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Abstract

Large Language Model (LLM)-based self-
refinement has advanced Text-to-SQL, but it
struggles with SQL semantic errors, such as
omitted conditions and misinterpreted require-
ments. This is because self-refinement depends
on LLMs’ semantic understanding of questions,
a process prone to hallucination-induced bi-
ases, leading to uncorrectable errors. To solve
this problem, we propose Test-driven Self-
refinement for Text-to-SQL (TS-SQL). It lever-
ages a collaborative LLM agent framework
to automatically synthesize high-quality test
cases, including test data and test code. The
test cases are further employed to provide ex-
ecution feedback for LLM self-refinement to-
wards SQL semantic errors. Rigorous evalu-
ation shows the superiority of TS-SQL: for
BIRD-dev, TS-SQL improves at least 6%
over existing SQL self-refinement methods;
for Spider-dev, TS-SQL identifies and corrects
131 gold SQL errors, exposing system flaws
in benchmark rigor. For reproducibility, we re-
lease the modified Spider-dev benchmark to
foster further research. !

1 Introduction

The prevalence of large language models (LLMs)
has amplified the demand for scalable data anal-
ysis research in real-world business applications,
such as data annotation (Tan et al., 2024), data
wrangling (Li and Dohmen, 2024), and Text-to-
SQL (Zhu et al., 2024; Shen et al., 2024). Limited
by the hallucination and unreliability of LLMs (Pan
et al., 2023; Huang et al., 2025), data analysts
have to manually check the usability of their out-
put results, which is labor-intensive and time-
consuming. Recent studies suggest that incorpo-
rating the feedback of self-refinement techniques
can substantially improve the usability of LLMs on

For the year that concluded on December 31, 1998, how many male patients on average
were tested in the lab each month?

SELECT CAST(COUNT(TL.ID) AS REAL) / 12 FROM Patient AS T1
INNER JOIN Laboratory AS T2 ON T1.ID = T2.ID
WHERE STRFTIME('%Y', T2.Date) = '1998' AND T1.SEX ='M"

SELECT AVG(monthly_counts) AS average_male_patients_per_month FROM
(SELECT COUNT(DISTINCT T2.ID) AS monthly_counts FROM Laboratory T1
JOIN Patient T2 ON T1.ID = T2.ID

‘WHERE T1.Date BETWEEN '1998-01-01' AND '1998-12-31' AND T2.SEX='M'
GROUP BY strftime('%Y-%m', T1.Date))

 Revised SQL (CHESS + TS-SQL)

SELECT CAST(COUNT(T1.ID) AS REAL) / 12 FROM Laboratory AS T1
INNER JOIN Patient AS T2 ON T1.ID = T2.ID
WHERE T2.SEX = 'M' AND T1.Date BETWEEN '1998-01-01' AND '1998-12-31";

Figure 1: An example of an SQL semantic error, where
an LLM demonstrates a biased understanding.

various tasks (Madaan et al., 2024). Therefore, var-
ious LLM self-refinement techniques (Wang et al.,
2025) have been applied to detect SQL errors that
cause unexpected output, including prompt instruc-
tion (Pourreza and Rafiei, 2024; Caferoglu and Ulu-
soy, 2024; Talaei et al., 2024; Pourreza et al., 2024)
and agent inference (Wang et al., 2023; Askari
et al., 2024).

Despite the efficacy of these methods, their self-
refinement depends on the validity of LLM’s se-
mantic understanding of input questions. Indeed,
LLM hallucinations can introduce significant bi-
ases in this understanding (Qu et al., 2024), mak-
ing it difficult to address SQL semantic errors (Cen
et al., 2024; Liu et al., 2025), such as omitting
essential conditions or misinterpreting the ques-
tion requirements. Figure 1 illustrates an exam-
ple of semantic errors. The LLM insists on inter-
preting the phrase ‘on average’ as the SQL
function *AV G(monthly_counts)’, leading to
an incorrect SQL query. This issue arises because
LLMs have trouble identifying flaws in their out-
puts (Kamoi et al., 2024; Tyen et al., 2024).

*Corresponding authors: liuchuanyi@hit.edu.cn, han- ;
peiyi @hit.edu.cn In contrast, test cases have been used in software
"https://github.com/prosperhitfz/TS-SQL engineering to verify whether a system satisfies
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specific requirements, including inputs, execution
conditions, testing procedures, and expected out-
comes (573, 2010). Applying this paradigm to Text-
to-SQL not only validates whether the generated
SQL aligns with the question requirements, but
also provides corrective feedback to help the LLM
rectify semantic understanding bias, thereby im-
proving SQL execution accuracy. Therefore, this
paper focuses on generating test cases to exam-
ine and provide validation feedback for SQL
self-refinement.

Unlike prior research (Li and Xie, 2024), we
argue that the most urgent problem in generating
Text-to-SQL test cases is the inability to directly
derive the desired outcome from a question, since
LLMs are not adept at complex multi-step reason-
ing when relying solely on natural language in-
ference (Strachan et al., 2024; Dziri et al., 2024).
Therefore, we propose to decompose the test case
generation task into two components: generat-
ing test data for the question and generating test
code for the test data. This decomposition brings
three technical challenges: (1) Ensuring high cov-
erage and non-duality of test data. High coverage
means the test data should contain all the relevant
data involved in the question. Non-duality means
the execution result of the test data should corre-
spond to the test code uniquely. Violating either
property results in no testing ability of the test case.
For example, the test data is empty or omits neces-
sary tables. (2) Ensuring validity of test code. The
test code should be consistent and comply with the
question requirements. Since the LLM is sensitive
to hyperparameters, there are potential discrepan-
cies across each output. Such inconsistency in the
output test code can cause the failure to adequately
assess the SQL according to the test data, such as
the lack of correspondence between the test code
and test data, or wrong logic in the test code. (3)
Ensuring maintainability of test code. The test
code should be simple to read and modify. Without
this property, the test code cannot examine SQL
due to the failure of modifications, such as generat-
ing suggestions only without corrected test code or

buggy test code that necessitates manual review.
To address these challenges, we propose test-

driven self-refinement for Text-to-SQL (TS-SQL).
The core objective is to design test cases that ver-
ify the accuracy of the generated SQL and provide
valuable feedback based on the test results, thus as-
sisting the LLM in rectifying semantic understand-
ing bias and enhancing Text-to-SQL performance.

As shown in Figure 2, TS-SQL consists of two key
techniques: the test case generation phase and
the feedback-driven SQL generation phase. In
the test case generation phase, TS-SQL leverages
a collaborative framework with three LLM-based
agents to provide high-quality test cases. The data
generation agent generates test data through the
relevant linking and gold SQL execution. The code
generation agent and code inspection agent cooper-
ate to generate corresponding test code with the test
data through iterative interactions of the generation-
execution-regeneration and voting mechanisms. In
the feedback-driven SQL generation phase, TS-
SQL refines its SQL output based on the logic of
the test case within the execution feedback. This
helps rectify LLLM’s semantic understanding bias
and improve SQL accuracy.

We propose four research questions (RQs) to
conduct evaluation experiments. On the Spider de-
velopment set, TS-SQL discovers 131 (12.67 %) in-
correct gold SQL due to benchmark issues (wrong
data types, values, and semantic logic), verifying
the error-checking capability. On the BIRD bench-
mark, TS-SQL shows competitive results with an
execution accuracy of 70.93% (69.20% ) on the de-
velopment (test) set. Case studies further reveal the
superiority of TS-SQL, which is at least 6% better
than other self-refinement techniques in correcting
the generated BIRD-dev SQL, with most errors in-
cluding deduplication, incorrect tables, columns,
and filter conditions. Our contributions can be sum-
marized as follows:

1. We propose TS-SQL, which assists the LLM
in rectifying semantic understanding bias and self-
refining SQL semantic errors.

2. We rectify 12.67% of incorrect gold SQL
queries of the Spider development set using the
test cases of TS-SQL and release a more rigorous
version of the modified Spider-dev set.

3. Experiments demonstrate the competitive per-
formance of TS-SQL, which improves at least 6%
compared to state-of-the-art SQL self-refinement
methods and achieves an accuracy of 70.93% and
69.20% on the BIRD development and test set.

2 Related Work

2.1 Test Case for LLM-based Code
Generation

In software engineering code generation tasks, test
cases are typically included in problem descriptions
to verify the correctness of generated code. Exist-
ing LLM-based code generation research leverages
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test cases in two key ways. Some methods directly
utilize the provided test cases to correct code er-
rors. CYCLE (Ding et al., 2024) trains the code
language model to better fix errors in the gener-
ated code based on available feedback, including
test case execution results. RLEF (Gehring et al.,
2024) uses an end-to-end reinforcement learning
approach to teach models how to exploit execution
feedback for code generation. Some methods try to
generate new test cases to examine the output code.
AgentCoder (Huang et al., 2023) designs the Test
Design Agent to generate test cases, thus enrich-
ing available test cases and enhancing the feedback
effectiveness. LDB (Zhong et al., 2024) captures
detailed test case feedback by partitioning the code
into basic blocks and tracking intermediate variable
values after each block, allowing a thorough code
examination. MGDebugger (Shi et al., 2024) em-
ploys a bottom-up, layered strategy for debugging.
It decomposes the code into sub-functions and tests
each sub-function by generating test cases from the

code’s provided test cases.
Unfortunately, such methods cannot be applied

directly to Text-to-SQL tasks because the answer
to the question can only be obtained indirectly
through SQL queries from a database. To introduce
test cases for Text-to-SQL, our method entails the
partitioning of the test case generation into test data
and test code generation, thus guiding the LLM to
self-refine SQL errors with generated test cases.

2.2 Self-refine for LLM-based Text-to-SQL

Existing studies have discussed the self-refinement
technique in helping LLMs get better results across
different tasks (Chen et al., 2023; Madaan et al.,
2024). Therefore, various LLM-based Text-to-SQL
research seeks to further enhance task perfor-
mance via self-refinement, including two cate-
gories: prompt instruction and agent inference.
Prompt instruction methods directly prompt the
LLM to self-refine utilizing natural language con-
straints. DIN-SQL (Pourreza and Rafiei, 2024)
and E-SQL (Caferoglu and Ulusoy, 2024) pro-
vide the LLM with guidance and instructions in
the input prompt for SQL self-correction. CHESS
(Talaei et al., 2024) and CHASE-SQL (Pourreza
et al., 2024) ask the LLM to examine and cor-
rect the logical reasonability of the generated SQL
query. Agent inference methods construct LLM
agents to self-refine, which utilizes the tool usage
ability of LLMs. MAC-SQL (Wang et al., 2023)
designs the refiner agent by executing the SQL

query and checking SQLite syntax errors. MAGIC
(Askari et al., 2024) designs three specialized
agents (manager, correction, and feedback agent)
to iteratively generate and refine a self-correction
guideline tailored to LLM mistakes. SQLFixAgent
(Cen et al., 2024) designs a three-agent collabora-
tion framework (SQLRefiner, SQLReviewer, and
QueryCrafter) to address syntax errors, semantic er-
rors, and runtime errors. Li et al. (Li and Xie, 2024)
initially present test cases for re-ranking, aiming to
select SQL queries with expected execution results.
The construction of test cases involves filtering sub-
tables from the database and using LLMs to predict
the execution results of SQL within the sub-tables.
However, the shortcoming of existing methods
is that their refinement process depends on LLM’s
semantic understanding of questions without ver-
ification. If the LLLM exhibits bias in understand-
ing the question semantics, these methods will en-
counter difficulties in rectifying SQL semantic er-
rors. Unlike them, our method constitutes a novel
self-refinement technique that introduces test cases
to verify the accuracy of the generated SQL. It pro-
vides valuable feedback to assist the LLM in recti-
fying its own semantic understanding bias towards
questions and self-refining its generated SQL.

3 TS-SQL

Current LLM-based Text-to-SQL methods strug-
gle to self-refine semantic errors in their gener-
ated SQL queries, primarily due to hallucination-
induced biases of LLMs in understanding question
semantics. In response to this issue, we propose
TS-SQL, whose objective is to design test cases
that verify the accuracy of the generated SQL and
provide valuable feedback based on the test results,
thus assisting the LLM in rectifying semantic un-
derstanding bias and enhancing Text-to-SQL per-
formance. Our hypothesis is that the test cases
generated by TS-SQL play a vital role in iden-
tifying SQL semantic errors, despite the fact
that they cannot be completely accurate in re-
flecting the semantic meaning of the original
question. Therefore, it poses a significant chal-
lenge to generate high-quality test cases that are
semantically aligned with the questions as much
as possible. This includes the necessity of ensuring
high coverage and non-duality of test data, as well
as the validity and maintainability of the test code.
As shown in Figure 2, TS-SQL designs two key
techniques to generate high-quality test cases for
Text-to-SQL self-refinement effectively:
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Figure 2: Overall framework of TS-SQL, encompass-
ing two core phases: test case generation and feedback-
driven SQL generation.

1. Test case generation phase. This phase
generates high-quality test cases for Text-to-SQL
through three-LLM-based agent collaboration. The
data generation agent generates test data based on
the question and database schema. The code gen-
eration agent and code inspection agent generate
the corresponding test code based on the test data,
which ensures the reliability of the test case through
multiple interactions of generation and inspection.

2. Feedback-driven SQL generation phase.
This phase utilizes execution feedback derived
from the test cases to improve the accuracy of SQL
generation. In the SQL generation session, existing
LLM-based Text-to-SQL methods are introduced
to provide generation guidelines and avoid poten-
tial errors. In the SQL revision session, the execu-
tion feedback is provided to the LLM for compari-
son with the generated SQL and the test case, thus
determining the correctness of the generated SQL.
This further enables the revision of the SQL in ac-
cordance with the logic of the test case, thereby
obtaining the desired solution to the question.

3.1 Test Case Generation Phase

To help LLMs correct semantic errors in SQL
queries, the generated test cases must align with the
requirements of the original natural language ques-
tion. However, Text-to-SQL test case generation
is unique because question answers cannot be di-
rectly derived from databases (unlike standard unit
tests). Besides, the generated SQL requires com-
plex logical reasoning based on the input question.
This leads to the difficulty in ensuring the accu-
racy of LLM in generating test cases since LLM is
not adept at completing complex multi-step reason-
ing operations (Strachan et al., 2024; Dziri et al.,
2024). In comparison to reasoning with natural
language text in a predefined format, the support
of code for control and data flow allows LLMs
to solve complex tasks with their pre-trained pro-
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Figure 3: Pipeline of the test case generation phase, in-
volving three collaborative LLM agents: data generation,
code generation, and code inspection.

gramming knowledge (Wang et al., 2024). There-
fore, we divide the test case generation for Text-
to-SQL into two principal components: generating
test data for the question and generating test code
for the test data. The former requires LLM to gen-
erate test data with Python code in the format of
pandas.dataframe. The latter requires LLM
to generate test code (Python code snippets) accord-
ing to the test data.

Specifically, the goal of the test case generation
phase is to generate test cases that can be used
to assess the correctness of SQL. This poses two
technical challenges. First, the generated test data
should encompass all data involved in the natural
language question (high coverage), and ensure that
the execution result of the test data corresponds to
the test code uniquely (non-duality). Second, the
generated test code should be straightforward to
test and comply with the original requirements of
the question (validity), as well as simple to read
and modify (maintainability). As shown in Figure
3, this phase comprises three LLM agents for data
generation, code generation, and code inspection.

3.1.1 Data generation agent

To ensure that the generated test data is high
coverage, we design relevant linking to obtain
the database schema associated with the question,
which consists of three parts (Figure 3):

1. Relevant column selection. We leverage the
LLM to extract keywords in the question and select
column names cols relevant to each keyword kw
from the database.

2. Relevant content value selection. For each
keyword kw in the question, we choose the top 5
database content values vals = {valy, ..., vals}
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with Levenshtein distance smaller than 0.3. Next,
we use OpenAl text-embedding-3-small model?® to
obtain the embedding vectors E'mby,,, Emb,g, of
each question keyword kw and database content
value val;, respectively. Then we calculate the dot
product between the embedding vectors and select
the highest-ranked content value.

vals = {val;|Lev(kw, val;) < 0.3} (1)
sel_val = val|maz(Embgy - Embyqrs > 0.6)  (2)

3. Relevant database description selection.
Similarly, we obtain the Euclidean (L2) distance of
the embedding vectors Emby,,, Embg.s for each
keyword kw and description des. Then we select
the highest-ranked database description.

sel_des = des|max(L2(Embyy, Embges)) 3)

To optimize the speed of the relevant linking
in huge databases, we index database content val-
ues using Locality Sensitive Hashing (LSH) and
retrieve database descriptions using the embedding
vector database (Talaei et al., 2024).

After the relevant linking, we provide the rele-
vant information, foreign keys, question, and ev-
idence as inputs to LLM, and output test data in
pandas.dataframe format. Finally, the result
is used to execute the gold SQL to check non-
duality, ensuring that the test data and the gold SQL
are aligned without nulls, errors, or other problems.

3.1.2 Code generation agent

As shown in Figure 3, the code generation agent
includes two parts to guarantee the validity of the
test code: generation and regeneration. During the
generation process, the agent accepts the question,
evidence, foreign keys, and test data (generated by
the data generation agent) as input and outputs a
test code for interaction with the code inspection
agent. During the regeneration process, the agent
receives the test code execution results and error
messages from the code inspection agent as supple-
mentary input and adjusts the test code to continue
interacting with the code inspection agent.
Previous research (Jiang et al., 2024; Du et al.,
2024) shows the potential of using diverse LLMs to
improve the accuracy of code generation. In light
of these findings, we introduce three LLMs to opti-
mize the generated test code as much as possible:
Gemini 1.5 pro, GPT-40, and Claude 3.5 sonnet.

Zhttps://platform.openai.com/docs/models/embeddings

3.1.3 Code inspection agent

As shown in Figure 3, the code inspection agent in-
cludes two parts to ensure the maintainability of the
test code: execution and voting. In the execution
process, the agent uses test data to evaluate the test
code output to ensure that the test code is executed
correctly and contains natural language comments
that facilitate comprehension of the code. If the
execution result is anomalous, the agent will out-
put the execution result and error message to the
code generation agent for further interaction. In the
voting process, the agent combines the test code
generation results of the three LLMs and selects
the test code with the same generation result as the
final result of the test case. If the generation results
are different, we default to output the test code of
Gemini 1.5 pro to mitigate probable bias.

It should be noted that we have tried two distinct
voting methods: majority voting and fine-tuned
LLM selection. Future work includes the explo-
ration to enhance the performance of test case gen-
eration through the design of a voting mechanism,
such as self-consistency (Wang et al., 2022), LLM-
based agent committee review (Zhang et al., 2024).
We will discuss the performance impact of the vot-
ing mechanisms in Section 4.3.2.

3.2 Feedback-driven SQL Generation Phase

Existing self-refinement techniques for LLM-based
Text-to-SQL only provide coarse-grained feedback,
which hinders LLMs from identifying the root
cause of SQL errors, thus necessitating a novel test
case-driven self-refinement approach. The techni-
cal challenge is to determine how the test cases can
be used to provide information that is genuinely
useful for SQL self-refinement. Although the gener-
ated test cases can express the semantic information
correctly, there is no guarantee that the SQL gener-
ated by the same LLM will pass the test case in the
actual execution. This discrepancy between the test
case generation and the SQL generation highlights
the different aspects of the LLM’s capabilities in
code generation.

To overcome this obstacle, we combine the test
case verification logic and relevant information as
a supplement to improve the generation-execution-
revision framework. As shown in Figure 2, the
feedback-driven SQL generation phase consists of
2 primary sessions: SQL generation and SQL re-
vision. Algorithm 1 shows the overall workflow.
First, we prompt the LLM to generate an initial
SQL based on the question, evidence, and database
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Algorithm 1: Feedback-driven SQL Generation

Input:

Question, ¢; Evidence, e;

Database schema, D.S; Foreign keys, fk;
Test case, T'C' = {data, code}.

Output:

Result SQL, SQLycs.

SQL;in; < Generate(q,e, DS, fk);
for each i € [1, max_interation = 3] do
TCins < Ezecute(SQLini|data);
TClode < Ezecute(code|data);
if TC”LZ == chodc then

SQLT‘SS — SQLlnls

break;

B Y I N I

else

9 Feedback +

{SQL’LTw? TCini: COdez TCcode};
10 SQLini +

Revise(q, e, DS, fk, Feedback);

11 return SQLyes;

schema (step 1, Appendix A.1). Next, we execute
the generated SQL and test code on the test data to
obtain the SQL execution result and the test case
result, respectively (step 2-4). If the results are the
same, it will be regarded as the final output (step
5-7). Otherwise, we start the SQL revision session
by integrating the test code, test case result, initial
SQL query, and SQL execution result as feedback,
which prompts the LLM to refine semantic errors in
the generated SQL based on the comparison results
and the logic of the test code (step 8-11, Appendix
A.2). Such process is repeated until the SQL execu-
tion result is the same as the test case result or the
number of revisions reaches the upper limit.

It’s important to note that there is no potential
risk of information leakage in this phase. As shown
in Appendix A.1 and A.2, the information provided
to the LLM during the feedback-driven SQL self-
refinement is entirely dependent on the database
schema and regenerated test data samples, thereby
ensuring that no potentially sensitive information
from the original database is exposed.

4 Evaluation

We utilize two datasets for the experiments: Spi-
der (Yu et al., 2018) and BIRD (Li et al., 2024).
The evaluation metric is execution accuracy (EX),
which judges the correctness of the predicted SQL
by comparing their execution results with those of
the gold (ground-truth) SQL. Further details are
presented in Appendix B. Specifically, we focus on
the following research questions (RQs):

RQO: How effective is TS-SQL in verifying the

correctness of gold SQL of existing benchmarks?
RQ1: What is the effectiveness of TS-SQL com-
pared with state-of-the-art Text-to-SQL baselines?
RQ2: Does each main component in TS-SQL
contribute to the overall effectiveness?
RQ3: What is the advantage of TS-SQL com-
pared with other self-refinement methods?

4.1 Benchmark Error Checking (RQ0)

To verify the error-checking ability of TS-SQL,
we first apply our method to the Spider dev set to
examine the gold SQL errors. As shown in Table
1, manual analysis shows that TS-SQL examines
131 (12.67%) incorrect gold SQL queries with 120
correct and 11 wrong test cases, consistent with
recent findings that Text-to-SQL benchmarks of-
ten lack rigor in complex reasoning tasks (Zheng
et al., 2024). According to detailed case studies in
Appendix C, the most common errors detected by
TS-SQL include wrong values (32.5%), wrong se-
mantic logic (21.7%), and data type errors (18.3%).
For complex SQL benchmarks, we also conduct
manual checks on the first three databases of the
BIRD development set based on the results of Sec-
tion 4.2. Table 1 reveals that TS-SQL examines 7,
17, and 22 gold SQL errors, separately. Accord-
ing to Figure 14 in Appendix E, the distribution
of the detected common error types is slightly dif-
ferent from that of the Spider-dev set, including
table join errors, wrong semantic logic, and wrong
selected columns. In addition, the error distribution
of each database in the BIRD-dev set varies from
each other. For example, the table join error and the
wrong semantic logic error exist in the ‘financial’
and ‘toxicology’ databases, while they do not occur
in the ‘california_schools’ database. In general, T'S-
SQL can help identify gold SQL errors in existing
benchmarks, confirming the validity of the gener-
ated test cases and its error-checking effectiveness.

Test Case ‘ right ‘ wrong ‘
Gold SQL wrong | wrong
SpiderDev | 120 | 11 | 131/1034
Bird | schools ‘ 2 ‘ 789
D&V | “fnancial | 16 | 1 | 177106
| toxicology | 21 | 1 | 22/145

Table 1: Statistics on reasons for gold SQL failing TS-
SQL’s test cases (Spider-dev and BIRD-dev subsets,
including counts of correct/wrong test cases).

We further provide the modified Spider-dev
dataset with a more rigorous gold SQL standard by
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correcting the above gold SQL errors of the Spider-
dev set. Table 2 shows that TS-SQL achieves an
EX of 88.88% on the modified Spider-dev set, out-
performing both DIN-SQL (Pourreza and Rafiei,
2024) and MAC-SQL (Wang et al., 2023). It should
be noted that the reason why Li et al. (Li and Xie,
2024) have no results is that it is a closed-source
LLM-based method that obtains test data by ran-
dom selection from the original database and di-
rectly infers the expected output with the question
and test data. Different from this test case-based
research, TS-SQL constructs the test case by gener-
ating test data and test code, which supports control
flow and data flow to help LLM handle multi-step
reasoning tasks based on pre-trained programming
knowledge (Wang et al., 2024). Therefore, TS-SQL
can check the gold SQL error and perform better
in SQL self-refinement. In Appendix D, we will
analyze why the EX of MAC-SQL and DIN-SQL
drop on the modified Spider-dev set. In Appendix
F, we will also provide the results on the ordinary
and modified datasets of the first three databases in
the BIRD-dev set.

Spider Dev
Method EX (Original) EX (Modified)
GPT-4o0 75.92 77.08
MAC-SQL 75.44 75.05
DIN-SQL 81.72 80.75
(Li and Xie, 2024) 80.31 -
TS-SQL 77.76 88.88

Table 2: Execution accuracy (EX) of different methods
on the original vs. modified Spider-dev sets (TS-SQL
outperforms baselines on the refined benchmark).

4.2 Main Results (RQ1)

To validate the effectiveness of TS-SQL for SQL
generation, we conduct experiments using the
BIRD benchmark. As shown in Table 3, TS-SQL
achieves an EX score of 67.60% with majority vot-
ing and 70.93% with fine-tuned LLM for test code
selection on the BIRD development set, verifying
the validity of test case for SQL self-refinement.
On the BIRD hold-out test set, TS-SQL achieves
69.20%, demonstrating competitive performance
over state-of-the-art Text-to-SQL baselines.

4.3 Ablation Studies (RQ2)

4.3.1 Effectiveness of agents

To evaluate the necessity of each agent in TS-SQL,
we conduct ablation experiments. Without the data
generation agent (w/o DG), we provide the origi-
nal database schema as input to support test code

Method EX (Dev) EX (Test)
non-fine-tuned methods
CHESSr+cG+UT 68.31 71.10
TS-SQL (majority voting) 67.60 67.79
E-SQL + GPT-40 65.58 66.29
MCS-SQL + GPT-4 63.36 65.45
MAC-SQL + GPT4 57.56 59.59
DAIL-SQL + GPT-4 54.76 57.41
DIN-SQL + GPT-4 50.72 55.90
fine-tuned methods
XiYan-SQL 73.34 75.63
CHASE-SQL + Gemini 74.46 74.79
TS-SQL (fine-tuned selection) 70.93 69.20
CHESSr+ss+ca 65.00 66.69
CodeS-15B + SQLFixAgent - 64.62
Dubo-SQL, vl 59.71 60.71
DTS-SQL + DeepSeek 7B 55.80 60.31

Table 3: Execution accuracy (EX) of TS-SQL and state-
of-the-art (SOTA) baselines on BIRD-dev and BIRD-
test (TS-SQL achieves 70.93%/69.20% with fine-tuned
test code selection).

generation. Without the code inspection agent (w/o
CI), the generated test code is used directly without
inspection. Without the code generation agent (w/o
CG), the LLM directly generates test cases based
on the data and semantic reasoning. In the extreme
case where all agents are removed (w/o all), test
case generation becomes infeasible, relying solely
on the LLM’s SQL generation capabilities.

As shown in Table 4, removing the data genera-
tion, code inspection, and code generation agents
decreases the EX of the generated SQL by 10.7%,
5.2%, and 41.5%, respectively, proving that each
agent makes a significant contribution. The data
generation agent provides high coverage and non-
duality test data, which helps the LLM better un-
derstand the specific meanings of database tables
and columns. The code inspection agent plays a
pivotal role in ensuring the validity of the test code,
and the code generation agent facilitates the LLM’s
ability to perform logical and numerical operations,
significantly improving the test case’s accuracy.

Method Simple Mod. Chall. All
TS-SQL 7535 64.73 6250 70.93

w/o DG 6551 52.04 5278 60.23(]10.7)
w/o CI 71.46 5849 52.08 65.71(] 5.2)
w/o CG 3146  26.67 25.69 29.47(]41.5)
w/o all 63.68 50.54 4722  58.15(]12.8)

Table 4: Ablation studies after removing each agent
on the BIRD dev set. For brevity, "Mod." stands for
"Moderate" while "Chall." denotes "Challenging".

To further assess the impact of test data gener-
ated by the data generation agent, we conduct com-
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parison experiments by replacing the test data with
1/10 of the data values randomly sampled from
the original databases. As shown in Figure 4, the
EX score of TS-SQL reaches 61.99% on the BIRD
development set, which decreases by 8.94% after
replacing the test data. This demonstrates the ne-
cessity of test data for SQL self-refinement because
the generated test data owns strong relevance to the
original questions, which improves their utility in
guiding the test case construction and test-driven
self-refinement.

4.4 Discussion of TS-SQL (RQ3)

4.4.1 Self-refine performance comparison

To highlight the strength of test case feedback-
driven self-refinement, we compare self-refinement
techniques of three methods with TS-SQL to cor-
rect the SQL generated by zero-shot Gemini 1.5
pro. As shown in Table 5, TS-SQL provides a clear
correctness criterion with highly readable and fine-
grained test cases, resulting in a significant 12.8%
improvement, outperforming other self-refinement
methods by 6% at least.

100
[ with sampled original data .
wl s E with tost data Method Simple Mod. Chall. All
6822 7093 Gemini 1.5Pro  63.68  50.54 4722 58.15
S ol ] 64.73 6250  61.99 + DIN-SQL 65.30  52.69 5278  60.30(T 2.2)
= 54.41 + MAC-SQL 67.68 5656 5278  62.91(1 4.8)
2 ge.33 + CHESS 7070 56.99 5347  64.93(1 6.8)
Z 47 +TS-SQL 7535 6473  62.50  70.93(112.8)
204 DIN-SQL 67.14 49.89 45.14 59.84
+ TS-SQL 7557 6430 6528  71.19(711.4)
0 — . MAC-SQL 69.19 4989 5139 61.67
Simple - Moderate  Challenging Al +TS-SQL 7514 6387 6389  70.66( 9.0)
, ) _ CHESS.ssica 7092 5376 5347  64.08
Figure 4: Performance comparison between using test +TS-SQL 7589  65.16 63.89 7151} 7.4)
data and randomly sampled original data. OpenSearch-v2 7405 6215 6L11 6923
+ TS-SQL 75.89  64.09 6458 71.25(1 2.0)

4.3.2 Effectiveness of voting mechanisms

To analyze the contribution of different voting
mechanisms to the accuracy of test cases, we com-
pare test cases generated by three different LLMs,
majority voting, and fine-tuned LLM selection.

As shown in Figure 5, the accuracy of test cases
with majority voting and fine-tuned LLM selection
improves by at least 1.63% and 5.74%, respectively.
Clearly, utilizing these two voting mechanisms im-
proves the accuracy of test cases and correspond-
ing SQL queries. However, the highest test case
accuracy of the voting mechanism only reaches
71.32%, which limits TS-SQL in further improv-
ing SQL EX. This highlights the potential of test
cases in SQL self-refinement, and we anticipate
further research to reduce this huge gap between
the LLM-generated and manual test cases.

All 3 models selection
All 3 models vote
Gemini 1.5 pro
Claude 3.5 Sonnet

GPT-40

[ ]

Test case Acc

[ SQLEX

[7132%

7093%]

[67.21%

67.60%)

165.58%

66.43% ‘

[64.15%

64.28%]

162.19%

64.80%]

80

60

40

60

Percentage (%)

80

Figure 5: Test case accuracy and SQL EX on the BIRD
dev set with single LLM and voting mechanisms.

Table 5: Comparison across self-refinement methods
and applicability of TS-SQL on the BIRD dev set.

4.4.2 Robustness and applicability

To assess the robustness and applicability of TS-
SQL across different state-of-the-art (SOTA) Text-
to-SQL methods, we apply the generated test cases
to correct the SQL generated by non-finetuned
(DIN-SQL, MAC-SQL, CHESS) and finetuned
baselines (OpenSearchSQL-v2 (Xie et al., 2025)).
The evaluation results on the BIRD dev set are
also presented in Table 5. In Table 6 and Appendix
G, we further evaluate the token cost to compare
the inference consumption between TS-SQL and
other methods with similar performance. For TS-
SQL, the token cost includes all steps of test case
generation and SQL self-refinement (provided in
Appendix A). For other methods, the token cost is
calculated based on the prompt templates provided
in their papers.

Table 5 and 6 indicate that TS-SQL can stably
improve the EX of various Text-to-SQL methods
to around 71%, with a smaller token cost of 12.8%
at least. Among TS-SQL’s all successful seman-
tic and syntactic error corrections towards DIN-
SQL, MAC-SQL, CHESS, and OpenSearchSQL-
v2 shown in Table 5, semantic error correction
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leads to performance improvements of 8.2%, 9.1%,
6.9%, and 1.5%, respectively. These results show-
case TS-SQL’s robustness and broad applicability
in correcting SQL semantic errors.

Method Token Cost per SQL Query Growth Rate
TS-SQL 2,369 -
CHESS 2,672 112.8%
E-SQL 3,237 136.6%

Table 6: Token cost of generating a single SQL query
across methods with similar performance.

4.4.3 Boundaries of self-refining ability

On the BIRD development set, our method success-
fully refines 17.9% (275) of the generated SQL and
fails 5.14% (79) of them. To further acknowledge
the borderline of TS-SQL in SQL self-refinement,
we analyze the reason for the successful and mis-
leading correction from one-tenth of the above 354
cases, including 28 successful and 8 misleading
samples. As shown in Figure 6, TS-SQL uses cor-
rect test cases to refine five types of SQL seman-
tic errors and one type of syntactic error. Mean-
while, TS-SQL causes two table selection errors
with wrong test cases. These results indicate that
TS-SQL is good at refining the incorrect filtering
condition and incorrect column errors, while it may
encounter difficulties in refining incorrect table er-
rors. It should be noted that, despite using correct
test cases, TS-SQL still leads to two deduplica-
tion errors because the question description is am-
biguous about the need to eliminate duplication,
affecting the self-refinement results of TS-SQL.
Appendix H shows typical case studies in detail.

T Correct — Wrong [ Wrong — Correct

Syntax error 0 :l 1
0 2

Incorrect filter condition 0 ‘ 6

String processing error

Incorrect column selection 0 ‘ 6

Incorrect table selection 2| ‘ 4

Deduplication error 2 ‘ 5

Others 41 ‘ 5

4 2 0 2 4 6
Number of cases

Figure 6: SQL error type of TS-SQL’s successful vs
misleading correction on the sampled BIRD-dev set.

5 Conclusion

In this paper, we propose TS-SQL (Test-driven Self-
refinement for Text-to-SQL), a novel framework
that uses automatically generated test cases to help
LLMs correct semantic understanding biases and
fix SQL semantic errors. Extensive experiments on

the Spider and BIRD benchmark show the superior
performance of TS-SQL compared to other LLM-
based Text-to-SQL self-refinement methods. The
modified Spider-dev set further verifies the unique
advantage of TS-SQL in identifying incorrect Text-
to-SQL benchmark instances and generating more
rigorous SQL results.

In terms of practical applications, TS-SQL has
the potential to help deployment of Text-to-SQL
in real-world use cases. For example, financial an-
alysts use Text-to-SQL to query transaction data
(e.g., "2024 Q1 credit card fraud rates"). TS-SQL
can auto-generate test cases to verify SQL correct-
ness (e.g., test data for "fraud vs. non-fraud" labels)
without exposing sensitive transaction data (test
data is synthetic), reducing audit time (no manual
SQL checks) and complies with data privacy regu-
lations (e.g., GDPR). In healthcare, people can use
Text-to-SQL to query patient lab data (e.g., "1998
male patients’ monthly lab tests"). TS-SQL’s syn-
thetic test data avoids leaking real patient informa-
tion, while test code ensures SQL aligns with medi-
cal logic (e.g., "monthly average" vs. AVG()), thus
balancing usability (no manual SQL verification)
and data security (critical for HIPAA compliance).

Limitations

Due to the performance upper bound of existing
large language models (LLMs), the accuracy of the
generated test cases severely limits our method’s
performance in SQL self-refinement. This further
limits the performance gains to apply our method
across all baselines on the leaderboard of the BIRD
benchmark. Although we have tried majority vot-
ing and fine-tuning techniques to obtain more ac-
curate test cases, the huge gap between the LLM-
generated and manual test cases still remains. More-
over, the generated test cases of our method have
not considered performance issues, such as the as-
sessment of execution time. We anticipate further
research to provide valuable insights, such as inte-
grating various LLMs for test case generation and
exploring different methods for test case selection.

Ethics Statement

Our method utilizes several closed-source large
language models (LLMs) to conduct various exper-
iments, including GPT-40, Claude 3.5 sonnet, and
Gemini 1.5 pro. It’s noteworthy that LLMs depend
on substantial computing power, causing electric
power consumption and carbon dioxide emissions.
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A Prompts
A.1 SQL generation prompt

As an SQL expert, given the database, the natural language questions, please using
valid SQLite and understading External Knowledge, answer the question for the tables
provided in database. Please keep the result sgl in a sgl code block wrapped by ~°°

sqgl\n , and is the last sgl in the response.
Database: CREATE TABLE

Question:
{question}

External Knowledge:

{evidence}

A.2  SQL revision prompt

As an SQL expert, given the database, the natural language query problem, the SQL

generated by the model corresponding to the natural language problem, as well as the
feedback obtained by querying the database: the expected result data generated by

Pandas code and the generated SQL's query result.

Please analyze the issues with the generated SQL, then try to revise or regenerate

an SQL statement according to the logic in the Pandas code provided to answer the

natural language query problem. Please keep the result sgl in a sgl code block
wrapped by 77

sgl\n 77, and is the last sgl in the response.
Database: CREATE TABLE

Question:
{question}

External Knowledge:
{evidence}

Pandas code:

" python
{test_code}

Generated SQL:
{sgl_generated}

Expected result data generated by Pandas code:
{expected_result}

Generated SQL execute result data:
{current_result}

Generated SQL test result:
{Error message}

Let's think step by step.

A.3 Test data generation prompt

Generate Python code for building DataFrames with data.

;;Ilow the following format.

Instruction: Instructions, assumptions and Requirements

Example: An example of how to complete this task

Dataframes: DataFrames, with name, column name and data value examples

Foreign Keys: Foreign keys of DataFrames, used for merge
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Samples Of Dataframes: Samples of DataFrames
Question: Natural language gestion

Knowledge: external knowledge evidence required to map the natural language
instructions into counterpart database values.

Reasoning: Let's think step by step in order to produce the python_code. We

Python Code: Python code for building DataFrames

Instruction:

x**Rolexx: As a tester, your task is to design synthetic test data for the following

natural language question on the given dataframe and External Knowledge (if any) .
- You should

Example:
{one example}

Dataframes:
{Original dataframes}

Foreign Keys:
{Foreign Keys}

Samples Of Dataframes:
{Original data samples}

Question:
{question}

Knowledge:
{evidence}

Reasoning: Let's think step by step in order to

A.4 Test code generation prompt

Transform a natural language query into a Pandas query.

Follow the following format.

Instruction: Instructions, assumptions and Requirements

Example: An example of how to complete this task

Dataframes: DataFrames, with name, column name and data value examples
Foreign Keys: Foreign keys of DataFrames, used for merge

Db Id: Database name used to indicate the domain

Question: Natural language gestion

Knowledge: external knowledge evidence required to map the natural language
instructions into counterpart database values.

Reasoning: Let's think step by step in order to produce the pandas_code. We

Pandas Code: Pandas code for query data

Instruction:
You are a data science expert. Your task is to understand external knowledge and
generate valid pandas code to query data from existing dataframes based on the needs

2876



of the problem. Before generating the final code, think step by step on how to
write the code.

Guideline:

1. The Pandas library has been imported as “pd” . You can reference it directly.
2. The DataFrames are loaded and available for use.

Tip:

1. When you need to find the highest or lowest values based on a certain condition,
using “sort_values ()~ followed by “head() ™ or “idxmax ()~ 1s prefered over finding
the data exact matches the value found by using "max (%) /" min(x) .

2. If the code needs “sort_values ()~ to sort the results, you should only include
the column(s) used for sorting in the “result®™ DataFrame if the question
specifically asks for them. Otherwise, omit these columns from the the “result-”
DataFrame.

3.

Example:
{one example}

Dataframes:
{Dataframes with data samples}

Foreign Keys:
{Foreign Keys}

Question:
{question}

Knowledge:
{evidence}

Reasoning: Let's think step by step in order to

A.5 Test code inspection prompt

Refine and correct the generated Pandas code based on error messages or query result

Follow the following format.

Instruction: Instructions, assumptions and Requirements

Dataframes: DataFrames, with name, column name and data value examples
Foreign Keys: Foreign keys of DataFrames, used for merge

Question: Natural language gestion

Knowledge: external knowledge evidence required to map the natural language
instructions into counterpart database values.

Previous Code: Previously Generated Code

Query Result: Query result obtained from executing previously generated code (None
if any errors occur)

Error Messasge: Error message (if any)

Reasoning: Let's think step by step in order to produce the revised_pandas_code. We

Revised Pandas Code: Revised Pandas code for query data

Instruction:
You are a professional Python programming assistant. Understanding External
Knowledge (if any), revise “Previously Generated Code” based on “Error message  or
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Query result™. If "Error message  1s provided, it means that the “Previously
Generated Code”™ has a problem and cannot be executed, and you need to modify the
previous code. If “Query result®™ is provided, you need to check whether the °
Previously Generated Code”™ and its “Query result™ meet the requirements of the
problem. Revise the previous code as needed, ensuring to the following xxStandards
for revisionxx and modify the previous code as needed.
- Assumptions:
— The Pandas library has been imported as “pd”. You can reference it directly.
— The DataFrames are loaded and available for use.
- Requirements for pandas code:
- Use only Pandas operations for the solution.
- Store the answer in a DataFrame named “result’.
- Standards for revision
1. x*xKnowledge Utilizationx*x:

Dataframes:
{Dataframes with data samples}

Foreign Keys:
{Foreign Keys}

Question:
{question}

Knowledge:
{evidence}

Previous Code:
{Previous test code}

Query Result:
{query_result}

Error Messasge:
{Error message}

Reasoning: Let's think step by step in order to

A.6 Test code selection prompt

system_prompt:

Instruction:

Given the Dataframes, Knowledge and Question, there are two candidate pandas queries
along with their Exceution result. There 1is correct one and incorrect one, compare

the two candidate answers, analyze the differences of the query and the result.

Based on the Question and the provided Dataframes info, choose the correct one.

user_prompt:

Ak kA hh kA hhkkhhkrhkhkhkrhkhkhkkhkk*x*
Dataframes:
{DF_STR}

Foreign keys:

{FK_STR}
khkkhkhkhkkhkhkhkhkkhkkhhkhkhkkhkhkhrkhkkhkhkhrhkhkxx
Question:

{QUESTION}

Knowledge:

{HINT}
kkhkkhkhkhkkhkkhkhkhkkhkkhhkhkhkkhkhkhrkhkhkhkhrhkhkxx
Candidate A:

T python
{CANDIDATE_A_QUERY}
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Execution result:
{CANDIDATE_A_RESULT}
LR S I I I I b I b b b i i b b b I I b b i
Candidate B:

" “python
{CANDIDATE_B_QUERY}

Execution result:
{CANDIDATE_B_RESULT}

Just output the correct candidate “<answer> A </answer>" or ~<answer> B </answer>".

B Experiment Settings
B.1 Datasets

Spider (Yu et al., 2018) is a large-scale, complex, and cross-domain semantic parsing and Text-to-SQL
dataset annotated by college students. It consists of 10,181 questions and 5,693 unique complex SQL
queries on 200 databases with multiple tables, covering 138 different domains.

BIRD (Li et al., 2024) is a pioneering, cross-domain dataset that examines the impact of extensive
database contents on text-to-SQL parsing. The BIRD dataset consists of 12,751 text-to-SQL pairs and 95
databases, with a total size of 33.4 GB, covering 37 professional domains. It introduces new challenges,
such as dirty and noisy database values, external knowledge grounding between natural language questions
and database values, and SQL efficiency, particularly when dealing with massive databases.

B.2 Evaluation metrics

We use the official metric, EXecution Accuracy(EX), as the primary measure to assess the effectiveness
of our method. EX evaluates the correctness of the predicted SQL queries by comparing their execution
results with those of the ground-truth SQLs.

B.3 Models

SQL Generation and Revision: Unless otherwise specified, we utilize Gemini 1.5 Pro for both the
generation and revision of SQL queries.

Test case Generation: For test data generation, we used the text-embedding-3-small model to get the
relevant value in the database and the text-embedding-3-large model to calculate embedding similarity
and retrieve relevant context. Additionally, Gemini 1.5 Pro, GPT-40, and Claude 3.5 Sonnet are employed
for the generation and inspection of test cases.

B.4 Hyperparameters

SQL Generation and Revision: The temperature is set to 0, no few-shots demonstrations are provided, and
the maximum revision number is set to 5.

Test Case Generation: The temperature is set to 0, a 1-shot is provided, and the maximum number of
refinements is set to 5. In addition, as the number of code inspection rounds increases, the temperature
will gradually increase by 0.01.
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C Incorrect and Modified Gold SQL for each Error Type of Spider-dev Set

Figure 7 illustrates the proportional distribution of different gold SQL errors within the original Spider-dev
set. There are 6 types of errors, where wrong values (32.5%), wrong semantic logic (21.7%), and data
type errors (18.3%) rank the top three.

Error caused by data type Other

Wrong column selected
Wrong aggregation
No deduplication

Wrong value

Wrong semantic logic

Figure 7: Detected gold SQL error type of Spider-dev set.

1. Wrong value. The data value used in the SQL filter condition does not match the data stored in the
database. An example is shown in Figure 8.

Question What are airport names at City 'Aberdeen'?

SELECT AirportName FROM AIRPORTS WHERE City = "Aberdeen”

Original

Query result (X): Empty

result = airports_df[airports_df['City'].str.strip() ==
Test code Aberdeen'] [['AirportName']]

Query result (v): [2 rows x 1 column]

SELECT AirportName FROM airports WHERE TRIM(City) =
Modified Aberdeen';

Query result (v): [2 rows x 1 column]

In this database, the values for the "City" field are inconsistently
Explanation formatted, often with extra spaces on either side. For example,
'Aberdeen' is stored as 'Aberdeen ' in the database.

SELECT AirportName FROM airports WHERE City = 'Aberdeen'

DIN-SQL
Query result (X): Empty

SELECT "AirportName® FROM airports WHERE “City = 'Aberdeen';
MAC-SQL

Query result (X): Empty

Figure 8: Wrong value example. Both DIN-SQL and MAC-SQL fail to correctly handle the data value in the filtering
condition, resulting in empty query outputs.
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2. Wrong semantic logic. The SQL appears to understand the semantics of the question, but the logic
used to write the SQL is incorrect. An example is shown in Figure 9.

find 1d of the tv channels that from the countries where have more

uestion
Q than two tv channels.

Query result (X):

id

SELECT id FROM tv_channel

Original - Group BY country HAVING count () > 2

700

# Count TV channels per country
country_counts = TV_Channel_df['Country'].value_counts()

# Filter countries with more than two channels
countries_with_more_than_two = country_counts[country_counts
Test code > 2].index

# Select IDs of TV channels from these countries

result =

TV_Channel_df [TV_Channel_df['Country'].isin(countries_with_mo
re_than_two)][['id']]

SELECT t.id FROM TV_Channel t WHERE )

t.Country IN ( Query result (V):

SELECT Country 12 rows x 1 col
Modified FROM TV_Channel ”

GROUP BY Country

HAVING COUNT(id) > 2 700

);

The original query selects the id column but aggregates by country,
returning only one TV channel per country, which is a logical error.
The correct approach is to first identify the qualifying countries and
then retrieve all TV channels for those countries.

Explanation

Figure 9: Wrong semantic logic.
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3. Errors caused by data type issues. SQL does not take into account the special data types of some
fields in the database, which causes problems. An example is shown in Figure 10.

. What is the model of the car with the smallest amount of
Question
horsepower?
SELECT T1.Model Query result (X):
. . FROM CAR_NAMES AS T1 JOIN CARS_DATA AS T2 Model
Original ON T1.MakeId = T2.Id oce

ORDER BY T2.horsepower ASC LIMIT 1; ame

# Convert 'Horsepower' to numeric, coercing errors to NaN

cars_data_df['Horsepower'] =

pd.to_numeric(cars_data_df['Horsepower'], errors='coerce')

# Merge cars_data_df with car_names_df

merged_df = cars_data_df.merge(car_names_df, left_on='Id',

Test code right_on="'MakeId")

# Find the index of the car with the smallest horsepower

min_hp_index = merged_df['Horsepower'].idxmin()

# Select the model of the car with the smallest horsepower

result = merged_df.loc[[min_hp_index], ['Model']l]

SELECT ml.Model FROM cars_data cd

JOIN car_names cn ON cd.Id = cn.Makeld

JOIN model_list ml ON cn.Model = ml.Model

WHERE CAST(NULLIF(cd.Horsepower, '') AS

Modified INTEGER) = ( Query result (V):
odiie SELECT MIN(CAST(NULLIF(Horsepower, ‘') AS

INTEGER) ) Model

FROM cars_data volkswagen
WHERE Horsepower GLOB '*x[0-9]x')
LIMIT 1;
1. The original query returns a "minimum" horsepower of
amc), while the modified query returns 46(volkswagen),
100 hile th dified query returns 46(volkswag
indicating that the original query is indeed incorrect.
. 2. Horsepower is stored as TEXT, with some values being non-
Explanation T
numeric like "null".

3. The original query incorrectly sorts horsepower as TEXT, while
the modified query filters and converts values before sorting to
find the true minimum.

SELECT T1.Model Query result (X):

FROM car_names AS T1 JOIN cars_data AS T2

DIN-SQL oy 71 Makeld = T2.1d Model

ORDER BY T2.Horsepower LIMIT 1 ame

SELECT cn. Model® Query result (X):

FROM cars_data AS cd JOIN car_names AS cn

MAC-SQL ON cd. Id" = cn. MakeId" Model

ORDER BY cd. Horsepower™ ASC LIMIT 1; amc

Figure 10: Errors caused by data type example. Both DIN-SQL and MAC-SQL fail to handle the data types stored
in the database correctly, resulting in a query result where the model found does not have the minimum horsepower.

2882



4. Wrong column selected. The SQL query selects too many, too few, or incorrect columns. An example
is shown in Figure 11.

Question List the name, date and result of each battle.

Original  SELECT name , date FROM battle Query result (X):
8 rows x 2 cols
Test code result = battle_df[['name', 'date', 'result'l]
Query result (V):

Modified SELECT name, date, result FROM battle;

8 rows x 3 cols

Explanation The original query omits the result column required in the question.

Figure 11: Wrong column selected.

5. Wrong aggregation. The error in the SQL lies in the GROUP BY statement. An example is shown in
Figure 12.

Question Find the average ranking for each player and their first name.
SELECT avg(ranking) , T1l.first_name Query result (X):
Original FROM players AS T1 JOIN rankings AS T2 1580 rows x 2 cols
g ON Tl.player_id = T2.player_id avg(ranking) | first.name
GROUP BY T1.first_name
# Calculate average ranking for each player
avg_rankings =
rankings_df.groupby('player_id') ['ranking'].mean().reset_inde
x()
# Merge with players_df to get first names
Test code result = pd.merge(avg_rankings, players_df,
left_on='player_id', right_on='player_id")
# Select required columns and rename for clarity
result = result[['first_name', 'ranking'l]]
result = result.rename(columns={'ranking': 'average_ranking'})
SELECT p.first_name, AVG(r.ranking) AS Query result (v):
average_ranking 2775 rows X 2 cols
Modified FROM players p JOIN rankings r
ON p. player_id =r. playe r_id first_name AVG(r.ranking)
GROUP BY p.player_id, p.first _name;
The first names of players may be duplicated. Aggregating by first
name in the original query would result in multiple players with the
Explanation same first name being grouped together, leading to errors in the
calculation. The correct query should include the primary key in the
aggregate fields.

Figure 12: Wrong aggregation.
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6. No deduplication. The SQL query does not remove duplicate data. An example is shown in Figure 13.

What are the names of the singers who performed in a concert in

uestion
Q 2014?
Query result (X):

SELECT T2.name 6 rows X 1 col
FROM singer_in_concert AS T1 -
JOIN singer AS T2

Original ON Tl.singer_id = T2.singer_id Timbaland
JOIN concert AS T3 Justin Brown
ON Tl1l.concert_id = T3.concert_id John Nizinik
WHERE T3.year = 2014 Justin Brown
# Step 1: Filter concerts held in 2014
concerts_2014 = concert_df[concert_df['Year'] == '2014']
# Step 2: Get concert IDs for 2014
concert_ids_2014 = concerts_2014['concert_ID']
# Step 3: Find singers who performed in these concerts
singers_in_2014_concerts =
singer_in_concert_df[singer_in_concert_df['concert_ID'].isin(
concert_ids_2014)]

Test code

# Step 4: Convert Singer_ID to int64 for merging
singers_in_2014_concerts['Singer_ID'] =
singers_in_2014_concerts['Singer_ID'].astype(int)

# Step 5: Merge to get singer names
singers_with_names = singers_in_2014_concerts.merge(singer_df,
on='Singer_ID"')

# Step 6: Select the required column
result = singers_with_names[['Name']]

SELECT DISTINCT s.Name Query result (v):
FROM concert c 5 rows x 1 col
JOIN singer_in_concert sic
Modified ON c.concert_ID = sic.concert_ID
JOIN singer s Timbaland
ON sic.Singer_ID = s.Singer_ID Justin Brown
WHERE c.Year = '2014';

Name

The original query lacks "DISTINCT," causing "Justin Brown" to

Explanation . ; .
xp 10 appear multiple times in the results.

Figure 13: No deduplication.

D Analysis of EX Decrease on the Modified Spider-dev Set for DIN-SQL and MAC-SQL

On our modified Spider dev dataset, we observe a decrease in the EX metric for both MAC-SQL and
DIN-SQL. We analyze the number and distribution of cases where these methods are marked as correct
on the original dataset but incorrect on the modified dataset. As shown in Table 7, the two main factors
causing this decrease are "Wrong Value" and "Error Caused by Data Type." We provide specific examples
for each of these causes to illustrate the issues, as shown in Figure 8 and Figure 10.

Method Total number of cases Wrong value Data type error  Others
DIN-SQL 57 52.6% 31.6% 15.8%
MAC-SQL 53 54.7% 28.3% 17.0%

Table 7: Performance variation of DIN-SQL and MAC-SQL between the ordinary and modified Spider-dev set.
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E Incorrect and Modified Gold SQL for each Error Type of the First Three Databases on
the BIRD-dev Set

Figure 14 illustrates the proportional distribution of different gold SQL errors within the first three
databases of the original BIRD development set. In the ‘california_schools’ database, the dominant error
type is "wrong filter condition," accounting for 42.9% of the errors, followed by "others" at 28.6%. Both
"formula calculation error" and "wrong column selected" contribute equally at 14.3%. In the ‘financial’
database, errors are more evenly distributed. "Table join error,” "no deduplication," "wrong semantic
logic," and "wrong filter condition" each make up 17.6% of the errors, while "wrong column selected"
and "others" are slightly lower at 11.8%. "Formula calculation error" is the least common at 5.9%. In the
‘toxicology’ database, the two leading error types are "table join error" and "wrong semantic logic," each
representing 31.8% of the total errors. "Wrong column selected” follows with 22.7%, while "wrong filter
condition" accounts for 9.1%, and "others" for only 4.5%.

These distributions highlight different error tendencies across databases, suggesting that database
characteristics influence the types of SQL errors most likely to occur.

non

california_schools financial toxicology

Error Types
Table join error
No deduplication
Formula calculation error

(7 cases)

Wrong semantic logic
Wrong filter condition
Wrong column selected
Others

JOOEA0D

Figure 14: Detected gold SQL error type of the first 3 databases on the BIRD-dev set.

1. Formula calculation error. Errors using the calculation formula. An example is shown in Figure 15.

What was the difference in the number of crimes committed in East
and North Bohemia in 1996?
Question (Difference in no. of committed crimes between 2 regions = Total
(Evidence)  no. of committed crimes in 1996 in north Bohemia - Total no. of
committed crimes in 1996 in east Bohemia. A3 refers to region.
Data about no. of committed crimes 1996 appears in A16)

SELECT SUM(IIF(A3 = 'east Bohemia', A16, 0)) Query result (X):
Original - SUM(IIF(A3 = 'north Bohemia', Al16, 0)) SUM(...)
FROM district

-17734

north_bohemia_crimes = district_df[district_df['A3'] ==

'north Bohemia'l['A16'].sum()

east_bohemia_crimes = district_df[district_df['A3'] == 'east
Test code Bohemia'] ['A16'].sum()

difference = north_bohemia_crimes - east_bohemia_crimes

result = pd.DataFrame({'difference': [differencel})

SELECT SUM(CASE WHEN A3 = 'north Bohemia' Query result (V):
. THEN A16 ELSE © END) — SUM(CASE WHEN A3 =
Modified 'east Bohemia' THEN A16 ELSE @ END) AS SUM(...)
difference FROM district; 17734

The SQL error is a formula calculation error: the subtraction order is
inverted, causing the result to be the negative of what’s expected.
The fix is to align the SQL with the problem’s definition by placing
the North Bohemia sum first in the subtraction.

Explanation

Figure 15: Formula calculation error.
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2. Table join error. Errors in selecting the appropriate fields or tables for joining. An example is shown
in Figure 16.

List all the elements with double bond, consisted in molecule
TRO024. (double bond refers to bond type = '='; element = 'cl' means
Chlorine; element = 'c' means ...)

Question
(Evidence)

Query result (X):

SELECT Tl.element 76 rows x 1 col

FROM atom AS T1 INNER JOIN bond AS T2

Original ON T1l.molecule_id = T2.molecule_id element
WHERE T1l.molecule_id = 'TR024’
AND T2.bond_type = '='

c

filtered_bond = bond_df[(bond_df[‘molecule_id’] == ‘TRO24’) &
(bond_df['bond_type']l == '=')]

merged_df = pd.merge(
filtered_bond, connected_df, on='bond_id’)

Test code elementl = pd.merge(merged_df, atom_df, left_on='atom_id’,

right_on='atom_id', suffixes=('_bond', '_atom'))[['element’]]

element2 = pd.merge(merged_df, atom_df, left_on='atom_id2’,

right_on='atom_id', suffixes=('_bond', '_atom'))[['element']]

result = pd.concat([elementl, element2]).drop_duplicates()

SELECT Tl.element Query result (v):

FROM atom AS T1 INNER JOIN connected AS T3 4 1 1

ON Tl.atom_id = T3.atom_id LOWSRNC

Modified INNER JOIN bond AS T2 ON T3.bond_id = element

T2.bond_id B

WHERE T2.molecule_id = 'TR@24’

AND T2.bond_type = '=‘;

The element and atom tables are linked through the connected table.

. However, the original gold SQL, by joining on molecule_id

Explanation ’ g & QL, by j £ o SCuRe-1G,

inadvertently retrieves all atoms of the TRe24 molecule instead of
those specifically connected by double bonds.

Figure 16: Table join error.

3. No deduplication. (Figure 13)

4. Wrong semantic logic. (Figure 9)

5. Wrong filter condition. (Figure 17)
6. Wrong column selected. (Figure 11)

F Full Results for each of the First Three Databases on the Original and Modified
BIRD-dev Set

Method California_schools Financial Toxicology Sum
Original Modified | Original Modified | Original Modified | Original Modified
GPT-40 35.96 38.20 46.23 48.11 57.93 64.83 48.53 52.65

MAC-SQL 51.69 55.06 59.43 68.87 55.86 63.45 55.88 62.94
DIN-SQL 50.56 56.18 63.21 67.92 59.31 68.28 58.24 65.00
TS-SQL 59.55 65.17 69.81 84.91 68.97 83.45 66.76 79.12

Table 8: Performance of the first three databases on the original and modified BIRD-dev set.

G Comparison of LLM’s Token Consumption

To gain deeper insights into the token consumption of TS-SQL compared to other methods, we conduct a
token cost analysis against CHESS and E-SQL, which explicitly present their prompt templates in their
papers, allowing for a direct and transparent comparison. Table 9 shows the total number of tokens per
query for each method. The results indicate that TS-SQL demonstrates higher efficiency in token usage,
with an average of 2,369 tokens per query, which is significantly lower than E-SQL’s 3,237 tokens and
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CHESS’s 2,672 tokens. This suggests that TS-SQL achieves SQL generation and correction with lower
computational overhead, offering practical advantages in terms of cost efficiency while maintaining strong
performance.

Method Token Cost per SQL Query Growth Rate

TS-SQL 2,369 -
CHESS 2,672 T12.8%
E-SQL 3,237 136.6%

Table 9: Token consumption between TS-SQL and other methods with similar performance.

H Typical Examples of Successful Error Correction on the BIRD-dev Set

1. Incorrect filter condition. (Figure 17)

Question Which active district has the highest average score in Reading?

SQL SELECT dname FROM satscores Query result (X):
WHERE rtype = 'D' dname
generated ORDER BY AvgScrRead DESC LIMIT 1;

Santa Cruz ...

merged_df = pd.merge(satscores_df, schools_df, left_on='cds',
right_on='CDSCode', how='inner"')
active_schools = merged_df[merged_df['StatusType'l ==

Test code 'Active']
highest_avg_read = active_schools['AvgScrRead'].max()
result = active_schools[active_schools['AvgScrRead'] ==
highest_avg_read] [['dname']].head(1)

SELECT T1l.dname FROM satscores AS T1 Query result (\/);
INNER JOIN schools AS T2

Final SQL ON Tl.cds = T2.CDSCode dname
WHERE T2.StatusType = 'Active’ Palo Alto

ORDER BY T1.AvgScrRead DESC LIMIT 1;

Figure 17: An example of correcting the error of incorrect filter condition. In this case, the question asks for
active districts, but the generated SQL does not reflect this condition.

2. Incorrect column selection. (Figure 18)

Question What atoms comprise TR186?

uery result : element
SQL SELECT element FROM atom 4Q1 Yy ) (>1<)
generated  WHERE molecule_id = 'TR186'; rows x 1 co ‘
Test cod result = atom_df[atom_df['molecule_id'] ==
est code 'TR186'1 [['atom_id"']]
Query result (V): p—
. SELECT atom_id FROM atom 41 rows x 1 col -
Final SQL | uERe motlecule id = 'TR186'; TR186.1

Figure 18: An example of correcting the error of incorrect column selection. In this case, the question asks about
atoms, but the generated SQL chooses the element column.
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3. Incorrect table selection. (Figure 19)

Question Lists all patients by ID who were diagnosed with Behcet's and had
their exams between 01/01/197 and 12/31/1997.
SELECT ID FROM Patient
SQL WHERE Diagnosis = 'Behcet’ Query result (X):
generated  AND Description BETWEEN '1997-01-01' AND Empty
'1997-12-31";
filtered_exams = Examination_df[
(Examination_df['Diagnosis'] == 'Behcet') &
Test code (Examination_df['Examination Date'] >= '1997-01-01') &
(Examination_df['Examination Date'] <= '1997-12-31')]
result = filtered_exams[['ID']].drop_duplicates()
Query result (V):
SELECT ID FROM Examination 5 rows x 1 col
Final SQL WHERE Diagnosis = 'Behcet’ D
AND "Examination Date® BETWEEN '1997-01-01' 3390870
AND '1997-12-31"';

Figure 19: An example of correcting the error of incorrect table selection. In this case, the query should filter for
examination and diagnosis information in the Examination table, not the Patient table.

4. Deduplication error. (Figure 20)

. For the year that concluded on December 31, 1998, how many male

Question : .
patients on average were tested in the lab each month?

SELECT CAST(COUNT(DISTINCT 1.ID) AS REAL) /
12 .
SQL FROM Laboratory AS 1 Query result (X):

generated INNER JOIN Patient AS p ON 1.ID = p.ID CAST( ... AS REAL) / 12
WHERE strftime('sY', l.Date) = '1998' AND 181.308648
p.SEX = 'M';
laboratory_1998 = Laboratory_df[ (Laboratory_df['Date'] >=
'1998-01-01') & (Laboratory_df['Date']l <= '1998-12-31') ]
merged_df = pd.merge(laboratory_1998, Patient_df, on='ID',
how="inner")

Test code male_patients_1998 = merged_df[merged_df['SEX'] == 'M']
average_male_patients_per_month = len(male_patients_1998) / 12
result = pd.DataFrame({'AverageMalePatientsPerMonth':
[average_male_patients_per_monthl})

SELECT CAST(COUNT(L.ID) AS REAL) / 12 Query result (v):
FROM Laboratory AS 1

Final SQL INNER JOIN Patient AS p ON 1.ID = p.ID CAST( ... AS REAL) / 12
WHERE 1.Date BETWEEN '1998-01-01' AND '1998- 1400601
12-31' AND p.SEX = 'M';

Figure 20: An example of correcting the deduplication error. In this case, the incorrectly deduplicated results lead
to an undercount of the average number of male patients tested per month, as some patients may have been tested
multiple times within different months.
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5. String processing error. (Figure 21)

Question  What is the average height of players born between 1990 and 1995?

SOL SELECT AVG(height) FROM Player Query result (X):
WHERE birthday BETWEEN '1990-01-01' AND AVG(height
generated  .1995.17-31";

181.398648

merged_df = pd.merge(satscores_df, schools_df, left_on='cds',
right_on='CDSCode', how='inner"')

active_schools = merged_df[merged_df['StatusType'l == 'Active'l
highest_avg_read = active_schools['AvgScrRead'].max()

result = active_schools[active_schools['AvgScrRead'] ==
highest_avg_read] [['dname']].head(1)

Test code

SELECT CAST(SUM(height) AS REAL) / COUNT(id)  Query result (v):

. AS average_height FROM Player -
Final SQL | iere pirthday >= '1990-01-01 00:00:00° AND average height
birthday < '1996-01-01 00:00:00"; 181400601

Figure 21: An example of correcting the string processing error. In this case, the string processing of the generated
SQL misses a record with a birthday of "1995-12-31 00:00:00", leading to an incorrect calculation result.

6. Syntax error. (Figure 22)

Among the players born before the year 1986, how many of them

uestion A .. i
Q would remain in his position and defense while the team attacked?
SELECT COUNT(DISTINCT player_api_id)
FROM Player AS p Parse error:
SQL INNER JOIN Player_Attributes AS pa

generated ON p.player_api_id = pa.player_api_id amblguous COlun.lnl
WHERE STRFTIME('%Y', p.birthday) < '1986' name: player api id
AND pa.defensive_work_rate = 'high';

merged_df = pd.merge(satscores_df, schools_df, left_on='cds',
right_on='CDSCode', how='inner")

active_schools = merged_df[merged_df['StatusType'l == 'Active'l
highest_avg_read = active_schools['AvgScrRead"'].max()

result = active_schools[active_schools['AvgScrRead'] ==
highest_avg_read] [['dname']].head(1)

SELECT COUNT(DISTINCT p.player_api_id)
FROM Player AS p PrpravEr-apt- Query result (v):
INNER JOIN Player_Attributes AS pa
ON p.player_api_id = pa.player_api_id =)
WHERE STRFTIME('S%Y', p.birthday) < '1986' 892

AND pa.defensive_work_rate = 'high';

Test code

Final SQL

Figure 22: An example of correcting the syntax error. As both the Player_Attributes and Player tables
contain a column named player_api_id, the generated SQL is ambiguous about which table the column refers
to, leading to a syntax error during execution.
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