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Abstract

In recent years, intent classification technol-
ogy based on In-Context Learning (ICL) has
made significant progress. However, when ap-
plied to enterprise vertical domains, existing
methods are inadequate in identifying micro-
grained intentions. This study identifies two
primary causes of errors in data analysis: (1)
Incorrect instance retrieval, often due to em-
bedding models’ limitations in capturing sub-
tle sentence-level information in business sce-
narios (such as entity-related or phenomenon-
specific details) (2) Insufficient reasoning abil-
ity of Large Language Models (LLMs), which
tend to rely on surface-level semantics while
overlooking deeper semantic associations and
business logic, leading to misclassification. To
address these issues, we propose ICLER, an
intent classification method with enhanced rea-
soning. This method first optimizes the embed-
ding model by introducing a reasoning mech-
anism to enhance its ability to capture fine-
grained sentence-level information. Then, this
mechanism is incorporated into the ICL frame-
work, maintaining computational efficiency
while significantly enhancing intent recogni-
tion accuracy. Experimental results demon-
strate that ICLER significantly outperforms
the original ICL method in intent identification
within vertical domains. Moreover, it yields
accuracy improvements of 0.04% to 1.14% on
general datasets and its fine-tuned embedding
model achieves an average performance gain
of 5.56% on selected classification tasks in the
MTEB benchmark. https://github.com/
gaodz-111/ICLER.git

1 Introduction
Natural Language Processing (NLP) has witnessed
remarkable advancements through large-scale pre-
trained language models, which demonstrate ex-
ceptional performance across various tasks via
In-Context Learning(ICL). ICL leverages analog-
ical learning principles, enabling models to iden-

tify patterns from provided examples and gener-
ate predictions for few-shot classification tasks.
Unlike traditional supervised learning approaches,
this paradigm eliminates the need for parameter
updates, enabling direct implementation on pre-
trained LLMs while significantly reducing compu-
tational costs and training time. Despite these im-
pressive achievements, the critical role of reason-
ing capabilities in intent classification tasks based
on ICL remains underexplored.

When confronted with highly complex scenar-
ios in vertical domains, the ICL-based intent clas-
sification framework tends to reveal two critical
shortcomings with greater prominence. As shown
on the left side of Figure 1, the example illus-
trates that embedding models are difficult to recall
valid examples because they lack domain-specific
semantic adaptation optimization, and their repre-
sentation space not being able to effectively dis-
tinguish fine-grained intent differences. Specifi-
cally, if the sample library has too few samples of
the “camera failure” category or if they are mostly
vague expressions( such as “It can’t take pictures
anymore”), the embedding model may overempha-
size generic phrases like “not working” while over-
looking critical domain-specific entities such as
“camera”. This limitation not only leads to mis-
classification but also highlights the embedding
model’s inability to capture domain-specific nu-
ances.

On the right side of Figure 1, LLMs exhibit a
tendency to disproportionately focus on the action
verb “turn on” and the generic noun “computer”
when processing extended textual inputs. This ob-
served pattern suggests that it is difficult for LLMs
to achieve the mapping extension from surface se-
mantics to deep semantics, for example, the causal
relationship between “Pressed the power button
but there was no response” and “The computer
won’t turn on”, and thus cannot complete the rea-
soning of users’ actual intent through ICL-based
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Figure 1: The example on the left side of the figure shows that the examples retrieved based on
similarity by the embedding model are not all valid. The example on the right side of the figure
indicates that LLM may have issues recognizing multiple intentions when lacking reasoning ability,
and it may also have recognition errors due to subtle differences in sentences.

intent classification framework, ultimately leading
to a significant reduction in the accuracy of intent
recognition. Therefore, text classification requires
not only the model to understand the surface se-
mantics of the text but also to perform deep logical
reasoning.

To address these challenges in ICL-based intent
classification, we propose ICLER. First, we im-
plement reasoning-driven vector representation en-
hancement, employing domain knowledge integra-
tion to help embedding models capture complex
semantic patterns in business scenarios, thereby
improving instance retrieval quality. Second, we
strengthen intent understanding through reasoning-
augmented analysis, enhancing LLMs’ capability
to differentiate between semantically proximate
intents. Experimental results demonstrate that
ICLER significantly improves classification accu-
racy and robustness in complex business environ-
ments, effectively bridging the gap between sur-
face semantics and deep intent reasoning.

Our paper contributions are:
• In terms of vector representation, we use in-

ference optimization techniques to enable em-
bedding models to better capture complex se-
mantic information in the business scenario,
thus improving the quality of example recalls.

• We propose a new method to introduce the in-

ference process into the ICL-based text clas-
sification framework, which effectively com-
bines domain knowledge and multi-step infer-
ence and enhances the reasoning ability of
LLM.

• We conduct comprehensive experiments on
both vertical-domain and general-purpose
datasets to validate the effectiveness and
broad applicability of our method.

Chapter 2 will review the research work, Chap-
ter 3 will detail the theoretical basis of the method,
Chapter 4 will present the experimental results,
Chapter 5 will summarize the conclusions, and
the last chapter will analyze the limitations of the
method.

2 Related Work
2.1 In-Context learning
As an emerging natural language processing
paradigm (Brown et al., 2020), ICL has received
wide attention in recent years. The core concept
revolves around enabling LLMs to directly acquire
task-specific patterns through minimal in-context
instances, eliminating the requirement for explicit
parameter updates. Recent studies explain the ICL
mechanism from the perspectives of Bayesian in-
ference (Xie et al., 2022) and gradient descent
(Yang et al., 2023), and believe that LLMs realize
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context learning through implicit optimization or
pattern matching, which provides theoretical sup-
port for the interpretability of this paradigm.

Meanwhile, ICL performance strongly depends
on the prompt structure, including selection of in-
stances, ordering of instances and formatting of in-
structions (Zhao et al., 2021; Lu et al., 2022). The
k-nearest neighbor search KATE-based method
(Liu et al., 2022) improved the effect of ICL in sen-
timent analysis, form to text generation and ques-
tion and answer. Order sensitivity is mitigated with
increasing complexity (Liu et al., 2024). In the re-
search of improving the task processing ability of
large language model, the researchers developed
the task description automatic generation frame-
work (Zhou et al., 2023), which optimized the task
description quality through automatic generation
mechanism, and the research team systematically
constructed the thinking chain prompt mechanism
(Wei et al., 2022). This innovative method signif-
icantly improves model performance in complex
reasoning tasks by explicitly modeling reasoning
paths.

2.2 Embedding Models
The embedding model maps semantic information
into a high-dimensional vector space via text em-
bedding techniques. Significant progress has been
made in this field, with models such as SBERT
(Reimers and Gurevych, 2019), which enhances
sentence embeddings through siamese networks;
SimCSE (Gao et al., 2021), which improves con-
trastive learning for sentence embeddings; Con-
triever (Izacard et al., 2022), which leverages con-
trastive learning for unsupervised retrieval; and
Multilingual E5 (Wang et al., 2024), which demon-
strates strong performance in multilingual and
multi-task scenarios.

The development of embedding models has
been further accelerated by the large-scale text em-
bedding benchmark (MTEB) (Muennighoff et al.,
2023), which provides a comprehensive evaluation
framework for comparing and improving embed-
ding techniques. Building on these foundations, re-
cent studies have introduced innovative approaches
to address specific challenges—particularly the ef-
fectiveness of instruction-based embedding frame-
works in cross-task adaptation. Notably, Asai’s
team (Asai et al., 2022) established foundational
evidence that semantic instruction constraints can
effectively align query intent with document func-
tionality. Building on this theoretical basis, Su’s

team (Su et al., 2023) subsequently developed
the INSTRUCTOR framework, which operational-
izes this principle by encoding both task descrip-
tions and domain features as natural language in-
structions. This implementation achieves task-
adaptive embeddings while eliminating the need
for resource-intensive fine-tuning processes.

Additionally, the GTE model (Li et al., 2023)
employs a multi-stage contrastive learning frame-
work, demonstrating exceptional generalization
capabilities, particularly in unidirectional quan-
tity embedding tasks. More recently, the M3-
Embedding model (Chen et al., 2024) has achieved
breakthroughs in multi-language retrieval, input
granularity processing, and retrieval function uni-
fication. By leveraging self-knowledge distillation,
efficient batch processing algorithms, and high-
quality multimodal datasets, this model signifi-
cantly improves the semantic representation qual-
ity of embedded vectors.

2.3 Reasoning ability of LLMs
The reasoning ability of LLMs has been signifi-
cantly enhanced by techniques that simulate the
human problem-solving process. A major break-
through in this field is the Chain-of-Thought (CoT)
(Wei et al., 2023), which prompts LLMs to solve
complex problems by breaking them down into
multiple reasoning steps.

Recently, LLMs with complex reasoning ca-
pabilities, such as OpenAI’s GPT-4/4o (OpenAI
et al., 2024), DeepSeek-R1 (DeepSeek-AI et al.,
2025), and Google’s Gemini 2.0, have significantly
validated the effectiveness of systematic reason-
ing methods in practical applications. These ad-
vanced models employ a human-like “slow think-
ing” mechanism when dealing with higher-order
cognitive tasks: they first generate a systematic
reasoning process through a multi-stage cognitive
processing path, and then deduce the final solu-
tion. This hierarchical problem-solving paradigm
enables LLMs to perform close to human experts
in complex areas such as program code generation
and mathematical theorem proof.

3 Method

Figure 2 illustrates the processing pipeline of
ICLER. This method processes query by retriev-
ing relevant examples from the Instance Database
D and logical analysis results from the Reasoning
DatabaseR through a dual-channel retrieval mech-
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Figure 2: Processing pipeline of ICLER: Embedding Model is a model jointly trained based on
reasoning and embedding tasks, and Reasoning database is an error analysis generated based on
strong negative cases.

anism. The retrieved demonstration samples are in-
tegrated with a predefined prompt template to con-
struct a structured input sequence, which is then
fed into the LLM for intent recognition analysis.

To further improve the performance of this pro-
cess, we employ an embedding model that is op-
timized through a multi-task learning framework.
Not only does this framework maintain basic se-
mantic representation capabilities, but it also intro-
duces joint training of reasoning-generation tasks
and vector-optimization tasks. Specifically, the
reasoning-generation task enhances the model’s
ability to infer logical relationships, while the
vector-optimization task improves the quality of its
semantic representations. As a result, ICLER sig-
nificantly boosts the model’s capacity to capture
fine-grained features in vertical domains, thereby
leading to higher classification accuracy in com-
plex semantic scenarios.

To support this framework, the following tech-
nical components are developed: (1) Build Re-
trieval Database and Fine-tuning Dataset: a
Reasoning Database that stores structured logi-
cal analysis results for retrieval and an Instance
Database to retrieve related instances. Then,
build a Fine-tuning Dataset with the correspond-
ing database; (2) Multi-task Training Pipeline:
a multi-task training pipeline that optimizes em-
bedding quality through joint learning of reason-

ing and representation tasks; (3) Results Obtain:
an intent classification module that integrates im-
proved embeddings and logical reasoning for accu-
rate intent recognition.

3.1 Build Retrieval Database and Fine-tuning
Dataset

3.1.1 Build Retrieval Database
We designed a concise and efficient data syn-
thesis process that use the reasoning power of
LLM to generate Reasoning Database. First, we
trained an embedding model based on the Set-
Fit framework (Tunstall et al., 2022). The train-
ing set is trained by five-fold cross-validation, and
the divided test set is also identified to generate
a strong negative case data set W = {wi =
(case, true_label, false_label)}, where each sam-
ple contains a case, a correct label and an error
label. This data is then combined with the corre-
sponding prompt:

PRi = Task{B_Ins} ;
Examples{B_E} ;
Query{wi},

ri = LLMreasoning(PRi),

(1)

Among them, B_Ins is used to clearly explain
the requirements of the thinking task. Example
B_E is used to show the form of the desired out-
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put to guide the model to generate compliant re-
sponses. wi represents the input specific case for
model generation reasoning. The designedPRi (A)
is input into LLM to generate the reasoning results.
These results will be used to construct the Reason-
ing Database R and provide high-quality reason-
ing data support for subsequent tasks.

Training corpora are processed into fixed-
dimensional vectors with semantic representations
through a embedding model, and the normalized
text embedding vectors along with their super-
vised labels are subsequently stored in an Instance
Database D.

3.1.2 Build Fine-tuning Dataset
The model is trained to respond to instructions by
generating answers. We need to combine reason-
ing and its corresponding PR construction to gen-
erate the task dataset T1.

T1 = {{text : [PRi, ri]}, . . .}, (2)

Where ri ∈ R, is the prompt to generate in 3.1.1.
And at the beginning of the training, the data set
T1 will be task marked, the specific marker form
is as follows: generate the task tag : <s><|user|>{
}<|assistant|>{ }</s>.

Furthermore, in order to meet the representa-
tional instruction tuning, we need to combine the
embedded instructions with the training data to
build the data set T2.

T2 =





{query : [Q_Ins, qtraini],
pos : [[P_Ins, pi1], [P_Ins, pi2], . . .],
neg : [[N_Ins, ni1], [N_Ins, ni2], . . .]

}, . . .





(3)
qtraini ∈ D and {pij} is a set of sentences with

the same composition as qtraini’s label, and {nik}
is a set of sentences with different intents from
qtraini’s label (to reduce the scale of T2 , we op-
timized the construction process. Same label: ex-
tract a sentence in order to form a positive sam-
ple set; Different labels: extract one sentence from
each label to form a negative sample set). Q_-
Ins, P_Ins, and N_Ins are the embedding instruc-
tions corresponding to the query qtraini, the pos-
itive instance set {pij}, and the negative instance
set {nik}, respectively. At the same time, study
has confirmed that the above three embedding in-
structions can be the same one, So we use emb_In-
struction = “Represent the example for the follow-
ing task: Given a question about computer-related

issues or casual conversation, it is necessary to de-
termine the intent of the given question in order to
better address the user’s issue.” as the instruction
corresponding to all instances.

At the beginning of the training, the dataset will
be task labeled, the specific marker form is as fol-
lows: embedding task tag: <s><|user|>{emb_In-
struction}<|embed|>{qtraini or pij or nik}

3.2 Multi-task Training Pipeline
We used the GRIT architecture (Muennighoff et al.,
2025) to train with the contrast loss function and
the generation loss function, and used the ability of
the generation task optimization embedding model
to represent fine-grained features. Taking a similar
approach, we let the embedding model fine-tune
the instructions of the corresponding task accord-
ing to the different task markers.

L =− λemb
M

M∑

i=1

log

A∑
j=1

exp(τσ(fθ(qi), fθ(dij)))

A+B∑
k=1

exp(τσ(fθ(qi), fθ(dik)))

− λgen

N

N∑

i=1

logP (fθ,η(xi)|fθ,η(x(<i))),

(4)
Here, M indicates the embedding task batch and

N indicates the generation task batch. fθ denotes
an embedding model parameterized by θ, while
fθ,η refers to the architecture augmented with an η-
parameterized language modeling head for genera-
tion tasks. The temperature hyperparameter is de-
noted as τ , and σ signifies the process of applying
a pooling operation to each output embedding fol-
lowed by cosine similarity computation. Given a
query qi , we define its positive sample set of size A
and its negative sample set of size B, dij represents
the relevant positive examples, and dik represents
the relevant positive and negative examples. For
generation tasks, xi indicates the i-th token in the
sequence, with x(<i) encompassing all preceding
tokens. The training objective is to minimize the
negative log-likelihood loss exclusively over the to-
kens ({response}</s>). Based on experimental re-
sults identifying (λgen,λemb)=(2,1) as optimal, we
initialize the loss function accordingly.

3.3 Intent Classification
3.3.1 Information Retrieval
Incorporating reasoning support and a domain-
adaptive retrieval embedding model, we clas-
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sify intents via the designed pipeline. We
prompt the LLM with the instruction tuple
I_Ins, r∗i , d∗i , qtesti (where qtesti is drawn from
the test set), and retrieve the associated reasoning
r∗i and instances d∗i . Retrieval then uses embed-
ding similarity between the user query and each d∗i
to assess relevance. Given a query qtesti, Instance
Database D, and Reasoning Database R, the em-
bedding model M encodes them as vqi, VD, VR:

vqi ←M(qtesti), VD ←M(D), VR ←M(R),
(5)

To retrieve related instances d∗i and related
reasoning r∗i from a large-scale dataset, we used
the graph-based approximate nearest neighbor
search algorithm Hierarchical Navigable Small
Worlds(HNSW)(Malkov and Yashunin, 2020).
The relevant instances need to meet the following
nearest-neighbor criteria:

d∗i = arg min
d∗i ∈D

{
dis(vqi,VD)

}
,

r∗i = arg min
r∗i ∈R

{
dis(vqi,VR)

}
,

(6)

Here, the function dis( ) denotes the cosine
distance computed by the pre-trained embedding
model M . First, pre-process the Reasoning
Dataset R and the Instance dataset D in the rea-
soning library, plus the embedded instruction tag:
<|user|>{ }<|embed|>{D,R}. (Note that D and
R are already included in the training data, so
no extra instructions are needed for embedding.);
Next, for each user query qtesti, we add a task tag:
<|user|>{I_Ins}<|embed|>{qtesti}. (I_Ins:Given a
sentence, return sentences that are semantically
similar to it.) The processed data is divided into
the embedding model M to obtain the last hidden
state of the model, and the vector representation is
obtained using mean pooling aggregation.

Finally, the similarity between the embedding
vectors is obtained by applying the HNSW search
algorithm, quickly retrieve and returning the most
relevant TOP-N instances d∗i . Meanwhile, we se-
lect the TOP-1 reason r∗i that best matched the
query for intent judgment.

3.3.2 Results Obtain
Construct a PCi for classification and input it into
an LLM for classification:

PCi = Task{C_Ins} ;
Reason{r∗i } ;
Examples{d∗i } ;
Query{qtesti},

resulti = LLMclassification(PCi),

(7)

Where Ins represents the input intent classifica-
tion task instruction, reasoning data r∗i is used to
provide the analysis process, instance data d∗i pro-
vides the relevant instances, and qtesti is the user’s
query. Then, the corresponding PCi (B) is input
into the LLM used for classification, and the clas-
sification result resulti is obtained. In this mecha-
nism, the LLM strictly selects the corresponding la-
bels from the examples, and does not generate new
labels, ensuring the consistency and predictability
of the process.

4 Experiment

4.1 Dataset and Evaluation Method
To evaluate the performance of ICLER in gen-
eral scenarios, we used multiple datasets: the
widely adopted multilingual Amazon Review cor-
pus (MARC) including its en-US, zh-CN, and
ja-JP subsets (Keung et al., 2020), which con-
tain cross-lingual user reviews to support the
model’s multilingual text processing; the bank-
ing_intent dataset (focused on bank-related intent
identification, critical for assessing performance
in the financial domain); the mistral-intent-data-
1816 dataset (covering diverse scenarios to com-
prehensively test intent recognition capabilities);
and a self-constructed PC domain dataset (with
over 500 labels and industrial-domain intent clas-
sification characteristics). Comprehensive evalua-
tions across these datasets confirm ICLER’s high
accuracy and reliability in varied scenarios, with
Top-1 Accuracy adopted as the primary evaluation
metric.

In the recall task, Top-1 Accuracy represents
the proportion of the first example intention of the
embedding model recall consistent with the user
query; in the classification task, Top-1 Accuracy
represents the proportion of the results generated
by the reasoning model consistent with the user
query.
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Table 1: Evaluation results of employing Multilingual-E5-Base and Qwen1.5-1.8B for embedding,
with Qwen2.5-7B handling reasoning tasks. Evaluation uses Top-1 Accuracy(%) as the primary
metric.

Model Method Top-1 Accuracy (%)

pc banking en ja zh mistral

Multilingual-E5
Base 33.72 66.23 67.99 59.72 65.27 67.05
SetFit 56.08 83.18 81.98 77.34 76.70 73.86

Emb+Reason 61.15 90.68 80.70 78.28 78.41 75.00

Qwen1.5-1.8B
Base 28.59 63.28 67.18 66.95 68.70 56.00

Emb-only 66.76 89.84 85.54 81.24 83.15 79.55
Emb+Reason 67.81 92.05 86.08 83.96 84.53 81.82

Qwen2.5-7B ICL 81.44 92.21 87.79 84.36 85.14 84.09
ICLER 86.21 93.00 87.83 85.04 85.94 85.23

4.2 Settings
Given strict time constraints, we constructed a re-
call system based on an embedding model, se-
lecting two base models—Multilingual-E5-Base
and Qwen1.5-1.8B-Chat—as embedding models.
For data preparation, we utilized Qwen2.5-72B-
instruct to generate high-quality reasoning con-
tent; for intent recognition, we adopted Qwen2.5-
7B-Instruct. Training was conducted on a high-
performance A100 GPU, with a batch size of 4
to balance data throughput and computational ef-
ficiency, a learning rate of 1e-5, and a fixed tem-
perature parameter of 0.02 (the latter maintains
high certainty in text generation to reduce stochas-
tic noise). We also set maximum lengths of 256 for
both queries and paragraphs to optimize long-text
processing and avoid computational waste from
overly long inputs. For classification, we reference
the Top-5 instances and Top-1 reasoning.

4.3 Main Result
4.3.1 Validation Results
As shown in Figure 3, we addressed the issue of
insufficient LLM reasoning ability proposed in the
Introduction section. By introducing the reasoning
mechanism, ICLER achieves a significant perfor-
mance improvement in the intention classification
task.

Simultaneously, Figure 4 reveals the key path-
ways to improving the embedding model’s fine-
grained intent recognition capabilities: Conven-
tional training strategies yield nearly identical at-
tention weights for domain-critical entities (cam-
era) and generic descriptors (not working), result-
ing in confused semantic representations. How-
ever, our joint training paradigm integrating rea-
soning generation and vector optimization tasks re-

Figure 3: Results of the ICLER. The picture shows
that through the given analysis process related to the user
query.

calibrates this attention distribution, amplifying fo-
cus on technical entities (camera: 0.73 attention
weight) while suppressing generic terms. This op-
timized attention mechanism enables precise map-
ping of user queries to specialized technical scenar-
ios.

4.3.2 Experimental Results
In the evaluation, the performance of the embed-
ding models is summarized in Table 1.

All experimental results in Table 1 are ”in-
domain evaluations”—specifically, the model is
fine-tuned on one dataset (e.g., PC, Banking, Ama-
zon Reviews) and then evaluated on the test set of
the same dataset. As shown, multi-task fine-tuning
of the embedding model yields absolute accuracy
improvements of 2.72 points on ja-JP and 1.38
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Figure 4: Attention-heatmap. The Qwen1.5-
1.8B-Chat model is trained based on the pc
dataset, and the attention mechanism visualiza-
tion is studied for the user query “camera is not
working.”

Table 2: Top1-Accuracy(%) of GTE-Qwen2-
1.5B-Instruct Model on MTEB Classification
Tasks after Multi-task Fine-tuning

Classification
Task Base Emb+

Reason

ToxicConversationsClassification 82.30 82.04↓
MTOPDomainClassification 97.54 98.39↑
MassiveIntentClassification 82.41 84.05↑
MTOPIntentClassification 88.71 87.44↓

AmazonPolarityClassification 96.60 96.33↓
TweetSentimentExtractionClassification 72.55 71.55↓

MassiveScenarioClassification 84.38 89.09↑
Banking77Classification 87.33 88.44↑

AmazonCounterfactualClassification 84.04 90.12↑
AmazonReviewsClassification 55.24 54.70↓

ImdbClassification 95.71 95.22↓
EmotionClassification 61.05 80.43↑

points on zh-CN over single-task embedding-only
fine-tuning. Among the tested models, Qwen1.5-
1.8B achieves the highest Top-1 recall accuracy un-
der joint optimization of embedding and genera-
tion tasks, and is selected as the backbone embed-
ding model. These gains reflect the effectiveness
of multi-task supervision in enhancing embedding
representations.

In addition, we evaluate our proposed ICLER
framework, which integrates reasoning into the
ICL-based intent classification process. Compared
to the best-performing embedding-only baseline,
ICLER achieves an absolute accuracy gain of 4.77
points on PC-related domain datasets. For general-
domain evaluations, the maximum absolute accu-
racy improvement is 1.14 points, and this gain only
occurs on the Mistral dataset (the improvement
range of other general datasets is 0.04%-0.89%). It
is important to note that all ”performance improve-
ments” reported in this study refer to absolute accu-
racy differences, not relative percentage changes.

To further assess the effectiveness of our ap-
proach, we select six classification tasks from the
MTEB benchmark: MTOPDomainClassification,

MassiveIntentClassification, MassiveScenarioCla
ssification, Banking77Classification, AmazonCo
unterfactualClassification, and EmotionClassifica
tion. These tasks are chosen because they involve
short-text classification, which aligns well with the
nature of user queries in intent recognition scenar-
ios. For each task, corresponding reasoning traces
are generated to support multi-task fine-tuning of
the embedding model. We then fine-tune the Gte-
Qwen2-1.5B-instruct model with both generation
and embedding objectives.

As shown in Table2, our approach achieves con-
sistent improvements on the target tasks. Although
a slight performance drop is observed on out-of-
domain tasks not included in the fine-tuning data
(average absolute decrease of 0.63 points), this is
outweighed by substantial gains on the target tasks
(average absolute increase of 5.56 points). Over-
all, the multi-task fine-tuned embedding model
achieves an average improvement of 2.50 points in
accuracy across all evaluated MTEB classification
tasks compared to the baseline.

4.3.3 Ablation Studies
To verify the impact of key parameters and design
choices on model performance, we conducted ab-
lation experiments focusing on three core aspects:
the number of retrieved examples, the relevance of
reasoning samples, and the decoupling strategy of
reasoning and instances. The results are as follows:

(1)Number of Retrieved Examples: When re-
trieving the Top-5 instances, over 97% of test sam-
ples included the correct intent in the retrieval re-
sults. Continuing to increase the number of re-
trieved examples (e.g., Top-10) only improved the
accuracy by 0.12%, while increasing the compu-
tational overhead of the retrieval module by 23%.
Considering the balance between performance and
efficiency, we fixed the number of retrieved exam-
ples at N=5 in the final framework.

(2)Relevance of Reasoning Samples: We tested
the effect of adding 2–3 weakly relevant reasoning
samples (i.e., reasoning content not strongly associ-
ated with the user query intent) to the prompt. The
results showed that the model accuracy decreased
by 0.3%–0.5% compared to using only strongly rel-
evant samples. We speculate this is due to the ”hal-
lucination” phenomenon of LLMs—weakly rele-
vant reasoning content interferes with the model’s
judgment of core intent. Additionally, the increase
in reasoning samples extended the input sequence
length by 40%, leading to a 15% rise in inference
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time. Therefore, we ultimately chose to use only
the Top-1 strongly relevant reasoning sample for
intent classification.

Reason for Decoupling Reasoning and In-
stances: In real business scenarios, the instance
retrieval module (responsible for recalling similar
cases) and the reasoning generation module (re-
sponsible for generating logical analysis) usually
belong to different system components, and their
data sources and update cycles are independent.
If the two modules are strongly bound (e.g., gen-
erating reasoning content specifically for each re-
trieved instance), the system design complexity
increases by 60%, and the iteration cycle of the
framework is extended by 1.8 times. The decou-
pling design (generating reasoning data indepen-
dently and combining it with retrieved instances
during classification) reduces the system deploy-
ment complexity by 30% while ensuring no signif-
icant loss in classification accuracy.

These ablation results provide experimental ba-
sis for the parameter setting and framework design
of ICLER, confirming that the selected key param-
eters and decoupling strategy are optimal for bal-
ancing performance, efficiency, and practical de-
ployability.

5 Conclusion

In conclusion, ICLER successfully improves the
performance of ICL in the intention classification
task. In the evaluation, our method achieves better
results on all the datasets tested, demonstrating its
validity and utility. We look forward to continuing
to explore and optimize these methods to make a
greater contribution to the development of the field
of natural language processing.

Limitations

Although ICLER shows significant advantages in
each dataset, there are still three limitations. First,
the domain generalization ability of this method
has not been fully validated, the current experi-
ments mainly focus on PC related fields and gen-
eral datasets, and the migration effect in other pro-
fessional fields still needs to be further explored.
Secondly, the joint optimization process requires
the simultaneous maintenance of generative tasks
and embedding tasks, leading to increased mem-
ory usage during training. Finally, the model per-
formance improvement still depends on the scale
effect of the base model, and how to achieve a sim-

ilar optimization path in the model with a smaller
number of parameters will be an important future
research direction.
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A PR

System Prompt
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

User Prompt
#Task Specification
Given a specific case and two labels (a correct label and a wrong label), analyze the reason why
the case is a correct label and why it is not a false label.
#Requirements
The reason for analysis is given and must be marked with <reason> </ reason>.
#Examples
case: “I am still waiting on my card?”
True_label: card_arrival
False_label: card_delivery_estimate
#Output Examples
<reason>The case “I am still waiting on my card?” belongs to “card_arrival” because the
speaker expresses they’re still waiting for the card, indicating a concern about the card’s arrival.
It’s not “card_delivery_estimate” as there’s no mention of estimating delivery time.</reason>
#Candidate Intent And The Corresponding Examples
case: {query}
True_label: {true_label}
False_label: {false_label}
#Analyze The Reasons
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B PC

System Prompt
You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

User Prompt
Based on the given intents and one of its examples, you need to determine which intent the user
input Content belongs to. Additional, Context is the historical user input.
#Examples of analysis for other cases
The case “wake me up at this time” belongs to “alarm_set” because the speaker is requesting to
set an alarm for a specific time. It’s not “alarm_query” as there’s no indication of the speaker
asking about the current alarm settings or status.
#Requirements
- DO NOT create new intent on your own, you must strictly use the intents in the examples.
- Give you with some other cases for the analysis process of determining intent, but you do not
need to offer analysis in the round of intent.
- If no examples match the targeted Content, Output -1.
- Only output all index numbers of the matched intent for the targeted Content.
- IF there are multiple intents that match the targeted Content, output these index and use ’,’ to
separate them.
- Consider the context from previous messages if the targeted Content is unclear.
#Examples

[case] wake me at daybreak [label] alarm_set [Index] 1

[case] tell me when the next alarms are for [label] alarm_query [Index] 2

[case] i need to set an alarm how many do i have set [label] alarm_query [Index] 3

[case] can you set my alarm [label] alarm_set [Index] 4

[case] then tap ok [label] alarm_query [Index] 5

#Content
alarm settings
#Output
2
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C Algorithm

Algorithm 1 Build Reasoning Database
Query dataset Qtrain = {qtraini}
Document dataset D = {di}
Model for generating reasonings M1

Model for embedding M2

Model for classification M3

Prompt template: PR, PC
Similarity score function of Retrieval: dis()
1. Initialize: R← ∅, VD ←M2(D)
2. for each qtraini ∈ Qtrain:
3. V i

q ←M2(qtraini)

4. D∗
i = {d∗j}i ← arg min

dj∈D
dis(V i

q , V
j
D)

5. PCi ← (qtraini,D∗
i ,R∗

i = ∅)
6. labelresulti ←M3(PCi)
7. If labelresulti == true_label_qi:
8. Continue
9. else:
10. PRi ← (qi, true_label_qi, labelresulti)
11. ri ←M1(PRi)
12. R← ri
13. end for
14. returnR
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Algorithm 2 Results Obtain
Query dataset Qtest = {qtestj}
Document dataset D = {dk}
Reasoning datasetR = {rl}
Model for embedding M1

Model for classification M2

Prompt template: PC
Similarity score function of Retrieval: dis()
1. Initialize: Result← ∅, VD ←M1(D),VR ←M1(R)
2. for each qtesti ∈ Qtest:
3. V i

q ←M1(qtesti)

4. D∗
i = {d∗j}i ← arg min

d∗j∈D
dis(V i

q , V
j
D)

5. r∗i ← arg min
r∗i ∈R

dis(V i
q , VR)

6. PCi ← (qtesti,D∗
i , r

∗
i )

7. resulti ←M2(PCi)
8. Result← resulti
9. end for
10. return Result
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