TABDSR: Decompose, Sanitize, and Reason for Complex Numerical
Reasoning in Tabular Data

Changjiang Jiang', Fengchang Yu', Haihua Chen2, Wei Lu!, Jin Zeng'*
"Wuhan University,
2University of North Texas,
3Hubei University of Economics
Correspondence: yufc2002@whu.edu.cn

Abstract

Complex reasoning over tabular data is cru-
cial in real-world data analysis, yet large lan-
guage models (LLMs) often underperform due
to complex queries, noisy data, and limited nu-
merical capabilities. To address these issues,
we propose TABDSR, a framework consist-
ing of: (1) a query decomposer that breaks
down complex questions, (2) a table sanitizer
that cleans and filters noisy tables, and (3)
a program-of-thoughts (PoT)-based reasoner
that generates executable code to derive the
final answer from the sanitized table. To en-
sure unbiased evaluation and mitigate data leak-
age, we introduce a new dataset, CalTab151,
specifically designed for complex numerical
reasoning over tables. Experimental results
demonstrate that TABDSR consistently outper-
forms existing methods, achieving state-of-the-
art (SOTA) performance with 8.79%, 6.08%,
and 19.87% accuracy improvement on TAT-
QA, TableBench, and TABDSR, respectively.
Moreover, our framework integrates seamlessly
with mainstream LLMs, providing a robust so-
lution for complex tabular numerical reasoning.
These findings highlight the effectiveness of
our framework in enhancing LLM performance
for complex tabular numerical reasoning. Data
and code are available upon request.

1 Introduction

Table Question Answering (TQA) requires extract-
ing and reasoning over numerical information from
tabular data to produce correct answers. It has
found broad application in financial TQA (Chen
et al., 2021; Zhu et al., 2021) and mathematical rea-
soning with tabular data (Lu et al., 2023). Although
large language models (LLMs) exhibit strong gen-
eral reasoning capabilities, real-world TQA re-
mains challenging. TQA questions often demand
multi-hop reasoning (Biran et al., 2024), involving
multiple calculation steps, and visual table conver-
sions can introduce noise, further degrading per-
formance. Recently, agent-based approaches, such

2013 2013
- 4
region| general

What is the average percentage of

. 1.24 votes for the 2013 general election
piedmont| 3.09 (e
vial 1.03 | 371 regions have a election percentage

—— i —

I
|
across all regions, and how many |
|
|

- esmatedy reater than 2% in the year?
mgo |43 155 | 2 ~ _

"
Chain-of-Thought (CoT)

Step 1: Converted values: 1.24,

3.71,1.55

Step 2: Compute the average:

Average = (1.24 + 3.71 + 1.55) / 3 =

6.1/3=2.04

Step 3: Final Answer: 2.04

Program-of-Thought (PoT)
average_2013_general = dff'2013
general'].mean()
regions_above_2_percent =
df[df'2013 general’] > 2].shape[0]
print(average_2013_general)

Calculation Error: A computational error
occurred during the reasoning process.

Answer Error: Only Sub-question 1 has
been answered, without addressing Sub-
question 2.)

TabDSR (Ours)
Agent 1: Query Decomposer Agent

Sub-question | What is the average percentage of votes for the 2013
1 general election across all regions?

Type Error: Could not convert string
"1.24(approx)", "3.71(estimated)" to numeric
Key Error: 2013 general'.

Multi-level header result in errors in progral
column name recognition.

Sub-question | how many regions have a election percentage greater
2 than 2% in 2013 general?

Agent 2: Table Sanitizer Agent

Step 1| Multi-level Header Mergi 2013 | 2013
|__Multi-level Header Merging | e
Step 2| Numerical Column Identification |—{piedmont| 3.09 | 1.24
pania| 1.03 | 3.71
Step 3| Cell Sanitization] lazio | 433 | 155

Agent 3: PoT-based Reasoner Agent

Sub-question 1:
print(table_df['2013 general’.mean().round(2))

1.24
3.71 —> 2.17 \’

1.55

3> 1 Q/

Figure 1: Illustration of the comparison between PoT,
CoT, and the proposed TABDSR.

Sub-question 2:
len(table_df['2013 general’] > 2)

as Deep Research (Wentao Zhang, 2025) and GUI
Agents (Yuan et al., 2025), have been explored to
handle multi-step reasoning and complex multi-hop
tasks.

Approaches to TQA numerical reasoning gen-
erally fall into three categories: pre-trained mod-
els, fine-tuning LL.Ms, and prompt-based LLMs.
Pre-trained and fine-tuned models typically re-
quire large amounts of high-quality TQA data, and
they struggle to generalize to new or unseen tasks.
As a result, prompt-based methods have become
the mainstream solution. Nonetheless, as illus-

3172

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 3172-3196
November 4-9, 2025 ©2025 Association for Computational Linguistics

mailto:yufc2002@whu.edu.cn

trated in Figure 1, they still face three critical chal-
lenges: (1) Multi-hop Complexity: Even LLMs
with strong reasoning abilities can fail to answer
multi-hop questions accurately. (2) Data Qual-
ity and Structure: Program-of-Thought (PoT) ap-
proaches (Chen et al., 2023) rely on clean and con-
sistently typed table columns; mixed-type columns
(e.g., “1.24(approx)” and “1.55 in the same col-
umn) can trigger runtime errors. (3) Limited Nu-
merical Computation: Current LLMs do not truly
compute but rather mimic numerical procedures
seen in training data (Mirzadeh et al., 2024).

Humans, by contrast, excel at table reasoning
via a three-step process: (1) decompose complex
questions into simpler sub-questions, (2) interpret
the table’s structure and semantics, and (3) extract
relevant data and perform precise calculations. In-
spired by this process, we introduce TABDSR, a
prompt-based framework tailored for numerical
reasoning with complex tables. As depicted in
Figure 1, TABDSR employs three agents that mir-
ror human reasoning: (1) A Query Decomposer
Agent that splits the original query into tractable
sub-questions, (2) A Table Sanitizer Agent that re-
fines the table to ensure a clean, machine-readable
format, (3) A PoT-based Reasoner Agent that
generates and executes programs to derive the final
answer.

Evaluating TQA methods is further complicated
by data leakage in existing datasets (Deng et al.,
2024), which can obscure the true capabilities of
LLMs. To address this, we propose CALTAB151
, a new dataset specifically designed to assess
complex numerical reasoning in TQA while min-
imizing data leakage risks. This provides a more
reliable benchmark for evaluating prompt-based
frameworks, ensuring a fair comparison of differ-
ent LLM-based solutions for table-based numerical
reasoning.

Our contributions are summarized below:

* We propose TABDSR, a framework that com-
bines Query Decompose Agent, Table Sani-
tizer Agent and PoT-based Reasoner Agent,
specifically designed to improve the perfor-
mance of LLMs in numerical reasoning tasks
within TQA.

* We conducted a comprehensive analysis of our
approach in several open-source and closed-
source LLMs. TABDSR significantly im-
proves the performance of LLMs in numerical

reasoning within TQA tasks. Experimental
results across different LLMs demonstrate the
transferability of our method.

* We construct CALTAB151 , a novel dataset
in complex numerical reasoning TQA task, to
avoid potential data leakage that could under-
mine the reliability of the reported metrics on
the public datasets.

2 Related Work

Pre-trained models. Early work on Table Ques-
tion Answering (TQA) often relied on large pre-
trained models fine-tuned for specific downstream
tasks. Given a table and a question, some meth-
ods generate executable SQL queries to extract the
answer (Liu et al., 2022; Jiang et al., 2022), while
others directly predict the answer text (Herzig et al.,
2020). Although these approaches have shown
promising results, they typically require large-scale,
high-quality tabular datasets and significant compu-
tational resources for training. As a result, they face
challenges in domain adaptation and often struggle
to generalize to new or unseen tables.

Fine-tuning LLMs. Recent studies have shown
that directly fine-tuning large language models
(LLMs) can yield strong performance on table
reasoning tasks (Badaro et al., 2023), as seen in
systems like TableLlama (Zhang et al., 2024a),
TableGPT2 (Li et al., 2024), and TableLLM (Zhang
et al., 2024b). These fine-tuned models obviate the
need for elaborate prompt design by framing the
task as a single-round QA process. However, this
approach compresses the reasoning steps into a
single inference pass, limiting traceability for nu-
merical calculations.

Prompt-based LLMs. For TQA with LLMs,
direct prompting (DP) feeds the table and ques-
tion into an LLLM for a single-step answer with-
out intermediate reasoning. In contrast, Chain-of-
Thought (CoT) prompting compels LLMs to gen-
erate step-by-step reasoning before producing the
final answer. Within CoT, two main CoT variants
are textual chain-of-thought (TCoT) and symbolic
chain-of-thought (SCoT). TCoT appends prompts
like “Let’s think step by step!” (Kojima et al.,
2022), and SCoT uses symbolic commands to itera-
tively refine results (Wu et al., 2024). An emerging
trend in TQA is to merge CoT prompting with
multiple LLM calls, as demonstrated by MFORT-
QA(Guan et al., 2024), which first employs few-

3173

Agent 1: Query Decomposer Agent o 8 o
oigro
+

LLM

I
| Agent 3: PoT-based Reasoner Agent

Semantic recognition

: : 2013 | 2013

Sub-question 1 region general

piedmont| null 1.24

Conjunction recognition

|Sub-question2| campania| null 3.71
lazio 433 | 1.55

—_——— — —]

Sub-question counting

What is the average percentage
of votes for the 2013 general
election across all regions, and
how many regions have a
election percentage

greater than 2% in the year?

Sequence output

Sub-question Analysis |

|
P <—| Column Type Conversion |
|

Code Generation |

Print answer in order

— Answer 1

2013 2013 Format Checkingl
region|general

1.24 | Reconstructing Nested Table |

piedmont| N/A)
(approx) | Reconstructing Segmented Table |

. 3.71

campania - | | Cell Content Cleaning |
lazio 4.33 1.55 | Output Structuring |

—— Answer 2

Figure 2: TABDSR’s collaborative pipeline: Synchronous execution of query decomposer agent and table sanitizer

agent for complex numerical reasoning via PoT.

shot prompts to retrieve relevant tables, then ap-
plies CoT prompts to guide the reasoning process.
However, GSM-Symbolic(Mirzadeh et al., 2024)
reveals limitations in LLM numerical reasoning:
systematically altering numerical values in math
problems degrades model performance. This find-
ing highlights that CoT prompting alone cannot
ensure accurate numerical calculations.

Another popular approach is Program-of-
Thought (PoT) prompting. PoT-based methods
employ LLMs to generate executable code, address-
ing the models’ inherent computational limitations.
However, as illustrated in Figure 1, these methods
rely on clear questions, correct table structures, and
consistent column types. Parallel lines of research
on question decomposition often train sequence-to-
sequence models to split a complex question into
smaller sub-questions (Perez et al., 2020; Zhang
et al., 2019), but this requires extensive manual
labeling. In TQA, question decomposition is fre-
quently combined with table-level preprocessing.
For instance, TabSQLify(Nahid and Rafiei, 2024a)
condenses large tables to reduce contextual over-
head, and MIX-SC(Liu et al., 2024b) integrates a
Python interpreter with ReAct (Yao et al., 2023)
iterative reasoning to refine its outputs. Similarly,
Chain-of-Table (Wang et al., 2024) dynamically
plans operations based on sub-task selection.

Despite these advances, two challenges persist:
(1) existing methods often fail to explicitly address

multi-hop questions, risking incomplete or incor-
rect answers, and (2) they overlook column-type
inconsistencies, which can cause LLM-generated
code to misinterpret text noise as numerical data
and trigger computation errors.

3 TABDSR

Task Formulation The goal of Table Question
Answering (TQA) is to predict an answer A given
two table strings: a table 7" and a question (). As
illustrated in Figure 2, our TABDSR framework
addresses TQA’s numerical reasoning challenges
via three specialized agents, each responsible for a
key component of the reasoning pipeline.

3.1 Query Decomposer Agent

Complex numerical reasoning often requires multi-
hop interpretation of the question. Single-turn mod-
els frequently fail to capture this complexity, result-
ing in incomplete or inaccurate answers. Previous
work underscores the importance of proper ques-
tion understanding in TQA.

Existing prompt-based methods typically feed
both the question and the table into an LLM.
For example, DATER (Ye et al., 2023) uses the
prompt “Decompose questions into sub-questions
and transform them into a cloze-style format”
However, these decomposition instructions can be
vague, yielding inconsistent sub-question granu-
larity. Moreover, given that tables are often much

3174

ulti-leve
Header

Club League eague
iR Inconsistent
Club Division Apps Column
Null
Value !: Liverpool Premier League | 30 (30) Data Types
Liverpool) 32 Riging
Row
Liverpool Total Liverpool Total 62
Manchester City Premier League 13

Figure 3: Example of a noisy tabular data; The original
table is sourced from the TableBench (Wu et al., 2024);
The table has multi-level headers, which seem to intro-
duce errors and noise due to visual table conversions;
For the sake of presentation, we manually removed cer-
tain rows and columns and modified a few cells.

larger than the question text, crucial details in the
question may be overshadowed by the table content
during decomposition.

To address these issues, our Query Decomposer
Agent takes only the question as input and ignores
the table entirely. By significantly reducing the
prompt length, we ensure that pertinent details in
the question are more likely to be retained. Con-
cretely, we design the prompt to decompose the
query based on textual cues such as conjunctions
(“and”, “or”’) and punctuation (commas), treating
each segment as an independent sub-question.

We further mitigate potential LLM halluci-
nations by drawing inspiration from Chain-of-
Thought (CoT) reasoning (Wei et al., 2024). Specif-
ically, we instruct the model to output the number
of sub-questions in a list format, accompanied by
a carefully chosen example from a complex TQA
query. This example demonstrates the desired level
of decomposition and guides the model’s reasoning
process.

3.2 Table Sanitizer Agent

Beyond the complexity of the question text, TQA
tasks are often complicated by textual tables that
lose the visual cues crucial for understanding hi-
erarchical or segmented data. These tables can be
lengthy, contain redundant rows and columns, in-
clude null values, or introduce noise through the
conversion process from a visual to a text-based
format. To tackle these issues, our Table Sanitizer
Agent optimizes both the structure and content of
textual tables.

Structural Optimization, which consists of two
scenarios: (1) Reconstructing Nested Tables (Multi-
level Headers). In text format, headers from multi-
level tables can be split into separate lines, ob-

scuring their logical relationships. We prompt the
model to detect these nested headers and merge
them based on their semantic similarities. (2) Re-
constructing Segmented Tables. Tables sometimes
appear in sections separated by blank rows or di-
viding lines, and these visual cues are lost in plain
text. We enhance the prompt to identify these seg-
mentation rows and either remove or extract them,
depending on the query requirements.

Content Optimization, mainly focuses on Cell
Content Cleaning. Subsequent reasoning steps rely
on valid cell entries. Accordingly, we instruct the
model to remove extraneous symbols (e.g., “%,”’
currency symbols, commas), explanatory notes,
emojis, and other non-numeric characters. We then
convert numerical data into integer or float formats
and standardize blank cells (e.g., “=”, “N/A”) to a
consistent “null” label.

Although some studies simplify tables to re-
duce complexity (Ye et al., 2023; Nahid and Rafiei,
2024a), modern LLMs can effectively handle long
inputs. For instance, Qwen2.5:7b supports a 128K
context window (Yang et al., 2024), making the
full table content manageable without sacrificing
critical information. Consequently, our Table Sani-
tizer Agent retains the complete table to preserve
as much detail as possible for downstream TQA
tasks.

To mitigate potential hallucinations from the
LLM that could lead to table-cleaning errors, we in-
corporate a reflection mechanism. Specifically, the
cleaned table string is first validated by a Python
parser. If the parser fails to read the table, the result-
ing error message, along with the newly generated
string, is fed back into the prompt as contextual
guidance for the LLM to regenerate a corrected
version. To prevent infinite loops, we limit this
regeneration process to a single additional iteration
in our current experiments. The overall workflow
is illustrated in Figure 2.

3.3 PoT-based Reasoner Agent

Having decomposed the original question into sub-
questions and sanitized the table, we now have
well-defined queries and clean data ready for com-
putation. However, studies such as Mirzadeh et al.
(2024) indicate that LLMs alone often struggle with
precise numerical reasoning. To circumvent this
limitation, our PoT-based Reasoner Agent employs
Program-of-Thought (PoT) techniques to generate
Python code that performs the necessary calcula-
tions on the sanitized table.

3175

While some approaches (Wang et al., 2024;
Nahid and Rafiei, 2024a) rely on SQL for table
computations, our method prioritizes simplicity
and computational efficiency. Specifically, we load
the sanitized data into a Pandas DataFrame and
leverage its flexible APIs to handle tasks such as
filtering, aggregation, and arithmetic operations.
To ensure robustness, we (1) extract relevant data
into the DataFrame based on each sub-question,
(2) generate Python code that executes calculations
specific to these sub-questions, (3) restrict certain
Pandas methods to avoid inconsistencies across ver-
sions, (4) validate data formats through consistency
checks, minimizing the risk of errors caused by
unexpected input types.

After computing the results for each sub-
question, we reassemble them in a logical se-
quence—considering any dependencies between
questions—to produce the final TQA answer. This
modular pipeline ensures that the correctness of
PoT-based reasoning is maximized by the clarity of
the sub-questions and the cleanliness of the tabular
data, underscoring the importance of the first two
agents in our framework.

4 Construction of CALTAB151

To ensure a fair evaluation that mitigates data leak-
age from existing public datasets, we propose an
annotation framework combining LL.M-generated
queries with human-verified answers (details in
Appendix B). This process culminates in a high-
quality numerical reasoning dataset, CALTAB151
, composed of 151 table samples drawn from
TableBench(Wu et al., 2024) (84), FinQA(Chen
etal., 2021) (27), TAT-QA(Zhu et al., 2021) (32),
and AitQa(Katsis et al., 2022) (8).

We construct CALTAB151 through the six steps:
(1) Numerical Perturbation: To maintain realistic
yet varied numeric values, we randomly perturb
cell values by £3%—5% of their original values.
The prompt can be seen in Figure 6. (2) Cell Noise
Addition: To simulate natural table noise, we in-
ject context-appropriate symbols (e.g., $, €, or %)
into randomly chosen numeric columns, aligned
with their semantic relevance. (3) Structural Ran-
domization: We enhance structural diversity by
shuffling rows or columns and randomly deleting a
subset of them, thereby introducing a broader range
of table configurations. (4) Random Null Value
Filling: To model incomplete data, we replace 2—4
cells with labels such as “None”, “Null”, “N/A”,

“2777, or “-”. (5) Multi-hop Question Generation:
To increase question complexity, we construct an
agent for generating multi-hop questions, where
each question consists of multiple sub-questions,
with each subsequent question depending on the
answer to the previous one. The agent guides
the model to generate two sub-questions and then
merge them into a coherent two-hop question based
on natural semantics, ensuring the coherent ques-
tion is contextually relevant. The Prompt can be
seen in Figure 5. (6) Answer Annotation: Finally,
to ensure data accuracy, human annotators manu-
ally calculate and verify answers to all generated
multi-hop questions.

This multi-pronged approach produces a robust
and realistic dataset that captures both the struc-
tural and semantic challenges of real-world TQA,
providing a more reliable benchmark for evaluating
LLM-based numerical reasoning.

5 Experiments and Results

5.1 Experimental Settings

Baselines. We implement the following baselines:

* Pre-trained Models We have selected
TAPEX (Liu et al., 2022), and OmniTab (Jiang
et al., 2022). The tapex-large-finetuned-wtq
and omnitab-large-finetuned-wtq as backbone.
Both are fine-tuned on the WikiTQ dataset (Pa-
supat and Liang, 2015), which is a dataset in
the TQA task.

* Fine-tuning LL.Ms We evaluate several fine-
tuning LLMs, including TableLlama (Zhang
et al., 2024a), TableLLM (Zhang et al.,
2024b), TableGPT2 (Su et al., 2024).

* Prompt-based LLMs We compare different
only prompts methods with TABDSR, include
DP, TCoT (Wei et al., 2024), PoT (Chen et al.,
2023) and SCoT. In addition, we evaluate
TABDSR against latest prompt-based meth-
ods that include Chain-of-Table (Wang et al.,
2024), TabSQLify (Nahid and Rafiei, 2024a),
ES5 (Zhang et al., 2024c), NormTab (Nahid
and Rafiei, 2024b), and ReAaTable (Zhang
et al., 2023)
footnoteThe prompts can be found in the Ap-
pendix F..

Datasets. We select three TQA datasets for ex-
periments ':

"Examples from each dataset can be found in Appendix C.

3176

TAT-QA TableBench CALTAB151
Methods
Acc ROUGE-L Acc ROUGE-L Acc ROUGE-L

Pretrained-models

TAPEX (Liu et al., 2022) 12.56 17.23 24.10 27.98 8.61 12.38

OmniTab (Jiang et al., 2022) 13.61 17.32 27.74 31.73 9.93 14.28
Fine-tuning LLMs

TableGPT2-7B (Su et al., 2024) 9.58 9.71 44.57 45.95 14.24 15.11

TableLLM-13B@PoT (Zhang et al., 2024b) 3.67 3.85 40.16 41.95 8.61 10.07

TableLLM-13B @DP (Zhang et al., 2024b) 35.56 37.44 4291 4421 24.17 28.32

TableLlama-7B (Zhang et al., 2024a) 27.84 33.51 23.70 26.75 7.28 11.50
Prompt-based LLMs

Chain-of-Table (Wang et al., 2024) 34.89 41.33 35.80 37.87 25.83 31.60

TabSQLifycol+row (Nahid and Rafiei, 2024a) 51.62 58.17 43.04 46.97 23.51 29.62

MIX-SC (Liu et al., 2024b) 30.77 34.06 46.67 49.41 16.56 20.78

EPcode (Zhang et al., 2024c) 40.1 44.65 9.4 11.09 8.94 10.42

E® ero-shot (Zhang et al., 2024c¢) 44.58 48.67 8.72 9.5 7.28 8.96

NormTab (Nahid and Rafiei, 2024b) 21.26 22.68 37.14 38.73 10.93 12.53

ReAcTable (Zhang et al., 2023) 28.72 31.27 25.27 26.31 11.59 13.38

60.41 62.76 52.75 55.39 45.70 50.57
TABDSR (Our Method) (+8.79) (+4.59) (+6.08) (+5.98) (+19.87) (+18.97)

Table 1: Table reasoning results on TAT-QA, TableBench and CALTAB151 ; Bold indicates the best performance;
Underline indicates the second-best performance; Red indicates the improvement measured against the second-best
performance method; TableLLM-13B @PoT refers to conducting code execution prompt to generate the final answer;
TableLLM-13B @DP refers to conducting direct text answer generation prompt to generate the final answer.

» TableBench (Wu et al., 2024) covers complex
TQA questions. The questions involve com-
plex numerical reasoning, fact-checking, Data
Analysis, and Visualization. For our exper-
iments, we choose questions related to fact
verification and numerical reasoning, contain-
ing 493 samples, as these tasks align closely
with our research objectives.

L]

TAT-QA (Zhu et al., 2021) challenges mod-
els to perform numerical reasoning requiring
arithmetic operations, comparisons, and com-
positional logic. The raw TAT-QA test set
contains questions related to tables, table+text
(relevant paragraphs), and pure text (relevant
paragraphs). Since our task is only related
to tables, we select a total of 736 examples
where the “answer_from” field is “table”.

CALTAB151 includes multi-hop questions
annotated by professional annotators. These
questions require reasoning over multiple ta-
ble entries. It includes 151 table samples.

Experimental Details. We configure the LLMs
with a maximum token length of 4096 and a tem-
perature of 0.1. For fine-tuning approaches:

* TableLlama uses Llama-2-7b-longlora-8k-
ft as its backbone (Touvron et al., 2023).

* TableGPT2 leverages
7B (Yang et al., 2024).

Qwen/Qwen2.5-

e TableLLM-13b is based on CodeLlama-13b-
Instruct-hf (Roziere et al., 2023).

We adopt Qwen2.5-7B (Yang et al., 2024) as the
backbone for all prompt-based LLLM configurations
to ensure a fair comparison.

Evaluation Metrics. We employ accuracy and
ROUGE-L (Lin, 2004) as our primary evaluation
metrics. Although TableBench uses ROUGE-L as
its main metric, we argue that measuring textual
overlap alone may not fully capture a model’s per-
formance in complex numerical reasoning. Thus,
we include accuracy to more robustly evaluate
whether each predicted answer is correct, offering
a comprehensive view of the models’ capabilities.

5.2 Results and Analysis

As shown in Table 1, TABDSR achieves state-
of-the-art performance across all three numerical
reasoning TQA benchmarks. Notably, the 7B-
parameter model even surpasses TableLLM-13B
in both accuracy and ROUGE-L, highlighting the
effectiveness of TABDSR regardless of model size.

3177

TAT-QA TableBench CALTAB151

Model | - Methed Acc ROUGE-L | Acc ROUGEL | Acc ROUGE-L
DP 2968 3527 | 1626 1980 | 828 1284
PoT 934 970 3602 3757 | 1159 13.5
2 TCoT 5502 6241 | 2945 3440 | 1987 27.00
e SCoT 43.65 4996 | 2448 2912 | 1623 24.60
3 TABDSRg | 1870 19.03 | 4568 4774 |23.18 2559
& | TABDSRpwi |17.69 1791 | 4514 4686 | 17.88 19.30
TABDSR s,z | 60.50 62.86 | 5141 53.86 | 39.07 44.44
TABDSR pisir | 6041 6276 | 5275 5549 | 4570 5057
DP 3280 3799 [2299 2634 | 1457 2058
S PoT 2031 2050 | 4084 4214 | 596 653
$ TCoT 5961 6675 |4278 4662 |2285 31.69
S SCoT 4678 5371 | 2805 3319 | 1854 2617
2 TABDSRy | 1863 1898 |5392 5575 |30.13 3321
S | TABDSRpw | 1809 1845 |5137 5271 | 2815 2951
& | TABDSRgix | 6096 6256 | 5598 58.18 | 4669 50.67
TABDSR pysir | 6021 61.52 | 5443 5630 | 4801 5139
DP 5777 6455 | 3847 4289 [2550 3597
PoT 3931 4153|5002 5184 | 2980 32.16
S TCoT 69.45 7349 | 5823 6239 | 5000 5732
4 SCoT 7315 7721 | 4775 5207 | 3642 44.93
3 TABDSRg | 59.19 60.50 | 5695 59.28 |50.66 53.97
S | TABDSRpng | 5654 5774 | 5715 5968 | 5132 5476
TABDSR s,r | 82.62 8495 |60.56 63.22 |63.25 68.21
TABDSR pisir | 83.19 8539 | 6144 6428 | 60.26 64.63

Table 2: Ablation Study on TAT-QA, TableBench, and CALTAB151; Query Decomposer (D), Table Sanitizer (S),
and PoT-based Reasoner (R) are abbreviated as shown; Bold indicates the best performance under the same dataset
and model with different Prompts. Underline indicates the second-best performance under the same conditions;
Qwen2.5-7B (Yang et al., 2024), Qwen2.5-Code-7B (Hui et al., 2024), and Qwen2.5-72B (Yang et al., 2024) use

their respective instruct-tuning models.

When comparing model categories, we make
the following observations: (1) Pre-trained mod-
els exhibit the weakest performance. (2) Fine-
tuned LLMs rank second overall but struggle sig-
nificantly on unseen datasets due to biases arising
from dataset dependency; for example, TableGPT2-
7B and TableLLM-13B @PoT excel on TableBench
but show sharp performance drops on the other two
datasets. (3) Prompt-based LLMs generally out-
perform fine-tuned models, suggesting that large
models already possess inherent numerical reason-
ing abilities.

Within the prompt-based category, TABDSR out-
performs existing techniques for two key reasons:

(1) Effective Multi-hop Decomposition. Compet-
ing methods often tackle multi-hop questions in a
single pass, which can lead to errors or omissions.
(2) Robust Table Sanitization. Many methods rely
on SQL-based splitting to handle large tables but
overlook unclean cell content, causing calculation
errors. By contrast, TABDSR ’s dedicated Decom-
poser and Sanitizer agents ensure higher reliability.
Detailed case studies are provided in Appendix D.

Moreover, nearly every method achieves its low-
est performance on CALTAB151 , which we at-
tribute to the absence of data leakage—an advan-
tage that may exist in publicly available datasets.
Consequently, CALTAB151 offers a more stringent

3178

TAT-QA TableBench CALTAB151

Model | - Methed Acc ROUGE-L | Acc ROUGEL | Acc ROUGE-L
DP 5531 6195 [4799 5290 [37.09 4598
3 PoT 4866 49.51 | 5731 5970 | 4536 49.15
£ TCoT 6021 6555 | 6l44 6519 | 4570 54.13
S SCoT 63.97 6927 | 5540 5990 | 4139 49.32
TABDSR pisir | 80.96 83.24 | 62.89 6527 | 6225 66.46
o DP 6221 6679 | 4746 5249 |3477 4350
0 PoT 5753 5854 | 49.14 5170 | 3742 4044
S TCoT 7895 8164 | 5901 6277 | 5265 59.61
S SCoT 7966 83.62 | 5243 5685 | 3874 47.69
S | TABDSR pysir | 83.67 8613 | 63.84 6648 | 6192 67.09

Table 3: Transferability of TABDSR: Performance Improvements on GPT-40 (Achiam et al., 2023) and DeepSeek-
V3 (Liu et al., 2024a); Bold indicates the best performance under the same dataset and model with different Prompts.
Underline indicates the second-best performance under the same conditions.

test of genuine numerical reasoning capabilities.

5.3 Ablation Study

Table 2 highlights how each agent contributes to fi-
nal performance. Following Mirzadeh et al. (2024),
which suggests that LLMs can accurately compute
numerical values via R (PoT), we include the rea-
soner (R) in all ablation settings.

Effect of the Sanitizer Agent (TABDSR
s). Comparing TABDSR gs,g with TABDSR
r alone, we observe consistent performance
gains—indicating that table sanitization improves
data quality for downstream computations. More-
over, the combined TABDSR pisir setting
achieves the highest accuracy overall, underscor-
ing how integrating the Decomposer and Sanitizer
agents yields further benefits.

Effect of the Decomposer Agent (TABDSR p).
In some model-dataset combinations, TABDSR
p+R slightly underperforms TABDSR g. We at-
tribute this to the chaotic nature of certain tables
(e.g., complex multi-level headers), which can di-
lute the value of decomposing the question first.
Nonetheless, in most cases, adding the Decom-
poser (TABDSR p,r) or both Decomposer and
Sanitizer (TABDSR p,s4r) improves performance
over TABDSR R alone, confirming the overall pos-
itive impact of multi-hop question decomposition.

5.4 Transferability

Our optimization strategy is fundamentally prompt-
based, raising a concern that it only benefits LLMs

with limited reasoning capabilities. To test its trans-
ferability, we applied TABDSR to GPT-40(Achiam
et al., 2023) and DeepSeek-V3 (Liu et al., 2024a),
two LLMs widely regarded for their strong reason-
ing abilities. As shown in Table 3, our method
continues to enhance performance on these power-
ful models, suggesting that TABDSR is not merely
compensating for weaker LL.Ms but provides gen-
uine improvements in numerical reasoning.

Comparing Qwen2.5-72B in Table 2 with GPT-
40 and DeepSeek-V3 in Table 3, we find that their
results are closely aligned. Although GPT-40 and
DeepSeek-V3 have more parameters than Qwen?2.5-
72B, they also demonstrate comparable outcomes
on various public benchmarks (Hendrycks et al.,
2020, 2021). These findings indicate that our
method effectively boosts complex numerical rea-
soning performance in LLMs that already possess
a robust baseline of numerical reasoning skills.

6 Conclusion

We introduced TABDSR, a three-agent, prompt-
based framework that significantly elevates numeri-
cal reasoning in Table Question Answering (TQA).
Our method consistently outperforms pre-trained
models, fine-tuned LLMs, and other prompt-based
solutions, demonstrating its effectiveness in han-
dling complex tabular data. By decomposing multi-
hop questions and sanitizing noisy table content,
TABDSR fully harnesses the inherent numerical
reasoning capabilities of LLMs, enhancing their
performance regardless of parameter size.

3179

This work also has practical implications for var-
ious real-world domains—such as finance, business
intelligence, healthcare, and e-commerce—where
robust analysis of complex, noisy tabular data is
critical. The prompt-based nature of TABDSR low-
ers barriers to adoption by reducing the need for
extensive data annotation or specialized training,
enabling more cost-effective and scalable deploy-
ment of powerful TQA systems. Moreover, our
framework’s transferability across diverse model
architectures highlights its potential for broader
integration into enterprise workflows, data analyt-
ics platforms, and decision-support systems that
require reliable, multi-step numerical calculations
over large datasets. We hope these findings inspire
further research and innovation in complex numeri-
cal reasoning for TQA, spurring the development
of even more versatile and efficient solutions.

Limitations

Although the TABDSR performs well, it still falls
far short of human performance in answering com-
plex tabular numerical reasoning questions. Our
method is prompt-only, and its performance is lim-
ited by the reasoning ability of the LLM.

CALTAB151 requires manual verification during
the final validation stage, which makes the anno-
tation process costly. As a result, the dataset size
is relatively small, and the range of question types
is limited. In future work, we plan to expand the
dataset by increasing its size, enriching the diver-
sity of question types, and covering a broader range
of domains to enable more comprehensive evalua-
tions.

We opted for a restricted Decomposer that op-
erates solely on the question. While this design
choice may slightly degrade performance in some
isolated cases, our experiments show that it brings
consistent and often mild improvements in the ma-
jority of scenarios, especially in terms of stability
and generalizability across datasets. We acknowl-
edge the trade-off here and consider it a pragmatic
decision to ensure robustness and utility in real-
world settings. In future work, we plan to explore
hybrid approaches that can selectively incorporate
table signals while preserving decomposition relia-
bility.

The Sanitizer is constrained by the reflection ca-
pabilities of the underlying base model. In some
cases, even after multiple iterations, it fails to cor-
rectly repair the tables, leading to excessive and

redundant calls. Moving forward, we will imple-
ment call monitoring and fallback mechanisms to
ensure that when the Sanitizer fails, a default reso-
lution strategy can be applied efficiently.

Ethical Considerations

This work involves the use of Al systems in two
aspects. First, Al tools were utilized to assist with
the translation of this paper. Second, Al models
were employed during the data construction pro-
cess; however, all generated data strictly followed
the guidelines described in Appendix A and was
used solely for academic and research purposes.

We ensured that no personally identifiable in-
formation (PII) or sensitive data was included in
CALTAB151 .

Acknowledgments

This research is supported by supported by the
Young Scientists Fund of the National Natural Sci-
ence Foundation of China (Grant No.72304215).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Gilbert Badaro, Mohammed Saeed, and Paolo Papotti.
2023. Transformers for tabular data representation:
A survey of models and applications. Transactions
of the Association for Computational Linguistics,

11:227-249.

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,
and Amir Globerson. 2024. Hopping too late: Explor-
ing the limitations of large language models on multi-
hop queries. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 14113-14130, Miami, Florida, USA. As-
sociation for Computational Linguistics.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Transactions on
Machine Learning Research.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena
Shah, Tana Borova, Dylan Langdon, Reema Moussa,
Matt Beane, Ting-Hao Huang, Bryan R Routledge,
et al. 2021. Finqa: A dataset of numerical reasoning
over financial data. In Proceedings of the 2021 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3697-3711.

3180

https://doi.org/10.1162/tacl_a_00544
https://doi.org/10.1162/tacl_a_00544
https://doi.org/10.18653/v1/2024.emnlp-main.781
https://doi.org/10.18653/v1/2024.emnlp-main.781
https://doi.org/10.18653/v1/2024.emnlp-main.781
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd
https://openreview.net/forum?id=YfZ4ZPt8zd

Chunyuan Deng, Yilun Zhao, Xiangru Tang, Mark Ger-
stein, and Arman Cohan. 2024. Investigating data
contamination in modern benchmarks for large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
8706-8719, Mexico City, Mexico. Association for
Computational Linguistics.

Che Guan, Mengyu Huang, and Peng Zhang. 2024.
Mfort-qa: Multi-hop few-shot open rich table ques-
tion answering. In Proceedings of the 2024 10th
International Conference on Computing and Artifi-
cial Intelligence, pages 434—-442.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurlPS.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas
Miiller, Francesco Piccinno, and Julian Eisenschlos.
2020. TaPas: Weakly supervised table parsing via
pre-training. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 43204333, Online. Association for Computa-
tional Linguistics.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2.5-coder
technical report. arXiv preprint arXiv:2409.12186.

Zhengbao Jiang, Yi Mao, Pengcheng He, Graham Neu-
big, and Weizhu Chen. 2022. OmniTab: Pretraining
with natural and synthetic data for few-shot table-
based question answering. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies.

Yannis Katsis, Saneem Chemmengath, Vishwajeet Ku-
mar, Samarth Bharadwaj, Mustafa Canim, Michael
Glass, Alfio Gliozzo, Feifei Pan, Jaydeep Sen,
Karthik Sankaranarayanan, and Soumen Chakrabarti.
2022. AIT-QA: Question answering dataset over
complex tables in the airline industry. In Proceed-
ings of the 2022 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies: Industry
Track, pages 305-314, Hybrid: Seattle, Washington
+ Online. Association for Computational Linguistics.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge,
Haidong Zhang, Danielle Rifinski Fainman, Dong-
mei Zhang, and Surajit Chaudhuri. 2024. Table-gpt:
Table fine-tuned gpt for diverse table tasks. Proc.
ACM Manag. Data, 2(3).

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74—81, Barcelona, Spain.
Association for Computational Linguistics.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Qian Liu, Bei Chen, Jiaqi Guo, Morteza Ziyadi, Zeqi
Lin, Weizhu Chen, and Jian-Guang Lou. 2022.
TAPEX: Table pre-training via learning a neural SQL
executor. In International Conference on Learning
Representations.

Tianyang Liu, Fei Wang, and Muhao Chen. 2024b. Re-
thinking tabular data understanding with large lan-
guage models. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
450482, Mexico City, Mexico. Association for Com-
putational Linguistics.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning. In International Conference on Learning
Representations (ICLR).

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

Md Nahid and Davood Rafiei. 2024a. TabSQLify: En-
hancing reasoning capabilities of LLMs through table
decomposition. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
5725-5737, Mexico City, Mexico. Association for
Computational Linguistics.

Md Mahadi Hasan Nahid and Davood Rafiei. 2024b.
NormTab: Improving symbolic reasoning in LLMs
through tabular data normalization. In Findings of the
Association for Computational Linguistics: EMNLP
2024, pages 3569-3585, Miami, Florida, USA. Asso-
ciation for Computational Linguistics.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language

3181

https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2024.naacl-long.482
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2020.acl-main.398
https://doi.org/10.18653/v1/2022.naacl-industry.34
https://doi.org/10.18653/v1/2022.naacl-industry.34
https://doi.org/10.1145/3654979
https://doi.org/10.1145/3654979
https://aclanthology.org/W04-1013/
https://aclanthology.org/W04-1013/
https://openreview.net/forum?id=O50443AsCP
https://openreview.net/forum?id=O50443AsCP
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.26
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://doi.org/10.18653/v1/2024.naacl-long.320
https://aclanthology.org/2024.findings-emnlp.203
https://aclanthology.org/2024.findings-emnlp.203
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142

Processing (Volume 1: Long Papers), pages 1470—
1480, Beijing, China. Association for Computational
Linguistics.

Ethan Perez, Patrick Lewis, Wen tau Yih, Kyunghyun
Cho, and Douwe Kiela. 2020. Unsupervised question
decomposition for question answering. In EMNLP.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou,
Ga Zhang, Guangcheng Zhu, Haobo Wang, Haokai
Xu, Hao Chen, Haoze Li, Haoxuan Lan, Jiaming
Tian, Jing Yuan, Junbo Zhao, Junlin Zhou, Kaizhe
Shou, Liangyu Zha, Lin Long, Liyao Li, Pengzuo
Wu, Qi Zhang, Qingyi Huang, Saisai Yang, Tao
Zhang, Wentao Ye, Wufang Zhu, Xiaomeng Hu, Xi-
jun Gu, Xinjie Sun, Xiang Li, Yuhang Yang, and
Zhiqing Xiao. 2024. Tablegpt2: A large multi-
modal model with tabular data integration. Preprint,
arXiv:2411.02059.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Zilong Wang, Hao Zhang, Chun-Liang Li, Julian Martin
Eisenschlos, Vincent Perot, Zifeng Wang, Lesly Mi-
culicich, Yasuhisa Fujii, Jingbo Shang, Chen-Yu Lee,
and Tomas Pfister. 2024. Chain-of-table: Evolving
tables in the reasoning chain for table understanding.
In The Twelfth International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2024. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS *22,
Red Hook, NY, USA. Curran Associates Inc.

Yuzhen Xiao Yongcong Li Ce Cui Yilei Zhao Rui
Hu Yang Liu Yahui Zhou Bo An Wentao Zhang,
Liang Zeng. 2025. Agentorchestra: A hierarchical
multi-agent framework for general-purpose task solv-
ing. Preprint, arXiv:2506.12508.

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang,
Jiaheng Liu, Xinrun Du, Di Liang, Daixin
Shu, Xianfu Cheng, Tianzhen Sun, et al. 2024.
Tablebench: A comprehensive and complex bench-
mark for table question answering. arXiv preprint
arXiv:2408.09174.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2.5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In The Eleventh International Conference
on Learning Representations.

Yunhu Ye, Binyuan Hui, Min Yang, Binhua Li, Fei
Huang, and Yongbin Li. 2023. Large language mod-
els are versatile decomposers: Decomposing evi-
dence and questions for table-based reasoning. In
Proceedings of the 46th International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, SIGIR °23, page 174-184, New
York, NY, USA. Association for Computing Machin-

ery.

Xinbin Yuan, Jian Zhang, Kaixin Li, Zhuoxuan Cai,
Lujian Yao, Jie Chen, Enguang Wang, Qibin Hou,
Jinwei Chen, Peng-Tao Jiang, et al. 2025. En-
hancing visual grounding for gui agents via self-
evolutionary reinforcement learning. arXiv preprint
arXiv:2505.12370.

Haoyu Zhang, Jingjing Cai, Jianjun Xu, and Ji Wang.
2019. Complex question decomposition for semantic
parsing. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 4477-4486, Florence, Italy. Association for
Computational Linguistics.

Tianshu Zhang, Xiang Yue, Yifei Li, and Huan Sun.
2024a. TableLlama: Towards open large general-
ist models for tables. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
pages 6024-6044, Mexico City, Mexico. Association
for Computational Linguistics.

Xiaokang Zhang, Jing Zhang, Zeyao Ma, Yang Li, Bo-
han Zhang, Guanlin Li, Zijun Yao, Kangli Xu, Jin-
chang Zhou, Daniel Zhang-Li, Jifan Yu, Shu Zhao,
Juanzi Li, and Jie Tang. 2024b. Tablellm: Enabling
tabular data manipulation by llms in real office usage
scenarios. Preprint, arXiv:2403.19318.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce
Cahoon, Shaleen Deep, and Jignesh M. Patel. 2023.
Reactable: Enhancing react for table question answer-
ing. CoRR, abs/2310.00815.

Zhehao Zhang, Yan Gao, and Jian-Guang Lou. 2024c.
e5: Zero-shot hierarchical table analysis using aug-
mented LLMs via explain, extract, execute, exhibit
and extrapolate. In Proceedings of the 2024 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies (Volume 1: Long Papers), pages
1244-1258, Mexico City, Mexico. Association for
Computational Linguistics.

Fengbin Zhu, Wengiang Lei, Youcheng Huang, Chao
Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng, and Tat-
Seng Chua. 2021. TAT-QA: A question answering
benchmark on a hybrid of tabular and textual con-
tent in finance. In Proceedings of the 59th Annual

3182

https://arxiv.org/abs/2002.09758
https://arxiv.org/abs/2002.09758
https://arxiv.org/abs/2411.02059
https://arxiv.org/abs/2411.02059
https://openreview.net/forum?id=4L0xnS4GQM
https://openreview.net/forum?id=4L0xnS4GQM
https://arxiv.org/abs/2506.12508
https://arxiv.org/abs/2506.12508
https://arxiv.org/abs/2506.12508
https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.1145/3539618.3591708
https://doi.org/10.18653/v1/P19-1440
https://doi.org/10.18653/v1/P19-1440
https://doi.org/10.18653/v1/2024.naacl-long.335
https://doi.org/10.18653/v1/2024.naacl-long.335
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://arxiv.org/abs/2403.19318
https://doi.org/10.48550/ARXIV.2310.00815
https://doi.org/10.48550/ARXIV.2310.00815
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2024.naacl-long.68
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254
https://doi.org/10.18653/v1/2021.acl-long.254

Meeting of the Association for Computational Lin-
guistics and the 1 1th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 3277-3287, Online. Association for
Computational Linguistics.

A License

For all datasets in our experiments, TableBench is
under the license of MIT. The AIT-QA dataset is un-
der the license of CDLA-Sharing-1.0. The TAT-QA
dataset is under the license of Creative Commons
(CC BY) Attribution 4.0 International. The FinQA
dataset is under the license of Creative Commons
Attribution 4.0 International. All of these licenses
allow their data for academic use.

B Construction of CALTAB151

The pipeline of constructing the CALTAB151
dataset can refer to Figure 4. Figures 5 and 6 are
Prompts used in the construction of CALTAB151 .

The datasets utilized in this study were sourced
exclusively from pre-existing open-source reposito-
ries, with strict adherence to their respective licens-
ing agreements throughout both data acquisition
and implementation phases, and are solely for aca-
demic use.

Manually annotation is carried out by students
with a specialized background in computer science.
This entire process follows a strict data annotation
workflow. We provide professional computing de-
vices to support the annotators in completing the
task.

C Examples of Datasets

Table 4, Table 5 and Table 6 demonstrate the exam-
ples of each dataset in our experiment. All tabular
data are stored in the format of JSON strings.

D Case Study

We analyzed the error cases of the Qwen2.5-7B-
Instruct on the CALTAB151 dataset. The detailed
cases can be found in Figure 7.

In the case study, it is observed that the output of
LLMs only addresses part of the question. For ex-
ample, in CoT-based methods, not all sub-questions
in complex multi-hop reasoning are answered. We
propose that large models fail to recognize the sub-
questions in such multi-hop scenarios, leading to
incomplete answers.

In this case, MIX-SC, a PoT-based method, pro-
duces the error message: “could not convert string

to float: ’3,275°.”. The error occurs due to the
presence of the non-numeric character ““,” which
prevents successful conversion to a float. This issue
arises because PoT-based methods, during the code
generation process, focus solely on generating the
code to output the final answer, while neglecting
the necessary preprocessing of table contents.

From the reasoning steps of TabSQLify and
Chain-of-Table, it becomes clear that while some
numbers are selected correctly, the subsequent cal-
culations remain inaccurate. This further highlights
the limitation of CoT-based methods in performing
precise numerical computations.

E Prompts in TABDSR

In this subsection, we show the prompts used in
our methods, as shown in Figures 7, 8, and 9.

F Other Prompts in Experiments

The prompts used in Table 1 and Table 2 are as
follows:

Fine-tuning LLMs For TableGPT2 (Li et al.,
2024), prompt for answer generation is Figure 10.
For TableLLM (Zhang et al., 2024b), prompt for
answer generation is Figure 11 and 12. For TableL-
lama (Zhang et al., 2024a), prompt for answer gen-
eration is Figure 13.

Prompt-based LLMs For Chain-of-Table (Wang
et al., 2024), TabSQLify (Nahid and Rafiei, 2024a),
and MIX-SC (Liu et al., 2024b), their codes are
publicly available.

DP, PoT, TCoT and SCoT Prompts are from
TableBench (Wu et al., 2024), as shown in Fig-
ure 14, Figure 15, Figure 16 and Figure 17.

G Appendix: Failure Analysis

To better understand the robustness and limitations
of our TabDSR system, we conducted a compre-
hensive failure analysis covering all three agents:
Decomposer (D), Sanitizer (S), and Executor (R).
For each module, a failure leads to a fallback be-
havior, potentially degrading the final performance.
The table 8 below reports the failure rates for each
module (S in Table 9, R in Table 10) across three
datasets:

Sanitizer (S) Error Types

The Sanitizer component encountered parsing is-
sues when converting JSON outputs into struc-

3183

_____ Step2: Table Numerical Perturbation |

Seed
Question

1 i 1

1 i1

i i

i | TableBench o N h
P~ i > Numerical »| Preserve non-numerical
P " Perturbation Data
e i

! FinQa " ‘

| T 9 \
R i 0 o0

N Raw Table ' O, Output Requirements
i i

i 11

1 L

I 1!

i 11

1 L

i i

! H

i 1

1 11

Table With
Random
Perturbation

» Multi-hop
O Repeated Generation Ques_tiﬂ

Manually Annotation

1
1

1

1

N\ !

A J 1

L 1
I
1

b 1

1

1

1

1

1

Figure 4: The construction pipeline of CALTAB151 .

tured tables. The most common errors were
JSONDecodeError and ValueError.

Executor (R) Error Types

The Executor agent, responsible for code execu-
tion, had the highest failure rate. The frequent
exceptions—such as ValueError, KeyError, and
TypeError—indicate the challenges in generating
robust code for table reasoning tasks.

Discussion

Our analysis reveals that the Decomposer (D) com-
ponent was highly robust, with zero failures across
all datasets, validating the structural soundness of
our question decomposition pipeline.

The Sanitizer (S) exhibited low but non-
negligible failure rates (1%—-3%), mostly due to
minor formatting or schema inconsistencies in the
JSON output. These could potentially be mitigated
by enhancing schema conformity or introducing
lightweight JSON repair strategies.

The Executor (R) was the most failure-prone

module, with 15%—17% of samples triggering code
execution errors. This reflects the inherent dif-
ficulty of generating correct Python code under
diverse and noisy table inputs. Addressing these
issues remains an open challenge, potentially ben-
efiting from more constrained decoding strategies
or runtime feedback loops.

Overall, the failure analysis offers concrete in-
sights for future improvement of each agent in the
TabDSR pipeline.

3184

‘ Table Question Answer
{’columns’: [
’Remuneration key performance indicator’, *2019 actual’, *2019 threshold’,
’2019 target’, *2019 maximum’, 'Remuneration measure’],
’data’: [
[’ Group operating profit (60a3m)’, ’277.3°,°256.7°,°270.3’, °283.8°,
’Annual Incentive Plan’], 3 What was the maximum group 783.8
[’Group cash generation (00a3m)’, *296.4’, °270.7°, °285.0°, °299.2°, operating profit in 2019? ’
> Annual Incentive Plan’],
[’Group ROCE (%)’, ’54.5°,°50.1°,°52.7°,°55.3”, ’ Annual Incentive Plan’],
[’2017-2019 EPS (%)’, °57.5°,°27.6’, ’N/A’, ’52.3’, *Performance Share Plan’],
[’2017-2019 relative TSR (percentile TSR)’,
’94th’, ’50th’, "N/A’, *75th’, *Performance Share Plan’]]}
{’columns’:
[’(In millions of dollars, except capital intensity)’, ’ Years ended December 31°, 7, 7],
’data’: [
[”,°2019’,°2018’, ’%Chg’], What was the increase
[’Capital expenditures 1°, 7, 7, "], / (decrease) in wireless capital 234
[’Wireless’, *1,320°, *1,086°, *22’], [’Cable’, *1,153°, ’1,429°, ’(19)’], expenditure from 2018 to 2019?
[’Media’, ’102’,°90°, 13’1,
[’Corporate’, *232’°, *185°, °25’], [’Capital expenditures 1°, °2,807°, °2,790’, ’1°],
[’Capital intensity 2°, *18.6%”, *18.5%’, 0.1 pts’11}
{’columns’: [’ ’, ’June 30,’,” *],data’: [[’’, ’2019’, 20181,
[’Deferred tax assets’, ”, 1,
[’Non-capital loss carryforwards’, $161,119”, °$129,436’1,
[’Capital loss carryforwards’, *155°,°417°1],
[’Undeducted scientific research and development expenses’, *137,253’, °123,114°],
[’Depreciation and amortization’, *683,777°, 829,369 1,
[’Restructuring costs and other reserves’, ’17,845°, °17,202’],
[’Deferred revenue’, ’°53,254°, ’62,726’],
[’Other’, ’59,584°, °57,461°], .
[’Total deferred tax asset’, ’$1,112,987", °$1,219,725°1, What is the total assets 948,578

[’ Valuation Allowance’, *$(77,328)’, *$(80,924)’1,

[’Deferred tax liabilities’, ”, '],

[’Scientific research and development tax credits’, *$(14,482)’, *$(13,342)’],
[’Other’, ’(72,599)’, *(82,668)’1,

[’Deferred tax liabilities’, *$(87,081)’, *$(96,010)’1,

[’Net deferred tax asset’, *$948,578’, *$1,042,791°], [’Comprised of:’, ",],
[’Long-term assets’, *1,004,450°, °1,122,729’],

[’Long-term liabilities’, *(55,872)’, *(79,938)’1,

[”,°$948,578, °$1,042,791°11}

as of June 30, 2019?

Table 4: TAT-QA Dataset examples

3185

Prompt Template of Query Generation

You are a data augmentation assistant. Your goal is to choose two most relevant SubQueries and integrate two of those
SubQueries into a human readable and professional question. The Question should demonstrate a logical progression
and incorporate nested relationships.

Reference SubQueries

What was the amount of unrecognized stock-based compensation expense related to unvested employee stock options in
20197

What was the total stock-based compensation expense amount in 2018?

How long is it expected to take for the unrecognized stock-based compensation expense related to unvested RSUs to be
recognized?

What is the total stock-based compensation expense and unrecognized stock-based compensation expense in 2019?
What was the change in the amount of stock options in 2019 from 2018?

What was the percentage change in the amount of RSUs in 2019 from 2018?

answer

The questions “What was the change in the amount of stock options in 2019 from 20187 and “What was the percentage
change in the amount of RSUs in 2019 from 20187 both reference the period “in 2019 from 2018.” Therefore, we can
combine them into a single question about the same time period. The final question is formatted in JSON as follows:

“Tjson
{

"Question”: "What was the change in the amount of stock options in 2019 from 2018? Additionally,
what was the percentage change in the amount of RSUs during the same period?”

Reference SubQueries

{{ReferQuestion}}

answer
You must output in json format:

- Question: string, a human readable and professional question, consist of two most relevant SubQueries.

T json

{

"Question”: "string, a human readable and professional question.”

3

Give a final question in json format in the end, Let’s think step and step!

Figure 5: Query Generation generates multi-hop queries by few-shot prompt.

3186

Prompt Template of Numerical Perturbation

You are a data augmentation assistant. Your task is to generate a new table by applying the following transformation
rules exclusively to numeric data in the table, including numbers stored as strings. Specifically:
1. Numerical Perturbation:
- Identify Numeric Data:
- Include all numeric values (integers, floats, or numbers stored as strings), even if mixed with other characters
(e.g., $100.00, 123.45kg).
- Exclude data that clearly represents dates or times (e.g., YYYY-MM-DD, MM/DD/YYYY, or time formats like
HH:MM:SS).
- Apply Perturbation:
- Randomly adjust numeric values (including those within strings) by up to +3%-5% of their original value.
- Maintain data realism:
- If the original value is an integer, the perturbed value must remain an integer.
- If the value is a float, retain its decimal format with appropriate precision.
- For strings containing numeric values, only adjust the numeric portion, leaving non-numeric characters intact
(e.g., $100.00 — $103.00).
- Ensure that the perturbation keeps the values realistic within the context of the data.
2. Preserve Other Data:
- Retain all non-numeric columns, values, and formats unchanged.
- Date or time columns must not be perturbed or modified.
3. Output Requirements:
- Directly output the augmented table in JSON format, maintaining the structure of the input table. The JSON must
include:
- "columns": An array of column names.
- "data": A 2D array of table rows after transformation.
- "index": The original index of each row.

- Identification Criteria:

- Numeric Columns: Include numbers (int, float) and numbers stored as strings, even if they contain additional
non-numeric characters.

- Date Columns: Avoid perturbation for values matching common date/time formats (e.g., YYYY-MM-DD or
HH:MM:SS).

Input

“json
{{Inputs}}

Output

Figure 6: Numerical Perturbation with zero-shot prompt, generate a new table by applying transformation rules
exclusively to numeric data in the table, including numbers stored as strings, but excluding data of dates or times.

3187

‘ Table Question Answer
{’columns’: [’season’,
"tropical lows’, *tropical cyclones’, “severe tropical cyclones’,
’strongest storm’],
’data’: [[*1990 - 917, 10, 10, 7, *marian’],
[’1991 -92’, 11, 10, 9, ’jane - irna’],
[’1992-93’, 6, 3, 1, *oliver’], .
['1993 - 94, 12, 11, 7, ’theodore’], “flltlat s ﬂie I number 10.6
['1994 - 95°. 19,9, 6. "chloe’]. of tropical cyclones per season?
[’1995 -96°, 19, 14, 9, *olivia’],
[’1996 - 97°, 15, 14, 3, *pancho’],
[’1997 - 98, 10, 9, 3, ’tiffany’],
[’1998 - 99°, 21, 14,9, *gwenda’],
[’1999 - 00°, 13, 12, 5, ’john / paul’]]1}
{’columns’: [’draw’, ’artist’, ’song’, ’points’, "place’],
’data’: [[1, "niamh kavanagh’, ’in your eyes’, 118, 1],
[2, ’suzanne bushnell’, ’long gone’, 54, 71, What is the difference in points
[3, ’patricia roe’, ’if you changed your mind’, 75, 31, between the artist
[4, 'r6isin ni haodha’, ’'mo mhuirnin 6g’, 34, 81, with the highest points 35.67
[5, ’champ’, ’2nd time around’, 79, 21, and the average points
[6, ’off the record’, "hold out’, 61, 6], of the top 3 artists?
[7, dav mcnamara’, ’stay’, 67, 41,
[8, ’perfect timing’, *why aren’t we talking anyway’, 62, 511}
{’columns’: [’party’,
’administrative panel’, "agricultural panel’,
’cultural and educational panel’, *industrial and commercial panel’,
’labour panel’, national university of ireland’, "university of dublin’, | What is the total number of seats
’nominated by the taoiseach’, "total’], held by parties that have at
’data’: [[’fianna fail’, 2, 4, 2, 3, 5,0, 0, 9, 25], least 2 seats in the agricultural panel, | 41, 68.33%

[*fine gael’, 3,4, 3,3,2,1,0,0, 161,
[’labour party’, 1, 1,0, 1, 2,0, 0, 0, 5],
[’clann na talmhan’, 0, 1,0, 0, 0,0, 0, 0, 11,
[’independent’, 1,0,0, 1, 1,2, 3, 1,91,
[total’, 7,11, 5,9, 11, 3,3, 11,6011}

and what percentage of the total seats
do they represent?

Table 5: TableBench Dataset examples

3188

‘ Table Question Answer
{’columns’: [’player’, "average’, *100s’, *matches’, "highest score’, 'runs’, *50s’],
’index’: [0, 1,2,3,4,5,6, 7],
’data’: [[’lionel palairet’, ’32.04’,°1°, 10.0’, *103’, *$575.00°, ’5’], L .
Cherbie hewett’, *18.98°,°0°, *12.0°, 67", "$398.00°, 2’1, X:lith‘;t;’fﬁ;‘:;t;“ﬁ";{ﬁgim S
[’richard palairet’, *19.52’,°0’, *10.0°, °76°, °$273.000", 1’1, and what is the average number 85, 10.63

[’sammy woods’, 18.82°, 70", ’11.0°, ’51”, °$339.0*, ’1"],
[’vernon hill’, ’12.58’,70°,79.0°, *32°, "N/A’, 0’1,

[’john challen’, °25.98°,°0°,79.0, *-’, *$364.0’, *2"],

[’ george nichols’, ’10.56°,°0°, *12.0”, *38’, °$222.00”, ’0],
[*ted tyler’, *10.14°,°0”, *12.0°, °63’, °$172.0°, ’1°11}

of matches per player,
given the total number of matches?

{’columns’: [, ”, ’Year Ended December 31,’, ’Year Ended December 31,1,

’index’: [0, 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24],
*data’: [[7,”, 2017 (@)%, *2016 (a)%"],

[’Nonoperating income (expense):’, "Interest income’, ’59°, ’43°],

[’Operating expense:’, 'Depreciation and amortization’, *2,213’,°2,036’],
[’Nonoperating income (expense):’, 'Income tax expense’, '923’, 1,585’1,

[’Operating expense:’, ’Other operating expenses’, ’5,717’,’5,477°],

[’Operating revenue:’, "Passenger revenue’, *$35,494°, °$34,432°],

[’Operating expense:’, *Operating income’, ’3,781°, ’4,474’],

[’Nonoperating income (expense):’, "Miscellaneous, net’, *(104), *(11)’1,
[’Nonoperating income (expense):’, Interest expense’, *(691), *(694)’1,
[*Nonoperating income (expense):’, "Interest capitalized’, ’87°,*74’],

[’Operating expense:’, 'Landing fees and other rent’, ’2,307°, °2,230’1],

[’Operating expense:’, ’Aircraft maintenance materials and outside repairs’, ’1,912°, ’1,801°1,
[’Nonoperating income (expense):’, *Total nonoperating expense, net’, ’(650)’, ’(588)’1,
[’Operating revenue:’, *Total operating revenue’, *38,917", °37,654’],

[’Operating expense:’, *Total operating expense’, *35,136°, ’33,180’1,

[’Nonoperating income (expense):’, 'Income before income taxes’, ’3,131°, ’3,886’1,
[’Operating expense:’,

’Special charges’, *181°, °767°1,

[’Operating expense:’, 'Regional capacity purchase’, *2,299°, ’2,263"1,

[’Operating expense:’, ’Salaries and related costs’, 11,269, *10,481°1,

[’Operating expense:’, ’Aircraft fuel’, °7,120°, °5,987°1,

[’Operating expense:’, Distribution expenses’, '1,478", °1,437"1],

[’Operating expense:’, ’Aircraft rent’, *640’, *700’],

[’Operating revenue:’, *Cargo’, ’1,147°, 7962’1,

[’Nonoperating income (expense):’, Net income’, ’$2,208’, °$2,301°1,

[’Nonoperating income (expense):’, "Earnings per share, diluted’, *$7.27, °$6.96° 11}

What is the total nonoperating
expense for the year

ended December 31, 2017,

and What is the percentage change
it the percentage change

in total nonoperating income

from 2016 to 20177

Express it as a percentage.

7860.27, -0.1446

{’columns’: [*($ in millions)’, 7, "],

*data’: [[’For the year ended December 31:, °2019’, °2018°],

[’Net cash provided by/(used in) continuing operations’, ”, '],

[*Operating activities’, *15,200’,'15,700’1,

[’Investing activities’, ’(27,800)’, *(5,050)’1,

[’Financing activities’, ’9,300’, (10,800)1,

[’Effect of exchange rate changes on cash, cash equivalents and restricted cash’,
(172, °(510)°1,

[’Net change in cash, cash equivalents and restricted cash’, *$(3,390)’, *$(650)’11,
’index’: [0, 1,2,3,4,5,6]}

What was the increase or decrease
in cash from operating activities
from 2018 to 2019,

and What is the corresponding
percentage change

during the same period?

-477,-3.13

Table 6: CalTab151 Dataset examples

3189

| Error Type

Question

Error

Code Execution Error
(MIX-SC)

What is the total number of
Jamaicans granted British
citizenship from 1997 to 2008,
excluding years with null

or missing data,

and how many records are valid over
the same period?

valueerror: could not convert string to float: ’3,275’

Partial Answer
(TabSQLify)

What is the total amount of estimated
interest expense across all years,

and how does it compare to

the total amount of senior unsecured notes,
higher or lower?

step 1: the estimated interest expense values are:

-2011: $273,200 - 2012: $252,911 - 2013: $227,796 - 2014:
$203,042 - 2015: $182,892 - after 2015: $365,797
summing these values:
273200+252911+227796+203042+182892+365797=1407638.
the total estimated interest expense is $1,407,638.

step 2: calculate the total senior unsecured notes

the senior unsecured notes values are:

-2011: $87,368 - 2012: $126,866 - 2013:

$2014 (note: this is not a numerical value,

so it should be treated as 0)

-2014: $101,535 - 2015: $677

after 2015:

$817,115 summing these values:

87368 + 126866 + 0 + 101535 + 677 + 817115 = 1133661
50, the total senior unsecured notes is $1,133,661.

step 3: compare the totals

now, we compare the two totals:

- total estimated interest expense: $1,407,638

- total senior unsecured notes: $1,133,661

$1,407,638 is greater than $1,133,661.

answer: the total estimated interest expense is

higher than the total senior unsecured notes

Partial Answer,Calculational error
(Chain-of-Table)

What is the number of categories

of aircraft listed in the table?

and what is the total average

seating capacity across the aircraft models?
Do not calculate the unoccupied

parts of the aircraft.

The number of categories of aircraft listed in the table is 13.
The total average seating capacity across

these aircraft models is 2040

(calculated as the sum of all values in the table:

131 + 154 + 182 + 265 + 299 + 164 +

183 +216+270 + 318 +232 + 292 + 101 + 143 =

2040).

Table 7: Case Studies for different errors in Qwen2.5-7B-Instruct; Green is the correct answer. Red is the incorrect
answer of prompt-based methods, which have been used in the Table 1.

Component TatQa TableBench CalTab151
Decomposer (D) 0.00 0.00 0.00
Sanitizer (S) 0.03 0.03 0.01
Executor (R) 0.15 0.15 0.17

Table 8: Failure rates of each component in TabDSR.

Error Type TatQa TableBench CalTab151
JSONDecodeError 14 3 1
ValueError 10 9 0
AttributeError 0 1 0

Table 9: Sanitizer (S) error types across datasets.

3190

Prompt Template of Query Decomposer

You are tasked with analyzing a user query to identify the number of sub-questions it contains. Your objectives are to:
1. Identify Sub-Questions: Split the query into sub-questions based solely on conjunctions (like “and”, “or”’) or
punctuation (such as commas). Treat each segment as a distinct sub-question boundary.

2. Count Sub-Questions: Provide the total number of sub-questions identified.

3. List Sub-Questions: List each sub-question in order as they appear in the original query.

Input Format

You will receive input in JSON format with the following keys:
- Query: User query string.

TTTjson
{
"Query”: "Query String”
Example Input
T json
{

"Query": "How much money was spent on product A and how much did product B sell in total in 2015?
Finally, tell me the total sales of both products for the entire year.”

3

Expected Output

Your output should be a JSON object containing:
1. subQueryCount: The total number of sub-questions.
2. subQueries: A list of sub-questions in their original form.

Example Output

{
"subQueryCount”: 3,
"subQueries”: [
"How much money was spent on product A",
"how much did product B sell in total in 2015",
"tell me the total sales of product A and product B for the entire year”

“json

Important Notes
- Strict JSON Format: Ensure the output is valid JSON that can be parsed by json.loads.
-No Complex Reasoning: Do not attempt to infer meanings, just split based on conjunctions and punctuation.

Input

TTTjson
{{Inputs}}

Figure 7: Query Decomposer divides a question into several sub-questions.

3191

Prompt Template of Table Sanitizer

You are tasked with cleaning and processing a JSON-formatted table while preserving the original structure as much as
possible. Your main objectives are to:

1. Ensure column names are unique.

2. Clean cell data.

3. Maintain consistent formatting within the table.

Input Structure

You are provided with a JSON-formatted table containing three fields: columns, data, and index.
- columns: An array of strings, each representing the name of a table column.
- data: A 2D array where each nested list represents a row in the table, with each element corresponding to the cells in that
row under each column.
- index: An array of integers, each representing the index of a table row.

- Note: Rows in the data field are numbered starting from O up to the total number of rows minus one. The header row, if
present, is not included in these numbers; only rows with actual data are counted.

#i# Task Requirements
You need to clean and process the table based on the following requirements:

1. Columns Cleaning:
- Ensure all column names are unique.
- If duplicate column names exist:
- Check if the first row of data contains nested column headers.
- If nested headers are present, remove this row from the data. Rename columns to ensure uniqueness while preserving
the original context.

2. Cell Data Cleaning:
- Numerical Columns:
- Remove extraneous symbols (e.g., %, $, commas, etc.) and ensure consistent numerical formatting.
- Convert these values into a numerical type (e.g., float or integer) in the output JSON format.
- Non-Numerical Columns:
- Replace invalid, empty, or missing cells (e.g., N/A, null, None) with null.

3. Row Filtering:

- Identify and exclude rows containing summary information such as: “Total”, “Sum”, “Average”, or similar statistical
descriptors.

- Retain all other rows to preserve the integrity of the dataset.

4. Output Structure:
- Ensure that the resulting table maintains the JSON format:
- All cleaned and processed columns and rows must be included.
- No essential data should be lost unless explicitly instructed to remove it (e.g., summary rows).

Output Structure

The output should be a JSON object with the same structure as the input, containing the cleaned and processed data:
- columns: An array of strings, each representing the name of a table column.
- data: A 2D array where each nested list represents a row in the table, with each element corresponding to the cells in that
row under each column.
- Ensure the output maintains the strict JSON format enclosed in json.
- All numerical data columns must be converted to appropriate numerical types.
Input

T json
{{Inputs}}

Figure 8: Table Sanitizer preprocesses json-formatted table.

3192

Prompt Template of PoT-based Reasoner

#i# Input format

You will be provided with a valid python code containing a dict of table_data with the following keys.

- columns: An array of strings, each representing the name of a table column.

- data: A 2D array where each nested list represents a row in the table, with each element corresponding to the cells in that
row under each column.

- index: An array of integer or string, each representing the index of a table row.

- Note: The rows in the data are numbered starting from 0 up to the total number of rows minus one (for example, if there
are 10 rows, they would be numbered from O to 9). The header row, if present, is not included in these numbers; only rows
with actual data are counted.

- Queries: A array of string containing the user’s sub-queries or request for specific information from the table.

Analyze the table’s structure by recognizing the relation between columns and their respective cells in data. Use these
associations to identify relevant information in each cell that pertains to the Query.

The input format is as follows:

“python
{{InputExample}}

#i Task instructions
You should follow these requirements below:

- Analyze the Queries:
- For each sub-query, provide the following:
- Sub-query order: Label each sub-query in order (e.g., "Sub-query 1:", "Sub-query 2:", etc.).
- Column and row indices: Identify the relevant columns and rows in the table that are needed to answer the sub-query.
- Python code: For each sub-query, write the corresponding Python code to extract the relevant data and compute the
answer.
- Code Quality:
- The Python code must be concise, easy to understand, and modular.
- If necessary, add comments for clarity.
- Follow best practices for code efficiency and readability.
- Data Context:
- Base your analysis entirely on the provided table data. Do not use any external data or make assumptions.
- If the Query is not related to the provided table data, politely refuse and provide a response explaining why.
- Handling Multiple Sub-Queries:
- For multiple sub-queries, print each sub-query’s order (e.g., "Sub-query 1:", "Sub-query 2:").
- For each sub-query, identify the relevant column and row indices and extract the necessary information.
- For each sub-query, generate Python code to retrieve the data from the table.
- Data Type Casting:
- Identify every column in the DataFrame and cast columns to appropriate data types (e.g., int, float, object) if necessary to
ensure the code executes correctly.
- Output Formatting:
- Provide Python code that loads the table data using the pandas library, don’t response any other description.
- Ensure to load the table with command table_df=pd.DataFrame(table_data[’data’], columns=table_data[’columns’]).
- If the Query involves numerical calculations, perform them using DataFrame methods to get the final answers and print
the final answers.
- Print the final answers: Ensure that the final output includes the print() function to display answers. Do not print any
other description information.
- Handle numerical outputs: For any query involving calculations, format the final answer using Python’s rounding
function round() to ensure that results are output with exactly two decimal places.
Replace index_1, index_2, etc., with the actual indices based on the identified columns and rows. If no columns or rows are
identified as relevant, return an empty array for that key.

User Input

““python
{{Inputs}}

Figure 9: PoT-based Reasoner integrates the sub-questions and sanitized tabular data into a unified reasoning
framework.

3193

Prompt Template of TableGPT2

Given access to several pandas dataframes, write the Python code to answer the user’s question.
/*

"{var_name}.head(5).to_string(index=False)"as follows:

{df_info}

*/

Question: {user_question}

\.

Figure 10: TableGPT2's Prompt for Answer Generation

Prompt Template of TableLLM

[INST]

Below are the first few lines of a CSV file. You need to write a Python program to solve the provided question.
Header and first few lines of CSV file:

{csv_data}

Question: {question}[/INST]

Figure 11: TableLLM's Prompt for Code Solution (PoT)

Prompt Template of TableLLM

[INST]

Offer a thorough and accurate solution that directly addresses the Question outlined in the [Question]. The answer should
follow the format below:

[Answer Format]

Final Answer: AnswerNamel, AnswerName?2...

Ensure the final answer format is the last output line and can only be in the "Final Answer: AnswerNamel, Answer-
Name?2..."form, no other form. Ensure the "AnswerName"is a number or entity name, as short as possible, without any
explanation.

##t [Table Text]

There is a table with no title.

#it# [Table]

{table_in_csv}
##H# [Question]

[question]
#i## [Solution][INST/]

\

Figure 12: TableLLM's Prompt for Text Answer (DP)

Prompt Template of TableLlama

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction:

This is a table QA task. The goal of this task is to answer the question given the table.

#i## Input:

{input}

Question:

question

#i## Response:

\

Figure 13: TableLlama's Prompt for Answer Generation

3194

Prompt Template of DP

Your task is to answer questions based on the table content.

The answer should follow the format below:

[Answer Format]

Final Answer: AnswerNamel, AnswerName2...

Ensure the final answer format is the last output line and can only be in the "Final Answer: AnswerNamel, Answer-
Name?2..."form, no other form. Ensure the "AnswerName"is a number or entity name, as short as possible, without any
explanation.

Give the final answer to the question directly without any explanation.

Read the table below in JSON format:

[TABLE]

{{tableString}}

Let’s get start!

Question: {{questionString}}

\

Figure 14: DP Prompt in TableBench

Prompt Template of PoT

You are a data analyst proficient in Python. Your task is to write executable Python code to analyze the table and then answer
questions.

[Guidelines]

You should act following requirements below:

1. based on the question, write out your analytical approach, and then write Python code according to this approach.

2. The code needs to be concise and easy to understand, and if necessary, add comments for clarification.

3. Code blocks need to strictly start with ** *“ python and end with ** *.

4. Your analysis must be based entirely on the above data. If the user’s question is not related to data analysis, please politely
refuse.

5. You need to generate executable code. If there are results to be presented, please use the print function; if there are charts,
please use the matplotlib library to draw them.

6. Ensure to load the table with command * " “df = pd.read_csv(’table.csv’) " ".

The answer should follow the format below:

[Answer Format]

Final Answer: AnswerNamel, AnswerName?2...

Ensure the final answer format is the last output line and can only be in the "Final Answer: AnswerNamel, Answer-
Name?2..."form, no other form. Ensure the "AnswerName"is a number or entity name, as short as possible, without any
explanation.

Let’s think step by step and then generate python code to analyze table and present the final answer to the question.

Read the table below in JSON format:

[TABLE]

{{tableString} }

Let’s get start!

Question: {{questionString}}

.

Figure 15: PoT Prompt in TableBench

Error Type TatQa TableBench CalTab151
ValueError 39 17 1
KeyError 43 13 6
SyntaxError 0 1 2
NameError 3 10 5
TypeError 13 23 8
IndexError 7 8 3
AttributeError 3 0 0
UFuncTypeError 0 1 0
Total Errors 108 74 25
Error Rate (Errors / Dataset Size) 0.15 0.15 0.17

Table 10: Executor (R) error types and frequencies.

3195

Prompt Template of TCoT

You are a table analyst. Your task is to answer questions based on the table content.

The answer should follow the format below:

[Answer Format]

Final Answer: AnswerNamel, AnswerName?2...

Ensure the final answer format is the last output line and can only be in the "Final Answer: AnswerNamel, Answer-
Name?2..."form, no other form. Ensure the "AnswerName"is a number or entity name, as short as possible, without any
explanation.

Let’s think step by step and then give the final answer to the question.

Read the table below in JSON format:

[TABLE]

{{tableString} }

Let’s get start!

Question: {{questionString}}

.

Figure 16: TCoT Prompt in TableBench

Prompt Template of SCoT

You are a table analyst. Your task is to utilize the Python package *pandas’ to analyze the table and then answer questions.
[Guidelines]

You should act in following patterns step by step to analyze the table and then give the final answer:

Patterns]

Thought: You should always think about what to do to interact with Python code base on Result

Action: the action can **ONLY ** be single line python code

Result: Simulate the result of the execution of the python code in Action, analyse that result and decide whether to continue
or not

(This thought/Action/Result can repeat N times) answer should follow the format below:

[Answer Format]

Final Answer: AnswerNamel, AnswerName?2...

Ensure the final answer format is the last output line and can only be in the "Final Answer: AnswerNamel, Answer-
Name?2..."form, no other form. Ensure the "AnswerName"is a number or entity name, as short as possible, without any
explanation.

Let’s think step by step and then give the final answer to the question.

Ensure to have a concluding thought that verifies the table, observations and the question before giving the final answer.
Read the table below in JSON format:

[TABLE]

{tableString}

Let’s get start!

Question: {questionString}

\

Figure 17: SCoT Prompt in TableBench

3196

