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Abstract

Reasoning based on chains of thought (CoTs)
enables large language models (LLMs) to solve
problems by thinking step by step and be-
comes the mainstream solution for Question-
Answering (QA) tasks. Knowledge graph
(KG)-enhanced CoT technology helps correct
factual errors or predict reasoning direction.
Existing KG-enhanced methods find relevant
information in KGs “within” each reasoning
step of CoTs. However, in some cases, logical
connections “between” reasoning steps may be
missing or wrong, leading to broken reason-
ing chains and wrong reasoning direction. To
solve the above problem, we argue that the er-
rors between reasoning steps require collabora-
tive verification and mining of multiple triplets
and multiple paths in KG. So we propose the
DCMKC (Dual Consistency Matching for KG
and CoT) method, aiming to maintain seman-
tic and structural consistency between KG and
CoT. The main idea is to convert CoTs and
KGs into two granularity-aligned graphs, trans-
forming multi-hop reasoning and KG match-
ing into iterative matching and modification
of two graphs. In each iteration, DCMKC
matches the KG reasoning chains with CoTs
based on semantic similarity and judges the
structural consistency between them. Then
it modifies CoTs using the matched chains.
After iterations, the CoTs and KG reasoning
chains reach high semantic and structural con-
sistency, which is theoretically and experimen-
tally demonstrated by kernel and spectral meth-
ods. The two kinds of chains are then used
to generate the final answers. Experimental
results show that our method outperforms base-
lines on multiple datasets, especially on multi-
answer questions, with up to 5.1% improve-
ment over the baseline. Our code is available
at https://github.com/suyun417/DCMKC.

*Corresponding author

1 Introduction

The Question-Answering (QA) task is an impor-
tant benchmark for evaluating the ability of large
language models (LLMs) to understand and pro-
cess natural language (Shailendra et al., 2024). We
can evaluate the performance of LLMs in advanced
cognitive functions such as natural language under-
standing, semantic analysis, and knowledge reason-
ing through the QA task. The QA task with LLMs
has shown broad application prospects, including
intelligent customer service (Xu et al., 2024), finan-
cial analysis (Panwar et al., 2023), medical inquiry
(Lucas et al., 2024), and other scenarios.

Early works use Knowledge Graph (KG)-
enhanced LLMs as the core technique for QA tasks.
They construct reasoning steps with high accuracy
and interpretability by walking on the KG with
LLMs (Fang et al., 2024; Mavromatis and Karypis,
2024; Dong et al., 2024; Sanmartin, 2024; Li et al.,
2024). However, the KG has a complex structure,
which makes it difficult for the LLMs to identify the
knowledge and logical relationships in the KG (Pan
et al., 2023). To better acquire the key information,
subsequent works use the chain of thought (CoT) to
identify key details, delineate the scope, and offer
guidance for graph reasoning (Wang et al., 2024;
Jin et al., 2024; Wang et al., 2023a). However, se-
mantic inconsistency exists because the CoT and
the KG may describe knowledge differently. It will
cause errors when matching and locating knowl-
edge. Furthermore, the CoT is usually used to
locate relevant entities in the KG, failing to use
its mechanism to explore the commonsense knowl-
edge and reasoning capability of the LLM itself.

Another type of work is based on CoTs. They
offer examples with intermediate steps (Wei et al.,
2022) or prompt the LLM to think step by step (Ko-
jima et al., 2022), enabling the LLM to show the
reasoning process. This not only improves the inter-
pretability of the answers but also offers a traceable
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Figure 1: A broken reasoning chain has correct steps
but wrong logical relationships between steps.

foundation for the model’s decision-making pro-
cess. However, the internal working mechanism
of the LLM relies on statistical learning and prob-
ability prediction (Ye et al., 2023), so the LLM
sometimes generates plausible text, known as “hal-
lucination” (Ji et al., 2023). To address hallucina-
tion, subsequent works introduce the KG. These
methods typically use semantic correlation tech-
nology to retrieve relevant information from the
KG for each step in the CoT, then verify and cor-
rect the steps and guide the subsequent reasoning
(Luo et al., 2024b; Wang et al., 2023b; Zhao et al.,
2024). The logical relationships between steps in
CoTs sometimes require the topological structure
between multiple triplets in KG to verify. The cor-
rectness of the long path CoT requires verification
of complex paths in KG. Both of the above situa-
tions cannot be solved by a single triplet and require
the matching of KG and CoT topology structures.
Figure 1 presents a broken reasoning chain: each
step in CoT is correct since each corresponds to a
triplet A-B/C-D/E-F in the KG, while the whole
chain is incorrect since the logical relationships
between steps do not exist. This logical structure
inconsistency will cause broken reasoning chains
and wrong reasoning directions, affecting the co-
herence and accuracy of the reasoning.

To address these shortcomings, we propose the
DCMKC (Dual Consistency Matching for KG and
CoT) method. This method converts the CoT into
a graph based on the reasoning steps and intro-
duces super nodes into the KG. This converts them
into graphs of the same granularity for accurate
matching. In each iteration, DCMKC matches the
KG reasoning chains with CoTs based on seman-
tic similarity and judges the structural consistency
between them. Then it modifies CoTs using the
matched chains. After iterations, the CoTs and KG
reasoning chains reach high semantic and structural

consistency, which is theoretically and experimen-
tally demonstrated by kernel and spectral methods.
The two kinds of chains are then used to generate
the final answers.

In summary, our contributions are as follows:

• To achieve the semantic and structural consis-
tency between CoT and KG, we innovatively
propose to convert them into granularity-
aligned graphs. This transformation turns
multi-hop reasoning and KG matching into
iterative matching and modification of two
graphs, leading to the DCMKC method.

• We present a matching method based on graph
structures. We convert the CoT into a graph
and introduce super nodes into the KG. By
computing the weighted maximum matching
and checking the structural consistency, the
two correspond structurally and semantically.

• Our method performs the best on datasets, es-
pecially on multi-answer questions.

2 Related Works

2.1 LLM Reasoning Centered on the KG
Early work uses KG-enhanced LLMs as the core
technique. It walks on the KG with LLMs and
constructs reasoning steps with high accuracy and
interpretability (Yang et al., 2024b; Yasunaga et al.,
2021). Some works follow previous graph algo-
rithms to construct reasoning paths. TRACE (Fang
et al., 2024) uses an auto-regressive reasoning path
constructor to build paths from the KG. GNN-RAG
(Mavromatis and Karypis, 2024) first retrieves can-
didate answers to the query on the KG and then
uses Graph Neural Networks (GNNs) to extract
the reasoning paths. Other works use the LLM
to plan and make decisions on the walking pro-
cess. EffiQA (Dong et al., 2024) uses an LLM to
decompose the problem and generate exploration
instructions. KG-RAG (Sanmartin, 2024) employs
the “Chain of Exploration” (CoE) to search the
KG following the exploration plan from the LLM.
GraphReader (Li et al., 2024) uses an LLM to ex-
plore the KG, continuously updating a notebook to
record relevant information. However, the KG con-
tains multi-layer entities and relationships, forming
a complex structure. The structure makes it difficult
for the LLMs to identify and use the knowledge
and logical relationships in KGs (Pan et al., 2023).

To better obtain the key information, subsequent
work uses the CoT to locate information and offer

260



guidance for graph reasoning. RoK (Wang et al.,
2024) uses CoTs to delineate the range of answers
and then selects the KG reasoning paths according
to the range. Graph-CoT (Jin et al., 2024) uses
CoT to make LLMs traverse the KG step by step
to find the key information. KEQING (Wang et al.,
2023a) first breaks down the query into sub-queries,
then aligns them with the pre-collected CoTs to
retrieve the candidate entities. However, since the
CoT and the KG come from different sources, there
may be differences in the description of knowledge.
This semantic inconsistency can lead to errors in
knowledge matching and locating on the KG.

2.2 LLM Reasoning Centered on the CoT

Early works apply the CoT independently in LLM
reasoning. They provide examples containing in-
termediate steps (Wei et al., 2022) or prompt the
LLM to think step by step (Kojima et al., 2022) to
make it show the reasoning process. However, the
internal working mechanism of the LLM is based
on statistical learning and probability prediction
(Ye et al., 2023), so the LLM may generate plau-
sible texts, known as the “hallucination” (Ji et al.,
2023). The hallucination weakens the reliability of
reasoning and may mislead subsequent reasoning.

To address hallucination, subsequent works use
KG-enhanced CoT technology. This method typ-
ically uses semantic correlation technology to re-
trieve relevant information from the KG for each
step in the CoT, then verifies and corrects the steps
and guides the subsequent reasoning. GCR (Luo
et al., 2024b) employs the KG to guide the LLM in
CoT reasoning and constrains the LLM’s genera-
tion with the KG. KD-CoT (Wang et al., 2023b) ver-
ifies and modifies the generated CoT by interacting
with external knowledge. SSC-CoT (Zhao et al.,
2024) allows the LLM to more accurately identify
key intermediate steps by analyzing similarities be-
tween different reasoning paths and retrieving the
KG. Validating and fixing the current content of
the CoT can make sure that each step is correct,
but it can’t make sure that the logical relationships
between steps are right. As a result, the logical
relationships between steps in the generated CoT
may not align with the KG’s topology. This logical
structure inconsistency will cause broken reasoning
chains and wrong reasoning direction, affecting the
coherence and accuracy of the reasoning.

3 Preliminary

The bipartite graph is a graph whose node set can
be divided into two disjoint subsets. Each edge
in the graph connects nodes from two different
node sets. The weighted bipartite graph assigns a
weight to each edge within the graph. The weight
can represent the relationship between nodes from
different node sets. Here are some concepts about
the weighted bipartite graph. The examples are
shown in the lower left corner of Figure 2.

Matching. Select a set of edges in the bipartite
graph such that no two edges have shared endpoints.
This set is referred to as a matching of the bipartite
graph. In a matching, two disjoint sets of nodes
represent two different types of entities, and edges
represent the connection between them.

Weighted Maximum Matching. The weighted
maximum matching is the matching that has the
most edges and the largest weight sum. It repre-
sents the combination of nodes with the greatest
overall matching degree between two node sets.

Perfect Matching. In a bipartite graph, if there
is a matching where every node in one set is con-
nected to a node in the other, then this matching
is called the perfect matching. A perfect matching
ensures that each node in the smaller set is covered.

Alternating Path. A path that starts with an
unmatched edge and continues with an alternating
sequence of unmatched edges and matched edges.

Augmenting Path. We refer to an alternating
path as an augmenting path when both ends are
non-matching edges. Since there is one more non-
matching edge in an augmenting path, the current
matching can be expanded by toggling the edges.

4 Method

4.1 Iteration Framework
For a question, we convert the CoTs related to it
into a graph and introduce super nodes into the KG
to achieve the granularity alignment between the
graphs. The core of our method is to iteratively
match and correct the two graphs at semantic and
structural levels and finally get the accurate CoTs
and KG reasoning chains. These chains are then fed
into the LLM to get the final answer. The overall
framework is shown in Figure 2.

Specifically, we first directly generate a CoT “an-
swer” C1 with the given question q by the LLM,
and take this “answer” as the start for the itera-
tion. The accuracy of “answer” C1 is challenging
to reach a high level. However, we only need to
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Figure 2: The overview of DCMKC with three key steps. (a) CoT Graph Generation makes the subgraph of the
KG “correct” the CoT graph. (b) Bipartite Graph Construction establishes the semantic connection between
the CoT graph and the KG. (c) KG Matching makes the CoT “identify” the KG subgraph. The purple part is an
example illustrating the concepts in Section 3.

focus on the correlation captured by it when match-
ing and extracting reasoning chains kg1 (Gao et al.,
2023; Jiang et al., 2023). After that, it goes into
the iterative process. Each iteration round contains
three key steps: CoT Graph Generation, Bipar-
tite Graph Construction, and KG Matching.

CoT Graph Generation. To make the subgraph
of the KG “correct” the CoT graph, we regenerate
the CoTs based on the KG reasoning chains kgi−1

obtained in the previous step and the given ques-
tion q, and transform them into a new CoT graph
CGi. That is, (kgi−1, q) → CGi. The number and
content of the CoTs will change according to kgi−1

to build a more accurate CoT graph.
Bipartite Graph Construction. To establish

the semantic connection between the modified CoT
graph CGi and the KG, we connect the nodes
in the two graphs according to semantic similar-
ity to construct a bipartite graph Gi. That is,
(CGi,KG) → Gi. In Gi, the edge weights rep-
resent the semantic similarity between endpoints,
used for subsequent KG matching.

KG Matching. To make the CoT “identify” the
KG subgraph, we perform multiple matches on the
constructed bipartite graph Gi. In each matching,
we find the weighted maximum matching M∗

i of Gi

according to the semantic similarity and check the
structural consistency of the CoT nodes and the KG
nodes to extract a reasonable KG reasoning chain.

By matching multiple times, we record as many
KG reasoning chains as possible and obtain the new
set kgi of them. That is, Gi → M∗

i → kgi. This
new set of KG reasoning chains kgi will provide
the basis for the next iteration.

The iterative process continues until the matched
KG reasoning chains no longer change greatly or
the number of iterations achieves the preset limit.
The process is shown in Algorithm 1. We obtain
the CoTs C ′ with high accuracy and the KG rea-
soning chains KG′ with strong correlation, which
can support the subsequent answer generation.

4.2 CoT Graph Generation

To update the CoT graph with the more accurate
KG reasoning chains in step i − 1, in step i, we
generate CoTs based on the KG reasoning chains
kgi−1 and the question q. The prompt template is
shown in Appendix A. Since there may be multiple
KG reasoning chains, we generate as many CoTs
as possible with all of them to get a set of CoTs
C = {c1, c2, c3, ...}.

C = LLM
(
q, kgi−1

)
= (c1, . . . , cn) =

((d11, . . . , d1m1) , . . . , (dn1, . . . , dnmn))
(1)

Where n represents the number of CoTs, and dij
represents the j step of CoT ci. After that, each
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Algorithm 1 Iterative Refinement of CoTs and KG Rea-
soning Chains

Input: question q, Knowledge Graph KG, max iterations n
Output: final KG reasoning chains KG′, final CoTs C′

1: current iteration i← 0
2: graph reasoning chains kg0 ← ∅
3: while i ≤ n do
4: i← i+ 1
5: if kgi−1 = ∅ then { Section 4.2.}
6: CGi ← LLM(q)
7: else
8: CGi ← LLM(q, kgi−1)
9: end if

10: Gi ← Build(CGi,KG) {Gi: bipartite graph. Sec-
tion 4.3.}

11: M∗
i ←Match(Gi) {Mi: weighted maximum match-

ing. Section 4.4.}
12: kgi ← Extract(M∗

i ) {Details are in Algorithm B}
13: if kgi is similar to kgi−1 then
14: final KG reasoning chains KG′ ← kgi
15: final CoTs C′ ← CGi

16: break
17: end if
18: end while
19: return KG′ and C′ =0

step is converted into a node, and the nodes are con-
nected according to the order of the chains to form
the CoT graph CGi = {CGi1 ∪ . . . ∪ CGin}. Af-
ter that, we use the pre-trained Sentence-BERT
model (Reimers, 2019) to generate semantic vector
embeddings of nodes. This vector embedding is
then used to retrieve and obtain relevant informa-
tion by calculating semantic similarity.

4.3 Bipartite Graph Construction
To establish the semantic relation between the mod-
ified CoT graph of step i and the KG, we construct
a bipartite graph. The two node sets of the bipartite
graph are the CoT graph nodes and the KG nodes.
Each edge in the graph represents the semantic
similarity between two endpoints.

Since the CoT graph nodes are reasoning steps
and the KG nodes are entities, they cannot be di-
rectly matched because of the different granularity.
To better match the two graphs, we consider each
triplet in the KG as a node, called a super node. For
a triplet (A,R,B), a super node s is:

s = {h : A, r : R, t : B} (2)

A super node s contains three parts: the head
entity A, the relationship R, and the tail entity B.
If the head and tail entities in one super node have
an intersection with another, we connect the two
nodes. As shown in Figure 3, since the tail entity of
s1 is the same as the head entity of s2, the two super
nodes can be connected in the super KG SKG.

Figure 3: An example for connecting super nodes.

After the super KG SKG is constructed, for a
super node s, its internal information (h, r, t) is
first concatenated into a string s′. Then the strings
are input into the Sentence-BERT model to obtain
the vector embeddings. After obtaining the vector
embeddings of the super KG SKG and the CoT
graph CGi nodes, we calculate the semantic sim-
ilarity between the two types of nodes. Since the
nodes in the super KG SKG are much more than
those in the CoT graph CGi, for each node in the
CoT graph CGi, we select the top k similar nodes
in the super KG to connect to it. The weight of
edges is the semantic similarity between nodes. A
weighted bipartite graph Gi(D ∪ S,E) is:

D = {d11, d12, . . . , dnmn}
S =

{
s1, s2, . . . , s|S|

}

E={eij |eij={di, sj} , di∈D, sj∈S}
(3)

The left node set of the bipartite graph Gi is the
node set D in the CoT graph CGi, and the right
node set is the selected super node set S in the super
KG SKG. For any two nodes d ∈ D and s ∈ S, if
the similarity between them is positive, an edge e
is connected between them. The weight of the edge
e is their semantic similarity sim(d, s). Therefore,
the CoT graph CGi and the subgraph of the super
KG establish the semantic relationships between
nodes, which are used for subsequent matching.

4.4 KG Matching

To prune the super KG subgraph using CoTs, we
compute weighted maximum matching based on
the semantic bipartite graph. After getting the
weighted maximum matching based on semantic
similarity, we extract reasonable KG reasoning
chains according to the structural correspondence
of the node sets. These chains have a high degree
of structural and semantic consistency with CoTs.

Specifically, for a bipartite graph Gi(D ∪ S,E),
the maximum matching M∗

i means that the weight
sum of the edges in the matching is larger than or
equal to any other matching. For ∀M ≺ G
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WM∗
i
=

∑

eij∈M∗
i

wij ≥ WM (4)

Since the weight of edges in the bipartite graph
Gi(D ∪ S,E) is the semantic similarity between
two types of nodes, the maximum matching M∗

i

represents the combination of the super KG nodes
and the CoT graph nodes with the highest semantic
consistency. To obtain this matching, we refer to
the KM algorithm (Kuhn, 1955; Munkres, 1957)
and assign a label wlbl to each node. The details
of the process to obtain the maximum weighted
matching M∗

i are in Appendix C. The matching
M∗

i is not obtained by matching single nodes. In
fact, it’s obtained by matching two sets of nodes as
a whole. These sets are the CoT nodes and the su-
per KG nodes with the highest semantic similarity.

After that, we extract the KG reasoning chains
kgi based on the matching M∗

i . We first check the
connectivity between nodes belonging to S in M∗

i .
The KG reasoning chains must be complete, so if
there is an independent node, it should be deleted
to obtain the maximum weighted matching again.
Since there are multiple KG reasoning chains, we
should remove all nodes in the chain from S after
we successfully extract a KG reasoning chain and
match again until no new chain can be found. The
process is shown in Appendix B.

In this way, the KG reasoning chains match the
CoTs with the highest weight, indicating the high-
est semantic consistency. The logical relationship
and topological structure of the two are also con-
sistent, achieving a high structural similarity. The
KG reasoning chains will help to supplement and
modify the CoT graph in the next iteration.

4.5 Answer Generation

In the generation stage, the prompts submitted to
the LLM are divided into hard prompts and soft
prompts (Hu et al., 2024). The hard prompts are
plain texts, and the soft prompts are textualized rep-
resentations of the graph topology (He et al., 2025).
By combining them, text information and graph
topological information can both be preserved in
the prompts to reduce the knowledge loss. The
prompt templates are shown in Appendix A.

Hard prompt refers to combining the CoTs C ′,
the KG reasoning chains KG′ and the question q
with a prompt template to form a plain text prompt.

phard =
[
q;C ′;KG′] (5)

To keep the topological information of KG rea-
soning chains KG′, we textualize the graph struc-
ture to get the soft prompt. The hard and soft
prompts are combined and submitted to the LLM
to generate the final answer. By combining them,
text and graph topological information can both be
preserved to improve the LLM reasoning.

5 Experiments

5.1 Experiment Setup

Datasets. Following previous works (Luo et al.,
2024a; Wang et al., 2023b; Luo et al., 2024b), we
conduct experiments on two datasets, WebQues-
tionSP (WebQSP) (Yih et al., 2016) and Complex
WebQuestions (CWQ) (Talmor and Berant, 2018).
Details of datasets are in Appendix D.

Baselines. We compared DCMKC with 12 base-
lines grouped into 4 categories: (1) LLM only, in-
cluding Qwen2-7B (Yang et al., 2024a), Llama-2-
7B (Touvron et al., 2023), Llama-3.1-8B (Dubey
et al., 2024). (2) Retrieving+LLM, including BM25
(Robertson et al., 2009), LaBSE (Feng et al., 2022),
E5-Base (Wang et al., 2022). (3) KG+LLM, includ-
ing G-Retriever (He et al., 2024), GRAG (Hu et al.,
2024), EffiQA (Dong et al., 2024), RoG (Luo et al.,
2024a). (4) CoT and KG+LLM. including ToG
(Sun et al., 2024), KD-CoT (Wang et al., 2023b).
Details of baselines are in Appendix E.

Evaluation Metrics. We use Hit@1 and the
F1 score as evaluation metrics. Hit@1 checks if
the ground truth exists in the generated answers.
The F1 score is a harmonic average of accuracy
and recall, providing a metric that balances false
positives and false negatives.

Implementations. We choose Llama-3.1-8B-
Instruct and Llama-2-7B-Chat as the backbone
LLMs for our method. The parameters of them are
frozen. For the baselines that only use the LLM, we
use a zero-shot prompt to ask the model to answer
the questions. We select the number of matching
nodes k = 8 for the bipartite graph construction,
and the maximum number n of iterations is set to
3. All experiments are performed on an Intel(R)
Core(TM) i5-9300H CPU @ 2.40 GHz. The re-
sults of different hyperparameter settings are in
Appendix G.

5.2 Main Results

We compare our DCMKC method to other base-
lines on the datasets to evaluate the model’s reason-
ing ability. As Table 1 shows, DCMKC performs
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Category Method WebQSP CWQ

F1 Score Hit@1 F1 Score Hit@1

LLM only
Qwen2-7B (Yang et al., 2024a) 0.3550 0.5080 0.2160 0.2530

Llama-2-7B (Touvron et al., 2023) 0.3650 0.5640 0.2140 0.2840
Llama-3.1-8B (Dubey et al., 2024) 0.3480 0.5550 0.2240 0.2810

Retrieving+LLM
BM25 (Llama2) (Robertson et al., 2009) 0.4284 0.5829 0.2324 0.2880

LaBSE (Llama2) (Feng et al., 2022) 0.4665 0.6114 0.2532 0.3022
E5-Base (Llama2) (Wang et al., 2022) 0.4865 0.6398 0.2641 0.3162

KG+LLM
G-Retriever (Llama2) (He et al., 2024) 0.4674 0.6808 0.3396 0.4721

GRAG (Llama2) (Hu et al., 2024) 0.5022 0.7236 0.3649 0.5018
SubgraphRAG (Llama3) (Li et al., 2025) 0.7057 0.8661 0.4716 0.5698

CoT and KG+LLM
ToG (ChatGPT) (Sun et al., 2024) 0.7232 0.7513 0.5696 0.5759

KD-CoT (Llama3) (Wang et al., 2023b) 0.5250 0.6860 - 0.5570
RoG (Llama2) (Luo et al., 2024a) 0.7080 0.8570 0.5620 0.6260

Our method DCMKC (Llama3) 0.7480 0.8695 0.6110 0.7358
DCMKC (Llama2) 0.7503 0.8698 0.6002 0.7360

Table 1: Model performance on two datasets comparing four categories of methods. The best results are bolded,
and the second best results are underlined.

best on both datasets. The F1 score on WebQSP
and CWQ is 5.6% and 8.7% above the best base-
line, and Hit@1 is 1.5% and 5.8% above. The
results show that DCMKC can effectively enhance
the reasoning ability of the LLM.

It is found that when all the information in the
KG is submitted to the LLM, the model gives sub-
optimal performance. For Llama2, on the WebQSP
dataset, only adding a retrieving method can im-
prove F1 by up to 33.3% and Hit@1 by up to 13.4%.
It indicates that pruning is essential for graph rea-
soning to reduce the influence of redundant infor-
mation. LLMs can perform better using techniques
based on KGs or CoTs. On the CWQ dataset, ROG
improves F1 of the corresponding LLM by 162.6%,
and EffiQA improves Hit@1 of the corresponding
LLM by 147.3%. It shows that KGs and CoTs play
a crucial role in optimizing LLM’s ability to under-
stand complex questions, accurately extract, and
effectively apply relevant knowledge.

We also observe that larger LLMs perform worse
in graph-related tasks than smaller LLMs. For the
performance of Llama2 and Llama3, Llama2 has
a higher F1 and Hit@1 on the WebQSP dataset,
by 4.9% and 1.6%. In the CWQ dataset, the situ-
ation is similar. This suggests that increasing the
parameters does not inherently enhance the graph
reasoning ability of LLMs.

5.3 Ablation Study

We conduct a series of evaluations of DCMKC to
see which component plays a key role, including
removing iteration, replacing KG matching with

Method WebQSP CWQ

F1 Score Hit@1 F1 Score Hit@1

DCMKC 0.7480 0.8695 0.6110 0.7358
w/o Iteration 0.6572 0.8255 0.5748 0.7045

w/o KG matching 0.7095 0.8384 0.5842 0.7134
w/o both 0.5637 0.8034 0.5423 0.6721

Table 2: Performances of three model variables.

retrieving, and removing both parts. As shown
in Table 2, the performance all decreases. This
indicates that every component is indispensable.
Among them, removing iteration drops model per-
formance more than removing KG matching. On
the WebQSP dataset, F1 of the former decreased
by 6.4%, and Hit@1 decreased by 1.4% more than
that of the latter. The situation is similar on CWQ.
This suggests that the iteration framework plays a
more central role in reasoning, allowing the model
to optimize its answers continuously.

5.4 Analytical Experiments

Bi-Directional Interaction Analysis. Figure 4
shows the optimization of the KG reasoning chains
and the CoTs in the iteration, including the rele-
vance between the KG reasoning chains and the
question, the average proportion of answers con-
tained in KG reasoning chains, and the F1 score
and Hit@1 of the answers obtained from the CoTs
only. Relevance here refers to the average semantic
similarity between the KG reasoning chain and the
question, which is calculated based on the vector
embeddings provided by Sentence-BERT. As the
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Figure 4: The optimization of the KG reasoning chains
and the CoTs in the iteration.

number of iterations increases, the relevance grad-
ually improves, indicating that the KG location is
more accurate. The average proportion of answers
contained increases, indicating that the quality of
KG reasoning chains increases with continuous it-
erations. The answers obtained from the CoTs also
move closer to the ground truth. The change of the
CoTs reflects the effectiveness of the KG reasoning
chains in modifying the CoTs, and the adjustment
of the KG reasoning chains reflects the effective-
ness of the CoTs in locating key information. This
iterative interaction and bidirectional modification
effectively enhance the quality of the two kinds of
chains to improve the model’s overall performance.

Figure 5: Semantic and structural consistency.

Semantic and Structural Consistency Analy-
sis. Figure 5 shows the changes in the semantic and
structural levels of the CoTs and the KG reasoning
chains. Their semantic similarity gradually im-
proves in the iteration, indicating that they achieve
high semantic consistency, which reaches 0.8047.
Our experiments revealed a consistent improve-
ment in structural alignment between CoTs and
KG reasoning chains, assessed via Graphlet Kernel
(local substructures) and Graph Spectral Embed-
ding (global topology) (see Appendix I). The nor-
malized consistency scores increased from 0.3018

to 0.4020 (Graphlet Kernel) and 0.5369 to 0.5385
(Graph Spectral Embedding). Marginal gains in
consistency diminished across iterations—25.05%
and 6.51% for Graphlet Kernel (Iterations 1 → 2
and 2 → 3), and 0.24% and 0.056% for Graph
Spectral Embedding—adhering to the law of di-
minishing marginal utility and indicating conver-
gence toward stability. These results demonstrate
that CoTs and KG reasoning chains mutually refine
each other through iterative alignment.

(a) WebQSP dataset. (b) CWQ dataset.

Figure 6: Performances on multi-answer questions.

Multi-Answer Questions Analysis. We se-
lect multi-answer questions in WebQSP and CWQ
datasets and conduct experiments on RoG and
our method DCMKC. As shown in Figure 6, our
method shows a higher improvement. It indicates
that our method is more advantageous in multi-
answer questions and highlights the efficacy of mul-
tiple graph matching and the iteration framework.

Time Cost Analysis. The average time cost
per question of some baselines and our method
is shown in Table 3. It shows that our time cost
is comparable to other CoT and KG+LLM meth-
ods. We also calculate the time complexity of some
baselines and our method and the results are in Ap-
pendix H.

Category Method Avg. Time

KG+LLM G-Retriever 3.7
GRAG 3.1

CoT and KG+LLM KD-CoT 6.2
ToG 11.5

Our method DCMKC 7.1

Table 3: Average time cost (Second).

Parameter Quantity Analysis. Considering
that the parameter quantity of base LLMs is rel-
atively small, we conduct experiments on Llama-
3.1-70B. As shown in Table 4, our method can still
make improvements.
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Method WebQSP CWQ

LLM Only 0.7310 0.4610

DCMKC(Our method) 0.8826 0.7875

Table 4: Performance on Llama-3.1-70B (Hit@1).

5.5 Case study

We choose some cases to show how our method
fixes initial errors in CoTs and locates the KG more
accurately. The details are shown in Appendix F.

6 Conclusion

In this paper, we introduce a model based on se-
mantic and structural consistency matching called
DCMKC. The method converts the CoTs into a
graph and introduces super nodes into the KG
to make the two correspond structurally and se-
mantically, which is theoretically and experimen-
tally demonstrated by kernel and spectral meth-
ods. In the reasoning process, the method makes
the CoTs and the KG reasoning chains work to-
gether through the framework of iterative interac-
tion and bidirectional modification. Experiments
show that DCMKC outperforms the baselines on
multiple datasets, especially on multi-answer ques-
tions, with up to 5.1% improvement.

7 Limitations

Although DCMKC achieves strong performance in
the QA task over all baselines, there are still some
limitations to our method. (1) The backbone LLM
we used has frozen parameters. Future methods
might need to consider fine-tuning the LLM to ob-
tain better results. (2) The prompt templates in this
study still rely on manual design, influenced by pre-
vious research that has been shown to be effective.
However, it would be interesting to explore the de-
velopment of automated methods for constructing
prompt templates. In addition, our methods may
be used for harmful data, causing issues such as
privacy disclosure.
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A Prompt Templates

Figure 7: Prompt template.

For the prompt to regenerate the CoTs, the
triplets in the KG reasoning chains kgi−1 are first
converted into sentences and then combined with
the question q according to the preset prompt tem-
plate, as shown in Figure 7. The prompt is then
submitted to the LLM to generate new CoTs.

Figure 8: Hard prompt template.

For the hard prompt, the triplets in the KG rea-
soning chains KG′ are first converted into sen-
tences and then combined with the question q and
the CoTs C ′ according to the preset prompt tem-
plate, as shown in Figure 8.

Figure 9: Soft prompt template.

For the soft prompt, we textualize the graph
structure, as shown in Figure 9.

B Algorithm of KG matching

For KG matching, the whole process is shown in
Algorithm 2. It shows how our method DCMKC
obtains the weighted maximum matching and ex-
tracts KG reasoning chains.

C The Maximum Weighted Matching

To obtain the maximum weighted matching M∗
i ,

we refer to the KM algorithm and assign a label
wlbl to each node, transferring the weight of the
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Algorithm 2 Obtain the Weighted Maximum Matching and
Extract KG Reasoning Chains

Input: bipartite graph Gi(D∪S,E), knowledge graph KG
Output: KG reasoning chains kgi
1: KG reasoning chains kgi ← ∅
2: while len(S) ≥ len(D) do
3: M∗

i ←Match(G) {Mi: weighted maximum match-
ing.}

4: chain ← Reconnect(M∗
i ,KG) {chain: matched

reasoning chain.}
5: if chain is complete then
6: kgi ← kgi + chain
7: G← G− chain
8: end if
9: if an isolated node s in chain then

10: G← G− s
11: end if
12: end while
13: return kgi =0

edges to the nodes. For ∀di∈D,∀sj∈S, the label
should satisfy

wlbl [di] + wlbl [sj ] ≥ wij (6)

The label is used to transform the problem of
finding a weighted maximum matching into the
problem of finding a perfect matching without con-
sidering the edge weights. First, we introduce the
concept of the equal subgraph. An edge is equal if
the label sum of its two endpoints equals the weight
of it. All equal edges with their endpoints form an
equal subgraph. The label sum of nodes in an equal
subgraph is equal to the weight sum of the edges.

Consider the following theorem.

Theorem 1. If the maximum matching of some
equal subgraph in a bipartite graph is a complete
matching of the bipartite graph, then this complete
matching is a maximum weighted matching of the
bipartite graph.

Proof. If there exists a perfect matching of the bi-
partite graph that does not belong to the equal sub-
graph, considering the definition of the label, the
weight sum of the edges in this matching is less
than the sum of all the labels. However, the weight
sum of the edges in a perfect matching belong-
ing to the equal subgraph is equal to the sum of
the labels of the nodes, so this perfect matching is
the maximum weighted matching of the bipartite
graph.

So the maximum weighted matching M∗i is the
maximum matching including all nodes in D (Per-
fect matching) of the equal subgraph. To more eas-
ily adjust the labels, we set the label of the node di
to the largest weight among edges associated with

it, and set the label of node sj to 0. For ∀di ∈ D
and ∀sj ∈ S

wlbl [di] = max
s∈S

(wij)

wlbl [sj ] = 0
(7)

After the initial labels are set, we find an aug-
menting path for a node di in the equal subgraph.
If an augmenting path is found, the matching can
be expanded by toggling the matching edges and
the non-matching edges. If the augmenting path is
not found, we need to adjust the label to expand the
equal subgraph. We reduce the label of the nodes
belonging to D in the found alternating path by a
value h, and add a value h to the node belonging
to S. Because the modified labels should still sat-
isfy Equation 6, we go through all the edges eij in
the previously selected augmenting path tree and
update h to the smallest wlbl [si] +wlbl [dj ]−wij .
There will be four results: (1) An edge with both
ends in the alternating path has no change in the
label sum. It still belongs to the equal subgraph. (2)
An edge with both ends not in the alternating path
has no change in the label sum. It still doesn’t be-
long to the equal subgraph. (3) For an edge, if the
node belonging to D is not in the alternating path,
and the node belonging to S is in, the label sum
will increase. It still doesn’t belong to the equal
subgraph. (4) For an edge, if the node belonging
to S is not in the alternating path, and the node
belonging to D is in, the label sum will decrease.
It didn’t belong to the equal subgraph before, but
now it may belong to it.

After expanding the equal subgraph, the aug-
menting path is found again with this node. The
algorithm terminates when every node belonging
to D finds the augmenting path and toggles match-
ing. The matching now is the maximum matching,
including all nodes in D of the equal subgraph.

D Datasets

Dataset #Graphs Avg. #Nodes

WebQSP 4737 1371
CWQ 34689 1306

Table 5: Statistics of datasets.

Table 5 and Table 6 show the statistics of the
datasets. WebQuestionSP (WebQSP) (Yih et al.,
2016) is a large multi-hop KGQA dataset contain-
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Dataset #Answer=1 #Answer>1

WebQSP 51.2% 48.8%
CWQ 70.6% 29.4%

Table 6: Statistics of answer numbers.

ing 4737 questions, of which 48.8% are multi-
answer questions. Complex WebQuestions (CWQ)
(Talmor and Berant, 2018) is a large dataset of com-
plex multi-hop questions with 34,689 questions, of
which 29.4% are multi-answer questions. The two
datasets test the model’s ability to understand and
answer questions with multiple facts and reason-
ing steps. The KG for both datasets is Freebase
(Bollacker et al., 2008).

E Baselines

The baselines can be divided into four categories:
(1) LLM only, (2) Retrieving+LLM, (3) KG+LLM,
(4) CoT and KG+LLM.

(1) LLM-only methods only use LLMs for rea-
soning without other enhancement methods.

Qwen2-7B (Yang et al., 2024a) is one of a series
of LLMs developed by the Alibaba Cloud Tongyi
Qianwen team, with a parameter size of 7 billion.

Llama-2-7B (Touvron et al., 2023) is one of the
Llama 2 series of LLMs developed by Meta AI,
with a parameter size of 7 billion.

Llama-3.1-8B (Dubey et al., 2024) is one of the
Llama 3 series of LLMs developed by Meta AI,
with a parameter size of 8 billion.

(2) Retriever-enhanced LLM methods use re-
trieval to enhance LLM reasoning.

BM25 (Robertson et al., 2009) is a statistical
model that scores documents based on term fre-
quency, inverse document frequency, and document
length, using probabilistic principles to estimate the
relevance of documents to queries.

LaBSE (Feng et al., 2022) is a BERT-based
model that uses a dual encoder framework to learn
sentence embeddings across languages.

E5-Base (Wang et al., 2022) adopts a contrastive
pre-training strategy using dual encoder architec-
ture to optimize the similarity between related pairs
while using in-batch negative samples to distin-
guish the similarity between unrelated pairs.

(3) KG-enhanced LLM methods use KGs to en-
hance LLM reasoning.

G-Retriever (He et al., 2024) retrieves the rele-
vant nodes and edges, then constructs the relevant

subgraph using the bonus Steiner tree method.
GRAG (Hu et al., 2024) retrieves text subgraphs

and performs soft pruning to identify relevant sub-
graph structures effectively, and proposes a new
cue strategy.

SubgraphRAG (Li et al., 2025) generates accu-
rate and explainable answers by efficiently retriev-
ing relevant subgraphs from KGs and leveraging
LLMs for reasoning.

(4) CoT and KG-enhanced LLM methods use
CoTs and KGs to enhance LLM reasoning.

ToG (Sun et al., 2024) allows LLM to dynami-
cally explore multiple reasoning paths in KGs to
form CoTs and make decisions based on them.

KD-CoT (Wang et al., 2023b) retrieves relevant
knowledge from KGs to modify CoTs and generate
reliable reasoning plans with the LLM.

RoG (Luo et al., 2024a) proposes a planning-
search-reasoning framework, which retrieves rea-
soning paths from KGs to guide LLMs in reason-
ing.

F Case Study

For the correction of factual errors, as shown in
Table 7, there is a factual error (‘California’) in the
CoT (Round 1), and the error is corrected by KG
in Round 2 later.

For the correction of logical errors, as we can
see in Table 8, Step 1 and Step 2 of CoT (Round
1) are both correct, but there is no logical rela-
tionship between them, leading to errors in reason-
ing. Then we get KG (Round 1) through corre-
lation and learn an important relationship, “gov-
ernment.us_president.vice_president” from it. Af-
ter that, we regenerate a new CoT based on KG
(Round 1) with more accurate logical relationships
between steps, which is CoT (Round 2). According
to the logical relationship, we get the accurate KG
(Round 2) and finally get the correct answer.

At the same time, the KG in the initial round has
a wide scope, and with the help of CoT, the KG
location is more accurate.

G Hyperparameter Analysis

For the number of matching nodes k, we conduct
multiple experiments with different values of it in
one iteration. As shown in Figure 10, when k = 8,
Hit@1 is the highest. Therefore, the number of
matching nodes k is set to 8.

For the maximum number n of iterations, we
conduct experiments on multiple values of it to
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Q where is jamarcus russell from?

A Mobile

CoT (Round 1) JaMarcus Russell was born in California.

KG (Round 1)
[JaMarcus Russell, people.person.place_of_birth, Mobile]
[JaMarcus Russell, people.person.nationality, United States of America]
[JaMarcus Russell, people.person.ethnicity, African American]

CoT (Round 2) JaMarcus Russell is from Mobile.

KG (Round 2) [JaMarcus Russell, people.person.place_of_birth, Mobile]

Table 7: Correction of the initial factual errors.

Q who was vice president after kennedy died?

A Lyndon B. Johnson

CoT (Round 1) John F. Kennedy was US President.
The vice president plays the role of assistant to the president.

KG (Round 1)
[’US President, person.role.in_time, John F. Kennedy’, ’Vice president, type.property.schema, US President’]
[’Dwight D. Eisenhower, base.kwebbase.kwtopic.has_sentences, He was succeeded by President Kennedy’,
’Dwight D. Eisenhower, government.us_president.vice_president, Richard Nixon’]

CoT (Round 2) John F. Kennedy was US President.
A president has a vice president.

KG (Round 2) [‘US President, person.role.in_time, John F. Kennedy’, ‘John F. Kennedy, government.us_president.vice_president, Lyndon B. Johnson’]

CoT (Round 3) John F. Kennedy was US President.
Lyndon B. Johnson was vice president after Kennedy died.

KG (Round 3) [‘US President, person.role.in_time, John F. Kennedy’, ‘John F. Kennedy, government.us_president.vice_president, Lyndon B. Johnson’]

Table 8: Correction of the initial factual errors.

Figure 10: Performances on different values of k.

Figure 11: Performances on different values of n.

see how the performance of the model improves.
As shown in Figure 11, the performance of the
model continues to improve as n increases. How-
ever, when n > 3, the increase gradually becomes
flat. Considering the performance of the model
and the time and cost of the experiment, we set the
maximum number n of iterations to 3.

H Time Complexity

As Table 9 shows, most methods use a complex
framework. It shows that our time complexity is
comparable to the baselines.

I Structural Consistency Analysis
Methods

I.1 Graphlet Kernel

The Graphlet Kernel is a similarity metric based
on subgraph pattern statistics. Its core idea is to
measure structural similarity by comparing the fre-
quency distribution of connected subgraphs (called
graphlets) of size k (typically 3-5 nodes). The key
steps are as follows:

• Graph Decomposition: Enumerate all con-
nected k-node subgraphs (graphlets) Gk from
the input graph G.
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Category Method Time Complexity Explanation

KG+LLM

G-Retriever O((V + E) · log k + T 2)

V: number of KG nodes
E: number of KG edges

k: number of candidate subgraphs (≤ 5)
T: LLM input length

GRAG O(V · dk + T 2)

V: number of KG nodes
d: number of subgraph nodes

k: number of search hops (≤ 2)
T: LLM input length

RoG O(K · L+ dl + T 2)

K: number of reasoning paths (≤ 3)
L: reasoning path length (≤ 4)

d: number of expanded edges (≤ 100)
l: relationship path length (≤ 4)

T: LLM input length

CoT and KG+LLM

KD-CoT O(k · (N + L2 + T 2))

k: number of CoT steps (≤ 4)
N: number of candidate paragraphs (= 100)

L: candidate paragraph length
T: LLM input length

ToG O((2N ·D +D + 1) · T 2)
N: beam search width (= 3)

D: maximum search depth (≤ 3)
T: LLM input length

Our method DCMKC O(k · (C + t · d3 + T 2))

k: number of iterations (≤ 3)
C: number of CoT nodes (≤ 4)

t: number of matching
d: number of candidate nodes (≤ 8)

T: LLM input length

Table 9: Time complexity of baselines and our method.

• Frequency Counting: Count the occurrences
of each graphlet gi ∈ Gk in G, forming a
frequency vector fG = (ng1 , ng2 , . . . , ng|Gk|).

• Normalization and Kernel Calculation: Nor-
malize the frequency vector as hG = fG

∥fG∥1 ,
and compute the similarity between graphs G
and G′ via the kernel function:

Kgraphlet(G,G′) = hTGhG′

This method captures global structural simi-
larity by analyzing local subgraph pattern dis-
tributions.

I.2 Graph Spectral Embedding

Graph Spectral Embedding maps nodes into a low-
dimensional space using spectral decomposition
of the graph Laplacian matrix, leveraging spectral
properties to characterize graph structures. The key
steps are:

• Laplacian Matrix Construction: For a graph G
with adjacency matrix A(G) and degree ma-
trix D(G), the Laplacian matrix is defined as
L(G) = D(G)−A(G). If two graphs G and
G′ differ in scale, isolated vertices are added

to ensure identical vertex counts, and zero-
padding is applied to align the dimensions of
L(G) and L(G′).

• Eigen Decomposition: Perform eigen decom-
position on L(G) and select the top t (≥ 1)
eigenvectors U = [u1, u2, . . . , ut] ∈ Rn×t

corresponding to the smallest non-zero eigen-
values, where n is the number of nodes.

• Procrustes Alignment: Align the embedding
matrices U1 and U2 of two graphs G and G′

via Procrustes analysis, find an orthogonal
matrix W to minimize:

min
WTW=I

∥U1 − U2W∥2F

The minimized residual ∥U1−U2W∥F quanti-
fies the overall topological difference between
graphs G and G′: a larger residual indicates
lower structural similarity between the two
graphs. Based on this, a normalized similarity
metric is defined as follows:

S =
1

1 + ∥U1 − U2W∥F
to reflect the structural consistency between
the two graphs.
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