UlOrchestra: Generating High-Fidelity Code from UI Designs with a
Multi-agent System

Chuhuai Yue!, Jiajun Chai!, Yufei Zhang', Zixiang Ding', Xihao Liang!,
Peixin Wang', Shihai Chen', Wang Yixuan', Yanping Wang!,
Guojun Yin', Wei Lin'*

'Meituan
yuechuhuai@meituan.com

Abstract

Recent advances in large language models
(LLMs) have significantly improved automated
code generation, enabling tools such as GitHub
Copilot and CodeWhisperer to assist devel-
opers in a wide range of programming tasks.
However, the translation of complex mobile
UI designs into high-fidelity front-end code re-
mains a challenging and underexplored area,
especially as modern app interfaces become in-
creasingly intricate. In this work, we propose
UlOrchestra, a collaborative multi-agent sys-
tem designed for the AppUI2Code task, which
aims to reconstruct static single-page applica-
tions from design mockups. UlOrchestra inte-
grates three specialized agents, layout descrip-
tion, code generation, and difference analysis
agent that work collaboratively to address the
limitations of single-model approaches. To fa-
cilitate robust evaluation, we introduce APPUI,
the first benchmark dataset for AppUI2Code,
constructed through a human-in-the-loop pro-
cess to ensure data quality and coverage. Exper-
imental results demonstrate that UIOrchestra
outperforms existing methods in reconstructing
complex app pages and highlight the neces-
sity of multi-agent collaboration for this task.
We hope our work will inspire further research
on leveraging LLMs for front-end automation.
The code and data will be released upon paper
acceptance.

1 Introduction

Recently, large language models (LLMs) have sig-
nificantly advanced the capabilities of various tasks.
Leveraging novel learning paradigms and massive
code corpus, state-of-the-art LLMs even surpass
human performance in tasks such as code genera-
tion from natural language instructions (OpenAl,
2024b, 2025; Team, 2025; DeepSeek-Al, 2025a,b;
Team et al., 2025). These developments have led to
the emergence of code assistance tools like GitHub

*Corresponding author.

(a) Building from Scratch Manually

Heavy Humag lre uent
@ = Labour Hallucmatlons (»

Unacceptable Unacceptable
Costs Quality

(b) Generating from Single LLM

(¢) OrchestraUI: collaborative multi-agent sysetm for AppUI2code

ho Acceptable Costs & Quality A

Real-world App
Screenshots

Rendered Image of the
Generated Code

Figure 1: (a) Converting designs into static pages is
a labor-intensive task. (b) One single LLM is prone
to hallucinations when it comes to understanding UI
designs. (c) Our proposed UlOrchestra helps developers
achieve fast and efficient static page development.

Copilot' and Amazon CodeWhisperer?, which pro-
vide developers with professional-level code com-
pletions and snippets from simple descriptions or
partial code, improving development efficiency.
However, there remain important and in-demand
tasks where LLMs are less effective.

The rise of mobile internet has led to a tremen-
dous demand for app front-end development. Mod-
ern app interfaces typically feature complex layouts
and numerous components. Front-end developers
are required to accurately reproduce all elements
specified in design mockups—including layout, hi-
erarchy, and positioning—to construct static pages
that faithfully reflect the original designs. While
LLMs can assist with implementing interactive fea-
tures, the initial process of static page construction
remains tedious and time-consuming, resulting in

"https://github.com/copilot
Zhttps://aws.amazon.com/codewhisperer/

2769

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 2769-2782
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/copilot
https://aws.amazon.com/codewhisperer/

high development costs. Despite this demand, there
has been limited research in this area. We refer to
the challenging yet promising task of reconstruct-
ing static single-page apps from design mockups
as AppUI2Code.

Some studies have attempted to generate sim-
ple web pages by converting website screen-
shots or randomly constructed prototypes into
HTML (Zhou et al., 2024), a task commonly known
as UI-to-Code (UI2Code) (Si et al., 2025). While
these approaches show the potential of LLMs in
automating labor-intensive tasks, the lack of rele-
vant data during pre-training often results in hallu-
cinations, especially in fine-grained details. This
limitation is further amplified when the focus shifts
from simple web pages to complex modern app in-
terfaces, where the high density of UI components
increases the challenge for a single model.

To address these challenges and enable efficient,
high-quality static app page generation, we propose
UlIOrchestra (as shown in Figure 1), a multi-agent
system for AppUI2Code, which consists of three
agents: a layout description agent (Ajq), a code
generation agent (A.g), and a difference analysis
agent (Aga). Aiq receives the Ul design image and,
guided by a few shot prompts, analyzes the layout
in a row-by-row, divide-and-conquer manner, fi-
nally submitting a structural description of natural
language. A, takes both the layout description and
the design image as input, constructs the overall
code framework based on the layout description,
fills in style details according to the design image,
and render the generated code. A4, compares the
rendered page with the original design, identifies
layout and style discrepancies, and iteratively feeds
this information back to the code generation agent
until the output is satisfactory.

To evaluate UlOrchestra, we examine existing
benchmarks from prior work, which mainly focus
on websites, finding them insufficient for assess-
ing the reconstruction of complex app pages. To
address this gap, we introduce APPUI, the first
mobile-oriented benchmark for AppUI2Code. Un-
like web front-end code, which can be easily col-
lected at scale (e.g., Common Crawl, C4, WebUI),
mobile app front-end data is much harder to
obtain. Even large companies are limited to their
own products, leaving other widely used apps in-
accessible. To overcome this, we employed hu-
man experts within UlOrchestra, replacing Ajq and
Again a human-in-the-loop process. Experts pro-

vided precise layout descriptions and difference
analyses to Acg, producing high-quality initial code
samples. These samples were further refined by
experienced engineers to ensure fidelity to the orig-
inal designs. This process resulted in a validation
dataset of 1,101 samples.

Experimental results reveal the limitations of
single-model approaches and underscore the ne-
cessity of multi-agent collaboration for complex
tasks like AppUI2Code. We hope future research
will build on our work and, as model capabilities
advance, further enhance the role of LLMs in front-
end automation.

In summary, our contributions are as follows:

* We introduce UlOrchestra, a collaborative
multi-agent system that automatically gener-
ates high-fidelity front-end code.

* We present APPUI, the first benchmark for
AppUI2Code, by means of an expert interven-
tion in UIOrchestra.

* Comprehensive evaluation on APPUI and
other datasets demonstrates the advantages
of UlOrchestra and clarifying the limitations
of existing approaches.

2 Related Work

2.1 Code Generation from Natural Language

Recent years have seen rapid progress in code gen-
eration with both open- and closed-source LLMs
advancing the state of the art. OpenAl’s O se-
ries, leveraging reinforcement learning and chain-
of-thought, has achieved strong results: O1 (Ope-
nAl, 2024b) excels on Codeforces, and O3 (Ope-
nAl, 2025) reaches 71.7% accuracy on SWE-bench
Verified (Jimenez et al., 2024). Deepseek’s open-
source R1 (DeepSeek-Al, 2025a) matches O1’s
performance at lower training cost. Grok3 (Team,
2025) attains 79% on SWE-bench with signif-
icant resources. Other strong models include
Moonshot AI’s K1.5 (Team et al., 2025) and
Qwen’s QWQ (Team, 2024), both outperforming
earlier models such as 40 (OpenAl, 2024a) and
Claude (Anthropic, 2024).

2.2 UI2code

Before large language models (LLMs), early works
like pix2code (Beltramelli, 2018) used CNNs and
RNNs to generate code from Ul screenshots, but
were limited by model capacity. With the advent

2770

e e
&1 w0
/. ,] =l | Few-shot !
—\X | prompt ; =%
[i Al)
L0
a
Layout Acg Generated
Description Dy T Code H;
' i
i Online |
P N Layout \Rendering;
DescriptionD; ~ ~ 777
Online T

Rendered

“Good enough! Accept!” Image I

Correct layout.
Greatly restored.
High fidelity.

' T —)
Hun ' =

The image can be divided into four o)
mas p . (AD
sections along the horizontal axis, from

top to bottom, which are the <search bar>,

<product category selection area>, a

Do

In comparison with the original image,

several stylistic adjustments are required,
Dy as detailed below:

...... 8

& = GSoOA

One Single LLM

...... Ada
=0 T —)
(AD
] "
— Layout errors.
Missing
ACE . components.
Low fidelity.
@) R\
Already good enough! fhi
*il
o
Aga u,

Figure 2: To reduce human involvement and lower the cost of data generation, we introduced a layout description
agent and a difference analysis agent, forming UlIOrchestra. The cooperation of multi-agents significantly enhances
the quality of the generated data, surpassing that of a single model and enabling reliable automated data production.

of LLMs, Ul2code (Guo et al., 2024) saw signifi-
cant progress. Si et al. (Si et al., 2025) introduced
a benchmark with 484 real-world webpages and
tailored metrics for evaluating MLLMs on design-
to-code tasks, inspiring much follow-up research.
Laurencon et al. (Laurencon et al., 2024) released a
dataset of 2 million HTML-screenshot pairs, while
Gui et al. (Gui et al., 2024) curated a high-quality
dataset from Common Crawl. Other advances
include computer vision and compiler optimiza-
tion (Zhou et al., 2024), “visual critic without ren-
dering” (Soselia et al., 2024), and structure-aware
attention with contrastive learning (Liang et al.,
2024). However, most work targets websites and
struggles with complex mobile pages. To address
this, we propose UlOrchestra.

2.3 LLM-Based Multi-Agent System

While LLMs show strong capabilities, they still
face challenges such as hallucinations. Recent re-
search addresses this by leveraging multi-agent
collaboration for collective intelligence (Tran
et al., 2025). Studies have shown that combin-
ing different LLMs can enhance code genera-
tion (Barbarroxa et al., 2024). Frameworks like
MetaGPT (Hong et al., 2024) and MapCoder (Is-
lam et al., 2024) simulate human roles and program-
ming stages to improve task performance. Other
works (Shinn et al., 2023; Li et al., 2023; He et al.,
2023; D’ Arcy et al., 2024; Wang et al., 2024) fur-

ther advance multi-agent systems by enhancing
decision-making, collaboration, explanation, re-
view, and recommendation through diverse agent
interactions.

3 Building static pages via UIOrchestra

AppUI2code is a challenging and complex task that
requires large models to possess strong visual ca-
pabilities, accurately understand the hierarchical
relationships and layout structures implied by the
various components on a page, and at the same time,
not overlook the stylistic details of each element, in-
cluding color, position, font, etc. Ultimately, all of
this information must be faithfully converted into
code. This entire process poses a significant chal-
lenge to the capabilities of LLMs. Therefore, given
the limitations of current models, it is a reasonable
approach to decompose the complex task into a
series of sub-tasks, each handled by a dedicated
agent, allowing for division of labor and collab-
orative problem-solving. Therefore, we propose
UlIOrchestra, which aims to generate static front-
end code from UI design images in a step-by-step
manner through multi-agent collaboration.
Specifically, as shown in Figure 2, we introduce
a layout description agent, denoted as Ajq, and a
difference analysis agent, denoted as Ag4,, com-
plementing the code generation agent to form a
specialized multi-agent system for AppUI2code.
Collaboratively, these agents iteratively refine the

2771

quality of the code. The input reference screen-
shot is referenced as I, while the front-end code
produced by the code generation agent in the "
iteration and its corresponding rendered image are
referenced as H; and I;, respectively.

3.1 Layout Description Agent

Ajq takes I as input and generates a detailed natu-
ral language description of its layout structure. As
illustrated in Figure 2, Aj4 analyzes the input page
and produces an output description Dy. Guided
by few-shot prompts, it partitions the UI page into
regions through a top-down, left-to-right, line-by-
line scanning approach. For example, a scan of the
input in the figure sequentially identifies the status
bar, search bar, category slider, and product detail
area. Each sub-region is further decomposed in
the same manner; for instance, the product detail
area comprises a 2x2 grid of products, with each
product containing vertically arranged components
such as the product image, name, rating, and price.
In this way, Ajq outputs the page’s complete layout
information Dy in a tree structure, where the hier-
archical level of each region or element reflects its
position within the overall layout. By introducing
Ajg, the crucial step of layout structure analysis is
effectively isolated, which is essential for the Ap-
pUI2code task. This separation prevents A¢, from
having to handle both layout analysis and code gen-
eration simultaneously, thereby reducing the risk
of errors that may cause the final output code to
deviate from the intended design. Furthermore,
given the model’s limited output length, dividing
these tasks enables the model to generate more de-
tailed layout descriptions, thus supporting a more
accurate reconstruction of the original design.

3.2 Difference Analysis Agent.

Aga takes I; and I as input and is responsible for
comparing their layout structures and visual de-
tails. Leveraging a similarity detection tool, A4,
determines whether H; requires revision. If so, it
articulates the differences in natural language ac-
cording to a predefined format to initiate a new
iteration; otherwise, H; is accepted as the final out-
put. As illustrated in the figure, discrepancies may
arise between I; and I, such as: “In the original
image, the product detail area is organized as a 2x2
grid. However, in the rendered image generated
from the code, the product detail area contains only
two products arranged vertically.” By introducing a
dedicated agent for defect detection, our approach

not only facilitates the decomposition of complex
tasks—compared to the self-refine prompt strategy
in Design2Code (Si et al., 2025)—but also over-
comes the limitations associated with relying on a
single model.

3.3 Code Generation Agent.

A, takes I and D; as input and generates front-
end code H; 1 according to the developer-specified
programming language or framework, as the code
generation rules may vary across different lan-
guages or frameworks. Subsequently, A, invokes
an online rendering tool to obtain the correspond-
ing rendered image [;, which is then submitted to
Aga for feedback. During generation, recognized
elements such as images/icons will be replaced by
predefined placeholder images, due to the inacces-
sibility of multimedia resources. In addition, A,
is responsible for maintaining the complete context
of the entire code generation process, ensuring that
all previous outputs remain accessible throughout
each iteration. Through this iterative code refine-
ment process, the fidelity of the generated code
is significantly improved compared to approaches
that rely on a single model for code generation.

In summary, UlOrchestra leverages the collab-
orative strengths of multiple specialized agents to
address the inherent challenges of the AppUI2code
task. By decomposing the process into distinct,
manageable sub-tasks and enabling iterative refine-
ment, our approach not only enhances code fidelity
but also improves the robustness and reliability of
static page generation from UI design images. This
multi-agent framework lays a solid foundation for
further advancements in automated Ul code gener-
ation.

4 Data Curation with Human-in-the-loop

As discussed in Section 1, existing benchmarks
predominantly target web pages, which are often
too simplistic to fully showcase the capabilities
of UlOrchestra. Moreover, it is difficult to obtain
front-end code for mobile applications, as such
datasets cannot be easily gathered through web
scraping. To address these challenges, we pro-
pose a human-in-the-loop approach that leverages
UlIOrchestra and expert intervention to generate
front-end code that faithfully replicates original de-
sign images, resulting in APPUI—the first bench-
mark for AppUI2code—as shown in Figure 3. No-
tably, UIOrchestra is robust to different program-

2772

(a) Semi-auto Data Synthesis with Human-in-the-loop

(T
------ X "‘

Popular apps
around the internet

Human experts

Screenshots
collecting & filtering collection I,

Crowd-Sourcing

Music Deficiency

Video Streaming |
analysis

E-commeree
122%

65% Hotcl

@ Layout = — o
ﬁ analysis ‘E .
< [)

Natural language Code generation’
description Dy

—
Rendered
image

cfanycart Rk

agent Acg

ic data in APPUI

n

Y/N

News 8.3%

5 Human D Code generation &
Online rendering

Education&Reading ' 9.5% LI
Transportation)
42% Generated
g ﬁ code
ba/ « .
A

7.0% Social Media Verification

D Code

adjustment

?
Sporl&Hcalth‘
6.1% .

Uselul Tools
Payment

Local Service

(d) Constitution of APPUI

Not Acceptable ([=
17.3%
&

Natural language
description D;

Figure 3: The construction of APPUI starts with collecting and categorizing screenshots from popular global
applications. The code synthesis process involves expert-provided layout descriptions, code generation by A,
expert difference analysis, iterative correction, and final manual refinement. This results in 1,101 pairs of synthesized
code and rendered images spanning 12 application categories.

ming languages and frameworks by simply modify-
ing the prompt requirements. In this work, we opt
to generate front-end code in the React framework,
as it is widely used as DSL in practice. For ex-
ample, React Native, which is extensively adopted,
utilizes React during the development phase, and
only maps to native components of the target sys-
tem at the rendering stage on the app side through
a dynamic framework.

4.1 Semi-auto High-Fidelity Data Synthesis

Our primary objective is to construct a dataset com-
prising screenshots of modern apps and their cor-
responding high-fidelity front-end codes, thereby
filling the gap in the AppUI2code domain.

To obtain app screenshots, we engaged a crowd-
sourcing team to manually capture images from
popular apps across commonly used categories, as
automated methods often yield irrelevant pages
and increase the burden of data filtering. Since
there is no significant difference in app page styles
between Android and i0S, all screenshots were
collected from the iOS platform. Experts then
screened the collected screenshots to remove those
containing sensitive information, personal data,
or pages unsuitable for image-to-code conversion
(such as image-only pages). This careful selec-
tion resulted in our app screenshot set, denoted as
I, = {Iol, 2, .. Ig{}, with examples shown in Fig-
ure 3(b). While screenshots are relatively easy to
obtain, acquiring the corresponding front-end code
remains a significant challenge.

As for corresponding codes, we employ a semi-

Taobao, Ebay, Shein, Stocks, Temu... X, Facebook, Snapchat, Instagram...

li\ Sport&Health @ Googlefit, Fitbit, Keep, Myfitnesspal..

Figure 4: APPUI covers 12 categories of the most used
app types in daily life, including the most popular apps
in each category.

automated human-in-the-loop approach, depicted
in Figure 3(a). We apply A.,, which driectly in-
teracts iteratively with human experts rather than
Ajq or Ag,. For each sample, a human expert ob-
serves the Ul screenshot and provides a completely
correct layout description. Using this input, Ac
generates initial code. An online render tool dis-
plays the generated UI page in real-time, allow-
ing the expert to compare it with the input sample
and identify discrepancies. A, refines the code
iteratively based on expert feedback until satisfac-
tory fidelity is achieved. This process yields a pre-
liminary set of code, Hj,;. On this basis, experts
further refine Hj,; through manual adjustments to
ensure maximal consistency with the input pages.
As the initial code quality is already high, this man-
ual refinement process requires only minimal ad-
ditional effort. The refined codes, H¢, are ren-
dered to obtain screenshots, I..s. Thus, APPUI
is deﬁned as APPUI = {S1,...,Sk}, where
S; ={I }, with examples shown in Fig3(c).

ref? ref

2773

4.2 Data Statistics

Using the data synthesis method described pre-
viously, we filtered 2,000 screenshots from over
7,000 originals for synthesis, resulting in 1,101
pairs of front-end code and rendered images that
make up the APPUI dataset. As shown in Figure 4,
APPUI covers 12 common application categories,
including e-commerce, education, travel, local ser-
vices, music, news, payment, social media, sports,
transportation, and video streaming. It includes 165
popular apps across these categories, with an aver-
age of 6.67 samples per app, focusing on the most
frequently used pages. The average length is 2,199
tokens, measured by a BPE tokenizer. Figure 3(d)
presents the distribution of categories, number of
apps, average sample size, code length, and layout
depth. Overall, APPUI offers broad and balanced
coverage, capturing the diversity and complexity
of modern app design styles without bias toward
specific categories.

4.3 Objective Evaluation Metrics

Previous studies typically evaluate generated code
as plain text, relying on metrics such as normalized
edit distance. Design2Code, however, emphasizes
visual fidelity by comparing the rendered images
of generated and original code, introducing both
high-level and low-level visual similarity metrics.
In our work, we adopt both visual and textual evalu-
ation metrics: visual metrics capture fidelity to the
original design, while textual metrics reflect align-
ment with human coding conventions. Building on
prior work, we employ objective metrics to assess
both global and component-level visual and textual
similarity.

For clarity, we denote the reference code and
images as Hy = {H},...,HE} and Iy =
{I},..., I/}, and the generated code and images
asHg = {H},...,H}and Ig = {1],..., I[}.
Take j-th output as an example.

To assess global visual similarity, we use the
Structural Similarity Index (SSIM) and CLIP score.
SSIM evaluates luminance, contrast, and structure,
while the CLIP score measures similarity between
image embeddings from the CLIP visual encoder,
denoted as CLIP(I7, I, g) For textual similarity,
we compute BLEU scores between H] and H}).

For component-level evaluation, we establish a
one-to-one correspondence between components in
the generated and reference images. Let Bj and B}
denote the components of I, g and [, t] , respectively,

where each component includes textual content
and positional coordinates. Unlike prior work that
matches components solely by text, we incorporate
spatial distance into the matching cost for optimal
assignment, as detailed in the appendix.

A key goal of AppUI2code is to faithfully repro-
duce all elements from [in I}. Following (Si
et al., 2025), we use the Block-Match metric and
propose the weighted mean CIOU score across all
matched pairs as the primary component-level vi-
sual similarity metric:

CIOU; = Z wq % ciou(rect,, recty) (1)
(p.q)eMI

~ Area(recty)
~ > Area(rect;)

where CIOU; is the CIOU score for [g, m is
the number of matched elements, and rect,, is the
bounding box of bgj. The CIOU score directly re-

flects how well Ig restores the position and layout
of each component.

For component-level textual similarity, since it
is already considered during matching, we do not
use it as a separate metric. Instead, we propose
CSS-snippet matching, which extracts and com-
pares CSS attributes (e.g., font size, color) from
H} and H} for each matched pair. The metric is the
ratio of correctly reproduced CSS fields to the total
number of CSS fields across all pairs, capturing
visual attributes beyond layout.

2

Wq

5 [Evaluation

We conduct extensive benchmarking and human
evaluation of various most recent powerful models
and methods to explore the boundaries of their per-
formance on our APPUI, including closed-source
commercial models, open-source models, fine-
tuned models, and our UIOrchestra.

5.1 Experiment Setup

The models under our evaluation include: propri-
etary models such as GPT-40 (OpenAl, 2024a),
Claude-3.5 (Anthropic, 2024), Gemini-1.5 (Deep-
Mind, 2024), Doubao-1.5 pro (DoubaoTeam,
2025), GLM-4v-plus (ZhipuAl, 2025); open-
source models including Qwen2.5VL-7B (Bai
et al., 2025), Llama 3.2-Vision 11B (MetaAl,
2024); fine-tuned models including Design2Code-
18B (Si et al., 2025), WebSight VLM (Laurencon
et al., 2024); as well as our UIOrchestra based on
GPT-40 and Claude-3.5.

2774

Methods CLIP score SSIM BLEU Block-match CIOU CSS snippet sim
GPT-40 0.775 0.748 0.473 0.578 0.732 0.638
Claude-3.5 0.833 0.749 0.542 0.609 0.744 0.586
Gemini-1.5 0.604 0.623 0.426 0.474 0.589 0.541
Doubao-1.5pro 0.689 0.723 0.411 0.517 0.649 0.527
GLM-4 0.572 0.568 0.349 0.427 0.498 0.413
Qwen-2.5VL 0.643 0.719 0.425 0.479 0.593 0.518
Llama-3.2-V 0.619 0.681 0.386 0.472 0.531 0.437
Design2Code 0.584 0.617 0.394 0.439 0.487 0.424
WebSight 0.562 0.605 0.397 0.427 0.502 0.418
UlOrchestra(4o) 0.865 0.776 0.586 0.631 0.776 0.693
UIOrchestra(Claude) 0.874 0.769 0.594 0.647 0.783 0.695

Table 1: Objective evaluation results of various methods. The best results are in bold, second best are underlined.

5.2 Automatic Ojective Evaluation

As shown in Table 1, APPUI effectively distin-
guish the performance of different methods on the
AppUI2Code task, offering a robust and objective
assessment of model capabilities.

Commercial large models such as 40 and Claude
achieve strong results across all metrics, benefit-
ing from extensive multimodal pre-training. No-
tably, open-source models like Qwen2.5vl and
Llama3.2v, despite their smaller sizes, perform
comparably to earlier commercial models. In con-
trast, fine-tuned models based on web HTML data
struggle to adapt to the density of elements in mo-
bile app. Our proposed UlOrchestra addresses the
limitations of single-model approaches by lever-
aging multiple specialized agents. Whether using
40 or Claude as the base, UlOrchestra consistently
outperforms the original models, particularly at
the component level, by capturing intricate details
and minimizing distortion while adhering to coding
standards.

Regarding evaluation metrics, CLIP score and
SSIM assess semantic and structural similarity at
the image level, with most advanced models per-
forming similarly, though smaller models may in-
troduce distortions. BLEU measures textual simi-
larity, reflecting alignment with human coding pref-
erences. Block-match and CIOU evaluate the accu-
rate reproduction of component positions, though
most models struggle with precise localization.
CSS snippet similarity assesses the replication of
visual details such as font and color, which sig-
nificantly impact perception; even leading models
like Claude show deficiencies here. UlOrchestra,
through differential analysis, effectively captures
and enhances layout, position, and color details,
resulting in improved overall performance.

In addition to evaluating on our APPUI dataset,
we also assessed UlOrchestra on the widely used
web Ul2code benchmark, DesignCode-hard (Si
et al., 2025). We tested the performance of
UlOrchestra with different base models, and the
results are presented in Table 2.

It is worth noting that on the widely used web-
based benchmark Design2Code (Si et al., 2025),
most methods typically achieve high performance.
In contrast, even state-of-the-art models exhibit
significant room for improvement on our APPUI
benchmark, demonstrating that APPUI presents
a sufficiently challenging benchmark for the Ap-
pUI2code task.

\ Block Text Position Color CLIP
GPT-40
Direct 56.6 89.8 78.6 81.9 87.1

Text-Augmented | 67.7 95.2 71.5 81.5 875
Self-Revision 72.1 964 8l.1 824 882

Claude-3.5

Direct 61.7 O91.1 83.0 844 895
Text-Augmented | 75.1 97.6 83.4 849 89.0
Self-Revision 719 96.5 82.6 83.0 88.8

Gemini-1.5

Direct 723 954 809 805 875
Text-Augmented | 73.7 959 79.8 79.1 88.2
Self-Revision 712 966 809 784 879

UlIOrchestra (40)

| 80.1 98.6 853 873 91.6
UlIOrchestra (Claude)

| 825 985 860 889 931

Table 2: The performance of various methods on
Design2Code-hard (Si et al., 2025), with results of three
commercial LLMs from its own paper. The best results
are in bold.

2775

5.3 Human Preference Evaluation

Methods Text Layout Illustration Detail Total
GPT-40 22 12 14 11 59
Claude-3.5 23 14 15 12 64
Gemini-1.5 20 11 13 12 56
Doubaol.5pro 22 13 12 11 58
GLM-4v 17 9 10 11 47
Qwen2.5VL 19 12 11 9 51
Llama 3.2V 17 10 12 10 49
Design2Code 15 12 9 7 43
WebSight 14 13 9 8 44
UlOrchestra 24 17 19 16 76

Table 3: Human preference evaluation results. The best
results are in bold.

Given that the AppUI2Code task targets a broad
user base, we designed an additional qualitative ex-
periment involving human annotators. Specifically,
we randomly selected 200 samples from APPUI,
denoted as T290, and their corresponding output
results from various methods. We invited four hu-
man annotators with design backgrounds, who each
rated 1/4 of the outputs of all the methods, thus
avoiding one person’s favoritism towards a partic-
ular method. To avoid unexpected bias, they were
unaware of the sources and were asked to score the
outputs based on four predefined dimensions: text
fidelity (correctness of text content recognition),
layout fidelity (accuracy of layout structure), illus-
tration fidelity (correct recognition and placement
of images from the original screenshot), and de-
tail fidelity (accuracy of colors, fonts, sizes, line
breaks, etc.). Each dimension was scored out of
25 points and the final score of each dimension for
each method is the mean of all the samples. The re-
sults of the experiment are shown in Table3. It can
be observed that the qualitative results align well
with the quantitative metric evaluations and our
UlOrchestra achieved commendable performance
in aligning with human preferences.

5.4 Fidelity Study for APPUI

To evaluate the gap between the synthesized data
obtained in Section 4.1 and real app pages, as well
as to assess the usability of APPUI samples for de-
velopers, we followed the methodology described
in Section 5.3. Specifically, we invited human an-
notators to blindly evaluate the fidelity of I2°0 and
the corresponding real-world screenshots (denoted
as 1299) according to the same criteria. The final
scores were 25, 25, 24, and 23, with a total of 97

Manual 91% 6%3% Outcome
correction S
Win
Tie
. Lose
Iterative 74% 19% 7%
refinement
Only 49% 27% 24%
description

20 40 60 80 100
Percentage (%)

Figure 5: To validate the realism of APPUI samples,
annotators blindly rated the similarity between rendered
images and original screenshots. The baseline is set as
single Ac,, with scores exceeding it by 10% marked as
successes and those below by 10% as failures.

out of 100. These results indicate that, after mul-
tiple rounds of expert refinement, the samples in
APPUI closely resemble authentic app screenshots.

In addition, we conducted a comparative experi-
ment to evaluate the data quality at each intermedi-
ate step mentioned in Section 4.1.

We first obtained the baseline result Hgi?o by
directly inputting 1299 into Ace. The code gener-
ated using expert-provided layout descriptions is
denoted as H12d00. The iteratively refined version
by experts and A is denoted as H220, and the
final manually polished result as H?OO. The same
group of annotators then blindly evaluated the ren-
dered images of Hi?o, Hl2d°0, Hrze(fm, and Hf200
using identical criteria. Scores exceeding the base-
line by more than 10% were considered successful,
while those falling below by more than 10% were
considered failures. As shown in Figure 5, the qual-
ity of the generated code improves significantly as
human expert involvement increases during the AP-
PUI sample generation process. Ultimately, after
meticulous manual review, an extremely high de-
gree of fidelity to the input screenshots is achieved.

6 Conclusion

Our work highlights a missing capability in Al-
assisted programming: generating static page code
from design images. To address this challenging
task, we propose UlOrchestra, a multi-agent col-
laborative framework that decomposes the prob-
lem into manageable steps. To rigorously eval-
uate UIOrchestra, we introduce APPUI, the first
benchmark for the AppUI2code domain. Extensive
experiments demonstrate the effectiveness of our
approach. We hope this work will draw attention
to this field, provide developers with more efficient
tools, and promote further industry advancement.

2776

Limitations

Due to the challenges in data acquisition discussed
in the main text, it is difficult to obtain sufficient
data samples to fine-tune open-source LLMs in this
work. For the layout description subtask, fine-tuned
LLMs may outperform general-purpose commer-
cial models. In future work, we aim to leverage
UlOrchestra to generate large-scale, high-quality
datasets for fine-tuning and explore more solutions
through post-training and related approaches.

References

Anthropic. 2024. Introducing claude 3.5 son-
net. https://www.anthropic.com/news/
claude-3-5-son-net.

Shuai Bai, Keqin Chen, Xuejing Liu, and Jialin Wang
et al. 2025. Qwen2.5-vl technical report.

Rafael Barbarroxa, Bruno Ribeiro, Luis Gomes, and
Zita Vale. 2024. Benchmarking autogen with differ-
ent large language models. In 2024 IEEE Conference
on Artificial Intelligence (CAI), pages 263-264.

Tony Beltramelli. 2018. pix2code: Generating code
from a graphical user interface screenshot. In Pro-
ceedings of the ACM SIGCHI Symposium on Engi-
neering Interactive Computing Systems, EICS ’18,
New York, NY, USA. Association for Computing
Machinery.

Mike D’ Arcy, Tom Hope, Larry Birnbaum, and Doug
Downey. 2024. Marg: Multi-agent review generation
for scientific papers.

Google DeepMind. 2024. Introducing gemini 2.0:
our new ai model for the agentic era. https:
//blog.google/technology/google-deepmind/
google-gemini-ai-update-december-2024/.

DeepSeek-Al 2025a. Deepseek-rl: Incentivizing rea-
soning capability in llms via reinforcement learning.

DeepSeek-Al 2025b. Deepseek-v3 technical report.

DoubaoTeam. 2025. Doubao 1.5pro - doubao
team. https://team.doubao.com/zh/special/
doubao_1_5_pro. Accessed: 2025-03-08.

Yi Gui, Zhen Li, Yao Wan, Yemin Shi, Hongyu Zhang,
Yi Su, Shaoling Dong, Xing Zhou, and Wenbin Jiang.
2024. Vision2ui: A real-world dataset with lay-
out for code generation from ui designs. ArXiv,
abs/2404.06369.

Hongcheng Guo, Wei Zhang, Junhao Chen, Yaonan
Gu, Jian Yang, Junjia Du, Binyuan Hui, Tianyu Liu,
Jianxin Ma, Chang Zhou, and Zhoujun Li. 2024. Tw-
bench: Evaluating large multimodal models for con-
verting image-to-web.

Zhitao He, Pengfei Cao, Yubo Chen, Kang Liu,
Ruopeng Li, Mengshu Sun, and Jun Zhao. 2023.
LEGO: A multi-agent collaborative framework with
role-playing and iterative feedback for causality ex-
planation generation. In Findings of the Associa-
tion for Computational Linguistics: EMNLP 2023,
pages 9142-9163, Singapore. Association for Com-
putational Linguistics.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng,
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili
Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu,
and Jiirgen Schmidhuber. 2024. Metagpt: Meta pro-
gramming for a multi-agent collaborative framework.

Md. Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.

Carlos E. Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. 2024. Swe-bench: Can language mod-
els resolve real-world github issues?

Hugo Laurengon, Léo Tronchon, and Victor Sanh. 2024.
Unlocking the conversion of web screenshots into
html code with the websight dataset.

Huao Li, Yu Chong, Simon Stepputtis, Joseph Camp-
bell, Dana Hughes, Charles Lewis, and Katia Sycara.
2023. Theory of mind for multi-agent collaboration
via large language models. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Shanchao Liang, Nan Jiang, Shangshu Qian, and Lin
Tan. 2024. Waffle: Multi-modal model for automated
front-end development.

MetaAl. 2024. Llama3.2: Revolutionizing edge ai and
vision with open, customizable models.

OpenAl. 2024a. Gpt-4o system card. https://
openai.com/index/gpt-4o0-system-card/.

OpenAl. 2024b. Learning to reason with Ilms.
https://openai.com/index/learning-to-reason-with-
Ilms/. Accessed on 2025-02-25.

OpenAl 2025. Openai 03-mini.
https://openai.com/index/openai-03-mini/. Ac-
cessed on 2025-02-25.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: Language agents with verbal rein-
forcement learning.

Chenglei Si, Yanzhe Zhang, Ryan Li, Zhengyuan Yang,
Ruibo Liu, and Diyi Yang. 2025. Design2code:
Benchmarking multimodal code generation for auto-
mated front-end engineering.

2777

https://www.anthropic.com/news/claude-3-5-son-net
https://www.anthropic.com/news/claude-3-5-son-net
http://arxiv.org/abs/2502.13923
https://doi.org/10.1109/CAI59869.2024.00058
https://doi.org/10.1109/CAI59869.2024.00058
https://doi.org/10.1145/3220134.3220135
https://doi.org/10.1145/3220134.3220135
http://arxiv.org/abs/2401.04259
http://arxiv.org/abs/2401.04259
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
https://blog.google/technology/google-deepmind/google-gemini-ai-update-december-2024/
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2501.12948
http://arxiv.org/abs/2412.19437
https://team.doubao.com/zh/special/doubao_1_5_pro
https://team.doubao.com/zh/special/doubao_1_5_pro
https://api.semanticscholar.org/CorpusID:269010048
https://api.semanticscholar.org/CorpusID:269010048
http://arxiv.org/abs/2409.18980
http://arxiv.org/abs/2409.18980
http://arxiv.org/abs/2409.18980
https://doi.org/10.18653/v1/2023.findings-emnlp.613
https://doi.org/10.18653/v1/2023.findings-emnlp.613
https://doi.org/10.18653/v1/2023.findings-emnlp.613
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2308.00352
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2405.11403
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2310.06770
http://arxiv.org/abs/2403.09029
http://arxiv.org/abs/2403.09029
https://doi.org/10.18653/v1/2023.emnlp-main.13
https://doi.org/10.18653/v1/2023.emnlp-main.13
http://arxiv.org/abs/2410.18362
http://arxiv.org/abs/2410.18362
https://openai.com/index/gpt-4o-system-card/
https://openai.com/index/gpt-4o-system-card/
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2303.11366
http://arxiv.org/abs/2403.03163
http://arxiv.org/abs/2403.03163
http://arxiv.org/abs/2403.03163

Real-world Website Samples from Design2code benchmark Real-world App Screenshots

Figure 6: Website differs from mobile UI in component
scale and layout structure

Davit Soselia, Khalid Saifullah, and Tianyi Zhou. 2024.
Learning Ul-to-code reverse generator using visual
critic without rendering.

Grok 3 Team. 2025. Grok 3 beta — the age of reasoning
agents. https://x.ai/blog/grok-3. Accessed on 2025-
02-25.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, and
Changjiu Jiang et al. 2025. Kimi k1.5: Scaling rein-
forcement learning with 1lms.

QwenLM Team. 2024. Qwq-max-preview: The
next leap in deep reasoning and multi-domain
mastery. https://gwenlm.github.io/blog/
gwg-max-preview/.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen,
Quoc-Viet Pham, Barry O’Sullivan, and Hoang D.
Nguyen. 2025. Multi-agent collaboration mecha-
nisms: A survey of llms.

Zhefan Wang, Yuanqing Yu, Wendi Zheng, Weizhi Ma,
and Min Zhang. 2024. Macrec: A multi-agent collab-
oration framework for recommendation. In Proceed-
ings of the 47th International ACM SIGIR Confer-
ence on Research and Development in Information
Retrieval, SIGIR 2024, page 2760-2764. ACM.

ZhipuAl. 2025. Zhipu ai open platform. https:
//bigmodel.cn/dev/howuse/glm-4v. Accessed:
2025-03-08.

Ting Zhou, Yanjie Zhao, Xinyi Hou, Xiaoyu Sun, Kai
Chen, and Haoyu Wang. 2024. Bridging design and
development with automated declarative ui code gen-
eration.

A Is APPUI Necessary?

In the realm of UI2Code, prior work has predom-
inantly focused on web-based applications, intro-
ducing datasets that range from large-scale fine-
tuning datasets with millions of samples to high-
quality benchmarks with a few hundred samples.
However, these datasets are not directly applica-
ble to the AppUI2Code task. Web pages generally
exhibit a relatively uniform style, primarily cen-
tered around textual content with simple layouts,

whereas mobile app interfaces are far more com-
plex and sophisticated, featuring a greater diversity
of styles. As illustrated in Figure 6, the sample on
the left is from Design2code, while the one on the
right is a screenshot of a real-world mobile app.
The disparity arising from design philosophies ef-
fectively constitutes two distinct data distributions.
Consequently, while existing web-based datasets
may provide some foundational capabilities for the
AppUI2Code task, they are not suitable for bench-
marking purposes. Therefore, to advance the devel-
opment of AppUI2Code, it is essential to propose a
dedicated benchmark that reflects the unique char-
acteristics of the task. Our work is motivated by
this necessity.

B More samples from APPUI

To better demonstrate the diversity of data in the
APPUI, we show more samples from it here, as
shown in Figure 7.

C Components Hungarian Matching.

This algorithm is a two-phase UI component match-
ing method. The first phase, the initial text similar-
ity matching phase, involves constructing a similar-
ity matrix by calculating the Levenshtein similarity
of element names. The Hungarian algorithm is
then used for preliminary optimal matching, and
matches that exceed a certain threshold are selected.
The second phase, the position optimization for el-
ements with the same name phase, detects groups
of elements with the same name in both documents.
For groups with many-to-many matches, it con-
structs an Euclidean distance matrix based on spa-
tial positions. A second Hungarian matching is
applied to optimize spatial position matching, and
the priority of optimized matching pairs is forcibly
enhanced. This algorithm effectively addresses
the issue of spatial position mismatches in scenar-
ios with multiple elements having the same name,
while maintaining the accuracy of text matching.

D Prompts for UIOrchestra

I will provide you with a screenshot of a
user interface, and I hope you can help an-
alyze the layout structure of this image. I
hope you can analyze it according to the
following rules:

2778

https://openreview.net/forum?id=b3LNKq6tfA
https://openreview.net/forum?id=b3LNKq6tfA
http://arxiv.org/abs/2501.12599
http://arxiv.org/abs/2501.12599
https://qwenlm.github.io/blog/qwq-max-preview/
https://qwenlm.github.io/blog/qwq-max-preview/
http://arxiv.org/abs/2501.06322
http://arxiv.org/abs/2501.06322
https://doi.org/10.1145/3626772.3657669
https://doi.org/10.1145/3626772.3657669
https://bigmodel.cn/dev/howuse/glm-4v
https://bigmodel.cn/dev/howuse/glm-4v
http://arxiv.org/abs/2409.11667
http://arxiv.org/abs/2409.11667
http://arxiv.org/abs/2409.11667

o5t 7

1605 %

s

2779

- . Cart s ¥ Hotels.com § ARG BTREMATARRES
aQ
,,,,, R
. WA B
g oveso v S
0 e - Harde THYE
> - GEEEE ek F , S
Grocs Clasic sandal \ ‘ﬂrf& v oose aaeas e
el £l €)
szo20. N | oo EERT |, o *:::
) ST N p— —
= T A - s v L] @ v Q m A Q. 2 i 52853
@ @) spaces Q App store 141055 a7 o7 - # 55 Church St v
€ [R ° e mw wsza WP 16 = Kids & Family -
Discover Spaces e s & s
!ﬂ., :"T;;:‘W”E? - o TEGIEREAR National favorites -
€eee - Sy ! N’ ‘ P ————
Ski Trip 2023) &!,,‘ < | ,:,;,L o 1000 125), ;‘&
Due from I‘T:izzmm’ - Ey ‘ 5 2z s i
$15050 F_.! O Jeastorvee)
smm | | | |2k | FNE=
| | | | EF 2 .
== | WIEE |Z =) e
Figure 7: More samples from APPUI are displayed here.
- N r 3
Let’s take it step by step: This image can be divided into two parts
1. Segmentation along the horizontal line: <Product Infor-
Observe the image and determine whether mation>, <Store Information>from top to
the entire image can be divided into several bottom.
parts by horizontal lines or vertical lines. 2. Iterative Execution
Segmentation instructions: For the <Product Information>area, it can
When dividi d havine he divid be divided into two parts along the verti-
. n dividin i in ivid- :
. el' v g’hiwo o av % ; e av cal line: <Product Image>, <Product De-
ing line pass throug any L4 compo- tails>from left to right.
nent of the part to be divided, other-
wise, bad things will happen. * For <Product Image>, no further divi-
. sion is needed, and its content is an
* Choose one of the two segmentation . .
image of a pizza.
methods.
. * For <Product Details>, it can be di-
* Summarize the divided parts with brief . . ’ .
vided into four parts along the hori-
text. .
zontal line: <Product Name>, <Sales
2. Tterative Execution and Reviews>, <Honor Tags>, <Price
For each of the divided parts, perform the Area>from top to bottom.
first step for all parts that can be further
L)
divided until no fragments can be further | | 7777
divided. _ Example 2:
.3. Be sure to output according to the style Input: url2
in the example. Output:
Example 1:
Input: urll . J
Output:
1. Segmentation

Algorithm 1 Two-Phase Cross-Document Element
Matching Algorithm

Require: GT component set C'9t = {c*‘l’t, e
Require: Gen component set (9" =
{Cgen7 . %@TL}
Require: Similarity threshold 7
Ensure: Matching results M = {(i, 7, s)}
1: Initialize similarity matrix S € R™*"
2: fori < 1tomdo
3: for j «— 1tondo
4 Sli, j} —
Slmllarlty(.name c? .name)
5 end for
6: end for
7: Detect groups with the same name
8: G « {(name, I9, J9°") | 3i,j : ¢/ .name =

i .name # 0}

9: for each (name, I9¢, J9") € G do

1. if [79°| > 1 and |J9°"| > 1 then

11: Construct distance matrix D €
R x| J9|

12: for p < 1to |79| do

13: forg < 1to]ng] do

14: d « ||c%, center —

T9t[p]"

Cgenyg)-center |2

15: Dip,q] < d

16: end for

17: end for

18: (row_ind, col_ind) —
HungarianAlgorithm (D)

19: for (p, q) € (row_ind, col_ind) do

20 S[I9p], J9¢"[q]] +— 1.0

21: end for

22: end if

23: end for

24: Costmatrix C' <—1—95

25: (row_ind, col_ind) —
HungarianAlgorithm(C')

260 M« {(,4,80,5) | (,5) €
(row_ind, col_ind) A S[i, j] > 7}

2780

Role

You are a professional image analyst capa-
ble of precisely identifying detailed differ-
ences between two images and providing
accurate adjustment suggestions.

Task

I will provide you with the original im-
age and the preview image of Al generated
front-end code.l need to know the differ-
ences between the preview image and the
original image so that I can make further
adjustments.

First, you need to accurately identify and an-
alyze the visual information of the original
and preview images, including but not lim-
ited to the position information of elements
in the images, the relative layout of adja-
cent elements, detailed information of ele-
ments (text color, inner and outer margins,
whether there are rounded corners, image
aspect ratio, subcomponent layout, back-
ground color), etc.

Then you need to compare and analyze the
visual detail differences of the preview im-
age relative to the original image.

Finally, you need to provide me with accu-
rate adjustment suggestions.
Requirements

e You must ensure that the content of
the response is true and effective, and
cannot mislead the user.

* You need to pay more attention to the
fidelity of the preview image’s details,
and also consider the spacing and lay-
out information between subviews.

* The adjustment suggestions provided
should be as specific as possible, such
as colors specified to color codes.

e Note: For differences in text size and
font family, please ignore the related
differences.

e For differences in rounded corners,
you only need to focus on whether
there are rounded corners, please
ignore the size differences of the
rounded corners.

* The images in the preview may use
placeholders as fallback images; you
do not need to focus on the specific
content within the image components,
only on the style and layout of the im-
age components. If you find this differ-
ence, please ignore it directly and do
not reflect this difference and adjust-
ment suggestion in the response.

Response Format
You must respond strictly according to the
following format:

By comparing with the original image,
several styles need adjustments, with spe-
cific requirements as follows:

At xx point, there is a difference in xx,
which requires xx adjustment.

At xx point, there is a difference in xx,
which requires xx adjustment.

Role

You are a professional AI UI2Code pro-
gramming assistant with perfect visual capa-
bilities, keen attention to detail, and exten-
sive experience in React/CSS development,
capable of accurately understanding UI de-
signs and constructing layout structures into
single-page applications.

Background

Users will provide UI design images that in-
clude various types of components, such as
images, avatars, text boxes, etc. Users will
inform you of the design dimensions, en-
suring that the code accurately reproduces
the layout. Users will provide you with lay-
out structural descriptions, which you must
refer to when generating code.

Task

Analyze the UI design image provided by
the user and transform it into specified code.
Specifically: You need to generate React
code and corresponding CSS code.

Steps

Let’s proceed step by step:

* Step One, Observe and analyze the de-
sign image to understand its content.

2781

Requirements:

— Pay close attention to background
color, text color, font size, font
family, series, padding, corners,
spacing, width, height, etc. Col-
ors and dimensions must match
accurately.

— Focus closely on the relative posi-
tions of elements in the image to
ensure that the generated code’s
original layout corresponds accu-
rately to the input screenshot.

— If there is text on the illustrations
in the design, ignore it.

» Step Two, Carefully read and under-

stand the input structural information,
and generate code representing the hi-
erarchical structure and layout relation-
ships.

Step Three, Combine the identified
content to construct a single-page app
using React framework.

Requirements:

— All components and containers
must use relative layout.

— Ensure the generated code ap-
pears identical to the input screen-
shot.

— Use the exact text from the input
image.

— If the text in the image contains
quotation marks, be sure to re-
move them.

— For all images appearing in the
design, use placeholder images
(url:http://.....) and include de-
tailed descriptions of the images
in the alternative text.

— More accurately identify the lay-
out structure of images, including
the overall layout and the layout
of segmented sub-views.

— Do not use comments to replace
content code. Write complete
code. Otherwise, something bad
will happen.

— Repeat elements as needed to
match the input image. For ex-
ample, if there are 15 items, the
code should have 15 items. You
can use mapping and other itera-
tive methods to render.

— For elements containing sub-
elements, set the flex-direction
value in CSS; otherwise, some-
thing bad will happen.

— CSS does not support group selec-
tors like ‘.textl, .text2 ¢, it must
be separated.

— Style elements should not be writ-
ten in React code, but in CSS
code.

— The length and width of contain-
ers should follow the user-input
design dimensions.

— You must generate the React code
according to the following tem-
plate:

const App = () => {

return <div className="
container”></div>;

» Step Four, Review and optimize the
code you have written.

Requirements:

— Ensure it can completely repro-
duce the style, especially layout
positioning, otherwise something
bad will happen.

— Ensure the use of relative posi-
tioning and flex styles.

— Check that the font size, color,
and style in text boxes are con-
sistent with the original image.

— The code must adhere to the orig-
inal image dimensions.

— In the style code snippets, po-
sitions are specified using pixel
units (px).

2782

