to challenging visual inputs.

Test .
m Intact Corrupt Image Corrupt Caption

w/o Blank 45.0 32.2 38.9
w/ Blank 44.7 36.1 38.9

Table 13: Synthetic Task Quality Comparison be-
tween synthesizers fine-tuned with/without blank im-
ages (10% replacement).“Intact” uses original image-
caption pairs; “Corrupt Image” applies random noise or
crops to images; “Corrupt Caption” randomly removes
text segments from captions.

G Scoring Criteria for Data Quality

For each synthetic dataset, we sample 200 exam-
ples and use the following scoring criteria to evalu-
ate data quality in each aspect. The final scores are
rescaled to a 0-100 range for presentation unifor-
mity.

Task Diversity For each instruction-response
pair, the annotator selects the most appropriate cate-
gory from the common vision instruction task types
listed below. Once all data samples are annotated,
we report the number of distinct task types normal-
ized by the total number of common task types.

* Domain Classification: Classifying images into
domains like race, animal categories, and envi-
ronment types.

* Object Recognition: Recognizing detailed ob-
jects like animal species, car brands, and specific
object types.

* Pose and Activity Recognition: Identifying spe-
cific human poses and activities.

* Logo Detection: Detecting and recognizing brand
logos.

* Face and Expression Classification: Classifying
facial attributes by age, gender, and detecting
expressions.

* Scene Classification: Categorizing images into
scene types like beaches, forests, and cities.

» Sentiment Analysis: Detecting sentiment in im-
ages.

* Caption Generation: Generating captions for im-
ages, including general and contextual descrip-
tions.

e Text Detection and OCR: Recognizing text in
images and structured text detection.
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* Image-Text Matching: Assessing image-text sim-
ilarity and coherence for multimodal content.

* Anomaly Detection: Identifying anomalies in set-
tings like industrial and road scenes.

* Style Classification: Classifying images by artis-
tic style and quality.

* Attribute and Context Recognition: Detecting im-
age attributes and contexts, such as object pres-
ence and temporal classification.

* Task-Oriented Image Recognition: Recognizing
objects in structured contexts, like weed species
and quick-draw sketches.

* Step-by-Step Guidance: Recognizing steps in in-
structional content, like wikihow procedures.

* Data Representation and Visualization: Visual
QA for charts and chart captioning.

» Utility and Affordance Recognition: Detecting
object utility or affordance in images.

* Visual Grounding: Linking image parts to corre-
sponding words or phrases.

» Segmentation: Dividing images into meaningful
segments, identifying objects or regions.

* Visual Storytelling: Creating narratives based on
a series of images.

Domain Knowledge Ultilization For each
instruction-response pair, the annotator evaluates
the extent to which domain-specific knowledge
from the image is utilized to complete the task.
The scoring follows the criteria below, and we
report the average score across all samples.

* 1: The task is totally irrelevant to the image.

¢ 2: The task is relevant, but the question is mun-
dane and answerable without reviewing the im-
age.

3: The task requires reviewing the image, but the
question is vague, such as asking for a general
caption.

* 4: The task is clear, but the question focuses on
only one detail in the image.

5: The task is highly relevant to both the details
and overall context of the image.

Task Complexity For each instruction-response
pair, the annotator assesses task complexity, with
higher scores for tasks requiring reasoning and
instruction-following abilities, using the criteria
below. We report the average score across all sam-
ples.

* 1: The task can be easily completed by mimick-

ing part of the caption.
* 2: The task can be easily completed by reviewing

the image, such as identifying an obvious object.
* 3: The task requires consideration of the details.
* 4: The task requires complex reasoning on details
and overview.
* 5: The task requires complex reasoning and
instruction-following abilities, such as returning
the answer in a required format.

Response Accuracy For each instruction-
response pair, the annotator assesses whether the
response correctly addresses the task based on the
context, using the following criteria. We report the
average score across all samples.

* 1: The response is totally irrelevant to the task
instruction.

2: The response attempts to address the instruc-
tion, but both the reasoning and conclusion are
incorrect.

3: The reasoning is correct, but the conclusion is
incorrect.

4: The conclusion is correct, but the reasoning is
incorrect.

5: Both the reasoning and conclusion are correct.

H Task Evaluation Details

Tables 14 and 15 present the specifications and
prompt templates for evaluated tasks in each do-
main. We conduct zero-shot prompting evaluations
on these tasks.

For biomedicine, we follow the evaluation ap-
proach of (Li et al., 2024a) for SLAKE, PathVQA,
and VQA-RAD, and the method of (Zhang et al.,
2023b) for PMC-VQA.

e SLAKE (Liu et al., 2021) is a semantically-
labeled, knowledge-enhanced medical VQA
dataset with radiology images and diverse QA
pairs annotated by physicians. The dataset in-
cludes semantic segmentation masks, object de-
tection bounding boxes, and covers various body
parts. “CLOSED” answers are yes/no type, while
“OPEN” answers are one-word or short phrases.
We use only the English subset.

* PathVQA (He et al., 2020) consists of pathology
images with QA pairs covering aspects like loca-
tion, shape, and color. Questions are categorized
as “OPEN” (open-ended) or “CLOSED” (closed-
ended).

e VOA-RAD (Lau et al., 2018) includes clinician-
generated QA pairs and radiology images span-
ning the head, chest, and abdomen. Questions are
categorized into 11 types, with answers as either
“OPEN” (short text) or “CLOSED” (yes/no).
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* PMC-VQA (Zhang et al., 2023b) is larger and
more diverse MedVQA datasets, with questions
ranging from identifying modalities and organs to
complex questions requiring specialized knowl-
edge. All questions are multiple-choice.

For food domain, the task descriptions are as
follows:

* RecipelM (Salvador et al., 2017) contains recipe
information, including titles, ingredients, and
cooking instructions. We evaluate models by
taking an image and asking for the recipe name,
ingredients, and steps.

* Nutrition5K (Thames et al., 2021) comprises real-
world food dishes with RGB images and nutri-
tional content annotations. We use the ingredient
information to create an ingredient prediction
task, where the model generates ingredients from
an image.

* Foodl01 (Bossard et al., 2014) features images
across 101 food categories. We ask the model
to classify each image into one of the 101 cate-
gories.

* FoodSegl03 (Wu et al., 2021) includes 103 food
categories with images and pixel-wise ingredient
annotations. We ask the model to select one or
multiple categories from a provided list.

For remote-sensing domain, we follow the eval-

uation approach of (Zhang et al., 2024).

* CLRS (Li et al., 2020) consists of 15,000 remote
sensing images divided into 25 scene classes. We
ask the model to classify each image into one of
the 25 categories.

e UC Merced (Yang and Newsam, 2010) is a 21
class land use image dataset. The images were
manually extracted from large images from the
USGS National Map Urban Area Imagery collec-
tion for various urban areas around the country.
We ask the model to classify each image into one
of the 21 categories.

e FloodNet (Rahnemoonfar et al., 2021) is a UAV
imagery dataset captured after Hurricane Harvey,
with visual question answering that challenges
models to detect flooded roads and buildings and
distinguish between natural and floodwater.

* NWPU-Captions (Cheng et al., 2022) includes
31,500 images with annotated captions. The su-
periority of it lies in its wide coverage of complex
scenes and the richness and variety of describing
vocabularies. We evaluate models by taking an
image and asking for the caption.

Task Description Metric Test Num
Biomedicine
SLAKEpen VQA Recall 645
SLAKE,,s. Binary classification Acc 416
PathVQA pen VQA Recall 3,357
PathVQA 5. Binary classification Acc 3,362
VQA-RAD,,en VQA Recall 179
VQA-RAD,;,s. Binary classification Acc 272
PMC-VQA Multi-chioice QA Acc 2,000
Food
RecipeIM Recipe generation Rouge-L 1,000
Nutrition5K Ingredient prediction Recall 507
Food101 Category classification Acc 25,250
FoodSeg103 Multi-label classification F1 2,135
Remote Sensing
CLRS Scene classification Acc 15,000
UC Merced Land-use classification Acc 21,000
FloodNet VQA Acc 11,000
NWPU Image captioning Rouge-L 31,500

Table 14: Specifications of the Evaluated Domain-
Specific Task Datasets.
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Task Instruction Response

Biomedicine
SLAKE {question} {answer}
PathVQA {question} {answer}
VQA-RAD {question} {answer}

ion: ion
PMC-VQA ?Eisthice;quZf ?o;tions} {option}
Food
RecipelM {question} {recipe}
NutritionSK What ingredients are used to make the dish in the image? {ingredients}

What type of food is shown in this image?
Food101 Choose one type from the following options: {food type}
{food type options}

Identify the food categories present in the image.
The available categories are: {options}
FoodSeg103 Please return a list of the selected food categories, {categories}
formatted as a list of names like
[candy, egg tart, french fries, chocolate].

Remote Sensing
What is the category of this remote sensing image?

CLRS Answer the question using a single word or phrase. {scene category}
Reference categories include: {scene options}
What is the category of this remote sensing image?

UC Merced Answer the question using a single word or phrase. {land-use category}
Reference categories include: {land-use options}

FloodNet {question} {answer}

Please provide an one-sentence caption for the

NWPU-Captions
P provided remote sensing image in details.

{caption}

Table 15: Prompt Templates of the Evaluated Domain-Specific Task Datasets.

SFT VQA-RAD SLAKE PathVQA PMC-VQA
OPEN CLOSED OPEN CLOSED OPEN CLOSED

LLaVA-Med (From LLaVA) X 28.2 61.4 39.2 522 12.3 54.1 -

v 61.5 84.2 83.1 85.3 38.0 91.2 -
LLaVA-Med (From Vicuna) v 64.4 82.0 84.7 83.2 389 91.7 -
LLaVA-Med (BioMed CLIP) X 37.8 60.7 39.7 543 11.7 49.1 -

v 64.8 83.1 87.1 86.8 39.6 91.1 -
PubMedVision (LLaVA-v1.5-8B) X - 63.8 - 74.5 - 59.9 52.7

4 - 68.9 - 84.1 - 93.0 57.3
PubMedVision (Yi-1.5-34B) X - 68.1 - 76.9 - 63.5 58.2
PubMedVision (LLaVA-v1.5-7B) X - 57.5 - 57.6 - 57.6 46.3
PubMedVision (Qwen-VL-Chat) X - 54.3 - 66.7 - 57.0 48.4

Table 16: Original results of LLaVA-Med and PubMedVision as reported in their papers. The column “SFT”
indicates whether the domain-adapted MLLM is further fine-tuned on the training set of the target task.
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(E have an image-related question for which I have received two answers: one is informative, and the ‘\
other is precise. Please help me assess whether the precise answer is consistent with the informative
answer.

Below are some examples. For each example, write your judgement as follows:

- Yes: Consistent, meaning the precise answer can be inferred from the informative answer.

- No: Inconsistent, meaning the precise answer cannot be inferred from the informative answer.

- Open: Indicates that the question invites multiple interpretations or that answers can be expressed
through open-ended phrasing, acknowledging complexity, or encouraging personal perspectives. It is also
applicable to questions that require image description, captions, or background knowledge.

## Question: Given an image of something from the kitchen, identify what it could be. The image could be
of cooking tools or items that are used for eating. It could also be used for serving food or storing
it.\nOptions: (a) This image contains a cup (b) This image contains a bottle (c) This image contains a
knife (d) This image contains a wine glass (e) This image contains a spoon (f) This image contains a
bowl (g) This image contains a fork

## Informative Answer: The options provided relate to identifying kitchenware or items related to food
service. From the given list, the most clearly identifiable object in the image is a plastic bottle with
a blue label, which is visible in the background behind the dishes. No cups, knives, wine glasses,
spoons, bowls (in the sense of a single, empty bowl), or forks are distinctly visible. Therefore, the
correct identification from the provided options is:\n(b) This image contains a bottle.

## Precise Answer: (a) This image contains a cup

## Consistent: No

## Question: You are provided with an image which contains two pictures side by side. Your task is to
identify the differences between the two pictures. Separate the differences with a comma.

## Informative Answer: Upon close inspection, the differences between the two images are subtle but
distinct. The shadows cast by the trees and lamp posts differ in length and direction, suggesting a
slight variation in the time or position of the sun when the photos were taken. The arrangement and
presence of cars vary\u20l4some are present in one image but not in the other. Architectural details
such as windows, roof lines, and the design on the building exteriors also show discrepancies. The color
of the roof on the small central structure is different in each picture, with one appearing darker than
the other. Lastly, the patterns on the sidewalks, especially the crosswalk lines, are not identical,
indicating a variation in either the perspective or actual changes in the environment.

## Precise Answer: the redish brown car moves slightly.

## Consistent: Open

\_

J

Figure 6: Prompt Template for Consistency-Based Filter (Part 1), continued in Part 2.
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//;; Question: Given an image of an animal, identify the kind of animal in the image. The picture couldA‘\\
be of more popular animals that are visible around zoos or are sometimes domesticated at home. They
could also sometimes be found in the wild.\nOptions: (a) This image contains a zebra (b) This image

contains a cow (c) This image contains a horse (d) This image contains an elephant (e) This image
contains a giraffe (f) This image contains a sheep (g) This image contains a cat (h) This image
contains a bear (i) This image contains a bird (j) This image contains a dog

## Informative Answer: The animal in the image can be identified as a dog, specifically a golden
retriever. This determination is based on several visual cues such as the golden coat, the size and
shape of the ears, the facial structure, and the overall body size, which are characteristic of this
breed. Golden retrievers are a popular domesticated breed known for their friendly and intelligent
demeanor. They are commonly kept as pets and are not typically found in zoos or in the wild. The image
does not contain any of the other animals listed in the options (a) through (i).

## Precise Answer: (j) This image contains a dog
## Consistent: Yes
## Question: Question: Is the picture taken outdoors?\nPlease answer the question by analyzing the

scene in the provided image.

## Informative Answer: Analyzing the elements within the image, there are several indicators confirming
that the picture is taken outdoors. The presence of natural elements like grass, trees, and the open
sky, along with architectural features that are not enclosed, such as the adobe-style building with
exterior walls and windows, support this observation. The lighting and shadows cast by the trees are
consistent with natural sunlight, further corroborating the outdoor setting. Moreover, the materials
used in the path and bench are typical of outdoor furnishings, designed to withstand weather conditions.
All these aspects contribute to the conclusion that the photograph was taken in an exterior space,
likely a garden or park associated with the building in the background.

## Precise Answer: yes

## Consistent: Yes

## Question: This task tests your ability to count number of objects. Here is the question \"How many
chairs are in the photo?\"

## Informative Answer: Upon careful observation of the photo, each individual is seated in a distinct
chair. The positioning of the subjects and their engagement with the camera suggests they are occupying
all the chairs present at their table. There are no other chairs discernible in the immediate vicinity
of the table or in the background. Therefore, it can be concluded that there are exactly four chairs in
the photo, corresponding to the four people seen around the table.

## Precise Answer: two

## Consistent: No

## Question: Can you give me a caption and some background knowledge about this image?

## Informative Answer: A detailed caption for this image could read: \"A moment of reflection and
accomplishment, as a retired NBA All-Star sits with the Championship Trophy, surrounded by peers and
the spirit of the game.\" The image is probably taken at an NBA event dedicated to honoring the
achievements of past basketball legends. The trophy next to the man symbolizes the pinnacle of success
in the league, suggesting that he may be one of the accomplished players who has reached this level of
success. The attire of the individuals indicates a formal celebration of basketball history, and the
relaxed atmosphere hints at a session of storytelling or interviews about their experiences in the
sport.\"

## Precise Answer: Moses Malone
1975, the NBA planned to host a
who had never been eligible for
had not apply for hardship. The

season. The team that made a selection must withdraw their equivalent selection in the 1976 Draft.

was selected by the New Orleans Jazz with the first pick. On December 9,
supplementary draft to settle negotiating rights to five ABA players
the NBA draft because their college classes had not graduated and they
teams selected in reverse order of their winloss record in the previous
The

teams were allowed to not exercise their rights on this hardship draft and thus retained their full

selection in the 1976 Draft.
NBA trying to reduce confidence
the draft,
## Consistent: Open

Question: {Instruction}
Informative Answer:
Precise Answer:
Consistent:

the draft was finally held on December 30,

The draft itself attracted strong opposition from the ABA who accuse the

in the stability of their league.
1975.

Despite the initial postponement of

{Informative Response}
{Precise Response}

Figure 7: Prompt Template for Consistency-Based Filter (Part 2).
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RecipelM Train Pipeline Instruction Recipe Nutrition Food101 FoodSeg AVERAGE

Two-Stage Rule 23.1 29.1 46.8 14.5 28.4
| LaVAv1.6.8B Ours 162 28.3 43.5 28.0 29.0
Sinelo-Siaee Rule 21.8 36.7 63.9 13.9 34.1
gre-stag Ours 24.8 36.1 65.3 42.0 42.0
Two-Stage Rule 24.1 24.5 68.8 7.7 313
Qwen2.VL.2B Ours 16.5 43.0 69.5 23.9 382
Sinele-Siae Rule 19.3 37.1 64.7 6.6 31.9
mgre-tage Ours 24.0 412 72.0 23.9 40.3
Tvo-Stage Rule 25.7 26.2 82.1 16.7 377
Llama 32118 Ours 17.8 38.0 74.6 332 40.9
Sinelo-Si Rule 214 322 75.8 16.9 36.6
ingte-olage Ours 26.1 410 822 42.0 478
PMCHav Train Pipeline Instruction SLAKE PathVQA YOA-RAD PMC-VQA  AVERAGE
OPEN CLOSED OPEN CLOSED OPEN CLOSED
Tvo-Stage GPT-4 434 502 10.1 592 35.0 62.5 37.1 425
LLaVAv1 6.8B Ours 56.2 71.4 172 745 50.6 79.0 404 55.6
Sinele-Sh GPT-4 442 59.1 116 622 385 673 39.9 46.1
mgte-Siage Ours 56.8 76.4 19.7 79.3 51.0 80.5 443 583
Tvo-Stage GPT-4 434 555 11.8 60.1 37.1 58.8 412 44.0
Owen2-VL.2B Ours 552 745 18.4 68.4 488 79.8 438 555
Sinele-Si GPT-4 436 59.6 132 474 373 57.0 312 413
mgte-Siage Ours 532 75.2 20.1 63.8 49.8 74.6 435 543
Tvo-Stage GPT-4 476 587 14.6 69.5 38.0 69.1 475 493
Llama3.9-11B Ours 60.0 757 2.1 76.8 514 80.5 479 592
Sinele-Si GPT-4 4638 565 16.0 69.9 419 65.4 453 488
mgte-Slage Ours 56.7 77.6 222 87.3 55.0 76.1 499 60.7
PMCFefined Train Pipeline Instruction SLAKE PathVQA YOAR'D PMC-VQA  AVERAGE
OPEN CLOSED OPEN CLOSED OPEN CLOSED
TwoSage  OPTAV 500 68.3 17.0 675 433 673 404 505
LLaVAv1 6.8B Ours 54.8 73.1 19.3 797 55.6 82.7 45.1 58.6
Sincle-Si GPT-4V 523 762 20.1 733 470 76.5 43.1 555
tngre-Slage Ours 58.0 733 229 78.6 59.8 81.3 479 60.3
TwoSmge  OPTAV 452 63.2 182 64.7 413 673 432 49.0
Owen2-VL.2B Ours 60.8 76.9 214 75.0 55.0 82.7 447 595
Sinele-Sh GPT-4V 514 66.1 18.9 61.4 45.1 732 45.1 51.6
mgte-Siage Ours 60.2 75.0 20.6 536 58.0 76.1 46.5 557
wosmge  OPTAV 491 743 19.3 709 462 739 47.1 544
Llama3.9-11B Ours 585 76.4 27.0 732 583 776 513 603
Sinele-Si GPT4V  47.1 726 19.5 707 459 739 465 537
mgte-Siage Ours 59.5 76.4 243 84.9 574 79.8 519 62.0

Table 17: Domain-Specific Task Performance of MLLMs after Post-Training with different synthetic data and
training pipelines. The image-caption sources are RecipelM, PMCR® and PMCRe/¢d  respectively. In most
cases using our synthetic data, we find that single-stage training outperforms two-stage training on domain-specific
tasks, particularly evident in the Recipe generation results for the food domain. Recall that in the two-stage training
approach for the food domain, the model first trains on recipe captions and then on our synthetic tasks. We examine
the task performance of LLaVA-v1.6-8B on Recipe generation and observe that the model achieves a score of 25.3
after the first stage on recipe captions. However, this score drastically decreases to 16.2 after the second stage. From
this, we infer that the two-stage approach causes the model to catastrophically forget the task/knowledge learned
in the first stage when transitioning to the second stage (Luo et al., 2023b), leading to poorer performance after
completing the second-stage training.
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Caption

To make Evie'S Ranch Nuggets, you'll need these ingredients: (1). 2 pounds skinless, boneless chicken
breasts, cut into 2 inch pieces (2). 1/2 cup sour cream (3). 1/2 cup all-purpose flour (4). 4 ounces Ranch-
flavored tortilla chips (5). vegetable cooking spray

Follow these steps to cook it:

[+] Preheat the oven to 400 degrees F (200 degrees C). Line a baking sheet with aluminum foil.

[+] Place tortilla chips and flour into a food processor or blender, and process into crumbs. Pour into a bowl.
Place chicken pieces into a sealable plastic bag with sour cream. Massage the bag to make sure chicken
pieces are coated with sour cream. Let sit for 5 minutes.

[+] Dip coated chicken pieces into the chip crumbs, and place on the prepared baking sheet. Spray lightly
with vegetable cooking spray.

[+] Bake for 30 minutes in the preheated oven, until chicken is cooked through and juices run clear.

Rule-Based Instruction-Response Pair

Instruction: I'm curious! What's the name, ingredients, and cooking method for this mouth-watering creation?

Response: To make Evie'S Ranch Nuggets, you'll need these ingredients: (1). 2 pounds skinless, boneless chicken breasts, cut into 2 inch
pieces (2). 1/2 cup sour cream (3). 1/2 cup all-purpose flour (4). 4 ounces Ranch-flavored tortilla chips (5). vegetable cooking spray
Follow these steps to cook it:

[+] Preheat the oven to 400 degrees F (200 degrees C). Line a baking sheet with aluminum foil. (...)

Our Instruction-Response Pair

Instruction: Texture is defined as the feel, appearance or consistency of a surface or substance from a human's perspective. Detect the
primary texture represented in the image.

Response: The primary texture represented in the image is that of a crispy, crunchy exterior typical of fried foods. The uneven, rough
surface of the chicken nuggets suggests a firm texture that would be audible upon bite. The golden-brown color indicates a Maillard
reaction, which is a chemical reaction between amino acids and reducing sugars that gives browned food its distinctive flavor. This
reaction also contributes to the crunchy texture, as it creates a rigid outer layer. The visible crumbs and the rough, uneven surface
further emphasize the crunchy texture that one would expect from such a food item.

Caption

CT scan of the orbits revealed right eye enophthalmos, focal osseous
defect of lamina papyracea (red arrow), deficient orbital fat (white
arrow), fibrosis of soft tissue (red star) along medial wall of right orbit

GPT-4 Instruction-Response Pair

Instruction: What is the red arrow pointingto?
Response: The red arrow in the CT scan is pointingto a focal osseous defect of the lamina papyracea.
Our Instruction-Response Pair

Instruction: What is the location of the lesion?

Response: The lesion is located in the right orbit. On the CT scan, it appears as an area of increased density (hyperdense) relative to the
surrounding brain tissue. The lesion is situated medial to the eyeball, which is the most prominent structure within the orbit. It is
important to note that the interpretation of radiological images should be performed by a qualified radiologist, as it requires a detailed
understanding of human anatomy and the ability to correlate findings with clinical symptoms for an accurate diagnosis. The answer is
right orbit.

Figure 8: Cases of Instruction-Response Pairs (Part 1) synthesized by our method, manual rules, GPT-4, and
GPT-4V, the image-caption sources for the cases are Recipe]M, PMC?%* and PMCT¢/"¢d respectively. Continued
in Part 2. In the first case, the rule-based task simply transforms the recipe caption, ignoring the image content. In
contrast, our task involves analyzing the food’s state in the image and applying food-related knowledge to infer its
texture, demonstrating a higher level of domain knowledge utilization. In the second case, the GPT-4 generated
task straightforwardly asks about the pointing of the red arrow, while ours requires a detailed analysis and inference,

showing greater task complexity.
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Caption

The image displays three distinct panels, each labeled with a different phase of bone
developmentunder distraction osteogenesis. The top panel, labeled 'Latency phase’,
shows an X-ray image of a bone with a surgical device composed of two parallel metal
plates attached by screws on either side of a bone segment. The middle panel, labeled
'Distraction phase', depicts the same bone but with a noticeable increase in the gap
between the bone ends, suggesting bone lengthening. The bottom panel, labeled
'Consolidation phase', illustrates further progress of bone growth within the gap,
indicating new bone formation and consolidation. Each panel uses the same angle and
lighting conditionsto emphasize the changes in the bone structure across different
phases.

Latency phase

Distraction phase

Consolidation phase

GPT-4V Instruction-Response Pair

Instruction: Can you identify the type of surgical hardware used in these phases based on the image, and explain its role in the
manipulation of bone segments during distraction osteogenesis?

Response: The surgical hardware visualized in the image appears to be a type of external fixator, consisting of two parallel metal plates
connected by screws that penetrate through the bone segments. This hardware plays a pivotal role in distraction osteogenesis by
stabilizing the bone while also allowing for gradual bone lengthening. The screws can be adjusted to manipulate the distance between
the divided bone segments, facilitating new bone growth in the process required by the distraction phase.

Our Instruction-Response Pair

Instruction: What is the gap between the bone ends called?

The choices are: (A) Consolidation; (B) Distraction; (C) Latency; (D) None of the above.

Response: The gap between the bone ends, as depicted in the middle panel of the image, is referred to as the 'Distraction phase'. This
phase is characterized by the lengthening of the bone due to the application of a distraction device, which separates the bone ends
and allows for new bone growth to fill the gap. Therefore, the correct answer to the questionis:

(B) Distraction.

Figure 9: Cases of Instruction-Response Pairs (Part 2) synthesized by our method, manual rules, GPT-4, and
GPT-4V, the image-caption sources for the cases are RecipelM, PMCT* and PMC¢/""¢? respectively. In this
case, our task stands out as a multiple-choice question, showcasing task diversity.
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