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Abstract

Short texts pose significant challenges for clus-
tering due to semantic sparsity, limited con-
text, and fuzzy category boundaries. Although
recent contrastive learning methods improve
instance-level representation, they often over-
look local semantic structure within the clus-
tering head. Moreover, treating semantically
similar neighbors as negatives impair cluster-
level discrimination. To address these issues,
we propose Fuzzy Neighborhood-Aware Self-
Supervised Contrastive Clustering (FNSCC)
framework. FNSCC incorporates neighbor-
hood information at both the instance-level
and cluster-level. At the instance-level, it ex-
cludes neighbors from the negative sample set
to enhance inter-cluster separability. At the
cluster-level, it introduces fuzzy neighborhood-
aware weighting to refine soft assignment prob-
abilities, encouraging alignment with semanti-
cally coherent clusters. Experiments on multi-
ple benchmark short text datasets demonstrate
that FNSCC consistently outperforms state-
of-the-art models in accuracy and normalized
mutual information. Our code is available at
https://github.com/zjzone/FNSCC.

1 Introduction

Text clustering, a fundamental task in natural lan-
guage processing, seeks to uncover the latent se-
mantic structure of text without relying on prior
annotations, and provides theoretical support for
downstream applications (Wan et al., 2024; Wu
et al., 2020). Its significance is particularly evident
in domains such as information retrieval (Zhao
et al., 2022), knowledge discovery (Guan et al.,
2020), and natural language understanding (Saharia
et al., 2022).

Text clustering is inherently challenging due to
high-dimensional sparsity, semantic ambiguity, and
class imbalance. Effective clustering requires cap-
turing multi-level semantic features. Traditional
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methods such as Bag-of-Words (BOW) and TF-
IDF rely on word frequency and lack contextual
awareness. Word2Vec improves semantic repre-
sentation by learning context-aware embeddings
through predictive objectives and efficient train-
ing strategies like negative sampling. BERT (Ken-
ton and Toutanova, 2019) and other pre-trained
language models (PLMs) leverage global atten-
tion and positional encoding to capture long-range
dependencies. However, prior work (Ethayarajh,
2019) has shown that their sentence representations
perform poorly in clustering tasks. This limita-
tion stems from the fact that BERT is pre-trained
with objectives such as Masked Language Model-
ing (MLM) and Next Sentence Prediction (NSP),
which are not designed to capture global seman-
tic categories or learn clustering-friendly represen-
tations. To overcome this, SCCL (Zhang et al.,
2021) proposes a deep clustering framework that
fine-tunes PLMs with joint contrastive and clus-
tering objectives, improving semantic separability
and explicitly modeling cluster structures for better
clustering performance.

Since SCCL aims to generate high-confidence
sample partitions that align with the underlying
clustering structure. However, it relies solely on
the Euclidean distance between text instance em-
beddings and cluster centers to compute soft clus-
ter assignments, which can be susceptible to mis-
judgments caused by fuzzy noise. This limitation
prevents high-confidence samples from receiving
sufficient emphasis during training. Additionally,
in the contrastive learning module, neighboring
samples often have higher semantic correlation. If
only the corresponding augmented instances are
taken as positive examples, these semantically sim-
ilar samples are considered negative samples, and
the model force the distance between them to be
increased, thereby destroying the clustering struc-
ture.

To address the aforementioned issues, we
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propose the Fuzzy Neighborhood-Aware Self-
Supervised Contrastive Clustering (FNSCC) frame-
work for short text. The primary goal is to enhance
the clustering structure and instance contrastive
module of SCCL by incorporating fuzzy neighbor-
hood information. Specifically, we first construct
a more balanced distribution of positive and nega-
tive samples in the instance contrastive module to
prevent semantically similar samples from being
classified as negative examples. Additionally, we
leverage the neighborhood semantic information of
the current sample to improve the expressiveness
of the local context in the clustering head through
a fuzzy weighting mechanism, thereby mitigating
the impact of single-point noise on soft clustering.

In summary, the main contributions of this paper
are as follows:

(1) Neighborhood-aware negative sampling im-
proves contrastive learning by excluding neighbor-
ing instances from the negative sample set. Such
a refinement reduces semantic interference from
similar samples and enhances the model’s ability
to distinguish positives from hard negatives.

(2) Fuzzy neighborhood-based assignment
weighting introduces local structural awareness
into the clustering head, allowing for more coher-
ent cluster boundaries and higher confidence in soft
assignment probabilities.

(3) We propose an end-to-end framework named
FNSCC that jointly optimizes neighborhood-aware
contrastive learning and clustering. Extensive ex-
periments on multiple benchmark datasets demon-
strate that FNSCC consistently outperforms exist-
ing methods on short text clustering tasks. Ablation
studies further confirm the effectiveness of each
component.

2 Related Works

2.1 Text Clustering

Text clustering has developed through three main
stages. Traditional methods, such as the BOW
model and TF-IDF, are simple and effective for
small datasets but lack semantic awareness and
struggle with high-dimensional sparse data (Shi
et al., 2024). The second stage uses shallow neural
networks to convert sparse word frequency vectors
into dense semantic embeddings, capturing con-
textual relationships and semantic similarity (Lin
and Lin, 2023). The third stage introduces deep
clustering methods, which combine clustering with
PLMs or various feature learning strategies to en-

hance optimization (Cai et al., 2022; Gupta et al.,
2022). However, these methods often prioritize
feature representation, which limits their clustering
effectiveness.

Recent studies have explored graph-based repre-
sentations for feature learning, yielding promising
results (Huang et al., 2021; Hua et al., 2023). For
example, Chiu et al. (2020) construct keyword cor-
relation graphs and leverage graph autoencoders to
capture local and global document features, though
their method lacks clustering-specific optimization.
Zhang et al. (2021) achieve state-of-the-art per-
formance by combining clustering and contrastive
learning within the SBERT framework (Reimers,
2019). Building on this, our approach incorporates
fuzzy neighborhood information into the SCCL
framework to better capture local data distributions.
This refinement enhances clustering stability and
contrastive learning effectiveness, addressing key
limitations of prior methods.

2.2 Self-Supervised Learning
Self-supervised learning (SSL) (Ermolov et al.,
2021; Baevski et al., 2022) has emerged as a pow-
erful paradigm in representation learning, offer-
ing an efficient alternative to traditional unsuper-
vised methods. By designing pretext tasks that
derive optimization objectives directly from data,
SSL extracts meaningful and transferable semantic
representations for downstream tasks. Traditional
SSL methods based on autoencoders and genera-
tive models (Eckart et al., 2021; Hou et al., 2022)
effectively capture feature distributions but often
face limited generalization due to their task-specific
nature. In contrast, contrastive learning gains pop-
ularity by enhancing semantic separation through
aligning augmented samples while repelling dis-
similar ones (Cui et al., 2021; Xu et al., 2022).
Recent improvements incorporate neighborhood
information to further boost representation quality
in both text and vision domains (Zhong et al., 2021;
Sun et al., 2023).

In the SCCL framework, cluster assignments are
computed using Student’s t-distribution (Xie et al.,
2016), and then refined into target distributions for
self-supervised clustering. Building on this, we
propose a neighborhood-aware self-supervised loss
that integrates fuzzy neighborhood information into
both the clustering and contrastive modules. These
improvements enhance clustering stability and rep-
resentation quality, addressing key limitations of
prior work.
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Figure 1: Overview of the FNSCC framework. Given input text T and its augmented views T aug1 and T aug2, a
shared encoder produces sentence embeddings fcluster(T ), finstance(T aug1), and finstance(T

aug2). The clustering
head refines soft assignments on fcluster(T ) using high-confidence fuzzy neighborhoods, while the instance-level
contrastive head leverages finstance(T aug1) and finstance(T

aug2), excluding neighbors of the anchor sample from
the negative set to improve representation discrimination.

3 The Proposed FNSCC Method

In this section, we provide a detailed description
of the FNSCC method. Section 3.1 outlines the
general framework and clustering objectives of FN-
SCC. Sections 3.2-3.3 elaborate on the primary
contributions of this work to contrastive clustering,
specifically the fuzzy neighborhood-enhanced clus-
tering mechanism, which includes both instance-
level and cluster-level modules.

3.1 General Framework of the Contrastive
Clustering

To improve clustering confidence and contrastive
learning, FNSCC employs a neighborhood-aware
design. In the representation stage, a batch of
original instances T = {t1, ..., ti, ..., tB} is sam-
pled, and two augmented views are generated us-
ing a contextual augmenter (Kobayashi, 2018):
T aug1 = {taug11 , ..., taug1i , ..., taug1B } and T aug2 =

{taug21 , ..., taug2i , ..., taug2B }. This strategy enriches
short text information and supports semantic learn-
ing from multiple perspectives, with details pro-
vided in Appendix A.7.

FNSCC uses a pre-trained SBERT (Reimers,
2019) to obtain original text embeddings and ap-
plies an MLP to refine augmented embeddings,
enhancing diversity and reducing redundancy. The

representations are projected into d1- and d2-
dimensional spaces: fcluster(T ) = {fcluster(ti) ∈
Rd1}Bi=1 and finstance(T

aug) = {finstance(t
aug
i ) ∈

Rd2}Bi=1, using the encoders fcluster and finstance,
respectively.

The design serves two main purposes: (1)
fcluster(T ) is optimized to enhance the expressive
power of the clustering head, making the embed-
dings of the original texts more discriminative in
clustering tasks, and (2) finstance(T

aug) is opti-
mized through instance-level contrastive learning,
improving the robustness and generalization of text
embeddings for distinguishing between categories.

Our innovation lies in the objective function
L, which combines instance contrastive loss and
clustering loss for joint optimization. The model
is trained end-to-end to produce effective cluster-
friendly representations. The overall objective func-
tion L is defined as follows:

L = α · Linstance + β · Lcluster, (1)

where Linstance denotes the instance-level con-
trastive loss, designed to enhance similarity learn-
ing between instances, while Lcluster represents
the cluster-level loss, which optimizes the cluster-
ing head by ensuring that samples within the same
cluster exhibit greater similarity. The hyperparam-
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eters α and β are introduced to balance Linstance

and Lcluster, they are set to 10 and 1 (1 and 1 for
the Tweet dataset), respectively. Following the
aforementioned steps, the flowchart of FNSCC is
illustrated in Figure 1.

Finally, the k-means clustering algorithm is ap-
plied to the text feature vectors learned by the
model to obtain the final clustering results.

3.2 Instance-Level Contrastive Learning with
Neighborhood Context

In Linstance, the optimization objectives include
two key aspects: (1) maximizing the similarity be-
tween two augmented instances (positive instances)
to ensure that the two versions generated from
the same instance remain consistent in the feature
space, thereby enhancing the cohesion of objects
within the same cluster; (2) minimizing the sim-
ilarity between non-neighbor negative instances,
i.e., reducing the similarity between augmented in-
stances and other non-neighbor instances outside
the cluster, effectively increasing the separation
between different clusters. This contrastive strat-
egy facilitates the construction of a cluster-friendly
representation space, ensuring tight alignment of
similar instances and clear separation of dissimilar
ones.

We define neighboring instances using a k-
nearest neighbors (KNN) approach based on cosine
similarity between instance embeddings. For each
instance, the top-k most similar samples in the em-
bedding space are selected as its neighbors. By
explicitly modeling such local structures, we aim
to preserve intra-cluster compactness and mitigate
the potential impact of noisy negative samples in
contrastive learning.

Since neighboring instances may belong to the
same cluster, treating them as negative instances
during training could introduce noise and impair
the model’s ability to distinguish between positive
and negative instances. To address this, we exclude
neighboring samples when calculating negative ex-
amples, avoiding their misclassification as nega-
tives. This approach enables the model to leverage
local similarity information more effectively dur-
ing feature learning, enhancing clustering-specific
characteristics and ultimately improving clustering
performance.

Let Eaug
i = finstance(t

aug
i ) denote the represen-

tation of the augmented text. The loss function for
augmented instances taug1i is defined as follows:

ℓ(taug1
i ) = − log

[
exp

(
s
(
Eaug1

i , Eaug2
i

)
/τ

)
/

2B∑

j=1

1{j /∈N (E
aug1
i )∪{i}} exp

(
s
(
Eaug1

i , E(aug1,aug2)
j

)
/τ

)]
,

(2)

where B denotes the number of instances in the
current batch, s(·) represents the cosine similar-
ity, N (·) represents the neighborhood index cor-
responding to the instance, meaning that the k in-
stances with the largest cosine similarity to the cur-
rent instance are regarded as neighboring instances.
1 is an indicator function and τ is the temperature
coefficient, which is set to 0.5. The contrastive loss
for the augmented instances, including the entire
batch of B instances, is defined as follows:

Linstance =
1

2B

B∑

i=1

ℓ(t
aug1
i ) + ℓ(t

aug2
i ). (3)

3.3 Fuzzy Neighborhood-Aware Clustering
Unlike instance-level contrastive learning, the clus-
tering head aims to group instances into the same
cluster, enabling the model to capture higher-level
semantic commonalities rather than individual dis-
tinctions. To emphasize local features and balance
the influence of center and boundary samples, we
adopt the method from Xie et al. (2016) to compute
the soft assignment of an instance ti ∈ T to cluster
center µk, where k ∈ {1, 2, . . . ,K} and K denotes
the number of clusters. Let g(ti) = fcluster(ti) be
the cluster representation of instance ti. The prob-
ability qik, indicating the likelihood that g(ti) is
assigned to µk, is defined as:

qik =
(1 + ∥g(ti)− µk∥22/γ)−

γ+1
2

∑K
k′=1(1 + ∥g(ti)− µk′∥22/γ)−

γ+1
2

, (4)

where γ represents the degrees of freedom of
the Student’s t-distribution. Consistent with the
method in SCCL, we set γ to 1.

While this method provides a soft probability
distribution over cluster assignments, it does not
consider the fact that neighboring samples often
belong to the same cluster. To incorporate this
structural prior, we propose a fuzzy neighborhood-
aware refinement of the cluster assignment. In this
context, the term “fuzzy” does not refer to fuzzy
logic but rather to the soft incorporation of neigh-
borhood information into the probability distribu-
tion. The updated assignment probability q∗ik is
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computed as follows:

q∗ik =
qik + λ

∑
j∈N (g(ti))

Ψ(ti, tj) · qjk
1 + λ

∑
j∈N (g(ti))

Ψ(ti, tj)
, (5)

where Ψ(ti, tj) = s(g(ti), g(tj)) · d(g(ti), g(tj)).
As in Equation (2), N (·) denotes the neighbor in-
dex set for a given text instance. This definition is
consistent with that used in the instance contrastive
head, ensuring semantic alignment within the local
neighborhood. λ is the neighbor weight coefficient,
set to 0.5. The function s(·) represents cosine sim-
ilarity, capturing semantic closeness between in-
stances. The function d(·) models neighborhood
density using a Gaussian kernel based on Euclidean
distance, assigning higher weights to neighbors that
are closer.

In Equation (4), cluster membership relies solely
on Euclidean distance and thus ignores the local
data structure. To address this limitation, we in-
troduce the fuzzy neighborhood weighting factor
Ψ(ti, tj), which measures the influence of neighbor
tj on the soft assignment of instance ti. By combin-
ing semantic similarity and local density, this factor
enables the model to preserve the global clustering
structure while fully leveraging local relationships.
Compared to traditional methods based only on dis-
tance, this approach enhances the robustness and
accuracy of clustering assignments.

To ensure interpretability and probabilistic con-
sistency, the assignment scores for each instance
are further normalized to sum to 1. This yields a
well-calibrated probability distribution for down-
stream clustering. The final allocation probability
q̂ik is defined as follows:

q̂ik =
q∗ik∑
k q

∗
ik

. (6)

We then introduce an auxiliary target distribu-
tion p, derived from the Student’s t-distribution, to
emphasize high-confidence instances and further
optimize cluster centers. The auxiliary probability
pik is defined as follows:

pik =
q̂2ik/

∑B
j=1 q̂jk∑

k′(q̂
2
ik′/

∑B
j=1 q̂jk′)

. (7)

The main idea is to assign greater weights to
high-confidence samples while down-weighting
uncertain ones, enabling gradual optimization of
cluster centers. To align soft assignments with the

target distribution, we adopt a cross-entropy loss
for the clustering head.

Li = −
K∑

k=1

pik log qik. (8)

We then define the clustering objective for each
mini-batch of size B as follows:

Lcluster =
1

B

B∑

i=1

Li. (9)

By optimizing the model with the loss from the
clustering head, we leverage the benefits of the
target distribution to guide the model in producing
more accurate and stable clustering results.

The detailed parameter analysis of the model
will be further discussed in Appendix A.4.

4 Experiments

In this section, we conduct experiments on several
real-world short text datasets to demonstrate the
contribution of our method.

4.1 Experimental Setup

4.1.1 Datasets
The FNSCC algorithm is evaluated on six widely
used benchmark short text datasets: AgNews,
SearchSnippets, GoogleNews-TS, GoogleNews-
T, GoogleNews-S, and Tweet. Descriptions and
statistics for these datasets are provided in Ap-
pendix A.1.

4.1.2 Baseline Methods
To verify the effectiveness of the proposed GOCC
method, we select a variety of mainstream ap-
proaches for comparison, covering different cat-
egories of short text clustering techniques. (I)
Frequency-based methods include BOW (Scott
and Matwin, 1998) and TF-IDF (Bafna et al.,
2016). (II) Representation learning-based methods
include STCC (Xu et al., 2017), Self-train (Hadi-
far et al., 2019), SBERT (Reimers, 2019) and BGE-
M3 (Xiao et al., 2024). (III) Contrastive learning-
based methods include SCCL (Zhang et al., 2021),
ProPos (Huang et al., 2022) and CLSESSP (Shen
et al., 2024). (IV) Semi-supervised and pseudo-
label optimization-based methods include Multi-
MCCR (Zhou et al., 2023) and RSTC (Zheng et al.,
2023). Descriptions of these methods are provided
in Appendix A.2.
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AgNews SearchSnippets GoogleNews-TS
Model ACC NMI ACC NMI ACC NMI
BOW 27.60 2.60 24.30 9.30 57.50 81.90
TF-IDF 34.50 11.90 31.50 19.20 68.00 88.90
STCC 83.50 56.90 77.00 56.60 76.90 80.60
Self-Train 63.60 35.50 77.10 56.70 59.40 79.60
SBERT(k-means) 83.44 57.76 73.02 59.77 67.40 90.47
BGE-M3 87.59 - 80.57 - 56.28 -
SCCL 84.62 62.73 75.86 63.67 79.24 92.31
ProPos 84.30 59.30 74.30 55.20 73.90 90.40
CLSESSP 80.45 - 69.85 - 64.53 -
Multi-MCCR 87.10 - 80.59 - 51.42 -
RSTC 85.98 64.32 79.75 69.48 79.93 92.60
FNSCC 87.85 66.70 82.59 67.65 88.21 94.31

GoogleNews-T GoogleNews-S Tweet
Model ACC NMI ACC NMI ACC NMI
BOW 49.80 73.20 49.00 73.50 49.70 73.60
TF-IDF 58.90 79.30 61.90 83.00 57.00 80.70
SBERT(k-means) 63.98 86.13 65.87 87.64 62.70 86.80
BGE-M3 49.88 - 52.07 - 77.66 -
SCCL 67.32 84.73 78.94 89.37 75.49 89.06
ProPos 65.41 85.32 75.57 87.19 78.42 88.53
CLSESSP 63.60 - 64.64 - 57.85 -
Multi-MCCR 43.33 - 47.32 - 72.34 -
RSTC 75.50 88.39 76.01 88.27 75.20 85.62
FNSCC 72.72 87.76 80.49 89.37 83.62 90.38

Table 1: Clustering performance comparison on six real short text datasets. We highlight the best performance in
bold.

4.1.3 Implementation

The FNSCC method is implemented in PyTorch
(Paszke et al., 2019), using Sentence Transformer
(Reimers, 2019) as the backbone for the PLM.

The tokenizer’s maximum input length is set to
32. To enhance the instance contrastive module, an
MLP is introduced, consisting of a single hidden
layer and an output layer, both with a vector size of
768. The learning rate for the baseline model is set
to 1e-5, while the learning rates for the clustering
head and instance contrastive head are set to 1e-3.
The Adam optimizer is used with a batch size of
128, and training runs for 3000 iterations. Further-
more, the datasets are augmented using BERT and
RoBERTa (Liu et al., 2019) with a 20% word sub-
stitution rate. To objectively evaluate the proposed
method, we employ accuracy (ACC) and normal-
ized mutual information (NMI) as evaluation met-
rics, consistent with those used in the comparison
algorithms. Details of these metrics are provided

in Appendix A.3. Considering the inherent ran-
domness in the training process and the instability
of k-means clustering, the results presented in this
paper represent the average of five experiments.

4.2 Main Results

We evaluate FNSCC against several representa-
tive text clustering models on six benchmark
datasets. Table 1 reports the results. FNSCC con-
sistently achieves state-of-the-art performance on
most datasets. While RSTC slightly surpasses FN-
SCC on SearchSnippets (NMI) and GoogleNews-T
(ACC and NMI), the overall results validate the
effectiveness of integrating fuzzy neighborhood
information into the clustering module and apply-
ing instance-level contrastive loss. These improve-
ments enhance both clustering stability and accu-
racy, contributing to the superior performance of
FNSCC.

FNSCC demonstrates strong performance on
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Figure 2: Clustering visualization results for the AgNews text dataset.
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Figure 3: Ablation results of FNSCC in terms of ACC under configurations that exclude in-neighborhood false
negatives at the instance-level and eliminate fuzzy neighborhood-based confidence estimation at the cluster-level.

datasets with a small number of clusters, such
as AgNews and SearchSnippets. SearchSnippets
presents unique challenges, as it mainly consists of
isolated keywords or short phrases rather than com-
plete sentences. This structure leads to sparse se-
mantics, imbalanced class distributions, and weak
contextual cues, limiting conventional neighbor-
hood modeling and increasing encoder ambiguity.
By emphasizing high-confidence neighborhood se-
mantics, FNSCC improves local semantic discrim-
ination and achieves the highest clustering accu-
racy (ACC). However, its normalized mutual in-
formation (NMI) is slightly lower than RSTC’s,
due to the dataset’s restricted global structure and
NMI’s sensitivity to global label consistency. On
GoogleNews-T, which contains short titles with
limited context, FNSCC performs comparably to

RSTC in both ACC and NMI. RSTC benefits from
using global pseudo-labels to maintain label align-
ment across instances. In contrast, GoogleNews-S
and GoogleNews-TS offer more contextual rich-
ness through snippets or combined formats, en-
abling FNSCC to better exploit neighborhood in-
formation. As a result, FNSCC achieves strong
clustering results on these datasets, highlighting its
robustness across different text granularities.

Additionally, we re-implement the SCCL model
(Zhang et al., 2021) with the two masked language
models used here, following the original parameter
settings, to compare it with FNSCC.

To compare SCCL and FNSCC and to il-
lustrate the effects of instance-level contrastive
learning with neighborhood context and fuzzy
neighborhood-aware clustering on representation
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quality, we utilize the t-SNE technique (Fujiwara
et al., 2021) to project the high-dimensional clus-
tering distributions into two dimensions for vi-
sualization after text embedding. As shown in
Figure 2, the results indicate that, compared to
the unoptimized PLM SBERT and SCCL without
fuzzy neighborhood information, FNSCC achieves
greater effectiveness in distinguishing clusters and
ensuring cohesion within the same cluster.

Additional experiments are provided in the ap-
pendices: (1) training loss curves and clustering
performance (Appendix A.5); (2) ablation studies
assessing the contribution of each FNSCC compo-
nent via NMI (Appendix A.6); (3) evaluation of
data augmentation strategies (Appendix A.7); and
(4) analysis of failure cases (Appendix A.8).

4.3 Ablation Study
To investigate how fuzzy neighborhoods influence
clustering performance, we systematically ablate
and reweight the components of FNSCC, analyz-
ing their individual contributions to the model’s
behavior.

We evaluate six variants: SCCL-CL, which ap-
plies instance-level contrastive learning without
neighbor filtering; SCCL-Cluster, which applies
cluster-level optimization without fuzzy neigh-
borhood enhancement; FNSCC-CL, which incor-
porates neighborhood-aware instance-level con-
trastive learning by removing in-neighborhood
samples from negative sampling; FNSCC-Cluster,
which introduces fuzzy neighborhood-aware as-
signment smoothing at the cluster level; and the
full models SCCL and FNSCC. Clustering results
measured by ACC are shown in Figure 3.

As shown in the figure, both instance-level
and cluster-level modules benefit significantly
from incorporating fuzzy neighborhood mech-
anisms. Specifically, FNSCC-CL outperforms
SCCL-CL, demonstrating the effectiveness of ex-
cluding nearby neighbors from negative samples,
which prevents semantically similar instances from
being pushed apart. This encourages more discrim-
inative yet semantically coherent instance represen-
tations. At the cluster level, FNSCC-Cluster outper-
forms SCCL-Cluster by integrating fuzzy neighbor-
hood information into soft assignment, promoting
local semantic consistency and improving confi-
dence in cluster boundaries.

Furthermore, the full FNSCC model achieves
the best performance, confirming that jointly opti-
mizing both levels with neighborhood awareness

yields more robust clustering. Similar trends are
observed under the NMI metric, as reported in Ap-
pendix A.6.

4.4 Neighborhood Sensitivity Analysis

Given that the instance contrastive head and the
clustering head are aligned in terms of neighbor-
hood structures, both modules in the proposed
method effectively utilize the setting of the hyper-
parameter N . The performance improvement of
FNSCC is largely dependent on the auxiliary role
played by the N neighborhood. Therefore, it is
crucial to assess the sensitivity of FNSCC to the
size of N .

This section examines the performance of FN-
SCC across different datasets by adjusting the N
parameter and provides recommendations based on
the findings. Figure 4 presents the ACC and NMI
values for different values of N on six short text
datasets. The parameter N is varied within the
range of 5 to 50. As shown in Figure 4, both ACC
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Figure 4: Impact of hyperparameter N on the perfor-
mance of the FNSCC model.

and NMI exhibit fluctuations within a certain range
as N increases, with NMI demonstrating relatively
more stability. It can be observed that performance
improves gradually as N increases from 5 to 30
but begins to decline when N becomes excessively
large. Upon analysis, it is evident that within a
smaller range of N , the fuzzy neighborhood pri-
marily consists of neighboring samples that share
highly similar semantics with the current text in-
stance, thereby enhancing the consistency among
samples within the same cluster. However, when
N becomes too large, the fuzzy neighborhood may
include instances from other clusters, introducing
noise that disrupts the clustering objective. Based
on empirical observations, a value of N in the
range of 20 to 30 is recommended. Additionally,
given that the Googlenews datasets are severely
imbalanced with a large number of clusters, it is
more sensitive to the choice of N . Therefore, a

2838



smaller value of N is set to 5.

5 Conclusion

This paper proposes a fuzzy neighborhood-aware
self-supervised contrastive clustering (FNSCC)
framework, comprising instance-level contrastive
learning with neighborhood context and fuzzy
neighborhood-aware clustering. It introduces two
key innovations: leveraging neighborhood informa-
tion to improve clustering confidence and reduce
ambiguity, and removing false negatives within
neighborhoods to enhance cluster-level discrimina-
tion, yielding a more suitable sample distribution
for clustering.

Experimental results show that FNSCC outper-
forms other state-of-the-art models in terms of
ACC and NMI on most short text datasets. Ab-
lation studies further confirm the effectiveness of
fuzzy neighborhood information in enhancing con-
trastive representation learning and clustering per-
formance.

Limitations

The method proposed in this paper is similar to
SCCL as it also requires the number of clusters to
be set in advance. For datasets with many clusters
and imbalanced distributions, FNSCC is more sen-
sitive to the choice of neighbors. In future work, we
plan to combine prior data knowledge with model
characteristics to explore an adaptive mechanism
for dynamically determining the optimal number
of clusters and neighborhood range.
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A Additional Experiment Details

A.1 Datasets
The FNSCC algorithm is evaluated on six widely
used benchmark text datasets. Table 2 presents

detailed information about these datasets, including
the number of documents, the number of categories,
and the average word count per document.

Datasets Size Classes Len(Avg)
AgNews 8000 4 23
SearchSnippets 12340 8 18
GoogleNews-TS 11109 152 28
GoogleNews-T 11109 152 6
GoogleNews-S 11109 152 22
Tweet 2472 89 8

Table 2: Statistics of text dataset. Size: number of docu-
ments; Classes: number of clusters; Len(Avg): Average
number of words per document.

• AgNews (Zhang et al., 2015): A subset of
8000 news texts categorized into 4 different
topics, collected and preprocessed by Rakib
et al. (2020).

• SearchSnippets (Phan et al., 2008): Contains
12340 web search snippets covering 8 differ-
ent domains.

• GoogleNews (Yin and Wang, 2016): Com-
prises 11109 news events across 152 cat-
egories, with the dataset segmented into
full texts, titles, and text snippets, de-
noted as GoogleNews-TS, GoogleNews-T,
and GoogleNews-S, respectively.

• Tweet (Yin and Wang, 2016): Consists of
2472 tweets distributed across 89 categories,
sourced from the 2011-2012 microblog tracks
of the text retrieval conference.

A.2 Baselines Description
The comparison baseline method used in this paper
is described as follows:

• BOW and TF-IDF (Scott and Matwin, 1998;
Bafna et al., 2016): Classical frequency-based
methods that generate static text represen-
tations based on word occurrence statistics.
BOW models texts as unordered word sets,
while TF-IDF incorporates term specificity
across documents to reduce the influence of
common words.

• STCC (Xu et al., 2017): A representation
learning method that integrates Word2Vec-
based word embeddings with convolutional
neural networks to capture local semantic pat-
terns for short text clustering.

2841



• Self-train (Hadifar et al., 2019): Autoen-
coders generate initial latent representations,
which clustering supervision continuously re-
fines to enhance feature quality for unsuper-
vised tasks.

• SBERT (Reimers, 2019): An extension
of BERT designed to produce semanti-
cally meaningful sentence embeddings using
siamese and triplet networks, enabling more
effective similarity measurement and cluster-
ing.

• BGE-M3 (Xiao et al., 2024): A self-
distillation strategy refines sentence embed-
dings under varied retrieval scenarios, improv-
ing robustness and generalization for cluster-
ing and matching.

• SCCL (Zhang et al., 2021): A contrastive
clustering framework that jointly optimizes
instance-level contrastive loss and a KL di-
vergence loss over cluster assignment distri-
butions to improve cluster compactness and
separability.

• ProPos (Huang et al., 2022): Contrastive clus-
tering is enhanced through prototype consis-
tency and neighborhood alignment, yielding
more discriminative and stable cluster repre-
sentations.

• CLSESSP (Shen et al., 2024): The use of
semantically enriched prototypes and diver-
gence minimization strengthens sentence em-
bedding discrimination in contrastive cluster-
ing.

• Multi-MCCR (Zhou et al., 2023): A semi-
supervised method that leverages multi-model
consistency and a contrastive BiKL diver-
gence loss to refine pseudo-labels and enhance
clustering accuracy.

• RSTC (Zheng et al., 2023): Adaptive opti-
mal transport is integrated with contrastive
learning under a pseudo-labeling regime to
improve robustness against label noise and
reinforce cluster structures.

A.3 Evaluation Metrics

This paper evaluates the clustering results of short
texts using two widely adopted clustering perfor-
mance metrics: clustering accuracy (ACC) and nor-

malized mutual information (NMI). ACC is calcu-
lated using the Hungarian algorithm, which max-
imizes the matching between predicted and true
labels. NMI quantifies the dependence between
the clustering results and true labels by calculating
the mutual information between them, normalized
by their respective entropies. Both metrics have a
value range of [0, 1], with higher values indicating
better clustering performance.

ACC is defined as:

ACC =

∑N
i=1 1(yi=map(ŷi))

N
, (10)

where 1(yi=map(ŷi)) is an indicator function,
map(·) is the Hungarian mapping function, yi and
ŷi represent the real label and predicted label, re-
spectively. NMI is defined as:

NMI =
2 ·MI(Y, Ŷ )

H(Y ) +H(Ŷ )
, (11)

where Y and Ŷ represent the distribution sequences
of real labels and predicted labels, MI(Y, Ŷ ) rep-
resents the mutual information between Y and Ŷ ,
and H(·) represents information entropy.

A.4 Hyperparameters Description

• α&β : The parameters α and β are the
weights used to balance the instance con-
trastive loss and clustering loss, respectively.
In the total loss, the instance contrastive loss
primarily ensures effective separation between
the embedded representations of different
samples, thereby enhancing the model’s dis-
criminative capability. On the other hand, the
clustering loss focuses on enabling the model
to learn the clustering structure more effec-
tively by grouping similar samples together,
improving both the accuracy and consistency
of clustering results. By fine-tuning α and β,
an optimal trade-off can be achieved between
instance discrimination and clustering perfor-
mance. In this paper, experimental tuning is
performed, with the default values of α and β
set to 10 and 1 (1 and 1 for the Tweet dataset),
respectively.

• τ : The temperature coefficient τ is used to
scale the numerical range of similarity be-
tween samples, thereby adjusting the model’s
sensitivity to differences in similarity. A
smaller τ amplifies the impact of similarity,
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Figure 5: Training loss and clustering performance of SCCL and FNSCC on the AgNews dataset.
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Figure 6: Comparison of ablation studies on NMI between FNSCC and SCCL.

causing the model to emphasize sample pairs
with high similarity. Conversely, a larger τ
smooths the impact of similarity, reducing the
model’s sensitivity to differences among sam-
ple pairs. In this paper, τ is set to a default
value of 0.5.

• γ : γ represents the degrees of freedom of the
Student’s t-distribution. Following the SCCL
framework, γ is fixed at 1 in this work.

• λ : λ is an neighbor weight coefficient that
controls the impact of neighbor information
in updating qik. A larger λ increases the im-
portance of neighbor information, promoting
greater consideration of local consistency dur-
ing clustering. Conversely, a smaller λ re-
duces the impact of neighbor information, em-
phasizing the characteristics of the instance
itself. In this paper, λ is set to 0.5 by default.

• N : The size of the neighborhood N for a
text instance significantly affects the fuzzy
neighborhood-aware mechanism. Larger N
values provide more neighbor information, po-
tentially improving local consistency, but may
also introduce noise if irrelevant neighbors are
included. A detailed analysis of N and its im-
pact on clustering performance is provided in
the experimental section. Furthermore, this
paper sets the number of neighbors for both
the clustering and instance comparison heads
to ensure consistency in their modeling of the
local data structure. Specifically, the negative
samples excluded in the instance comparison
head are treated as similar objects within the
neighborhood and are incorporated into the
clustering head calculation, facilitating infor-
mation sharing and semantic alignment be-
tween the two task heads.
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AgNews SearchSnippets GoogleNews-TS
Substitution rate ACC NMI ACC NMI ACC NMI
(BERT) %10 84.29 65.32 78.32 67.13 86.13 93.29
(BERT) %20 86.43 65.82 80.63 67.32 86.82 94.21
(BERT) %30 85.96 65.48 79.01 66.82 85.21 93.24
(RoBERTa) %10 85.32 65.88 81.65 67.17 85.23 93.18
(RoBERTa) %20 86.13 65.92 82.13 66.94 87.77 93.64
(RoBERTa) %30 84.97 64.13 78.63 65.93 85.58 92.97
(BERT+RoBERTa) %10 85.56 65.48 79.01 66.29 86.42 94.10
(BERT+RoBERTa) %20 87.85 66.70 82.59 67.65 88.21 94.31
(BERT+RoBERTa) %30 86.91 65.63 79.21 66.87 85.27 93.83

GoogleNews-T GoogleNews-S Tweet
Substitution rate ACC NMI ACC NMI ACC NMI
(BERT) %10 68.83 85.32 79.64 88.97 80.94 89.54
(BERT) %20 71.19 86.22 79.54 88.68 81.75 89.68
(BERT) %30 70.85 85.76 78.96 87.82 80.45 88.84
(RoBERTa) %10 69.73 86.11 78.24 87.13 78.92 88.26
(RoBERTa) %20 71.72 86.21 78.97 88.14 82.74 89.57
(RoBERTa) %30 70.27 86.02 77.18 87.07 79.31 89.14
(BERT+RoBERTa) %10 70.79 86.09 80.09 88.67 81.23 89.74
(BERT+RoBERTa) %20 72.72 86.76 80.49 89.37 83.62 90.38
(BERT+RoBERTa) %30 69.05 85.00 79.33 89.24 81.07 89.63

Table 3: Comparison of FNSCC Clustering Performance on Real Text Datasets under Different Contextual
Augmenter Settings.

A.5 Training Loss and Clustering
Performance

To provide a more comprehensive comparison, we
present the changes in loss values and model per-
formance on the AgNews dataset over training iter-
ations, as shown in Figure 5. This analysis is based
on visual results from the training process.

The results in Figure 5 show that the loss and
performance trends for both FNSCC and SCCL are
similar during training. However, FNSCC outper-
forms SCCL, achieving better values and demon-
strating greater stability after convergence. This
highlights that integrating fuzzy neighborhood in-
formation into the SCCL training process allows
the model to better align text embeddings with
clustering objectives and more effectively separate
negative samples.

A.6 The Impact of Each Component in
FNSCC on the NMI Index.

Figure 6 presents the NMI, a clustering metric, for
six short text datasets under different components
of SCCL and FNSCC. The results align with the
ACC trend in Section 4.3, showing that fuzzy neigh-

borhoods significantly improve the NMI of both the
instance contrastive head and the clustering head
across most datasets.

A.7 Discussion on Data Augmentation
Data augmentation plays a crucial role in the con-
trastive learning module by generating different
types of contrasting instances, significantly im-
pacting model performance. Zhang et al. (2021)
systematically investigates various unsupervised
text augmentation methods, demonstrating through
extensive experiments the superior efficacy of
a Contextual Augmenter. This Augmenter
leverages a pre-trained Transformer model to iden-
tify the top-n suitable words in the input text for
substitution. Given that FNSCC also adopts a
Transformer-based encoder, we employ the same
augmentation strategy to ensure compatibility and
semantic consistency within the framework.

Furthermore, this study uses two distinct masked
language models for context-based substitution
augmentation. To investigate the impact of dif-
ferent MLMs and substitution rate on model perfor-
mance, experiments are conducted on the datasets
listed in Table 2, comparing performance across
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Figure 7: Case studies of short texts in the AgNews dataset. The true label for all four sentences is “business finance.”
The clustering results based on the pre-trained SBERT model only correctly predict sentence 3. After optimization
with FNSCC, most sentences are correctly clustered. Nevertheless, due to the ambiguity of cluster boundaries, a
small number of incorrect predictions still exist.

various substitution configurations. The results,
summarized in Table 3, show that FNSCC achieves
optimal performance at a substitution rate of 20%
when using a mixture of BERT and RoBERTa.

This finding provides an empirical guideline,
showing that applying different MLMs with a 20%
substitution rate achieves an optimal balance be-
tween semantic enrichment and distortion. This
approach effectively broadens the data distribu-
tion while minimizing the introduction of excessive
noise or semantic drift from the original text.

A.8 Analysis of Failure Cases

Despite its effectiveness in separating clusters and
grouping similar instances, as shown in Figure 2 (c),
FNSCC still encounters some errors near cluster
boundaries. We analyze these failure cases from
both algorithmic and empirical perspectives, and
summarize them as follows:

(1) Semantic ambiguity at cluster boundaries
The data categories in AgNews mainly in-

clude “business finance”, “technological innova-
tion”, “sports news”, and “international news”.

Among them, there are many samples of similar
categories that are often confused. For example,
short texts of “business finance” and “technological
innovation” have similar vocabulary and structure,
which leads to confusion in the embedding space.
As shown in Figure 7, using samples from the Ag-
News dataset, the true label for all four short texts
is “business finance”. FNSCC corrects most of
the misclassifications by introducing instance-level
and cluster-level fuzzy neighborhood optimization
on the SBERT pre-trained model. However, the
error in sentence 4 remains uncorrected. Analysis
of the adjacency structure of these samples shows
strong semantic overlap between neighborhoods,
suggesting that more refined discrimination strate-
gies are still needed in low-density regions. Future
research explores methods based on density or lo-
cal uncertainty to address this issue.

(2) Class imbalance and neighborhood domi-
nation

When a category such as “business finance” has
a high proportion, it will dominate the neighbor-
hood of nearby instances, even including minority
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categories such as “technological innovation” or
“international news”. However, due to the large
number and similar terms, its surroundings are
easily drowned out by business finance samples.
For example, when the classes are unbalanced,
there will be samples in the neighborhood that
do not match the current class. In Equation (5),∑

j∈N (g(ti))
Ψ(ti, tj) · qjk will be affected by sam-

ples from the wrong category to distort the fuzzy
neighborhood assignment, which further affects
the target distribution (Equation (7)). Although
the adaptive weight Ψ(ti, tj) = s(g(ti), g(tj)) ·
d(g(ti), g(tj)) will regulate it overall, it will still
be affected to a certain extent.

A.9 Computational Cost
The training process for each dataset is conducted
on a GeForce RTX 4090 GPU, with an approximate
runtime ranging from 10-30 minutes.
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