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Abstract

Large language models (LLMs) possess strong
multilingual capabilities, and combining Re-
inforcement Learning from Human Feedback
(RLHF) with translation tasks has shown great
potential. However, we observe that this
paradigm performs unexpectedly poorly when
applied to colloquial subtitle translation tasks.
In this work, we investigate this issue and find
that the offline reward model (RM) gradually
diverges from the online LLM due to distribu-
tional shift, ultimately leading to undesirable
training outcomes. To address this, we pro-
pose RIVAL, an adversarial training framework
that formulates the process as a min—-max game
between the RM and the LLM. RIVAL itera-
tively updates the both models, with the RM
trained to distinguish strong from weak trans-
lations (qualitative preference reward), and the
LLM trained to enhance its translation for clos-
ing this gap. To stabilize training and improve
generalizability, we also incorporate quantita-
tive preference reward (e.g., BLEU) into the
RM, enabling reference-free quality modeling
aligned with human evaluation. Through ex-
tensive experiments, we demonstrate that the
proposed training framework significantly im-
proves upon translation baselines.

1 Introduction

Recent advances in pre-trained large language mod-
els (LLMs) have yielded state-of-the-art results
across a wide range of benchmarks (Achiam et al.,
2023; Grattafiori et al., 2024; Bai et al., 2023). In
the field of neural machine translation (NMT), re-
searchers have also been exploring ways to lever-
age the powerful capabilities of LLMs to improve
translation quality. Although most existing meth-
ods (Wiseman and Rush, 2016; Ranzato et al.,
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@ Translate the following text from Chinese into English. \nfi{,
IR, B, WU, HA#E 0K .

@ Hey, look, not bad, the flexibility and everything are still OK.

<X) Hey, you see, it's quite good, the flexibility, everything is okay.
It's ok! It's great!

Figure 1: The illustration highlights the issue arising
when directly applying vanilla RLHF to a colloquial
subtitle dataset. The weak translator tends to generate
content that is not present in the source text but receives
a favorable score from the RM.

2015) rely on Maximum Likelihood Estimation
(MLE)-based supervised fine-tuning, they suffer
from exposure bias, leading to error accumulation
and degraded translation quality. Moreover, such
models often lack global coherence due to the lim-
ited modeling of sentence-level context(Kiegeland
and Kreutzer, 2021; Kreutzer et al., 2018). These
issues have catalyzed growing interest in alterna-
tive approaches such as Reinforcement Learning
from Human Feedback (RLHF)(He et al., 2025;
Feng et al., 2025; Tan and Monz, 2025).

Currently, most NMT systems (Mohiuddin et al.,
2022; Bansal et al., 2022) focus on formal and
written language, with limited research address-
ing loosely structured and colloquial subtitles. To
bridge this gap, we first construct a dedicated
dataset and apply RLHF to optimize the transla-
tion quality for this task. This dataset is character-
ized by its diversity in both linguistic styles and
domains. However, we find that the performance
of vanilla RLHF is suboptimal. As shown in Figure
1, the model tends to generate content that does
not exist in the source text for cheating the RM to
obtain a high score, which is usually called reward
hacking. Through analysis, we identify that this
issue arises from the continuous distributional shift
(Touvron et al., 2023; Luo et al., 2024) of the LLM
during RL training, indicating that offline RM is
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increasingly ineffective in providing reliable super-
vision signals, particularly in the context of online
RL training.

To address the issue of distribution shift,
we propose RIVAL, (Reinforcement learning
with Iterative and adVersariAL optimization)
an approach inspired by the adversarial train-
ing paradigm of generative adversarial networks
(GANSs) (Goodfellow et al., 2014). We reformu-
late the conventional RLHF training scheme as an
explicit min—max game between the RM and the
LLM. The RM is trained to maximize the score gap
between the translation pairs produced by strong
translators and weak translators. We name this sig-
nal the qualitative preference reward. The LLM
training objective is to minimize the gap in trans-
lation quality between itself and strong translators.
By iteratively optimizing both models, the RM is
continuously updated to adapt to the distributional
shifts introduced during LLM training.

In experiments, we further observe that as train-
ing progresses, the RM may learn a distribution
divergent from the true reward signal. We attribute
this issue to the large exploration space inherent in
translation tasks, where purely qualitative prefer-
ence reward may not consistently ensure beneficial
optimization. To mitigate this, we introduce quan-
titative preference rewards (e.g., BLEU (Papineni
et al., 2002)) into our adversarial framework to
stabilize the iterative training process. However,
directly using these signals suffers from poor gen-
eralizability (Sellam et al., 2020) and makes them
unsuitable as dynamic rewards. We extend the
RM to simultaneously predict this type of quantita-
tive preference reward for incorporating them into
our adversarial framework. This approach enables
more generalized reference-free modeling of trans-
lation quality while maintaining alignment with
human evaluation criteria through indirect refer-
ence guidance.

Our core contributions are as follows:

1. In this work, we propose an iterative and ad-
versarial RL approach named RIVAL, which
alternately optimizes the RM and the LLM
through a competitive process, progressively
improving performance from weak to strong
by incorporating both qualitative and quanti-
tative preference rewards.

2. Through extensive experiments, we demon-
strate that our RIVAL effectively improves
in-domain translation quality without compro-

mising the out-of-distribution performance of
the model.

3. We provide a simple and effective pipeline for
processing colloquial Chinese-English paral-
lel subtitle translation datasets and release the
processed data as an open-source resource.

2 Background

In the Bradley—Terry model (Bradley and Terry,
1952), a pairwise choice between items 7 and j de-
pends on their latent utilities. The probability of
selecting the item ¢ increases monotonically with
its utility relative to that of j. Formally, these proba-
bilities are obtained by applying a softmax function
to the log-utilities r(+) of the items.

o en(r()
WD = @) ety

= softmax(r (i), r(j)).

While this formulation elegantly captures
static preference judgments, real-world applica-
tions—particularly in natural-language generation
often require aligning model behavior with nu-
anced human values. RLHF addresses this gap
by leveraging human evaluators to provide compar-
ative or scalar feedback on model outputs. First, a
RM is trained to predict these human judgments
from pairs or ratings of model candidates (Chris-
tiano et al., 2017b; Stiennon et al., 2020). Next, the
LLM is fine-tuned via policy optimization meth-
ods such as Proximal Policy Optimization (PPO)
to maximize the learned reward signal (Schulman
et al., 2017). This two-stage process has proven
effective in producing more helpful, truthful, and
harmless generations in large-scale language sys-
tems (Ouyang et al., 2022). In this paper, RLHF
is not exclusively limited to human feedback, but
also encompasses model-generated feedback.

3 Pilot Experiment and Analysis

In this section, we first explore the application of
vanilla RLHF to NMT and conduct a preliminary
analysis of the experimental results.

3.1 How to Apply RLHF to NMT?

Inspired by RLHF, we model the translation qual-
ity problem as a rank-wise comparison between a
weak translator and a strong translator. Here, we
refer to the translation model being trained as a
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weak translator, while grouping together gold ref-
erences and outputs from stronger models under
the term strong translator. Accordingly, we adopt
the RM framework to train an evaluator for transla-
tion quality 74, as formulated below (Ouyang et al.,
2022):

Lrank(1¢; DrMm) = —Epyy, [log Q(y° = y* | x)],
()

where Dryv = (z,y°, y") is parallel translation
dataset, y° and y" are the strong translation and
the weak translation of the text x, respectively.
With a learned RM, we first sample a set of
candidate responses {y1, y2, . . ., Y } from the pre-
vious policy mg,, when presented with an orig-
inal text x. Then the advantage function A;
is calculated by normalizing each individual re-
ward relative to the distribution of all rewards
in the group. Specifically: A; = “ t= where
pr = mean({ry,re,...,rg}) represents the av-
erage of rewards, o, = std({r1,72,...,7c}) de-
notes the standard deviation, and {ry,72,...,rg}
are the rewards scored by the learned RM. Finally,
GRPO(Shao et al., 2024) aims to maximize the
following objective function to optimize my:

Jarro(8) = E, _p(x), {yiy{y~mo g (Ye)

G
éZmin(We(yi | 2) A;,
=1

14 (yl ‘ l‘)
(:hp(m7 1—¢, 1+ 5>Ai>
7-‘-Gold (yz ‘ x)

— B Dy (m || 7Tref)] ;
(3)

where the hyperparameter £ controls the PPO
clipping threshold and S penalizes the Kull-
back—Leibler (KL) divergence between the opti-
mized policy 7y and the initial policy 7. .

According to the approach mentioned above, we
conduct pilot experiments applying RLHF to NMT
in the task of colloquial subtitle translation. We
detail the construction of a diverse and colloquial
subtitle translation dataset drawn from real-world
videos. The data processing pipeline follows a
systematic approach:

1. Subtitle Extraction. We collect real-world
videos and employ Automatic Speech Recognition
technology to transcribe spoken content. The tran-
scriptions are then segmented into discrete sen-

tences based on natural pauses and semantic com-
pleteness.

2. Subtitle Processing. We remove background
music and semantically insignificant utterances. To
enhance contextual coherence and conversational
continuity, we structure the data into groups of
ten sentences. For clarity and standardization, our
prompt instructs models to follow in JSON format.

3. Translation Generation. Given the absence
of golden translations for real-world video subtitles,
we implement a dual-model approach to generate
translation pairs of varying quality. We utilize GPT-
40 (Achiam et al., 2023) to produce strong transla-
tions that served as targets and employ Qwen2.5-
7B-Chat (Team, 2024) as our baseline model to
generate weak translations, representing the initial
performance that we aim to improve.

4. Dataset Construction. To construct clean
data, we conduct simple low-quality filtering strate-
gies on the model-generated responses, including:
repetitive generation, failure to follow JSON for-
mat, empty generation, target language mismatch,
etc., to ensure that the remain translation data is
valid. Subsequently, we calculated the 2-gram simi-
larity of the corresponding strong-weak translation
pairs and heuristically set different filtering thresh-
olds to filter similar responses. The filtered prompts
and paired translations are incorporated into the RL
corpus, while the combinations of prompts and
strong translations form the supervised fine-tuning
(SFT) dataset.

We provide several cases in Appendix A. Based
on the datasets above, we conduct experiments on
optimizing NMT using RLHF. Since colloquial
translation prioritize free translation and seman-
tic alignment rather than requiring word-for-word
correspondence with the target text, we employ
COMETkiwi(Rei et al., 2022) and model judgment,
such as GPT-40, as evaluation metrics.

3.2 Why Vanilla RLHF Fails in Colloquial
Subtitle Translation?

To investigate the causes of the aforementioned
phenomena, Figure 2 shows the scoring differen-
tial between strong translations and the translations
generated by the optimized model, which are eval-
uated by the RM and GPT-40. As training pro-
gresses, the scoring differential from the RM grad-
ually decreases, suggesting that the RM perceives a
progressive improvement in the model’s generated
translations. However, the scoring differential from
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Scoring Differential between Strong Translations and Generated Translations across Steps

1000
Training Step

Figure 2: Scoring Differential of the RM and GPT-40
between strong translations and the translations gener-
ated by the optimized model.

GPT-4o0 exhibits an initial decrease followed by a
subsequent increase. The significant discrepancy
between these two evaluation metrics indicates that
the RM trained solely on weak translations from
the initial model struggles to adapt to the distribu-
tional shift occurring in the training process.

4 Methods

Based on the experimental findings in the pre-
vious section, we observe that vanilla RLHF is
not well-suited for colloquial subtitle translation
tasks. Therefore, inspired by the principles of
GANs(Goodfellow et al., 2014), we propose an
adversarial RL approach, RIVAL, that enables both
the RM and the LLM to progressively improve
from weak to strong.

Specifically, we formulate the two-stage training
process of RLHF as a min-max adversarial game
between LLM 7y (Generator) and RM 74 (Discrim-
inator) , as expressed by the following objective:

min max Elry(z, 79(y[7))] — Eye Py [76 (T, )]

Te Uy

s.t. KL[mg(y|x)||mes(y|2)] < 7, 4)

where Pyong denotes the output distribution of a
strong translator. The LLLM, as a weak translator,
is trained to minimize the gap between its output
distribution and that of the strong translator. In
contrast, the RM is trained to maximize this distri-
butional gap by distinguishing between the outputs
of the weak and strong translators.

By iteratively optimizing both models and us-
ing the current LLM to reconstruct new training
data for the RM, the RM can effectively learn to
serve as a high-quality evaluator for translation
quality. Meanwhile, a well-trained RM can in turn
provide effective guidance for the LLM, enabling

it to explore the open-ended output space and pro-
gressively learn to become a strong translator.

4.1 RM and LLM Optimization Step

In this subsection, we provide a detailed explana-
tion of the RM and LLM optimization steps.

4.1.1 RM Step

The goal of the RM step is to train a high-quality
RM to accurately evaluate the quality of the trans-
lation. In this step, we keep 7y fixed and optimize
only r4. Therefore, the objective 4 can be simpli-
fied to the following form:

minE(rg (2, 7o (y|7))] = Eye Puons[76(2, )] )

This objective means that the model aims to max-
imize the gap between the strong translator and the
current-round translator. Our translation task uses
source texts x and their translations ys¢ong from
the dataset Dgyy, with the translations originating
from a strong translator—either a more powerful
model or a human expert. We then use the current-
round LLM 7y to translate these source texts, ob-
taining the weak translator’s outputs mp(y|x). At
this stage, we apply a simple filtering process to
exclude samples where the translations from the
weak and strong translators are already highly simi-
lar, as they offer limited learning signal. Therefore,
we can derive Equation 5 as follows:

min Elrg (z, 70 (y12))] = By g 1o (2, V)]

= H;in Elrg(@, ywear)] — Elrg(@, ystrong)]
= H%%X E[Tzzﬁ (ZE, ystrong) - T'¢(:L‘7 yweak’)} . (6)
The objective in Equation 6 aligns with the struc-
ture of the RM, and thus we directly adopt the tradi-
tional rank loss as the training loss for the RM step.
In this work, we refer to the rank loss as a qual-
itative preference loss. Furthermore, during sub-
sequent iterations, we not only utilize translations
generated by the current-round LLM but also replay
a subset of outputs from previous rounds. This ap-
proach helps prevent excessive distributional shifts,
enhances data diversity, and effectively improves
the model’s robustness.

4.1.2 LLM Step

In the LLM update step, we similarly keep the
reward model r fixed and update only the parame-
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Source: Translate the following text from Chinese into English. \n B, 7%,
LLM ARG, TP, HAE oK .
Strong Trans: Hey, look, not bad, the flexibility and everything are still OK.
‘Weak Trans: Hey, you see, it's quite good, the flexibility, everything is okay.
It's ok! It's great!
uantitative Preference Rewa ualitative Preference Rewar
RM . ' Quantitative Pref Reward Qualitati fi d
Strong Trans: 1; Weak Trans : 0.2 Strong Trans > Weak Trans
sl Training
— - Stl‘Ollg RM Step sd [nference LLM Step
o= g - :
e Translation Hiuizilion Quantitative
, e Preference Reward
/
Source |__| LLM Weak Reward Source Weak Reward
Sentences Translation Model Sentences Translation Model

Qualitative
Preference Reward

Figure 3: The RIVAL framework. In the RM updating step, the RM is trained to maximize the score gap between
translation pairs produced by strong and weak translators. In the LLM updating step, the LLM is to alleviate the
quality gap between its own outputs and those of the strong translators.

ters of the LLM 7y:

H}SX EmGDLL]\/I [T¢($, Wg(y|$))]
(N

The objective of this training step is to optimize
the LLLM using the signals provided by the RM.
This procedure is aligned with the standard prefer-
ence learning paradigm, where the LLM is guided
to produce the outputs preferred by the RM. In line
with the earlier stages of our pipeline, we continue
to adopt the GRPO algorithm as our RL method in
this phase.

s.t. KL[mg(y|@)||mer(ylz)] < n.

4.2 Incorporate Quantitative Preference
Reward

Moreover, our experiments reveal that using only
the qualitative preference reward leads to instabil-
ity across training iterations. This can be attributed
to the translation model’s large exploration space,
which will be discussed in detail later in the paper.
To address this, we introduce a quantitative prefer-
ence reward to stabilize and align the optimization
trajectory of the model throughout the training iter-
ations. Given that the qualitative preference reward
emphasizes semantic alignment, we opt for BLEU
as a quantitative preference reward to facilitate lex-
ical alignment. Specifically, rather than directly
employing BLEU as a reward signal, we train a
RM to approximate BLEU scores.

The key insight is that reference translations may
contain errors (Xu et al., 2024b) or lack diversity,

resulting in biased BLEU calculations that lack ro-
bustness. Prior work(Benedetti and Ventura, 2024;
de Jorge Aranda et al., 2022; Bishop, 1995) show
that noisy-based training can, to some extent, be
equivalent to Tikhonov regularization, effectively
mitigating overfitting and improving model robust-
ness. Therefore, this work employs noisy data to
train a RM that approximates BLEU scores, result-
ing in reduced sensitivity to noise and enhanced
robustness.

Moreover, instead of training a separate model
for quantitative preference reward, we leverage the
same model backbone used for qualitative pref-
erence reward and introduce an additional output
head dedicated to quantitative preference reward
prediction. This design offers two key benefits:
it reduces the computational cost of model train-
ing and enables mutual learning between the two
tasks with different supervision forms, thereby mit-
igating the risk of over-optimization(Ahmed et al.,
2024). Finally, our multi-head RM loss function
incorporating BLEU is defined as follows:

Lry = »Cqualitative + o Equantitative
= Lrank + EMAE(""(Z)Q DRM)

= Lrank + @ Eppy [[Y8eu — YBLEUI] S

®)

where « is a coefficient used to balance the weights
of the two components. In this paper, we do not
assign it a specific value and thus set it to 1. Ad-
ditionally, we recommend using Mean Absolute
Error (MAE) as the loss function instead of Mean
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Algorithm 1: RIVAL

Require: Drat, D ags Doom, T, 7, iterations

N, Training steps Tras, 1710 for RM and
LLM

1: fork=1,....,Ndo
2:  //Process Data and Get BLEU.
32 fori=1,..,|Drr| do
4: Sample piece (z, 7, y;") C Drm
5: if sim(y;,y") < 7 then
6: //Get BLEU for translator.
7: Update D%, , , <
(z, BLEU(y;,y;), BLEU(y;, y;"))
8: end if
9 end for

10: //RM Step.
11: fort=1,...,Try do

12: Sample batch Braq C D, 04
//Update RM using Equation 8
13: dr = -1 — nfM « VyLam(di-1)

14:  end for
15:  //LLM Step.
16: fort=1,... T do

17: Sample Bzt C Deem

18: Generate y = LLMy,(z),z € Brem

19: Compute rewards r = RMy, (z, )
//Update LLM using Equation 3

20: 915 = 91571 — 77tLLM * VgJ(Qtfl)

21:  end for

22:  //Process new RM Training Data.
23 Update D « (x,y°, LLM;, (x))
24: end for

25: return 07707, PR\

Squared Error (MSE); this choice will be further
discussed in experiments. The detailed algorithmic
procedure can be found in Algorithm 1.

5 Experiment

We will introduce experimental setup, main results
and analysis in this section.

5.1 Experimental Setup

In this subsection, we present the experimental
setup and implementation details.

Datasets. Our main experiments are conducted on
the WMT dataset and our proposed subtitle dataset.
For the WMT dataset, we collect Chinese(ZH)-
English(EN) parallel corpora from WMT 2017-
2020 ? and perform basic preprocessing, removing

Zhttps://www.statmt.org/wmt20/

sentence pairs with fewer than 30 characters(Xu
et al., 2024a; Feng et al., 2024). Additionally, we
use English(EN)-German(DE) and Chinese(ZH)-
German(DE) medical translation tasks from the
WMT dataset as out-of-distribution (OOD) lan-
guage settings for evaluation.

Evaluation Metrics. On the subtitle dataset, we
use COMETKiwi and GPT-40 for evaluation be-
cause (1) subtitle tasks prioritize semantic content,
making BLEU less appropriate; and (2) the refer-
ences are GPT-4o-generated, making it infeasible
to compute BLEU scores against genuine reference
translations. For the WMT dataset, both BLEU and
COMETKiwi are used to capture lexical fidelity
and semantic adequacy.

GPT-40-based scoring follows the LLM-as-a-
Judge(Lee et al., 2024; Weng et al., 2022) paradigm,
evaluating translations across four dimensions: ac-
curacy, completeness, coherence, and stylistic con-
sistency. The specific prompt used for evaluation
can be found in the Appendix B. The consistency
between human evaluation and GPT-40 scoring can
be found in the Appendix C.

Baselines. Our baselines include the strong
general-purpose model GPT-4o, the translation-
specific model Tower-7B-v0.2(Alves et al., 2024),
and the models obtained by applying SFT.
Implementation Details. We train our RM using
Megatron framework (Shoeybi et al., 2019) with
the Qwen2.5-72B-Chat. For LLM training, we em-
ploy the Verl framework(Sheng et al., 2024) with
the Qwen2.5-7B-Chat. For more training details,
please refer to the Appendix D.

5.2 Main Results

Table 1 displays the performance on the subtitle
task with only the qualitative preference reward,
and Table 2 presents results on WMT task with both
qualitative and quantitative preference rewards. We
also provide the result of significance test in Ap-
pendix E

Colloquial subtitle translation is a particu-
larly challenging task. As shown in Table
1, even Towerlnstruct-7B-v0.2—a translation-
specific LLM trained with approximately 20B to-
kens of continued pretraining—fails to perform
well on this task. According to GPT-40 evalua-
tions, the primary issue lies in insufficient accuracy.
This indicates that our ASR-based dataset contains
highly diverse and substantial knowledge-intensive
content, making it a relatively challenging task that
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In-Domain Subtitle ZH->EN

Accuracy Completeness Coherence Stylistic Consistency Avg COMETkiwi
GPT-40 3.99 4.00 4.00 4.00 4.00 66.82
Towerlnstruct-7B-v0.2 2.69 3.69 3.56 3.71 3.37 64.52
Qwen2.5-7B-Chat 252 3.4 3.32 3.48 3.13 64.03
Qwen2.5-7B-SFT 2.97 3.74 3.46 3.75 3.46 65.89
" RIVAL-Iter0-Qual | 269 34 332 348 326 6522
RIVAL-Iter1-Qual 3.28 3.86 3.84 3.89 3.68 66.27
RIVAL-Iter2-Qual 3.06 3.82 3.57 3.79 3.53 66.49
OOD Medical ZH->DE
Accuracy Completeness Coherence Stylistic Consistency Avg COMETkiwi
Qwen2.5-7B-Chat 2.33 3.19 3.14 3.28 2.94 52.58
Qwen2.5-7B-SFT 2.34 2.99 2.98 3.08 2.81 49.15
© RIVAL-Iter0-Qual | 248 315 310 326 296 5241
RIVAL-Iter1-Qual 2.46 3.23 3.12 3.29 2.99 53.42
RIVAL-Iter2-Qual 2.33 3.16 3.06 3.21 2.93 51.76

Table 1: Performance comparison on in-domain translation direction (Subtitle ZH-EN) and OOD translation task
(Medical ZH-DE) using GPT-40 scores and COMETKiwi. Only the qualitative preference reward is used. All

results are averaged by 3 times.

In-Domain WMT EN->ZH WMT ZH->EN
BLEU COMETkiwi | BLEU COMETkiwi

GPT-40 38.98 75.64 324 73.59
Towerlnstruct-7B-v0.2 38.69 71.45 31.61 71.67
Qwen2.5-7B-Chat 31.50 65.41 25.60 68.61
Qwen2.5-7B-SFT 38.77 71.39 3222 71.88

© RIVAL-Iter0-Qual | 3334  69.64 | 2832 6991
RIVAL-Iter1-Qual 31.74 70.83 27.65 71.19
RIVAL-Iter2-Qual 30.14 71.91 26.73 73.28

" RIVAL-Iter0-Qual+Quant | 3476 69.12° | 2952 70.16
RIVAL-Iter1-Qual+Quant | 38.62 69.72 32.90 72.37
RIVAL-Iter2-Qual+Quant | 39.39 72.60 33.42 73.61

OOD WMT EN->DE WMT DE->EN
BLEU COMETkiwi | BLEU COMETkiwi

Qwen2.5-7B-Chat 27.23 71.53 36.85 74.18
Qwen2.5-7B-SFT 22.16 67.88 34.69 71.19

© RIVAL-Iter0-Qual | 25.15 7148 | 3517 7369
RIVAL-Iter1-Qual 24.71 70.93 34.97 73.06
RIVAL-Iter2-Qual 23.96 69.81 34.82 72.76

" RIVAL-Iter0-Qual+Quant | 2644 7150 | 3535 7349
RIVAL-Iter1-Qual+Quant | 25.70 69.93 35.32 72.66
RIVAL-Iter2-Qual+Quant | 25.25 68.74 35.25 7223

Table 2: Performance comparison on in-domain
WMT(EN-ZH) and OOD WMT(EN-DE) using BLEU
and COMETKiwi. Both preference rewards are used.
All results are averaged by 3 times.

has not yet been well addressed.

As the iterations progress, the model is able to
gradually discover improved translation. As
shown in Tables 1 and Table 2, our RIVAL method
is able to progressively discover higher-quality
translations through iterative optimization. The
model outperforms current open-source translation-
specific LLMs and, on certain tasks, the perfor-
mance of RIVAL even exceeds that of strong
general-purpose models. These results not only
demonstrate the effectiveness of our approach but
also highlight the potential of iterative optimization
to enable autonomous exploration and continuous

adjustment toward improved translation quality.

Different reward signals serve different pur-
poses. As shown in Table 2, our RIVAL method
achieves comparable performance under both qual-
itative and quantitative rewards. However, when
the quantitative reward is incorporated, the corre-
sponding BLEU score improves significantly. In
fact, omitting the quantitative reward leads to a
drop in BLEU but an increase in COMET, suggest-
ing that the model is able to explore effectively at
the semantic level without being constrained by
surface-level lexical similarity.

In Language OOD scenarios, our approach bet-
ter preserves the model’s capabilities. As shown
in Tables 1 and Table 2, SFT severely degrades per-
formance on OOD languages. According to GPT-
based evaluation, this performance drop is primar-
ily observed in completeness, coherence, and stylis-
tic consistency, while accuracy remains largely un-
affected. This suggests that different languages
share parameters related to knowledge within the
model, whereas language-specific capabilities are
more tightly coupled with the language itself (Xu
etal., 2023). In contrast, our RIVAL method results
in significantly less degradation in OOD language
performance. Moreover, we observe an interesting
phenomenon: on the WMT-Medical test dataset,
the performance at RIVAL-Iter]l even surpasses
that of the original model. This indirectly indicates
that our method encourages the exploration of more
effective translation strategies, rather than relying
on rote memorization of specific patterns.
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Scoring Differential between Strong Translations and Generated Translations across Steps

1
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Figure 4: Scoring Differential of the RM and GPT-40 between strong and weak translations. (a) for RIVAL-Iter1 (b)

for RIVAL-Iter2.

Additionally, we observed that models trained
solely with qualitative rewards outperform the SFT
method in OOD scenarios. Consistent with our
in-domain findings, evaluation on both BLEU and
COMETkiwi metrics revealed that training with
qualitative rewards resulted in a significant reduc-
tion in character-level similarity, while semantic-
level performance remained largely unaffected.
Purely the qualitative preference reward cannot
guarantee a reliable optimization direction. As
observed in Table 1 , the performance of RIVAL-
Iter2 is lower than that of RIVAL-Iter1. We hypoth-
esize that this is due to the vast exploration space
inherent in open-ended generation tasks, where
purely qualitative preference rewards fail to effec-
tively constrain the model’s exploration, leading
to behaviors misaligned with the true reward sig-
nal. To address this, we introduce the quantitative
preference reward, and as shown in Table 2, the
model’s exploration results exhibit a high degree
of consistency, indicating more stable and reliable.

5.3 Analysis

MAE is better than MSE. In our experiments, we
find that using MAE as the loss function for training
the RM yields significantly better results than using
MSE. Detailed case studies and exact figures are
provided in the Appendix F. MAE reduces the error
by 80% compared to MSE and improves accuracy
by 2.5%. We attribute this phenomenon to the
squared term in MSE, which greatly diminishes the
loss when the target values are less than 1, making
it difficult for the model to effectively learn how to
fit the quantitative preference rewards. Therefore,
we recommend using MAE as the loss function.

RIVAL effectively mitigates distributional shift.
We also plot the score differences between strong
and weak translations in the last two iterations. As
shown in the Figure 4, we can observe that the
score differences remain within a relatively small
range throughout training and do not exhibit sud-

den increases in the later stages. This suggests that
during effective training steps, the issue of distribu-
tional shift is significantly alleviated and iterative
adversarial approach enhances the generalization
capabilities of both the RM and the LLM.

More iterations lead to better performance. Ex-
perimental results indicate that the model often
reaches or exceeds the SFT baseline within two
iterations. Continued gains observed in WMT
dataset at the third iteration imply that further self-
exploration may help the model surpass strong
translators, which we consider a potential avenue
for future work.

6 Related works

Here we present a concise overview on RL-based
method for the MT(details in Appendix G).
Reinforcement Learning for Machine Trans-
lation Early RL studies alleviated the train-
ing—evaluation gap by directly optimizing
corpus-level BLEU and alleviating exposure
bias (Ranzato et al., 2016; Edunov et al., 2018;
Wang and Sennrich, 2020). Later work used
human-in-the-loop feedback for domain or user
adaptation (Sokolov et al., 2016; Nguyen et al.,
2017). Reward-shaping variants inject intermediate
signals, yet even token-wise BLEU remains too
coarse for fine-grained rewards (Wu et al., 2018;
Goyal et al., 2019; Devidze et al., 2022).

Modern RL-enhanced LLMs such as OpenAl O1
and DeepSeek-R1 achieve state-of-the-art perfor-
mance accross diverse benchmarks (OpenAl et al.,
2024; DeepSeek-Al et al., 2025). Motivated by
these, R1-Translator introduces chain-of-thought
alignment for MT (He et al., 2025); MT-R1-Zero
adds zero-shot hybrid rewards (Feng et al., 2025).
ReMedy frames MT evaluation as pairwise re-
ward modeling (Tan and Monz, 2025), while
severity-weighted token rewards from XCOMET
provide richer signals (Ramos et al., 2025).
Reward Hacking in Reinforcement Learn-
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ing Reward hacking happens when an RL agent
finds loopholes in the reward and chases the proxy
instead of the real goal (Weng, 2024; Everitt
and Hutter, 2019). It has appeared in robotics,
Atari-style games, and RLHF language models,
where agents loop waypoints, rewrite tests, or game
metrics to boost scores without real gains (Lehman
et al., 2020; Gleave et al., 2019; Denison et al.,
2024). To prevent the above issue, recent work sug-
gests the following methods of defence: (1) fix the
reward with ensembles(Wortsman et al., 2022), ad-
versarial training, caps, or trip-wires (Amodei et al.,
2016); (2) harden the policy through look-ahead
planning, adversarial blinding, or indifference
methods (Uesato et al., 2020); (3) add human
checks, anomaly detection, and data audits after
training (Pan et al., 2022; Revel et al., 2025).

7 Conclusion

Using a real-world colloquial subtitle dataset, we
find that vanilla RLHF struggles to improve trans-
lation quality due to distributional shifts from of-
fline RM. To address this, we propose RIVAL—an
adversarial framework enabling iterative optimiza-
tion between the RM and the LLM, incorporat-
ing both qualitative and quantitative preference re-
wards. Through extensive experiments and analy-
sis, we demonstrate the effectiveness and generaliz-
ability of this framework. Our work offers valuable
insights for applying RL to NMT, and more broadly,
serves as a reference for RL-based approaches in
general post-training of LLMs.

Limitations

In this paper, we focus on how to optimize transla-
tion performance using the RLHF paradigm, with
particular emphasis on the previously underex-
plored task of colloquial subtitle translation. Al-
though our RIVAL method demonstrates superior
performance over the baselines in experiments, we
have not yet explored its full potential. We believe
that with additional rounds of iteration, the model
could achieve performance comparable to, or even
surpass, that of strong translators. Moreover, we
believe that this iterative adversarial optimization
approach can be extended to more general post-
training settings. Given its generalizability, we
hope it can serve as an effective alternative to su-
pervised fine-tuning.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Ahmed M Ahmed, Rafael Rafailov, Stepan Sharkov,
Xuechen Li, and Sanmi Koyejo. 2024. Scalable
ensembling for mitigating reward overoptimisation.
arXiv preprint arXiv:2406.01013.

Duarte M Alves, José Pombal, Nuno M Guerreiro, Pe-
dro H Martins, Jodo Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
et al. 2024. Tower: An open multilingual large
language model for translation-related tasks. arXiv
preprint arXiv:2402.17733.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Trapit Bansal, Jakub W. Pachocki, Szymon Sidor, Ilya
Sutskever, and Igor Mordatch. 2017. Emergent
complexity via multi-agent competition. ArXiv,
abs/1710.03748.

Yamini Bansal, Behrooz Ghorbani, Ankush Garg, Biao
Zhang, Colin Cherry, Behnam Neyshabur, and Orhan
Firat. 2022. Data scaling laws in nmt: The effect of
noise and architecture. In International Conference
on Machine Learning, pages 1466—1482. PMLR.

Marco Benedetti and Enrico Ventura. 2024. Training
neural networks with structured noise improves clas-
sification and generalization. Journal of Physics A:
Mathematical and Theoretical, 57(41):415001.

Chris M Bishop. 1995. Training with noise is equiva-
lent to tikhonov regularization. Neural computation,
7(1):108-116.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324—
345.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Mar-
tic, Shane Legg, and Dario Amodei. 2017a. Deep
reinforcement learning from human preferences. Ad-
vances in neural information processing systems, 30.

Paul F. Christiano, Jan Leike, Tom B. Brown, Mil-
jan Martic, Shane Legg, and Dario Amodei. 2017b.
Deep reinforcement learning from human prefer-
ences. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems,
NIPS’17, page 4302—4310, Red Hook, NY, USA.
Curran Associates Inc.

3072


https://arxiv.org/pdf/1606.06565.pdf
https://api.semanticscholar.org/CorpusID:3921978
https://api.semanticscholar.org/CorpusID:3921978
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029
http://www.jstor.org/stable/2334029

Pau de Jorge Aranda, Adel Bibi, Riccardo Volpi,
Amartya Sanyal, Philip Torr, Grégory Rogez, and
Puneet Dokania. 2022. Make some noise: Reliable
and efficient single-step adversarial training. Ad-

vances in Neural Information Processing Systems,
35:12881-12893.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, and Ruoyu Zhang. 2025. Deepseek-
rl: Incentivizing reasoning capability in llms via
reinforcement learning.

Carson Denison, Monte MacDiarmid, Fazl Barez, David
Duvenaud, Shauna Kravec, Samuel Marks, Nicholas
Schiefer, Ryan Soklaski, Alex Tamkin, Jared Kaplan,
et al. 2024. Sycophancy to subterfuge: Investigating
reward-tampering in large language models. arXiv
preprint arXiv:2406.10162.

Rati Devidze, Parameswaran Kamalaruban, and Adish
Singla. 2022. Exploration-guided reward shaping
for reinforcement learning under sparse rewards. In
Advances in Neural Information Processing Systems,
volume 35, pages 5829-5842. Curran Associates,
Inc.

Lauro Langosco di Langosco, Jack Koch, Lee D.
Sharkey, Jacob Pfau, and David Krueger. 2021. Goal
misgeneralization in deep reinforcement learning. In
International Conference on Machine Learning.

Sergey Edunov, Myle Ott, Michael Auli, David Grang-
ier, and Marc’ Aurelio Ranzato. 2018. Classical struc-
tured prediction losses for sequence to sequence
learning. In Proceedings of the 2018 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 355-364,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Tom Everitt and Marcus Hutter. 2019. Reward tamper-
ing problems and solutions in reinforcement learn-
ing: A causal influence diagram perspective. ArXiv,
abs/1908.04734.

Tom Everitt, Victoria Krakovna, Laurent Orseau, and
Shane Legg. 2017. Reinforcement learning with a
corrupted reward channel. In International Joint
Conference on Artificial Intelligence.

Zhaopeng Feng, Shaosheng Cao, Jiahan Ren, Jiayuan
Su, Ruizhe Chen, Yan Zhang, Zhe Xu, Yao Hu, Jian
Wu, and Zuozhu Liu. 2025. Mt-rl-zero: Advanc-
ing llm-based machine translation via rl-zero-like
reinforcement learning.

Zhaopeng Feng, Ruizhe Chen, Yan Zhang, Zijie Meng,
and Zuozhu Liu. 2024. Ladder: A model-agnostic
framework boosting LLM-based machine translation
to the next level. In Proceedings of the 2024 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 15377-15393, Miami, Florida, USA.
Association for Computational Linguistics.

Adam Gleave, Michael Dennis, Cody Wild, Neel Kant,
Sergey Levine, and Stuart Russell. 2019. Adversar-
ial policies: Attacking deep reinforcement learning.
arXiv preprint arXiv:1905.10615.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Prasoon Goyal, Scott Niekum, and Raymond J. Mooney.
2019. Using natural language for reward shaping
in reinforcement learning. In Proceedings of the
Twenty-Eighth International Joint Conference on Ar-
tificial Intelligence, IJCAI-19, pages 2385-2391. In-
ternational Joint Conferences on Artificial Intelli-
gence Organization.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, et al. 2024. The llama 3 herd of mod-
els. arXiv preprint arXiv:2407.21783.

Minggui He, Yilun Liu, Shimin Tao, Yuanchang Luo,
Hongyong Zeng, Chang Su, Li Zhang, Hongxia Ma,
Daimeng Wei, Weibin Meng, Hao Yang, Boxing
Chen, and Osamu Yoshie. 2025. R1-t1: Fully incen-
tivizing translation capability in llms via reasoning
learning.

Samuel Kiegeland and Julia Kreutzer. 2021. Revisiting
the weaknesses of reinforcement learning for neu-
ral machine translation. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 1673—1681, Online.
Association for Computational Linguistics.

Julia Kreutzer, Shahram Khadivi, Evgeny Matusov, and
Stefan Riezler. 2018. Can neural machine translation
be improved with user feedback? In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Industry
Papers), pages 92—-105, New Orleans - Louisiana.
Association for Computational Linguistics.

Yebin Lee, Imseong Park, and Myungjoo Kang. 2024.
Fleur: An explainable reference-free evaluation met-
ric for image captioning using a large multimodal
model. arXiv preprint arXiv:2406.06004.

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph
Adami, Lee Altenberg, Julie Beaulieu, Peter J Bent-
ley, Samuel Bernard, Guillaume Beslon, David M
Bryson, et al. 2020. The surprising creativity of dig-
ital evolution: A collection of anecdotes from the
evolutionary computation and artificial life research
communities. Artificial life, 26(2):274-306.

Wang Luo, Haoran Li, Zicheng Zhang, Congying Han,
Jiayu Lv, and Tiande Guo. 2024. Sambo-rl: Shifts-
aware model-based offline reinforcement learning.
arXiv preprint arXiv:2408.12830.

3073


http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
https://proceedings.neurips.cc/paper_files/paper/2022/file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/266c0f191b04cbbbe529016d0edc847e-Paper-Conference.pdf
https://api.semanticscholar.org/CorpusID:249954130
https://api.semanticscholar.org/CorpusID:249954130
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://doi.org/10.18653/v1/N18-1033
https://api.semanticscholar.org/CorpusID:199552156
https://api.semanticscholar.org/CorpusID:199552156
https://api.semanticscholar.org/CorpusID:199552156
https://api.semanticscholar.org/CorpusID:3075935
https://api.semanticscholar.org/CorpusID:3075935
http://arxiv.org/abs/2504.10160
http://arxiv.org/abs/2504.10160
http://arxiv.org/abs/2504.10160
https://doi.org/10.18653/v1/2024.emnlp-main.860
https://doi.org/10.18653/v1/2024.emnlp-main.860
https://doi.org/10.18653/v1/2024.emnlp-main.860
https://doi.org/10.24963/ijcai.2019/331
https://doi.org/10.24963/ijcai.2019/331
http://arxiv.org/abs/2502.19735
http://arxiv.org/abs/2502.19735
http://arxiv.org/abs/2502.19735
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/2021.naacl-main.133
https://doi.org/10.18653/v1/N18-3012
https://doi.org/10.18653/v1/N18-3012

Tasnim Mohiuddin, Philipp Koehn, Vishrav Chaudhary,
James Cross, Shruti Bhosale, and Shafiq Joty. 2022.
Data selection curriculum for neural machine transla-
tion. arXiv preprint arXiv:2203.13867.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017. Reinforcement learning for bandit
neural machine translation with simulated human
feedback. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1464—1474, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

OpenAl, :, Aaron Jaech, Adam Kalai, Adam Lerer,
Adam Richardson, Ahmed El-Kishky, Aiden Low,
Alec Helyar, Aleksander Madry, and Alex Beutel.
2024. Openai ol system card.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Proceedings of the 36th Interna-
tional Conference on Neural Information Processing
Systems, NIPS ’22, Red Hook, NY, USA. Curran
Associates Inc.

Alexander Pan, Kush Bhatia, and Jacob Steinhardt.
2022. The effects of reward misspecification: Map-
ping and mitigating misaligned models. ArXiv,
abs/2201.03544.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311-318.

Romain Paulus, Caiming Xiong, and Richard Socher.
2017. A deep reinforced model for abstractive sum-
marization. ArXiv, abs/1705.04304.

Miguel Moura Ramos, Tomds Almeida, Daniel Vareta,
Filipe Azevedo, Sweta Agrawal, Patrick Fernandes,
and André F. T. Martins. 2025. Fine-grained re-
ward optimization for machine translation using error
severity mappings.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2015. Sequence level train-
ing with recurrent neural networks. arXiv preprint
arXiv:1511.06732.

Marc’ Aurelio Ranzato, Sumit Chopra, Michael Auli,
and Wojciech Zaremba. 2016. Sequence level train-
ing with recurrent neural networks.

Ricardo Rei, Marcos Treviso, Nuno M Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José GC De Souza, Taisiya Glushkova, Duarte M
Alves, Alon Lavie, et al. 2022. Cometkiwi: Ist-
unbabel 2022 submission for the quality estimation
shared task. arXiv preprint arXiv:2209.06243.

Manon Revel, Matteo Cargnelutti, Tyna Eloundou, and
Greg Leppert. 2025. Seal: Systematic error analysis
for value alignment. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
27599-27607.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Thibault Sellam, Dipanjan Das, and Ankur P Parikh.
2020. Bleurt: Learning robust metrics for text gener-
ation. arXiv preprint arXiv:2004.04696.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y W, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2024. Hybridflow: A flexible
and efficient rlhf framework. arXiv preprint arXiv:
2409.19256.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-Im: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Artem Sokolov, Julia Kreutzer, Stefan Riezler, and
Christopher Lo. 2016. Stochastic structured predic-
tion under bandit feedback. In Advances in Neural
Information Processing Systems, volume 29. Curran
Associates, Inc.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. 2020. Learn-
ing to summarize with human feedback. Advances
in neural information processing systems, 33:3008—
3021.

Shaomu Tan and Christof Monz. 2025. Remedy: Learn-
ing machine translation evaluation from human pref-
erences with reward modeling.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Jonathan Uesato, Ramana Kumar, Victoria Krakovna,
Tom Everitt, Richard Ngo, and Shane Legg. 2020.
Avoiding tampering incentives in deep 1l via decou-
pled approval. arXiv preprint arXiv:2011.08827.

3074


https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
http://arxiv.org/abs/2412.16720
https://api.semanticscholar.org/CorpusID:245837268
https://api.semanticscholar.org/CorpusID:245837268
https://api.semanticscholar.org/CorpusID:21850704
https://api.semanticscholar.org/CorpusID:21850704
http://arxiv.org/abs/2411.05986
http://arxiv.org/abs/2411.05986
http://arxiv.org/abs/2411.05986
http://arxiv.org/abs/1511.06732
http://arxiv.org/abs/1511.06732
https://proceedings.neurips.cc/paper_files/paper/2016/file/795c7a7a5ec6b460ec00c5841019b9e9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/795c7a7a5ec6b460ec00c5841019b9e9-Paper.pdf
http://arxiv.org/abs/2504.13630
http://arxiv.org/abs/2504.13630
http://arxiv.org/abs/2504.13630
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

Chaojun Wang and Rico Sennrich. 2020. On exposure A Subtitle Case

bias, hallucination and domain shift in neural ma-
chine translation. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 3544-3552, Online. Association for
Computational Linguistics.

Lilian Weng. 2024. Reward hacking in reinforcement
learning. lilianweng.github.io.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu
He, Shengping Liu, Bin Sun, Kang Liu, and Jun
Zhao. 2022. Large language models are better
reasoners with self-verification. arXiv preprint
arXiv:2212.09561.

Sam Wiseman and Alexander M. Rush. 2016. Sequence-
to-sequence learning as beam-search optimization.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1296-1306, Austin, Texas. Association for Computa-
tional Linguistics.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre,
Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Mor-
cos, Hongseok Namkoong, Ali Farhadi, Yair Carmon,
Simon Kornblith, et al. 2022. Model soups: averag-
ing weights of multiple fine-tuned models improves
accuracy without increasing inference time. In In-
ternational conference on machine learning, pages
23965-23998. PMLR.

Lijun Wu, Fei Tian, Tao Qin, Jianhuang Lai, and Tie-
Yan Liu. 2018. A study of reinforcement learning
for neural machine translation. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3612-3621, Brussels,
Belgium. Association for Computational Linguistics.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024a. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024b. Contrastive pref-
erence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

3075

Source: 1RFF— > HH A B9 2 A5 B IR A
AR R SEE RIS - BN —Djsontd
2, keyNF 5, valueh fF7811F 1B H
xR, —HE10130R . RmEIG0T:

i_l;ﬁﬁ]\ {”1": "XXX", 11211: yxx"
?ﬁ—ﬁﬁ. {"1": "XXX", n2n: "XXX”

MAEFERE LRBERZERW T HE
BiE, S —RI0TEIFEENER, FE
MEAN——X N . HEHHEFEE
N, NEFITAEMERE . WA {1 F
MR IRKAIERT? A A
e BRT, BEBIAET o v, 2 "HEEK
B—ZBABNG » FZIHARE: KEN
EWR? WEGXHET, IREAHBEE? ",
"3 i A E COS K2 T . BT O
<. You KNOW NOTHING , 44%, %
KZITNHEANREM, W2 —Lx
Foom e R EREENER, HEEN
HRABAE . ", "5 "R SRAE R MBS
HEL, KEMIMBEAREANEREANT - ",
"6 "X FARM SRR T EE
W, NEBE NG "7 Tl LK
RPN, ENEABEEWELENEY
—AELL . ", 8" " AT IMRIA R IX AN R
FBREREE, HRIATX LR ABA R
ITh5T, BRI E A RRIP R - o,
"o MR, HIIER N EATER R B Rhk
TILESE, UEFAAEE, REAHBE
Ak, ALRBE EE. ", 110" "EEIT
Ui RERPEIE, FXAEE ETHAEE
W, SRR, IRASEWKT. "}
T H

Strong Translation: {"1": "Teacher Niu said
in horror: Your big one is coming? I nodded:
It’s coming, I can’t hide it anymore.", "2": "Ac-
tually, I am a member of the Demon Slayer
Corps. Teacher Niu was furious: Are you sick?
I’'m already like this, and you still won’t let me
go?", "3": "And I have to COS Demon Slayer.
I sighed: You KNOW NOTHING, Niu Niu-san,
Demon Slayer is not fictional, it’s actually a doc-
umentary.", "4": "There really are demons in
the world, and there really are demon slayers.",
"5": "If I hadn’t appeared in time today, the old

"non

men would have had to send off the young.",


https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://doi.org/10.18653/v1/2020.acl-main.326
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://lilianweng.github.io/posts/2024-11-28-reward-hacking/
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D16-1137
https://doi.org/10.18653/v1/D18-1397
https://doi.org/10.18653/v1/D18-1397
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP

"6": "Teacher Liu said: But the problem is I just
dyed my hair yellow, I’'m not a young person
with black hair.", "7": "I said: I’'m talking about
your face, with a darkened forehead, you could
at least be a princess in Africa.", "8": "The rea-
son you think there are no demons in this world
is all thanks to us demon slayers, protecting you
ordinary humans too well.", "9": "Of course,
it’s also because we’ve been fighting brutally
with demons for hundreds of years, leading to
a decline in talent, and many demons are left
unchecked, which is why you got taken advan-
tage of by demons.", "10": "Teacher Niu said:
Stop it, you’re all talk and no action, you killing
demons? You only know how to blow hot air."}"

Source: "E{/RRE— DAL HIZ DM IEFH IR
B SCAR ZEBIFE I - A — T jsonf
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Strong Translation: "{"1": "Aha. But you
hear that the following part has a falling tone.
Listen,", "2": "Ah, let’s do it again.", "3": "Of
course, the loudest sound when pouring water
is this kind of ’ba ba’ sound.", "4": "Through-
out, there is a feeling of big and small beads
falling on a jade plate. It is actually the sound
of water entering. It’s this,", "5": "Right?", "6":
"I should have invited B.Boxer Chief to record

non

this episode.",

"7": "In short, there are three kinds of sounds
when pouring a glass of water, de de ba de
ba.", "8": "But scientifically, you can’t describe
someone’s sound as ’de er jin er beng’. It
doesn’t sound very smart.; "9": The essence
of sound is the vibration of objects. So what
are these three sounds vibrating? What about
the pitch?", "10": "N is the vibration of the air
column above the water surface inside the cup.
This is the Helmholtz resonance we learned in
second grade."}"

B GPT-40 Evaluation Prompt
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C GPT40 vs Human

To assess the reliability of GPT-40 in evaluating
translation quality, we conduct a comparative anal-
ysis between human and model-based judgments
on the subtitle dataset. Specifically, we invite three
human annotators—none of whom are involved in
this study—to independently rate the translation
outputs. The three volunteers have received a solid
higher education, and we provided them with de-
tailed instructions on the annotation task, including
scoring criteria and evaluation standards. The av-
erage scores assigned by these human evaluators
are then compared to those produced by GPT-4o0.

Human vs GPT-40

Human
GPT-40

T T T
Completeness Coherence Stylistic Consistency

Model

T
Accuracy

Figure 5: Human Evaluation vs GPT-40 Evaluation

As presented in Figure 5, GPT-40’s assessments
show a high degree of consistency with human
judgments, suggesting that it can serve as a reli-
able proxy for human evaluation in this context.
Given the strong alignment and the practicality of
automated evaluation at scale, we adopt GPT-40
as the primary evaluator for all translation quality
assessments conducted in this work.

D Implementation Details

Below are some specific details of our model train-
ing.

Our RM training framework is built on Megatron.
We use the Qwen2.5-72B-Chat model as the ini-
tialization. The training is conducted with a batch
size of 256, using a cosine learning rate scheduler
with an initial learning rate of 5e-6. All models are
trained on 64 Huawei’s Ascend 910B NPUs.

Our RL training framework is based on the Verl
framework. We use the Qwen2.5-7B-Chat model
as the initialization for RL training. During train-
ing, we configure a batch size of 16 and perform
16 rollouts per prompt using the GRPO algorithm.
The learning rate is initialized at 1e-8, and a cosine
scheduler with warm-up is applied toward the final
iteration. Sampling is conducted with a tempera-
ture of 1.0, and the maximum generation length is
limited to 1,024 tokens. The KL penalty coefficient
B is set to 0, effectively removing the KL constraint
relative to the reference policy. The PPO clipping
range c is fixed at 0.2. All models are trained for
one epoch using 8 NVIDIA H800 80G GPUs.

For the subtitle task, the RM training data con-
sists of 60,000 samples, and the RL training data
contains 60,000 samples. For the WMT task, the
RM training data includes about 50,000 samples,
and the RL training data comprises about 30,000
samples.

3077



Subtitle Accuracy Completeness Coherence  Stylistic Consistency Avg COMETkiwi BLEU
RIVAL-Qual 1.71e-10 1.78e-07 0.04 1.76e-06 8.37e-10 9.35e-07 -
WMT Accuracy Completeness Coherence  Stylistic Consistency Avg COMETkiwi BLEU
RIVAL-Qual 6.32e-9 2.58e-06 1.78e-07 3.63e-04 7.93e-10 9.48e-07 8.14e-07
RIVAL-Qual+Quant | 2.57e-8 1.35e-08 9.73e-03 2.95e-05 4.32¢-9 4.85e-07 1.79¢-07
Table 3: P value for RIVAL.
E Statistical Significance Testing TE1999F4 H S —Jm & LB STR A R AT 4
BRAL kAL B B B RS A E R S5 R E

To more comprehensively evaluate the performance
of our RIVAL method, we incorporated p-values
alongside conventional metrics and mean values.
The consistent statistical significance observed
across all experimental results—as clearly demon-
strated in the accompanying table—strongly attests
to the robustness of our approach. These find-
ings not only provide compelling evidence that
our method substantially outperforms the baseline
but also highlight its reliability and generalizability
under varied conditions.

F MAE vs MSE case

Source: 15RF LT P21 Dy 9 30 150
BB S8 VA M Fi AR B & BUR AN 2 58
1B N2 TR R AN 1A B 7 REIARSS -

Strong Translation: He emphasized that in
keeping with the country’s Constitution and
with the international documents on human
rights, the Government of Peru did not coerce
individuals who availed themselves of the services
of the reproductive health and family planning
programme.

Weak Translation: He emphasized that, in accor-
dance with Peruvian constitution and international
human rights documents, the Peruvian government
would not force individuals to accept services
related to reproductive health and family planning.
strong bleu score = 1

weak bleu score = 0.6404765601431773

mae strong bleu score = 0.9680025577545166
mae weak bleu score = 0.6667302250862122
mse strong bleu score = 1.941943645477295
mse weak bleu score = 1.9110959768295288

Source: 15K LA N A BHFE N H 30 235, At the
first regular session of 1999 of the Administrative
Committee on Coordination, in April, the mem-
bers concluded that, to meet the challenges of
globalization, the United Nations system needed to
cooperate more effectively with the private sector
and civil society, as well as with Governments.

Strong Translation: 235. 17 B i 2 A 5

ERI] - RS AE EBUF A1 -
Weak Translation: FE1999%:4 A A FF BIth 2

AEF—RKEMEW L, MANEHERIA
0, jJTF“XTéﬂE%ﬂ?EEE’JTJEEﬁ e E RS

TEEIMESMSIE
EBUF AT E1E -

strong bleu score = 1
weak bleu score = 0.10885796200376416
mae strong bleu score = 1.09672212600708
mae weak bleu score = 0.2919744849205017
mse strong bleu score = 1.3286265134811401
mse weak bleu score = 1.2083359956741333

whI T RIEFE S DL A

Quantitative Error
0.19
0.93

Qualitative Acc
99.5
97.0

MAE
MSE

Table 4: Comparison Between MAE and MSE for Train-
ing the RM.

G Related works

Reinforcement Learning for Machine Transla-
tion Early works employed RL to bridge the gap
between training on token-level log-likelihoods and
evaluating on corpus-level, non-differentiable met-
rics like BLEU (Ranzato et al., 2016; Edunov et al.,
2018), while also mitigating exposure bias in au-
toregressive decoders (Wang and Sennrich, 2020).
Subsequent research repurposed RL for domain or
user adaptation by replacing engineered objectives
with human feedback in human-in-the-loop work-
flows (Sokolov et al., 2016; Nguyen et al., 2017).
Recent methods add reward shaping (Wu et al.,
2018; Goyal et al., 2019; Devidze et al., 2022),
injecting intermediate signals alongside final-step
BLEU, yet partial or token-wise BLEU still fails to
capture subtle semantic and contextual differences,
making it a poor choice for fine-grained reward
design.

Nowadays, ground-breaking RL-based LLMs
typified by OpenAl’s O1 (OpenAl et al., 2024)
and DeepSeek-R1 (DeepSeek-Al et al., 2025)
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deliver state-of-the-art results on diverse bench-
marks, drawing considerable attention from the
research community. Extending this progress,
R1-Translator (He et al., 2025) is the first to
incorporate human-aligned chain-of-thought rea-
soning into general machine translation through
RL. MT-R1-Zero (Feng et al., 2025) pushes the
paradigm further by introducing zero-shot RL with
a hybrid rule-and-metric reward for translation
tasks. Meanwhile, ReMedy (Tan and Monz, 2025)
reconceptualizes machine-translation evaluation as
a reward-modeling problem, training on pairwise
preferences to avoid the noise of absolute qual-
ity ratings. Complementary work (Ramos et al.,
2025) replaces sparse sentence-level feedback with
severity-weighted, token-level rewards computed
by XCOMET, yielding a more informative learning
signal.

Reward Hacking in Reinforcement Learn-
ing Reward hacking (Weng, 2024; Everitt et al.,
2017; Everitt and Hutter, 2019; di Langosco
et al.,, 2021; Pan et al., 2022) occurs when a
reinforcement-learning (RL) agent exploits flaws
in its reward signal and optimizes the proxy rather
than the true task goal. This vulnerability stems
from the practical difficulty of defining a com-
plete, noise-free reward in complex or partially
observed environments. Documented cases span
robotics (Lehman et al., 2020; Christiano et al.,
2017a), Atari-style games (Bansal et al., 2017;
Gleave et al., 2019), and RLHF pipelines for
language models (Paulus et al., 2017; Denison
et al., 2024), with agents looping around way-
points, rewriting unit tests, or gaming automatic
metrics to inflate scores without real progress. Re-
cent research therefore frames reward hacking as a
safety and alignment challenge and proposes lay-
ered defences: (i) reward-side fixes—adversarial
or ensemble reward models, potential-based shap-
ing, reward capping, and “trip-wire” signals that
trigger intervention (Amodei et al., 2016); (ii)
policy-side safeguards—model look-ahead, adver-
sarial blinding, or indifference techniques to block
exploits (Uesato et al., 2020); and (iii) post-hoc
monitoring—decoupled human approval, anomaly
detection on trajectories, and systematic data au-
dits to surface misalignment early (Pan et al., 2022;
Revel et al., 2025). Together, these strategies em-
phasise adaptive, multi-stage protection rather than
any single remedy.
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