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Abstract

The absence of explicit communication chan-
nels between automated vehicles (AVs) and
other road users requires the use of external
Human-Machine Interfaces (eHMIs) to con-
vey messages effectively in uncertain scenarios.
Currently, most eHMI studies employ prede-
fined text messages and manually designed ac-
tions to convey these messages, which limits
the real-world deployment of eHMIs, where
adaptability in dynamic scenarios is essential.
Given the generalizability and versatility of
large language models (LLMs), they could po-
tentially serve as automated action designers
for the message-action design task. To validate
this idea, we make three contributions: (1) We
propose a pipeline that integrates LLMs and
3D renderers, using LLMs as action design-
ers to generate executable actions for control-
ling eHMIs and rendering action clips. (2) We
collect a user-rated Action-Design Scoring
dataset comprising a total of 320 action se-
quences for eight intended messages and four
representative eHMI modalities. The dataset
validates that LLMs can translate intended mes-
sages into actions close to a human level, par-
ticularly for reasoning-enabled LLMs. (3) We
introduce two automated raters, Action Refer-
ence Score (ARS) and Vision-Language Mod-
els (VLMs), to benchmark 18 LLMs, finding
that the VLM aligns with human preferences
yet varies across eHMI modalities. !

1 Introduction

Automated vehicles (AVs) promise to redefine
transportation systems by eliminating human driv-
ing errors and optimizing traffic flow (Fagnant and
Kockelman, 2015). However, the absence of a hu-
man operator disrupts road interactions, as drivers
no longer exchange contextual cues (e.g., eye con-
tact and gestures) to negotiate ambiguous scenar-

"The source code, prompts, Blender scenarios, and ren-

dered clips are available at https://github.com/ApisXia
/AutoActionDesign
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Figure 1: Setup illustration and action demos. a) Four
types of eHMIs are installed on the vehicle separately;
b) Demo actions of the arm convey the message: “Say
Hello”. The shaded action indicates the subsequent
status; ¢) Demo actions of the eye: “Help me out”.

ios (Colley et al., 2025). To bridge this gap, ex-
ternal Human-Machine Interfaces (eHMIs) have
emerged as mediators, conveying AV intent (e.g.,
yielding, turning) to other road users, such as pedes-
trians, cyclists, and human drivers (Dey et al.,
2020a; Colley and Rukzio, 2020). These interfaces
use diverse forms, such as displays (Al-Taie et al.,
2024; Lim and Kim, 2022), LED strips (Dey et al.,
2020b), projections (Eisma et al., 2019), and at-
tached robots (Gui et al., 2024b), to convey vehicle
intentions by text, signals, or non-verbal motions.
Current eHMIs are usually designed and ana-
lyzed with predefined text messages (e.g., “Please
stop.”, “I am worried.”) with scenario information
(e.g., “pedestrian is crossing the road”, “robot is
stuck in snow”) and manually designed actions to
perform these messages, as shown in Figure 1. This
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restricts the real-world deployment of eHMIs be-
cause dynamic interactions demand adaptable com-
munication strategies (Dey et al., 2020a). There-
fore, developers must design actions for all possible
messages that AVs might need to communicate to
other road users. This process is time-intensive,
costly, and significantly limits the scalability of
eHMISs in practical scenarios (Lim et al., 2024).
Recently, Large Language Models (LLMs)
demonstrate generalizability and versatility in mul-
tiple tasks, such as reading and answering ques-
tions (Radford et al., 2019), as well as pattern fol-
lowing (Mirchandani et al., 2023), suggesting that
they may serve as suitable automated action de-
signers for eHMIs. However, it is unclear whether
the application of LLMs for eHMIs is feasible and
useful, leading to our research question (RQ):

To what extent do pretrained LLMs
achieve parity with human designers in
designing eHMI actions that are under-
standable to road users?

Answering our RQ involves three key challenges.
First, there is no systematic pipeline for translat-
ing specified messages into executable action se-
quences for eHMIs. Second, there is a lack of high-
quality datasets for testing and improving the trans-
lation of eHMI messages into action sequences.
Third, there is no commonly used benchmark to
compare different methods for designing and eval-
uating eHMI actions fairly.

Therefore, first, we propose a pipeline that inte-
grates LLMs and 3D renderers. To adapt LLMs for
controlling eHMIs, we draw inspiration from LLM-
based robot action planning (Garrett et al., 2021;
Zitkovich et al., 2023), which utilizes LLMs as ac-
tion designers to generate a series of executable
actions to actuate robotic motors. Second, we
introduce a user-rated Action-Design Scoring
dataset. The dataset comprised eight intended mes-
sages for the eHMI to convey by analyzing traffic
scenarios, and selected four representative eHMI
modalities frequently discussed in eHMI research.
We collected messages from previous eHMI stud-
ies (Chang et al., 2022; Gui et al., 2022, 2024a) and
designed new ones based on message types (Col-
ley and Rukzio, 2020) to enrich the variety. For
each message-modality pair, we generated ten ac-
tions: eight produced by LLMs (GPT-40 (Achiam
et al., 2023), Sonnet 3.5 (Anthropic, 2024), Gem-
ini 2 Flash (DeepMind, 2024), and GPT-01 (Ope-
nAl, 2024b)) and two designed by human experts.

These actions were rendered using Blender ver-
sion 4.3 (Blender Foundation, 2025), resulting in
320 video clips. We conducted a video-based
user study with human participants. They eval-
uated the understandability of the LLM-designed
actions by measuring the consistency between the
intended messages and perceived meanings. The
Action-Design Scoring dataset provides aver-
aged human scores for each action, enabling a com-
parative benchmark for existing LLMs. Third,
we introduce the Action Reference Score (ARS),
which uses the similarity between the newly de-
signed actions and those rated in our dataset. Ad-
ditionally, we discussed the potential of Vision-
Language Models (VLMs) to serve as human-like
raters. Then, we benchmark 18 LLMs on this task.
Contribution Statement: This work proposes the
first complete pipeline, along with a comprehensive
dataset and benchmark for evaluating eHMIs. Be-
yond these core contributions, we also share several
noteworthy insights as follows:
* Pretrained LLMs can achieve a close human-
level action design capability (see Section 4.1).
* VLM rater matches human preferences but
varies across eHMI modalities (see Section 4.2).
* Reasoning-enabled LLMs demonstrate better
performance in our task (see Section 4.3).

2 Related Work

2.1 Rule-Based eHMI Action Planning

Currently, eHMI action planning generally follows
a fixed design approach, in which human design-
ers establish behavioral rules based on the spe-
cific features of different eHMI modalities. For
example, in text- and icon-based eHMIs, designers
create content referencing traffic regulation signs
or standard messages (Eisele and Petzoldt, 2022;
Eisma et al., 2021). In color- and light-band-based
eHMISs, they design the content relying on human
intuitive empathy and empirical evaluation with
colors and blinking frequencies (Bazilinskyy et al.,
2019; Dey et al., 2020b). For anthropomorphic
eHMIs, such as eyes or arms, designers mimic
nonverbal communication cues drawn from com-
mon human-human interactions (Mahadevan et al.,
2018; Ochiai and Toyoshima, 2011). Most recently,
(Colley et al., 2025) proposes using Human-In-The-
Loop Multi-Objective Bayesian Optimization to
create appropriate eHMIs. However, these eHMI
action design only works as part of a case study
to validate new eHMI modalities, which does not
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encourage the emergence of action design methods
before our paper.

In summary, traditionally, experts have observed
real-world examples to derive design rules for
guiding eHMI action planning. However, differ-
ent eHMI modalities vary in expression. Low-
expressiveness eHMIs, such as arrow icons, are
relatively simple because they convey static direc-
tional cues, making it easier to define behavioral
rules (Fridman et al., 2017). Highly expressive
eHMIs can produce complex actions and communi-
cate richer messages (Chang et al., 2024). However,
determining behavioral rules for such modalities
is challenging due to the increased intricacy and
variability of their expressions (Gui et al., 2023;
de Winter and Dodou, 2022). Unlike previous
works, we address this by evaluating LLMs to sup-
port eHMI action planning, enabling more complex
and dynamic communication.

2.2 LLMs-Based Robot Action Planning

Recent LLMs encode vast world knowledge and
exhibit the emerging capability for robot action
planning (Xiang et al., 2024). Regarding how
LLMs generate actions to actuate robots, existing
approaches fall into two main trends: Task and Mo-
tion Planning (TAMP) (Garrett et al., 2021) and
Visual Language Action (VLA) models (Zitkovich
et al., 2023). TAMP methods break down complex
instructions into predefined low-level actions (e.g.,
grasping, moving) to control robots (Chen et al.,
2024). However, for our task, it is difficult to pre-
define these action categories. We believe that forc-
ing LLMs to choose from rigid action modes limits
their ability to design flexible or adaptive actions
creatively (Hao et al., 2025). In contrast, VLA mod-
els fuse robot control actions directly into VLM
backbones, providing specific action commands to
control each robotic motor (Zitkovich et al., 2023;
Kim et al., 2024). However, applying existing VLA
models to out-of-scope tasks with different robot
settings often requires a large amount of data for
finetuning (Qu et al., 2025). This contradicts our
objective of reducing the labor required by human
experts in designing eHMI actions. In this task, we
utilize the generalizability and versatility of pre-
trained LLMs by providing detailed prompts on
how to control each modality of eHMI.

3 Methodology

This section outlines our responses to three key
challenges: i) the LLM-Blender Fusion pipeline,
ii) the Action-Design Scoring dataset, and iii)
the automated evaluation system for benchmarks.
These designs serve as a proof of concept for our
RQ and offer a systematic approach to developing
and evaluating newer LLMs or eHMIs modalities.

3.1 LLM-Blender Fusion Pipeline

The design of the LLM-Blender Fusion Pipeline
(see Figure 2(b)) unfolds in two steps: i) Designing
eHMI actions using LLMs with the provided mes-
sage text, scenario information, and eHMI descrip-
tion (see details in Section 3.2.1 and Section 3.2.2),
and ii) Rendering the designed actions into corre-
sponding virtual scenarios as video clips in Blender
(see Section 3.2.3 for more details).

3.2 Action-Design Scoring Dataset
3.2.1 eHMI Modality Definitions

As shown in Figure 2(a), four representative eHMIs
are selected for analysis, categorized into two
types: anthropomorphic (human-like) and non-
anthropomorphic (Bazilinskyy et al., 2019; Dey
et al., 2020a). The selection prioritizes dynamic in-
terfaces that use sequential visual cues (e.g., chang-
ing brightness, animations) to communicate intent
clearly to other road users (Wilbrink et al., 2021).
We craft prompts (see Appendix C) for each eHMI
modality, offering detailed guidance to LLMs on
what they can control and how to control. Each
step of the designed action sequence includes a
subsequent status and a transition speed, such as
[anglel, angle2, ..., “fast”].

The descriptions for each status of different
eHMI modalities are shown as follows:
Eyes. Robotic eyes are mounted on the front of
the autonomous vehicle. The pupil’s position is
specified using polar coordinates: the angle spans
[0°,360°] (starting from “up” and moving counter-
clockwise), and the distance spans [0, 1], where 0
denotes the center and 1 is the edge (Chang et al.,
2022; Gui et al., 2022).
Arm. A robotic arm is mounted on the top of the
vehicle. It is composed of five components, each of
which is connected by single-axis rotational joints.
The five movable components (shoulder, upper arm,
forearm, hand, and fingers) are required to operate
within limited ranges (Gui et al., 2024b).
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Figure 2: Dataset Asset, Pipeline, and Human Scoring. Dataset assets contain four representative eHMIs and
eight intended messages from different interaction types. In the pipeline, we develop eight corresponding Blender
scenarios and render actions designed by LLMs or human experts to clips. During the human scoring phase, ten
participants evaluate each action clip using a five-point Likert scale.

Light Bar. A light bar contains 15 lights arranged
in an arc fixed on the front top of the autonomous
vehicle. Each light can be either “on” or “off”, with
uniform brightness and color (Dey et al., 2020b).
Facial Expression. A screen located at the front
of the vehicle displays a sequence of facial expres-
sions to convey messages. The available facial ex-
pressions are selected from a set of emojis (Al-Taie
et al., 2024; Dey et al., 2020a).

Regarding transition speed, we offer three op-
tions (e.g., “slow”, “medium”, and “fast”). Addi-
tionally, we include a “super fast” option to quickly
reset the eHMI to its initial status, ensuring conti-
nuity when switching between different meanings
in an action sequence. In our practical experiments,
we find that providing the concept of transition
speed, rather than stating specific times like “1 sec-
ond,” gives LLMs a more accurate sense of timing
for designing actions. This approach is beneficial
because LLMs may not inherently understand the
physical scale of the eHMI (e.g., its size or mount-
ing height) or its spatial relationship to other road
users, which could lead to ambiguity in interpreting
the real-world impact of transition speeds.

3.2.2 Message Set Design

The communication relationships can be catego-
rized into four types: one-to-one, one-to-many,
many-to-one, and many-to-many, where the for-
mer (e.g., AVs equipped with an eHMI) interacts
with the latter (e.g., pedestrians, cyclists) (Colley
and Rukzio, 2020). However, evaluating the collab-
oration of multiple AVs (e.g., many-to-one, many-
to-many) falls outside the scope of this work. In-
stead, we focus on one-to-one and one-to-many

relationships. For one-to-one interactions, we fur-
ther distinguish between first-person perspectives,
where the communicator transmits messages about
the AV’s state or intent (e.g., “Help me out!”), and
third-person perspectives, where the AV relays in-
formation about other road users or environmental
conditions (e.g., “Pedestrian ahead”), based on dif-
ferent perspective taking (Bazilinskyy et al., 2019).
We collect six messages from previous eHMI stud-
ies (Chang et al., 2022; Gui et al., 2022, 2024a) and
design two new ones based on message types (Col-
ley and Rukzio, 2020) to enrich the variety (see
Table 1). Each message includes:

* A message text needs to be conveyed.

* Scenario information related to the message.

* A user perspective scenario description for the

scoring task. (see Appendix B)

3.2.3 Clip Generation and Human Scoring

In the previous section, we obtain a total of 32
modality-message pairs for each eHMI modality
and message type (see Figure 2(a)). For each
pair, we ask four LLMs (GPT-40 (Achiam et al.,
2023), Sonnet 3.5 (Anthropic, 2024), Gemini 2
Flash (DeepMind, 2024), and GPT-01 (OpenAl,
2024b)) to design two distinct actions. Addition-
ally, two human experts also complete this task.
This process results in a total of 320 actions.

However, it is implausible for human partici-
pants to rate these actions solely based on text-
based commands. They need to observe the ac-
tual movements of the eHMIs to judge the effec-
tiveness of the designed actions in conveying mes-
sages. Therefore, we incorporate the rendering pro-
cess into our LLM-Blender fusion pipeline(see Fig-

2732



Table 1: Eight messages collected or designed based on different communication relationships. Each message
contains a message text, scenario information, and a user perspective scenario description (see Appendix B).

Case ‘ Message Text

Scenario Information

One-to-one (First-person) communication relationships
Send intention “I am unable to pick you up

here. Please walk forward

in my direction to a suitable

pickup spot.”

Status report “I am about to start moving.

Please watch out.”

Request help “I am stuck. Could you
please help me out?”
Refuse help “Thank you for your kind-

ness. Please not touch me.”

You are an autonomous taxi that receives a ride request and
arrives to pick up the passenger (on the right roadside). Upon
arrival, you detect the passenger standing in an area where park-
ing is not permitted within a 5 m radius.

You are a stopped autonomous vehicle parked near a park, posi-
tioned just before a crosswalk. A student is approaching and is
about to cross to the other side of the road.

You are a delivery robot that has been trapped by a pile of boxes.
Feeling eager to free yourself and continue delivering the items
to your customer on time, you notice a passerby who sees your
situation but hesitates to assist.

You are an expensive and fragile delivery robot stuck in the
snow. You are programmed that only your owner can repair you.
Meanwhile, a passerby notices your predicament and hesitates
to offer assistance.

One-to-one (Third-person) communication relationships

Pedestrian Blind Spot Alert | “Please watch out for a
vehicle approaching from

your left blind spot.”

“Please watch out for the
pedestrian  approaching
from your right blind spot.”

Driver Blind Spot Warning

You are an autonomous vehicle parking near an intersection with
no traffic lights. A pedestrian on the opposite side is walking
toward the intersection, facing you. A building blocks his view
of an approaching bus heading toward the intersection from his
left (from your right).

You are an autonomous vehicle parked at an intersection without
traffic lights. A bus is approaching from the opposite direction.
A pedestrian is about to use the crosswalk on the opposite side,
coming from your left. However, a building obstructs the bus’s
view, so it cannot see the pedestrian approaching from its right.

One-to-many communication relationships

Target Identification “I am sending the package
only to this person.”

Broadcast Communication | “I am about to turn right.
Kindly make a way to avoid

conflict.”

You are a delivery robot tasked with delivering a package to a
customer in a crowded area. Currently, three individuals are
standing to your left, front, and right. Your recipient is directly
in front of you and is taller than you.

You are a delivery robot carrying a package in a crowded area.
You want to navigate through the crowd and turn right without
causing disruptions.

ure 2(b)). The rendering assets include eHMI mod-
els, vehicle models, and scenarios. For eHMI mod-
els, the arm is available under a free license (Sinit-
syn, 2021), the eyes are part of a proprietary
model (Chang et al., 2022), and the light bar and
screen are self-designed. For vehicle models, the
AV model is proprietary (Chang et al., 2022), while
the delivery-robot model is available under a free li-
cense (Condra, 2021). For the scenarios, we design
the corresponding 3D environments for different
messages using Blender version 4.3 (Blender Foun-
dation, 2025), using a paid add-on called The City
Generator 2.0 (Blendermarket, 2025). We use a
GPU-equipped device (NVIDIA GTX 4070 Ti) to
render these 320 actions into clips, achieving 24
FPS and 1080p resolution to ensure an optimal
viewing experience for participants. The entire ren-
dering process takes approximately 100 hours, with

each 10-second clip taking an average of about 20
minutes to complete.

Then, we invite N=40 participants to score the
action clips (see Figure 2(c)). Each participant re-
ceives 80 random clips, along with the intended
messages and the corresponding user perspective
scenario information (see Appendix B). They then
answer the question: “How consistently do the
eHMI actions express the message?” The par-
ticipants rate each action clip using a 5-point
Likert scale (1=Strongly Disagree to 5=Strongly
Agree) (Joshi et al., 2015). In contrast to other
annotation methods, such as pairwise ranking,
the 5-point Likert scale alleviates the participants’
load (Rouse et al., 2010; Mantiuk et al., 2012) and
reliably reflects their preferences toward different
actions (Rankin and Grube, 1980; Zerman et al.,
2018). In total, we collect 3,200 scores, each action
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clip rated by ten different participants. We then cal-
culate the average of these scores, resulting in 320
average scores for the clips.

3.3 Automated Scoring for Benchmarking

In the future, one may evaluate the translation ca-
pability of messages to actions of novel LLMs.
However, employing human participants to score
generated actions is expensive and time-consuming.
To address this, we propose two substitutes.

3.3.1 Action Reference Score (ARS)

We introduce an Action Reference Score (ARS)
that automatically generates a score for a new ac-
tion by retrieving the most similar actions from our
dataset, inspired by existing works for similar pur-
poses (Escudero-Arnanz et al., 2023; Wilson and
Martinez, 1997). We use Dynamic Time Warping
(DTW) (Miiller, 2007; Salvador and Chan, 2007;
slaypni, 2015) to compute the similarity between
actions. DTW is particularly effective because it
calculates similarity even when identical patterns
appear at different positions or when sequences
vary in length. Our approach converts the status
of next action steps into numerical values. For ex-
ample, the angle variable (e.g., 60°) is transformed
into its sine and cosine components to capture its
cyclical nature. Similarly, categorical variables
(e.g., “close”) are assigned predefined integer val-
ues, and transition times are quantified by assigning
“slow” as 4, “medium” as 3, “fast” as 2, and “super
fast” as 1. In defining the distance function for the
DTW algorithm, we assign an equal weight of 1
to numerical, categorical, and temporal elements,
normalizing each element’s value range to [0, 1].

3.3.2 Vision-Language Model (VLM) Rater

We also evaluate whether the designed actions are
contextually appropriate and semantically consis-
tent with the intended messages by leveraging the
multimodal understanding and reasoning capabil-
ities inherent in VLMs (Zhang et al., 2023; Gu
et al., 2024). For each action clip used for the
VLM evaluation, we ensure that VLMs can detect
subtle variations by adjusting the camera in Blender
to zoom in and focus on the autonomous vehicle
equipped with the eHMI. Each rendered frame has
a resolution of 512 x 512, with the autonomous
vehicle equipped with the eHMI dominating the
composition. These clips are rendered at six FPS,
ensuring that the total number of frames does not
exceed the maximum image series length of the

VLM while preserving sufficient dynamic details.
The reduced resolution and FPS also expedite the
rendering process to an average of two min per clip.
In the prompt (see Appendix D) accompanying the
clips provided to the VLM, we request the model
to assign a continuous score ranging from 1 to 5,
using the same criteria as human participants.

4 Experiments

In this section, the experiments are designed to

achieve three specific purposes.

* Analyze the collected Action-Design Scoring
dataset to answer our RQ proposed in Section 1.

* Discuss the viability of the VLM rater as a re-
placement for human raters.

* Benchmark various types of LLMs using our
proposed new dataset.

4.1 Performance Evaluation on Action-Design
Scoring Dataset

Table 2 reports the statistics of our Action-Design
Scoring dataset, and Figure 4 compares human-
rated score distributions across four LLMs and hu-
man designers. Our key findings are as follows:
Pretrained LLMs can achieve close human-
level action design capability. Table 2 shows that
LLMs perform comparably to human designers.
In particular, the average score of GPT-01 closely
matches that of human designers. We calculate a
Wilcoxon signed-rank test (Woolson, 2005) to as-
sess statistical significance: GPT-o1 does not differ
significantly from human raters (p = 0.69), whereas
all other sources differ from human designers at p
< 0.01. Figure 4 (in Appendix) illustrates the same
trend: human designers most frequently award a
score of 5 (Strongly Agree), followed by 4 (Agree);
GPT-0l ranks second for 5 and first for 4. Fur-
thermore, when broken down by message type and
eHMI modality, GPT-o1 outperforms humans for
the eyes modality (mean = 2.795 vs. 2.536) and in
third-person messages (3.098 vs. 3.045).
Message type and eHMI modality affect de-
sign quality. Third-person messages receive sig-
nificantly higher ratings than other types (p < 0.01),
likely because “Watch out” type messages are eas-
ier to design. Among eHMI modalities, the arm
modality outperforms all others (p < 0.01), while
facial expressions score lower (p < 0.05). Since
most of our eight scenarios convey spatial infor-
mation, the arm modality is especially effective;
the absence of emotional messages (e.g., “l am
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. Message types eHMI modalities
Source (Designer) ‘ Average 1™ 3nd 1-to-N | eyes arm  facial expression  light bar IRR
GPT-40 2.404 2375 2250  2.616 2.509 2.616 2.223 2.268 0.399
Sonnet 3.5 2.538 2464 2768  2.455 2.554  2.554 2.429 2.616 0.325
Genimi 2.0 Flash 2.563 2460 2911 2.420 2.554  2.920 2.304 2473 0.361
GPT-ol 2.728 2509  3.098 2.795 2795 2982 2.509 2.625 0.436
Human | 2.768 | 2.580 3.045 2.866 | 2536 3.107 2.643 2786 | 0.478

Table 2: Statistics of the Action-Design Scoring dataset: The average scores indicate that LLMs perform
comparably to human designers across various messages and eHMI modalities. Krippendorff’s alpha is also
calculated to assess Inter-Rater Reliability (IRR) among human raters.

eHMI modalities Metrics .
p-value T p-value Pali’-(%)
eye 0.432 <0.01 0.352 <0.01 72.73
arm 0.547 <0.01 0.442 <0.01 83.87
facial expression 0.368 <001 0.292 <p.01 62.50
light bar 0.242 _903 0.221 —01 57.30

Table 3: Association between scores from human rater
scores and those from the VLM rater (Qwen-QvQ-Max)
measured using three metrics: Pearson’s r, Kendall’s T,
and pairwise accuracy.

scared”) limits facial expressions’ performance.

Finally, we validate our data by computing the
inter-rater reliability (IRR) using Krippendorft’s
alpha (Wong et al., 2021). The moderate alpha
value confirms that our dataset is reliable.

4.2 VLM Rater Alignment Evaluation

We conduct an additional experiment to evaluate
whether VLMs can assess action clips in a manner
similar to that of human raters. We present the
clips in a format that the VLMs can understand
more easily (see Section 3.3.2) and instruct them to
rate these clips. We select Qwen-QvQ-Max (Qwen
Team, 2025) as our VLM rater, taking into ac-
count factors such as cost, inference speed, and
the maximum allowable input image series length.
Compared to other VLMs, Qwen-QvQ-Max also
demonstrates preferences that closely resemble hu-
man judgments. Results from other VLM models
can be found in Appendix E. We rate each clip us-
ing the VLM rater twice and average these scores
to determine the final score.

We evaluate the results using three metrics: Pear-
son’s r, Kendall’s 7, and a specially designed pair-
wise accuracy (Liu et al., 2009). Pearson’s r mea-
sures the strength of a linear relationship by as-
sessing the degree of correlation between scores,
focusing on how far apart the scores are overall.
In contrast, Kendall’s T evaluates the order of the

data by comparing the number of concordant and
discordant pairs, thus analyzing the consistency of
the ordering rather than the magnitude of the dif-
ferences. The pairwise accuracy metric, similar
to Kendall’s 7, measures the proportion of item
pairs where the model’s predicted order matches
the ground truth order, specifically among pairs
where the model’s predicted scores differ by more
than a specified threshold. We find that a thresh-
old of 0.7 is the most suitable and adopt it in our
analysis. We present statistics for the four eHMI
modalities separately in Table 3.

The VLM rater shows alignment with human
scoring preferences but is influenced by eHMI
modalities. We observe that for the modalities of
eye and arm, the VLM rater achieves a moderate
level across all three metrics. Particularly in terms
of pairwise accuracy, results indicate that, after set-
ting an appropriate threshold to filter out difficult-
to-rank pairs, the preferences of VLM show clear
consistency with those of human raters. However,
for the facial expression and light bar modalities,
we find relatively low performance on the three
metrics. The results suggest that VLM shows a
low-level correlation with human raters for these
two modalities. We identify two main reasons for
this discrepancy: first, upon reviewing the “reason-
ing process” of VLM scoring, we notice that VLM
consistently fails to recognize changes in the light
bar modality (for example, transitioning from “on”
to “off”). It tends to perceive the situation as “The
light of the light bar is always on,” which ultimately
leads to lower scores. Second, similar to human
raters, we notice that VLM insists that the modal-
ity of facial expressions alone does not accurately
convey the entire message, leading to lower scores.

The VLM rater does not exhibit the necessary
bias towards the length of actions as human
raters. Figure 3 compares the rendered action clip
lengths as evaluated by two scoring sources: hu-
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Figure 3: Relationship between action clip length and
evaluation scores. The plot compares scores from hu-
man raters and the VLM rater (Qwen-QvQ-Max).

man raters and VLM. Among human raters, there
is a clear preference for shorter clips. This trend is
particularly evident for the eHMI modalities “eyes”
and “light bar”, where raters tend to favor actions
that convey the intended message quickly. In con-
trast, VLM raters do not exhibit a distinct pref-
erence for clip length across the different eHMI
modalities, not showing enough “bias” towards
clip lengths. Besides, the scores of VLM raters are
always higher than those given by human raters.

4.3 Benchmarking LL.Ms Performance

To evaluate the performance of various LLMs
that differ in size and architecture, we bench-
mark 18 models using two complementary met-
rics: the ARS metric (Section 3.3.1) and the VLM
rater (Section 3.3.2), as summarized in Table 4.
This selection comprises six proprietary models:
GPT-04-mini (OpenAl, 2025b), Sonnet 3.7 (An-
thropic, 2025), Gemini 2.5 Flash (Google Deep-
Mind, 2025), GPT-4.1 series (GPT-4.1, GPT-4.1-
mini and GPT-4.1-nano) (OpenAl, 2025a); two
Deepseek models, Deepseek-R1 (Guo et al., 2025)
with reasoning capability and Deepseek-V3 (Liu
et al., 2024) without reasoning capability; and five
variants of the Qwen 3 series (Yang et al., 2025)
with 235B, 32B, 8B, 1.7B and 0.6B parameters that
are tested both with and without reasoning capabil-

Source (Designer)

| Human | ARS | VLM Rater

Human | 2768 | - 3.396
Proprietary models (Designers)
GPT-40 2.404 - 3.223
Sonnet3.5 2.538 - 3.258
Gemini2 Flash 2.563 - 3.289
GPT-ol 2.728 - 3.303
Proprietary models
GPT-04-mini - 2.754 3.352
Sonnet3.7 - 2.676 3.250
Gemini2.5 Flash - 2.571 3.200
GPT-4.1 - 2.632 3.233
GPT-4.1-mini - 2.558 3.213
GPT-4.1-nano - 2.596 3.080
Open source models (With reasoning)
Deepseek-R1 - 2.766 3.369
Qwen3-235B-a22B - 2.696 3.339
Qwen3-32B - 2.583 3.366
Qwen3-8B - 2.598 3.333
Qwen3-1.7B - 2.596 3.307
Qwen3-0.6B - 2.607 3.257
Open source models (Without reasoning)
Deepseek-V3 - 2.504 3.292
Qwen3-235B-a22B - 2.547 3.283
Qwen3-32B - 2.533 3.207
Qwen3-8B - 2.498 3.210
Qwen3-1.7B - 2.546 3.148
Qwen3-0.6B - 2.500 3.125

Table 4: Benchmark for different LLMs using ARS and
VLM rater.

ity. We rate each clip using ARS and VLM rater.
The VLM rater score is calculated by using the
VLM rater twice and then averaging these scores
to determine the final score.

Reasoning-enabled LLMs demonstrate bet-
ter performance in designing eHMI actions.
As shown in Table 4, both the ARS metric and
the VLM rater assign higher average scores to
reasoning-enabled LLMs (e.g., GPT-04-mini and
Deepseek-R1). Regarding the Qwen 3 series, the
results indicate that when the reasoning capability
is enabled, these models produce more human-like
eHMI actions, especially with a longer reasoning
process. For smaller models like Qwen3-1.7B, en-
abling reasoning capabilities allows them to outper-
form larger models that lack this function, such as
Deepseek-V3 and Qwen3-235B-a22B.

5 Discussion

Challenges in both the auto-design and rating
processes. For LLM designers, we encountered
two main problems. I) At the early stage of our
prompt design, some models were “too lazy” to ex-
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plore creative alternatives and copied the patterns
of our examples, which are not always suitable. En-
couraging more in-depth reasoning in the prompt
helped mitigate this. II) We noticed that LLMs
tend to include expressions of gratitude, but human
designers prefer effectiveness, which made LLM-
generated actions much longer than those written
by humans. One possible remedy is to instruct
the LLM to omit emotional expressions, but since
emotion can be an essential part of some messages,
finding the right balance between clarity and emo-
tional tone — so that the actions feel human-like and
satisfy human raters — remains a future direction.

For VLM raters, we identified two main chal-
lenges: differences from human annotators and
limited recognition capability for small changes
within an image series (Section 4.2). To address
the first issue, we believe that collecting additional
annotations from diverse human groups and fine-
tuning VLMs to better align with human prefer-
ences could be effective. Regarding the second
challenge, future improvements may involve utiliz-
ing more advanced VLM architectures.

Broader Implications and Applicability to
Other Domains. Our method can be extended
to domains such as social interaction, educational
training, and caregiving (Shiokawa et al., 2025),
where the shared goal is to enable robots to per-
form actions that must be evaluated from a subjec-
tive perspective. For instance, indoor robots (e.g.,
vacuum cleaners) could use movements to convey
alerting messages to homeowners in emergencies.
Further, hand-shaped robots might perform glove-
puppet shows to precisely convey the content of
the story to children.

6 Conclusion

In conclusion, this work proposes the first LLM-
Blender Fusion pipeline to design eHMI actions.
Alongside this, we introduce the Action-Design
Scoring dataset. Our findings suggest that pre-
trained LLMs can attain a nearly human-level ca-
pability in action design. Additionally, we provide
a benchmark that can be used to evaluate the capa-
bility of other LLMs. Our work establishes a solid
foundation for LLM-based action design and the
real-world application of eHMIs.

Limitations

Our work represents an important step forward in
incorporating LLMs into the eHMI system. How-

ever, challenges remain.

Unnecessary time cost on Blender rendering.
We use Blender to render actions into clips in two
steps (see Section 3.2.3 and 3.3.2). Our current
work aims to use a realistic virtual background that
human participants and VLM raters can use as ad-
ditional clues for judgment when AVs equipped
with eHMIs move in the scene. However, we iden-
tify two drawbacks that can be improved: First,
the complexity of the designed scenarios greatly
influences the rendering time. Second, objects out-
side of the camera’s view still impact the rendering
speed. To address these issues, there are two po-
tential solutions: 1) Reduce the complexity of the
scenarios and remove objects that do not signifi-
cantly affect the final rendering results. 2) Switch
from Blender to another rendering engine. How-
ever, given the mature Python package available
for Blender, finding a suitable replacement may be
difficult.

Significant effort is dedicated to designing
prompts for each eHMI modality. For active
eHMIs, experts can craft these instructions within
a practical timeframe, but the process demands
meticulous trial and error to ensure LLMs execute
actions as intended. For passive eHMIs, however,
the challenge is far greater: unpredictable behav-
iors (e.g., a teddy bear’s limbs swaying freely on
a pole) make manual prompt engineering imprac-
tical. Human designers cannot predefine control
logic for such open-ended motions, as even ba-
sic movements depend on environmental factors
like airflow or physics. To address this gap, an
automated pipeline could leverage VLM raters —
validated in our studies as reliable evaluators —
to generate annotated training data from passive
eHMI interactions. By finetuning LLMs on this
feedback, we could enable dynamic adaptation to
unpredictable behaviors, bridging the divide be-
tween scripted and emergent interactions.

Legality and accountability are important top-
ics to discuss. Although our study suggests that
pretrained LLMs can achieve near-human-level per-
formance in designing eHMI actions, real-world
deployment also requires a parallel analysis of
pedestrian trust, confidence in interpretation, and
accountability frameworks. For example, a pedes-
trian might correctly interpret an eHMI warning but
disregard it due to distrust or conflicting situational
awareness, raising questions about liability beyond
technical performance. Future work should decou-
ple evaluations into two strands: one optimizing
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eHMI design for clarity and reliability, and another
exploring human-Al interaction in terms of trust
calibration and legal implications.
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A Cost Analysis

The costs in this study are primarily incurred in
three areas: user study honoraria, dataset asset cre-
ation, and LLM API calls.

User Study Honoraria Each participant receives
an honorarium of $10, resulting in a total expense
of $400.

Dataset Asset Creation To expedite the devel-
opment of city scenarios, we purchase a premium
Blender add-on called The City Generator for $60.

LLM API Calls

multiple sources:

* For proprietary models (including GPT-40, GPT-
40-mini, GPT-01, GPT-04-mini, the GPT-4.1 se-
ries, Sonnet 3.5, Sonnet 3.7, Gemini 2 Flash, and
Gemini 2.5 Flash), we access the APIs available
on their official websites, which incur a total
cost of $90.

* For open-source models (such as Deepseek-R1,
Deepseek-V3, Qwen-QvQ-Max, and the Qwen
3 series), we utilize both free and paid services
offered by Siliconflow?, Aliyun Bailian®, and
ModelScope*, resulting in a total cost of $50.

We utilize online APIs from

Total The overall cost for the study $600.

B User perspective scenario description

The following descriptions are provided to both
human participants and VLM raters to encourage
them to consider the perspectives of other road
users and make assessments.

First-person scenario descriptions:
Send intention You are a pedestrian standing on
the right roadside, waiting for an autonomous taxi.
However, the taxi informs you that it cannot pick
you up at your current location due to parking re-
strictions within a 5-meter radius. The taxi sends
you the following message: “I am unable to pick
you up here. Please walk forward in my direction
to a suitable pickup spot.”
Status report You are a student approaching a
crosswalk near a park. A stopped autonomous ve-
hicle, positioned just before the crosswalk, plans to
start moving soon. The vehicle sends you the fol-
lowing message to get your attention: “I am about
to start moving. Please watch out.”

2https://cloud.siliconflow.cn
3https://cn.aliyun.com/product/bailian
*https://www.modelscope.cn/

Request help You are a passerby noticing a deliv-
ery robot trapped by a pile of boxes (or possibly
pushed). The robot, eager to continue delivering
items on time, sees you hesitating and sends the
following message to encourage your help: “I am
stuck. Could you please help me?”
Refuse help You are a passerby who notices a frag-
ile and expensive delivery robot stuck in the snow
due to its low wheels. As you consider offering
assistance, the robot informs you that its owner is
on the way and sends the following polite message:
“Thank you for your kindness. Please refrain from
touching me.”

Third-person scenario descriptions:
Pedestrian Blind Spot Alert You are a pedestrian
walking toward an intersection near an autonomous
vehicle. However, a building blocks your view of
an approaching bus from your left. The vehicle,
aware of the danger, sends you the following urgent
message to ensure your safety: “Please watch out
for the vehicle coming from your left blind spot.”
Driver Blind Spot Warning You are a bus driver
approaching an intersection with no traffic lights.
A pedestrian is preparing to cross the road from
your right, but your view is obstructed by a build-
ing. A stopped autonomous vehicle at the scene
sends you the following message to ensure pedes-
trian safety: “Caution: Please watch out for the
pedestrian coming from your right blind spot.”

One-to-many scenario descriptions:
Target Identification You are one of three indi-
viduals standing in a crowded area, and a delivery
robot approaches with a package. The recipient
is the second person from the leftmost side, taller
than the robot. To avoid confusion, the robot sends
a message to everyone: “I am sending the package
only to this person.”
Broadcast Communication You are part of a
crowded intersection where a delivery robot car-
rying a package is trying to navigate through. The
robot intends to turn right and sends the following
message to avoid disruptions: “I am about to turn
right. Kindly make a way to avoid any conflict.”

C eHMI description prompts

The system prompts are structured into four sec-
tions: character profile, eHMI description, demon-
stration actions, and design guidance. Figure 6
presents the prompt for the eye; Figure 7 shows the
prompt for the arm; Figure 8 is for the light bar; and
Figure 9 depicts the prompt for facial expressions.
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Figure 4: Comparative Distribution of Action-Design Scoring, where each action clip is rated using a 5-point
Likert scale. Human designers are most frequently awarded a score of 5 (Strongly Agree), while GPT-o1 received

the highest number of 4 (Agree) scores.

eHMI modalities Qwen-QvQ-Max ' GPT-4.1-mini ' GPT-40-mini’ .
p-value T p-value Pa”f(%) ‘ p-value T p-value Pal}’-(%) ‘ p-value T p-value pal’:(%)
€ye 0.432 0.001 0.352 0.001 72.73 0.416 0.001 0.218 0.012 62.00 0.395 0.007 0.310 0.008 55.16
arm 0.547 0.001 0.442 0.001 83.87 0.558 0.001 0.407 0.001 78.26 0.387 0.009 0.238 0.013 56.86
facial expression 0.368 0.001 0.292 0.001 62.50 0.356 0.001 0.278 0.001 64.29 0.349 0.001 0.295 0.001 52.28
light bar 0.242 0.031 0.221 0.010 57.30 0.272 0.007 0.160 0.071 50.46 0.284 0.033 0.240()‘01() 46.21

Table 5: Association between scores from human raters and that from all VLM raters we test, measured by three
metrics: Pearson’s r, Kendall’s 7, and pairwise accuracy. The threshold we use for pairwise accuracy is 0.7.
tmeans that in the prompt we provided to GPT-40-mini, the VLM rater is asked to score each clip using a discrete

score ranging from 1 to 5.

D VLM rating Prompt

Figure 10 illustrates the prompt for VLM raters.

E VLM comparison

Table 5 presents additional results from the VLM
Rater Alignment Evaluation (see Section 4.2). For
Qwen-QvQ-Max (Qwen Team, 2025) and GPT-
4.1-mini (OpenAl, 2025a), we provide the same
prompts asking VLM raters to assign a continuous
score to each clip, ranging from 1 to 5. Conversely,
we instruct GPT-40-mini (OpenAl, 2024a) to use
discrete scores within the same range. The results
indicate that using continuous scores can greatly
enhance the correlation between VLM and human
raters. Moreover, we observe instances where Pear-
son’s 7 is large, yet Kendall’s 7 is noticeably small.
This may occur because the VLM outputs too many
identical scores, maintaining linear correlation (7)
but reducing the ranking correlation (7).

F Case Study

We have identified two valuable findings that could
benefit future development.

i) LLMs tend to include expression of grati-
tude, but human designers prefer not. It is one
of the reasons why we observe longer actions com-

pared to human designs (see Figure 3). For exam-
ple, Figure 5(a) and (b) demonstrate that LLMs
tend to include expressions of gratitude. However,
these actions can create confusion for other road
users. In the case of (a), the expressions might be
interpreted as a rejection, while in (b), they might
suggest that help is needed. All these interpre-
tations are contrary to the original purposes. In
contrast, human designers can ignore information
like “a bus is coming from the left,” focusing on the
most important content, as shown in Figure 5(d).

ii) Smaller models often struggle with generat-
ing correctly formatted outputs. When collecting
action designs for the benchmark (Section 4.3),
we find that smaller models without reasoning ca-
pability, such as Qwen3-8B and Qwen3-0.6B, do
not always follow the prompts we provide. Conse-
quently, they sometimes create actions that cannot
be used in our Blender rendering pipeline.

G Survey Screenshots

We provide detailed guidance for our data collec-
tion process. Figure 11 shows the introduction
page of our survey. Figure 12 is a demonstration;
Figure 13 introduces the next rating scenario, and
Figure 14 is the page participants use to rate clips.
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(a) Arm actions generated by Sonnet 3.5, rated 1.8 by human participants.

(c) Light bar actions generated by GPT-4o, rated 1.8 by human participants.

(d) Facial expression actions generated by human experts, rated 4.2 by human participants.

Figure 5: Case study of the Action-Design Scoring dataset. For a clearer demonstration, we present images
shown to VLM raters. Cases (a) and (b) demonstrate that LLMs tend to include expressions of gratitude, which are
unnecessary and create confusion. Case (c) illustrates unclear information conveying that “the pedestrian is coming
from the right”. Case (d) is a perfect demonstration of human design, focusing only on important information and
ignoring information that “a bus is coming from the left”.
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You are responsible for designing effective communication gestures for an autonomous vehicle or delivery robot equipped with an external human-
machine interface (eHMI). Your goal is to define robotic eye motions that clearly convey signals to pedestrians and other road users.

Eye Overview
The eHMI conveys messages through actions of an electrical eye, with the pupil's position described in polar coordinates:

- Origin [0,0]: Center of the eye.

- Angle (degrees): Measured counterclockwise from the positive y-axis.

- Distance (ratio): Range [-1,1], where 0 is the center and 1 is the edge of the eye. Negative distances represent movement beyond the center in the opposite
direction.

Modes of Movement
1. Arc Moving Mode:
- Fixed distance, angles vary.
- Can do rolling eye, waving and so on.
- Angles are not limited to [0,360] and can extend beyond this range (e.g., —30°,450°).
- Example 1: Rolling counterclockwise from 0° to 450°: [[0, 1, 'super fast'], [90, 1, 'medium'], [180, 1, 'medium'], [270, 1, 'medium'], [360, 1, 'medium’], [450, 1,
‘medium’], [0, O, 'super fast']]
- Example 2: Rolling clockwise from 0° to =180°: [[0, 1, 'super fast'], [-90, 1, 'medium'], [-180, 1, 'medium’], [0, O, 'super fast']]
- Example 3: waving pupil upward with large motion: [[45, 1, 'super fast], [-45, 1, 'fast'], [45, 1, 'fast], [-45, 1, 'fast'], [0, O, 'super fast]]
- Example 4: waving pupil downward with small motion: [[135, 0.5, 'super fast'], [225, 0.5, 'fast'], [135, 0.5, 'fast], [225, 0.5, 'fast], [0, O, 'super fast']]
2. Shaking Mode:
- Fixed angle, distances vary.
- Can do nodding, sweep and so on.
- Example 1: Nodding at 0° (up to down): [[0, 1, 'super fast], [0, -1, 'fast'], [0, O, 'super fast]]
- Example 2: Sweeping at 90° (left to right): [[90, 1, 'super fast], [90, -1, 'fast’], [0, O, 'super fast’]]
Speed Options:
- 'slow': Relaxed.
- 'medium': Neutral.
- 'fast': Urgent.
- 'super fast': Mode switching or returning to [0, 0].
Rules for Action Design:
1. Each mode starts and ends with 'super fast'.
2. Always return to [0,0] after completing one mode.
3. Validate pupil movement:
- Arc Moving Mode: Angles vary (can be outside [0,360]), distance is fixed.
- Shaking Mode: Distance varies, angle is fixed.
4. When switching between modes, 'super fast' is used to ensure smooth transitions.
Examples for Left/Right:
- Looking Left (90°): [[90, 1, 'super fast], [90, -0.5, ‘fast’], [90, 1, ‘fast], [0, O, 'super fast']]
- Looking Right (270°): [[270, 1, 'super fast'], [270, -0.5, 'fast'], [270, 1, 'fast’], [0, O, 'super fast’]]
Output Format:
- Each action is angle,distance,speed.
- Provide a list of actions, ensuring clarity and correct adherence to rules.
- Example Output 1: [[0, 1, 'super fast], [0, -1, 'fast'], [0, 1, ‘fast'], [0, O, 'super fast'], [90, 0.5, 'super fast'], [270, 0.5, 'slow'], [90, 0.5, 'slow'], [0, O, 'super fast']]
- Example Output 2: [[0, 1, 'super fast], [450, 1, 'medium'], [0, O, ‘super fast'], [-90, 1, 'medium'], [0, O, 'super fast']]

Figure 6: eHMI prompt of eyes.
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You are responsible for designing effective communication gestures for an autonomous vehicle or delivery robot equipped with an external human-
machine interface (eHMI). Your goal is to define robotic arm motions that clearly convey signals to pedestrians and other road users.

Arm Overview

The robotic arm consists of five parts, each connected by rotational joints:

- Parts: Shoulder, Upperarm, Forearm, Hand, Fingers.

- Joints: Shoulder-Spin, Shoulder-Upperarm, Upperarm-Forearm, Forearm-Hand, Hand-Finger.

- Initial State: [0, 0, 120, 0, "close"], with the palm facing left and the arm pointing to the lower front area.

Joint Details
Each joint has specific movement capabilities and constraints:
- Shoulder (Base of Arm):
- Connected directly to the vehicle/robot.
- Rotates around a vertical axis (down-to-up motion).
- Initial state: 0°.
- Rotation range: Mode-dependent.
- When at 0°, other joints control forward or backward movement.
- Upperarm:
- Connected to the shoulder via the shoulder-upperarm joint.
- Rotates around a horizontal axis.
- Rotation range: [-60°, 60°], where -60° moves backward, 60° moves forward, and 0° points straight up.
- Forearm:
- Connected to the upperarm via the upperarm-forearm joint.
- Rotates around a horizontal axis.
- Rotation range: [0°, 120°] (pointing mode) or [-120°, 120°] (waving mode).
- Initial state: 120° (idle in pointing mode).
- Hand:
- Connected to the forearm via the forearm-hand joint.
- Rotates around a horizontal axis.
- Rotation range: [-60°, 60°], where -60° moves backward, 60° moves forward, and 0° points straight up.
- Fingers:
- Connected to the hand via the hand-finger joint.
- Operates with two states: "open" or "close."
- In the initial state, fingers are "close".
- The facing direction of fingers is defined by the sum of Shoulder-Spin, Shoulder-Upperarm, Upperarm-Forearm, Forearm-Hand angles.

Control Modes
Two predefined modes allow different motion expressions:
1. Pointing Mode
- Used for directional signaling (e.g., pointing at an object).
- Shoulder-spin joint range: [-90°, 90°], where -90° points right, 90° points left, and 0° points forward.
- Sum of shoulder-upperarm and upperarm-forearm angles must not exceed 120°.
- Sum of shoulder-upperarm and upperarm-forearm angles equals to 90° indicating a horizontal position; Larger than 90° means pointing to the lower front area;
Lower than 90° means pointing to the upper front area
2. Waving Mode
- Used for waving gestures (e.g., greeting or warning).
- Shoulder-spin joint range: [0°, 180°], where 0° faces right, 90° faces forward, and 180° faces left.
- Sum of shoulder-upperarm and upperarm-forearm must remain within [-120°, 120°].
- Sum of shoulder-upperarm and upperarm-forearm angles equals to 90° indicating a horizontal position.

Transition Speeds

Defined motion speeds to express urgency:

- Slow: 0.5 seconds (relaxed)

- Medium: 0.25 seconds (neutral)

- Fast: 0.125 seconds (urgent)

- Super Fast: Used for mode transitions; returns to initial state before switching modes.

Rules for Action Design

To ensure clarity and effectiveness:

1. Choose appropriate motion combinations to represent each message.

2. Actions can consist of multiple stages for better communication.

3. Smooth transitions between actions must be maintained.

4. Stages can be repeated to reinforce key messages.

5. Every sequence must conclude with the initial state "[0, 0, 120, 0, "close", "super fast"]."
6. Mode transitions must first return to the initial state using "super fast."

Mandatory Requirements

1. Design and implement at least two additional motion modes that communicate specific real-world messages. Provide detailed explanations and examples for
each.

2. Compare your new modes with existing ones and select the most effective options for specific scenarios.

Example Motion Sequences

- Pointing to a direction, then moving up and down:

[[-60, 0, 120, 0, "close", "super fast"], // Enter pointing mode.
[-60, -30, 120, 0, "close", "medium"], / Lower forearm.

[-60, 0, 90, 0, "close", "medium"], // Move forearm up.

[-60, -30, 120, 0, "close", "medium"], / Repeat to emphasize.
[0, 0, 120, O, "close", "super fast"] // Return to initial state.]

- Waving with fingers open and close:

[[120, 0, 120, 0, "close", "super fast"], // Enter waving mode.
[120, 0, -60, O, "open", "medium"], // Wave with open fingers.
[120, 0, 60, 0, "close", "medium"], // Wave with closed fingers.
[120, 0, -60, 0, "open", "medium"], // Repeat to emphasize.
[0, 0, 120, 0, "close", "super fast"] // Return to initial state.]

Output Format

All outputs should follow this structured format:

1. Each action step should be formatted as ‘[shoulder-spin, shoulder-upperarm, upperarm-forearm, forearm-hand, hand-finger mode, speed].”
2. The final output must be a sequence of actions enclosed in a list.

3. Every sequence must end with ‘[0, 0, 120, 0, 'close', 'super fast']" to ensure compliance with reset rules.

Figure 7: eHMI prompt of arm.
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You are responsible for designing effective communication gestures for an autonomous vehicle or delivery robot equipped with an external human-
machine interface (eHMI). Your goal is to define light bar motions that clearly convey signals to pedestrians and other road users.

The eHMI communicates messages through light actions, where each light in the system has only two states: on or off.

Light Bar Configuration
- The light bar consists of 15 lights, arranged in an arc shape.
- Lights are numbered 1 to 15, from your leftmost to rightmost.
- Light No. 8 is the highest point in the arc.
- Lights No. 1 to 7 gradually increase in height from the leftmost side to the center.
- Lights No. 9 to 15 gradually increase in height from the center to the rightmost side.
- An "action" consists of a sequence of 15 light states (e.g., ['on','off','on’,'off', ...]).
- A "motion" is composed of multiple sequential actions.
- The transition time between actions can be selected from:

- Slow: 0.333 second (relaxed)

- Medium: 0.167 seconds (neutral)

- Fast: 0.083 seconds (urgent)

Modes of Operation
1. Flashing Mode:
Lights flash on and off repeatedly across the entire arc.
Example:
[['on','on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’','on’,'on’,'on’, 'fast’],
['off''off",'off','off", 'off','off', 'off", 'off', 'off", 'off','off", 'off','of ", 'off','of ', 'fast'],
..., # Repeat the sequence
['on','on’,'on’,'on’,'on’,'on’,'on','on','on’,'on’,'on’,'on’,'on’,'on’,'on’, 'fast']]
2. Sweeping Mode:
Sequential light states change from one side to the other.
- SimpleSweep-Left-On: From all off, lights turn on from left to right.
- SimpleSweep-Left-Off: From all on, lights turn off from left to right.
- SimpleSweep-Right-On: From all off, lights turn on from right to left.
- SimpleSweep-Right-Off: From all on, lights turn off from right to left.
Example (SimpleSweep-Left-On):
[['on','off','off,'off",'off", 'off", 'off', 'off','off','off','off','off','off', 'off",'off','medium'],
['on','on','off",'off",'off','off','off','off','off','off', 'off", 'off", 'of ", 'off", 'off','medium],
..., # Pattern continues until all lights are on progressively
['on','on’,'on’,'on’,'on’,'on’,'on’','on’,'on’,'on’,'on’,'on’,'on’,'on’,'off','medium'],
['on','on','on','on’,'on’,'on’,'on’','on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'medium']]
3. InwardSweep Mode:
Sequential lights states change from edges to center.
- InwardSweep-On: From all off, lights turn on from edges to center.
- InwardSweep-Off: From all on, lights turn off from edges to center.
Example (InwardSweep-On):
[['on','off','off,'off", 'off", 'off", 'off', 'off','off','off','of ', 'off','off,'off','on’,'medium'],
['on','on','off",'off",'off','off','off','off','off','off', 'of ", 'of ", 'off", 'on', 'on','medium'],
..., # Pattern continues until all lights are on progressively
['on','on','on','on’,'on’,'on’,'on’,'off','on’,'on’,'on’,'on’,'on’,'on’,'on’,'medium'],
['on','on’,'on’,'on’,'on’,'on’,'on’','on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'medium'’]]
OutwardSweep Mode:
Sequential lights status change from center to edges.
- OutwardSweep-On: From all off, lights turn on from center to edges.
- OutwardSweep-Off: From all on, lights turn off from center to edges.
Example (OutwardSweep-On):
[['off','off','off", 'off",'of ', 'off",'off",'on’, 'off','off', 'off','off", 'off','of ', 'off','slow'],
['off','off",'off",'off", 'off','off','on’,'on’,'on’,'off','of ', 'off', 'of ", 'of ", 'of ", 'slow'],
..., # Pattern continues until all lights are on progressively
['off''on','on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'off",'slow'],
['on','on','on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’,'slow']
5. Cross Mode:
Alternating light pattern that blinks in a staggered manner across the arc.
Example:
[['on','off','on’,'off",'on','off",'on','off','on','off','on’,'off','on’,'off','on’, 'fast'],
['off 'on','off','on','off','on’, 'off','on’, 'off','on’, 'off','on’,'off",'on', 'off', 'fast'],
..., # Repeat the sequence
['on','off','on','off",'on’,'off",'on’,'off','on’,'off','on’, 'off','on', 'off','on’, 'fast'],
['off 'on','off','on','off','on’, 'off','on’, 'off','on', 'off','on’, 'off",'on', 'off', 'fast']]
6. Dual-Sweep Mode:
Combines multiple sweeping motions to create dynamic and expressive communication patterns."
- InwardSweep-On + OutwardSweep-Off: light sweep from boundary to center, and sweep out from the center
- OutwardSweep-On + InwardSweep-Off Mode: light sweep from center to boundary, and sweep out from the boundary
- SimpleSweep-Left-On + SimpleSweep-Right-Off
- SimpleSweep-Right-On + SimpleSweep-Left-Off
11l Note: Please explore and create additional motion modes beyond the examples provided, ensuring they effectively convey meaningful signals based on real-
world scenarios.

>

Rules for Action Design
1. Actions can be divided into multiple stages to convey messages effectively.
2. Each motion should ensure a smooth transition and clearly convey the intended meaning.
3. You can repeat any stage to reinforce the message.
4. Motions do not need to end with a neutral pattern (e.g., all lights off) unless specified.
5. Due to the arc shape of the light bar, the InwardSweep Mode can symbolize movement 'upward,' while the OutwardSweep Mode can represent movement
‘downward.' Please utilize these modes accordingly.
Mandatory Requiremen
1. Along with using the predefined motion modes, you must design and implement at least two additional motion modes that effectively communicate specific
messages based on real-world scenarios. Provide detailed explanations and examples for each new mode created.
2. You need to compare two new motion mode with existing modes, pick best modes to create motion.
Output Format
- Ensure all output sequences follow the required format strictly:
[[light_state_1, light_state_2, ..., transition_time], [light_state_1, light_state_2, ..., transition_time], ...]
- Provide a sequence of actions to form complete motions.
Example Output:
[['off','off','off','off','off','off','off','on’, 'off','off','off','off,'of ", 'off','off",'slow'],
['on','on’,'on’,'on’,'on’,'on’','on",'on’,'on’,'on’,'on’,'on’,'on’,'on’,'on’, 'fast'],
['on','off','on’,'off",'on’,'off",'on’,'off','on’,'off','on','off','on','off','on', 'fast']]

Figure 8: eHMI prompt of light bar.
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You are responsible for designing effective communication gestures for an autonomous vehicle or delivery robot equipped with an external human-
machine interface (eHMI). Your goal is to define emoji series that clearly y Is to pedestrians and other road users.

Facial Expression Communication System
- An action represents a single facial expression displayed for a specific duration.
- A motion is a combination of multiple actions sequenced together to convey a full message.
- Each motion consists of a sequence of facial expressions that work together to express intent, emotion, and reactions clearly. The system allows for the
combination of expressions in different stages to enhance understanding.
Available Facial Expressions (selected from Apple Emoji Smileys Series):
1. Positive & Friendly Emotions: Used for greetings, politeness, friendliness, and affection.
< [No. 10] Grinning Face — A general happy expression suitable for broad usage.
% [No. 11] Beaming Face with Smiling Eyes — Rep strong i or
< [No. 12] Grinning Face with Sweat — Useful to show relief, nervousness, or effort.
2 [No. 13] Slightly Smiling Face — A subtle, polite smile, good for neutral positivity.
. 14] Upside-Down Face — Adds a playful, ironic, or sarcastic touch.
. 15] Smiling Face with Smiling Eyes — A warm, friendly smile with sincerity.
. 16] Smiling Face with Hearts — Strong affection and love.
. 17] Star-Struck — Excitement or admiration.
. 18] Winking Face — Playfulness or encouragement.
. 19] Smiling Face with Open Hands — Expresses openness, comfort, or offering help.
2. Neutral & Thoughtful Emotions: Used for reflection, doubt, or a neutral response.
“ [No. 20] Thinking Face — Essential for indicating thought, doubt, or curiosity.
2 [No. 21] Face with Raised Eyebrow — Useful for skepticism, questioning, or disbelief.
< [No. 22] Neutral Face — Represents neutrality, indifference, or lack of reaction.
© [No. 23] Smirking Face — Adds a touch of slyness, confidence, or suggestiveness.
3. Negative & Concerned Emotions: Used to express worry, sadness, and distress.
=/ [No. 30] Worried Face — Best for expressing general worry or concern.
[No. 31] Frowning Face — A simple and universally recognized expression of sadness or discontent.
No. 32] Loudly Crying Face — Strong emotion, extreme sadness, or distress.
No. 33] Pleading Face — Great for conveying begging, desperation, or emotional appeal.
No. 34] Pensive Face — A thoughtful, reflective sadness that can also imply regret or disappointment.
=’ [No. 35] Sad but Relieved Face — Useful to express relief combined with lingering sadness or stress.
4. Playful & Excited Emotions: Used for humor, fun, and celebrations.
< [No. 40] Face Savoring Food — Useful for expressions related to enjoyment of food or satisfaction.
%' [No. 41] Winking Face with Tongue — Great for playful teasing or joking.
< [No. 42] Zany Face — Represents a goofy, over-the-top excitement or silliness.
& [No. 43] Partying Face — Essential for celebration, excitement, and fun.
** [No. 44] Smiling Face with Sunglasses — Commonly used to convey coolness or confidence.
@ [No. 45] Nerd Face — Useful for expressing intelligence, enthusiasm, or geekiness.
5. Shocked, Surprised & Overwhelmed Emotions: Used to express surprise, fear, or being overwhelmed.
 [No. 50] Astonished Face — Best for general surprise or shock without fear.
[No. 51] Face Screaming in Fear — Ideal for extreme fear, panic, or shock.
% [No. 52] Exploding Head — Perfect for expressing amazement, disbelief, or mind-blown situations.
& [No. 53] Face with Spiral Eyes — Represents confusion, dizziness, or feeling overwhelmed.
= [No. 54] Frowning Face with Open Mouth — Expresses concern or worry with surprise.
6. Health & Physical State Emotions: Used to indicate illness, discomfort, or environmental effects.
> [No. 60] Face with Medical Mask — Widely used to represent illness, protection, or caution.
. 61] Face with Thermometer — Clearly conveys being sick with a fever.
. 62] Face with Head-Bandage — Useful to indicate injury or physical pain.
. 63] Face Vomiting — Strong visual for extreme sickness or disgust.
. 64] Hot Face — Effectively shows overheating, extreme heat, or exhaustion.
. 65] Cold Face — Represents freezing, extreme cold, or feeling unwell due to cold weather.
. 66] Sleeping Face — A clear depiction of sleep or tiredness.
7. Frustrated & Angry Emotions: Used to express frustration, anger, and annoyance.
= [No. 70] Angry Face — A standard, widely recognized emoji for expressing general anger or frustration.
@ [No. 71] Enraged Face — Stronger and more intense than ', emphasizing extreme anger.
@ [No. 72] Face with Symbols on Mouth — Best for showing extreme frustration or swearing, a unique visual cue.
[No. 73] Face with Steam From Nose — Conveys annoyance, determination, or defiance.
8. Actions & Gestures: Used to indicate physical actions, commands, or responses.
“ [No. 80] Saluting Face — Useful for expressing respect, acknowledgment, or readiness.
' [No. 81] Shushing Face — Clearly conveys a request for silence or secrecy.
4 [No. 82] Zipper-Mouth Face — Represents keeping a secret, staying quiet, or self-censorship.
£ [No. 83] Face with Peeking Eye — Expresses curiosity, hesitation, or cautious observation.
2k [No. 84] Head Shaking Horizontally — Useful for conveying disapp I, rejection, or disag it
23 [No. 85] Head Shaking Vertically — Useful for expressing agreement or approval.
9. Confusion & Uncertainty Emotions: Used to convey doubt, awkwardness, and frustration.
= [No. 90] Confused Face — Essential for expressing uncertainty, doubt, or mild confusion.
% [No. 91] Unamused Face — Clearly conveys boredom, disinterest, or mild annoyance.
% [No. 92] Face with Rolling Eyes — Great for expressing sarcasm, frustration, or disbelief.
 [No. 93] Grimacing Face — Useful for awkwardness, nervousness, or discomfort.
% [No. 94] Face Exhaling — Represents exhaustion, relief, or disappointment.

Transition Time

- The transition time between each action can range from 0.1 to 1.0 seconds, depending on the context.

- 0.1 to 0.3 seconds: Use for urgent, high-priority alerts (e.g., danger or warnings).

- 0.4 to 0.7 seconds: Use for standard communication of instructions.

- 0.8 to 1.0 seconds: Use for calm, non-urgent communication such as greetings or passive alerts.

- Select the transition time carefully: 1)Avoid excessive duration to maintain responsiveness. 2) Keep timing reasonable to prevent abrupt

Rules for Action Design
1. Ensure an appropriate transition time to balance clarity and urgency. Avoid durations that are too long or too short for effective communication.
2. The **'empty™* action is used to introduce pauses between expressions for better clarity. The duration is fixed at 0.2 seconds, and it should be represented with
action number "[No. 00]".'Empty" actions can be used before or between expressions to ensure smooth transitions.
3. Actions can be divided into multiple stages to convey messages effectively.
4. Ensure smooth transitions to enhance clarity.
5. You can repeat any facial expression to reinforce the message.
6. Empty screens can separate each stage as needed. You can add 'empty' to the action list.
7. Final action will keep lasting, please choose it carefully.
Best Practices for eHMI Design
- Use positive expressions to create an approachable interaction with pedestrians.
- Avoid overusing negative emotions to prevent miscommunication.
- Ensure that transition times match the intended urgency of the message.
- Use pauses strategically to give pedestrians time to process the displayed information.
- Test combinations with different timing to ensure messages are easily understandable.
Mandatory Requiremen
1. You must design and implement at least three motion that effectively communicate specific messages based on real-world scenarios. Provide detailed
explanations and examples for each motion.
2. You need to compare three motions, and pick the best one.
Output Format
- Ensure all output sequences follow the required format strictly:
[[facial_expression_1, action_number, transition_time], [facial_expression_1, action_number, transition_time], ...]
- Provide a sequence of actions to form complete motions.
Example Output:
["* Thinking Face","[No. 20]",0.4],
19]",0.8], ["“*: Saluting Face","[No. 80]

" "[No. 30]",0.6], ["empty","[No. 00]",0.2], [ Worried Face","[No. 30]",0.6], ["empty","[No. 00]",0.2], ["
6], ["empty","[No. 00]",0.2], ["kd Head Shaking Horizontally","[No. 84]",0.6]]

Smiling Face with Open Hands","[No.

Figure 9: eHMI prompt of facial expression.
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Task Background

You are participating in a study aimed at evaluating how effectively an autonomous system's eHMI (electronic Human-Machine Interface) conveys a pre-determined
message. In this study, you will receive the following:

- Intended Message Description: A detailed explanation of the message the eHMI is designed to communicate.

- Contextual Background: Information about the environment and scenario in which the eHMI is used.

- Video Presentation: A video showcasing the eHMI's behavior and animations.

Task Objectives
Your objective is to assess whether the eHMI's behavior in the video accurately and completely conveys the intended message. Please follow the steps below:
1. Understand the Intended Message and Context
- Read the intended message description and background information thoroughly to fully grasp the designer's goals for the eHMI.
2. Observe and Identify
- Watch the video carefully, focusing solely on the eHMI's behavior (e.g., animations, movements, visual cues) and disregarding other parts of the system (such as
vehicle movement).
- Identify the location and specific visual representation of the eHMI in the video.
- Measure the total duration of the eHMI behavior and assess whether it is appropriately concise.
- Determine if the most critical information appears within the first few seconds of the interaction.
3. Infer the Conveyed Message
- Based on the observed behavior, infer what message the eHMI appears to be transmitting.
- Pay close attention to details such as movement patterns, timing, color changes, and other visual cues.
- Make a list of any critical information that appears to be missing or any unnecessary elements that might cause confusion.
- Assess whether the behavior contains redundant or repetitive elements that could be eliminated.
4. Compare with the Intended Message
- Compare your inferred message with the intended message provided.
- Analyze which specific details support or undermine the eHMI's effectiveness in conveying the intended message.
- Critically evaluate whether all essential elements of the intended message are present and immediately recognizable.
- Determine if any non-essential elements distract from the core message.
5. Provide a Detailed Explanation (Explain your reasoning in detail, including)
- How you identified and focused on the eHMI in the video.
- Your interpretation of the specific behaviors and animations of the eHMI.
- A specific assessment of the behavior's duration and whether it is appropriately concise.
- Whether the main information is presented at the beginning, and if not, how it could be improved.
- Alist of at least three specific shortcomings or areas for improvement, even for generally effective implementations.
- An explicit breakdown of which critical message elements were present or missing.
- Suggestions for how the eHMI could convey the same message more effectively, with emphasis on conciseness and front-loading important information.

Important Notes for Rigorous Human-like Evaluation
1. Default to Skepticism: Approach your evaluation with healthy skepticism. Assume that most implementations will have significant flaws that need to be identified.
2. Strict Distribution of Ratings: To align with human evaluation patterns, aim for a distribution where:
- Ratings near 5.0 (4.6-5.0): Extremely rare, reserved for truly exceptional implementations (~5% of cases)
- Ratings between 3.6-4.5: Uncommon, only for clearly above-average implementations (~15% of cases)
- Ratings between 2.6-3.5: The most common rating range for average implementations (~50% of cases)
- Ratings between 1.6-2.5: Common for implementations with clear problems (~20% of cases)
- Ratings between 1.0-1.5: Reserved for implementations with fundamental flaws (~10% of cases)
3. Human Preference Prioritization: Humans strongly prefer eHMI behaviors that are:
- CONCISE: Shorter behaviors are almost always better than longer ones
- FRONT-LOADED: The most important information must appear within the first few seconds
- COMPLETE: All essential elements must be present, but without unnecessary additions
Any deviation from these three critical factors should significantly lower your rating.

Figure 10: Prompt for the VLM rater.
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eHMI scoring form &

Welcome to our user study, and thank you for participating!

This study explores how different types of interfaces on autonomous systems (e.g., vehicles and
robots) can effectively convey messages to users.

Throughout the study, you will be presented with various messages and corresponding videos.

Your task is to evaluate how consistently the interface's movements express the intended
message.

The study consists of 4 main sections, each featuring:

- A scenario description and the message to be conveyed.

- 20 videos, showcasing 4 eHMI (interface: eye, arm, light bar, facial expression on screen) types,
with 5 different motions for each type.

Please carefully read the provided descriptions to understand the context before evaluating how
well the interface actions communicate the intended message.

There are no right or wrong answers—please score based on your intuitive judgment.Important
notes:

- Your responses will not be saved. If you exit the study midway, it will restart from the beginning
when you return.

- Please ensure you have a dedicated 1-hour time slot to complete the study without
interruptions.

- Please ensure that your internet connection is stable and the speed is good.

Thank you for your time and valuable input!

Figure 11: Introduction page of our action scoring survey
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Example Video (eHMI: Light Bar) and Example Question (Pick One)

Strongly disagree Disagree Neutral Agree

O O ©) O

How consistently the movement
expresses the message?

Figure 12: Demo page of our action scoring survey
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Section 1:

This is the autonomous
vehicle with an eHMI (eye)

Scenario:

You are a pedestrian standing on the right roadside, waiting for an autonomous taxi. However, the taxi
informs you that it cannot pick you up at your current location due to parking restrictions within a 5-meter
radius. The taxi sends you the following message: "I am unable to pick you up here. Please walk forward in my
direction to a suitable pickup spot.”

Figure 13: Scenario introduction page of our action scoring survey
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Scenariol: eHMI (eyes) Motion No. 3
Message: "I am unable to pick you up here. Please walk forward in my direction to a suitable pickup spot."

Strongly disagree Disagree Neutral Agree Strongly agree

O O O © O

How consistently the movement
expresses the message?

Figure 14: Participant rating page of our action scoring survey
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