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Abstract
Supervised fine-tuning (SFT) is crucial for
aligning Large Language Models (LLMs) with
human instructions. The primary goal during
SFT is to select a small yet representative sub-
set of training data from the larger pool, such
that fine-tuning with this subset achieves re-
sults comparable to or even exceeding those
obtained using the entire dataset. However,
most existing data selection techniques are de-
signed for small-scale data pools, which fail
to meet the demands of real-world SFT sce-
narios. In this paper, we replicated several
self-scoring methods—those that do not rely
on external model assistance—on two million-
scale datasets, and found that nearly all meth-
ods struggled to significantly outperform ran-
dom selection when dealing with such large-
scale data pools. Moreover, our comparisons
suggest that, during SFT, diversity in data se-
lection is more critical than simply focusing
on high-quality data. We also analyzed the
limitations of several current approaches, ex-
plaining why they perform poorly on large-
scale datasets and why they are unsuitable for
such contexts. Finally, we found that filter-
ing data by token length offers a stable and
efficient method for improving results. This
approach, particularly when training on long-
text data, proves highly beneficial for relatively
weaker base models, such as Llama3. The
code is available at https://github.com/
xiatingyu/SFT-DataSelection-at-scale.

1 Introduction

With the advent of large language models (LLMs)
such as ChatGPT, we have observed significant
advancements in tasks involving instruction follow-
ing (Wang et al., 2023b), intent comprehension (Lu

†Work done during the author’s internship at the Alibaba
Group

*Corresponding authors

et al., 2023), and text generation (Zhao et al., 2023).
One of the primary objectives of developing LLMs
is to harness their potential for generalizing to un-
seen natural language processing (NLP) tasks. To
achieve this aim, many LLMs focus on precisely
aligning with human instructions.
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Figure 1: The discrepancy between each methods and
random selection on BBH benchmark (Suzgun et al.,
2022). The Y-axis represents the differential score,
which is computed by subtracting the random selection
score from the scores obtained using various methods.

Recent studies indicate that supervised fine-
tuning (SFT) can customize LLMs for specific
domains, tasks, or applications by utilizing well-
crafted data. According to the study in (Zhou et al.,
2024a), it is feasible to fine-tune a pre-trained lan-
guage model with a relatively small set of exam-
ples. Building on this insight, several papers have
explored data selection strategies for SFT of LLMs
(Wang et al., 2024; Qin et al., 2024), emphasizing
the importance of enhancing the quality of instruc-
tion tuning (IT) data or increasing data diversity.
These strategies can be classified into two primary
categories: (1) Extenral-scoring methods, which
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require support from more sophisticated external
models like GPT-4 to score the data for the subse-
quent selection (Lu et al., 2023; Chen et al., 2023;
Du et al., 2023; Liu et al., 2023; Zhou et al., 2024b);
(2) Self-scoring methods, which leverage LLMs
themselves as data scorers (Li et al., 2023d,b; Liu
et al., 2024; Xia et al., 2024; Yin et al., 2024).

Existing SFT data selection methods, both
external-scoring and self-scoring, are evaluated us-
ing well-known IT datasets like alpaca-GPT4 (Peng
et al., 2023), Dolly (Conover et al., 2023), FLAN
(Longpre et al., 2023), WizardLM (Xu et al., 2024),
and ShareGPT (Chiang et al., 2023). These datasets
are small and come from a single source. How-
ever, during SFT, much larger data volumes, usu-
ally in the hundreds of thousands to millions, are
often needed. For instance, Qwen2 (qwe, 2024)
used over 500,000 data samples in SFT. Thus, for
effective LLM utilization, large-scale instruction-
following data is crucial in SFT. Furthermore, large-
scale data should not only be abundant but also
diversified, including professional annotations, real
user data, or model-generated data, across various
types like code, math, conversations, and knowl-
edge Q&A. This disparity highlights a gap between
current SFT data selection and real-world appli-
cations. To study how dataset size impacts se-
lection strategy performance, we compared out-
comes from existing methods with random se-
lection within datasets ranging from 10K-30K to
1M on Llama3-8B (AI@Meta, 2024). Figure 1
shows that as dataset size grows to 1M, these meth-
ods perform worse compared to random selection.
"Data size 10K-300K" refers to sources from orig-
inal method papers. "Data size 1M" refers to the
Openhermes2.5-1M dataset (Teknium, 2023).

Motivated by this discovery, we reconsider
whether SFT data selection methods are viable for
large-scale IT datasets. Given the high costs of
external-scoring techniques (Liu et al., 2023), we
focus on self-scoring methods. Referring to (Qin
et al., 2024), we classify self-scoring techniques
into data quality-based and data diversity-based
methods. Data quality-based methods prioritize al-
gorithms and metrics to score data items, selecting
based on these scores, while data diversity-based
methods prioritize dataset diversity. To examine
the impact of self-scoring methods on LLMs’ per-
formance with vast IT data, we test recent methods
on two benchmarks with millions of cases. Our
experiments highlight three key points:

• Most self-scoring data selection methods per-
form similarly to random selection on large
datasets. Although they show improvement on
smaller datasets, their effectiveness decreases
with larger and complex data. Some methods
perform slightly better than random with cer-
tain LLMs, but balancing effectiveness and
efficiency, random selection remains the best
choice for large data sources.

• Data diversity holds more significance than
data quality during the SFT phase. Data
quality-based selection methods are more
effective than data diversity-based methods
when dealing with a small-scale dataset from a
single source. However, when tackling multi-
source data, only considering data quality is
far from enough.

• Analyzing two IT datasets, we find using to-
ken length for data filtering ensures stable and
efficient SFT results with large-scale IT data.
Prior research (Liu et al., 2023) shows ben-
efits of long text training for subjective eval-
uations like MTbench (Zheng et al., 2023)
and AlpacaEval (Li et al., 2023c); we con-
firm its positive effect on objective tasks like
Big-Bench-Hard (Suzgun et al., 2022). Al-
though not always optimal for every language
model, token length is beneficial in training
long texts, notably for a weaker BASE model
such as Llama3-8B.

2 Related Work

External-scoring Method. (Lu et al., 2023) in-
troduced an open-set instruction tagging method
called INSTAG, which employed ChatGPT to gen-
erate detailed tags to measure and examine the va-
riety and intricacy of human instructions for LLMs
during SFT. (Chen et al., 2023) presented the AL-
PAGASUS model that used ChatGPT to evaluate
each instruction and then selected various data
based on a certain threshold. (Du et al., 2023) sug-
gested a model-oriented instruction selection ap-
proach that not only considered the quality and cov-
erage of instruction data but also incorporated the
necessity of instructions according to the capabili-
ties of specific LLMs. (Liu et al., 2023) introduced
DEITA, it used ChatGPT to iteratively enhance the
complexity or quality of each data sample across
relevant dimensions and then requested ChatGPT
to evaluate these samples for their complexity or
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quality. These models exceed the performance of
the basic foundation models trained on complete
datasets. However, they heavily depend on high-
performing external LLMs to score data.

Self-scoring Method. (Li et al., 2023b) intro-
duced a self-directed technique for LLMs to iden-
tify relevant instruction pairs from open-source
data, using an Instruction-Following Difficulty
(IFD) metric to expose discrepancies between ex-
pected and self-generated outputs. (Wu et al., 2023)
developed DiverseEvol, which allows the model
to independently select diverse training subsets to
boost performance without human or advanced
LLM oversight. (Xia et al., 2024) proposed LESS,
which selects pertinent instruction tuning data by
leveraging a gradient datastore to find examples
similar to few-shot instances representing a spe-
cific capability. (Yin et al., 2024) found that model
performance diminishes with higher compression
ratios in training data and introduced ZIP, a selec-
tion method favoring low-compression-ratio sub-
sets. (Liu et al., 2024) created SelectIT, which uses
LLMs’ uncertainty at various levels to identify su-
perior instruction tuning data efficiently. (Li et al.,
2023d) presented Nuggets, using one-shot learning
and a scoring system based on perplexity influence
to choose high-quality instruction data for tuning.

3 Self-scoring strategies

In this paper, we focus on self-scoring methods
that do not rely on external advanced LLMs to
score data. We refer (Qin et al., 2024)’s work and
categorize existing resourceful data selection meth-
ods into two main perspectives: data quality-based
methods and data diversity-based methods.

3.1 Quality-based Selections

In this section, we introduce 4 methods based on
data quality assessment and selection. “Quality”
here refers primarily to the complexity, complete-
ness, score, and influence of the datapoints. Dif-
ferent from (Qin et al., 2024), we believe that the
influence of a datapoint in the target dataset is also
a reflection of data quality, especially in practical
scenarios, where we are required to deal with di-
verse tasks rather than a single task. We thus regard
the influence as a quality category as well.

LESS (Xia et al., 2024) employed low-rank gra-
dient similarity search for selecting influential data
in target applications. Initially, a model was pre-
trained with LoRA (Hu et al., 2021) using a small

subset Dwarmup ⊂ D, after which the Adam LoRA
gradient features were calculated and saved in a
database. Then, a datastore of reduced-dimensional
gradient features was established for reuse with var-
ious target tasks. For training points x, they com-
puted a d-dimensional projection of the LoRA gra-
dient ∇̃ℓ(x;θi) = Π⊤∇̂ℓ(x;θi), where Π⊤ uses
a memory-efficient online implementation of ran-
dom projections from (Park et al., 2023). For val-
idation points x′, Γ̃(x′, ·) = Π⊤Γ̂(x′, ·) was cal-
culated, representing gradient values for x′ across
different optimization states. Finally, LESS eval-
uated maxj InfAdam(x,D(j)

val) over all validation
subsets Dval, choosing the top-scoring examples
for Dtrain,

InfAdam(x,D(j)
val) =

∑N
i=1 η̄i

⟨∇̄ℓ(D(j)
val;θi),Γ̃(x,θi)⟩

∥∇̄ℓ(D(j)
val;θi)∥∥Γ̃(x,θi)∥

(1)

IFD introduced the Instruction-Following Diffi-
culty (IFD) score, a metric devised to evaluate the
challenge each instructional sample presents (Li
et al., 2023b). Given a (Q,A) pair, they calculated
the ratio between s(A) and s(A|Q):

IFD(Q,A) = s(A|Q)
s(A) =

− 1
N

∑N
i=1 logP (xA

i |Q,xA
1 ,xA

2 ,...,xA
i−1)

− 1
N

∑N
i=1 logP (xA

i |xA
1 ,...,xA

i−1)

(2)
where s(A) means Direct Answer Score, which
measures LLM’s ability to generate the answer
alone. s(A|Q) means Conditioned Answer Score,
which is calculated by continuously predicting the
next tokens given the instruction Q and their pro-
ceeding words.

The authors initially created 100 clusters from
instruction embeddings and selected 10 instances
per cluster according to the IFD score on a pre-
trained base LLM. They then trained this LLM for
1 epoch with these chosen datapoints. Post-training,
they recalculated the IFD score of each datapoint
in the entire training set D and ultimately chose the
data with the highest IFD score as Dtrain.

SelectIT identified high-quality IT data by ana-
lyzing the inherent uncertainty indicated by LLMs
(Liu et al., 2024). It evaluated samples at three
granular levels: token, sentence, and model level
reflections. At the token level, SelectIT determined
the probability of the following token (from 1 to K)
using the rating prompt RP and the query-response
pair E. The token with the highest probability was
deemed the sample’s quality measure. A higher
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P
′
Ebase indicated greater LLM confidence.

Ebase = arg max P ′
k, P

′
k =

(
ePk

∑K
j=1 e

Pj

)
(3)

Here, Pk and P
′
k denote the probability and softmax

probability of token k, respectively. K represents
the number of scores considered. In that study, the
score tokens spanned from 1 to 5. To improve the
reliability of quality assessment, SelectIT evaluated
the average difference between the predicted token
Ebase and others, with larger differences indicating
higher LLM confidence.

Etoken = Ebase × 1

K − 1

K∑

i=1

|P ′
i − P ′

Ebase | (4)

At the sentence level, different prompts can no-
tably influence LLM outcomes, so K semantically
similar rating prompts {RP0, RP1, . . . , RPK}
were crafted, resulting in a set of quality scores
{Etoken

0 , Etoken
1 , . . . , Etoken

K }.

Esent =
Avg{Etoken

i }Ki=1

1 + α× Std{Etoken
i }Ki=1

(5)

where Avg{·} and Std{·} denote the mean and
standard deviation of Etoken

i , respectively. K
means the number of rating prompts RP .

For model level, SelectIT used N foundation
models with parameter counts {β1, β2, . . . , βN}
and their respective sentence-level scores for a
sample E being {Esent

0 , Esent
1 , . . . , Esent

N }, then
the model-level score Emodel was computed as fol-
lows.

Emodel =
N∑

i=1

(
βi∑N
j=1 βj

× Esent
i

)
(6)

where N means the number of the foundation mod-
els. It used Emodel as the final evaluation of sample
E in SelectIT.

Cross-entropy: Language models can be consid-
ered a form of compression, with LLMs showing
strong capabilities in data compression empirically
(Delétang et al., 2024). Compression efficiency
is a stable and reliable assessment that is linearly
related to the model’s capabilities. It reflects the
model’s ability to extract relevant information and
eliminate unnecessary elements, providing insight
into the intrinsic capability of the language model
(Huang et al., 2024; Wei et al., 2024).

The cross-entropy loss employed in the training
of LLMs establishes a coherent relationship be-
tween LLMs and information compression of each
query-response pair E.

ExE∼ρ[−
n∑

i=1

log2 ρmodel(x
E
i |xE1:i−1)] (7)

Inspired by this foundational insight, we select data
based on the cross-entropy of each datapoint, where
the higher value of cross-entropy means the better
quality.

3.2 Diversity-based Selections

In this section, we introduce methods that empha-
size the diversity of instruction datasets, where di-
versity refers to the overall diversity of the entire
training dataset.

DiverseEvol selectively sampled training sub-
sets to enhance its performance iteratively (Wu
et al., 2023). It identified distinct new data points
in its current embedding space each iteration. For
a dataset D, DiverseEvol initially picked a random
data pool P0 and trained an initial model M0. Each
iteration involved: 1. Adding new data points Dt

to Pt+1 based on model Mt. 2. Training the next
model Mt+1 with updated Pt+1. The K-Center-
Sampling method was used to choose k data points
from candidates, maximizing their distance from
existing training data.

argmax
i∈Xt

min
j∈Pt

∆
(
xi,pj

)
(8)

At each step, the input parameters to K-Center-
Sampling were the model Mt, the current train-
ing pool Pt, and Dt. The selection function K-
Center-Sampling then outputs the new data point
Xt, which was added to the training pool for the
next iteration Pt+1.

The method ZIP identifies a negative correlation
between model performance and the compression
ratio of training data, often leading to reduced train-
ing loss. (Yin et al., 2024) introduced ZIP, a highly
efficient and universal data selection approach for
training LLMs, focusing on data subsets with low
compression ratios.

It begins by determining the sample-level com-
pression ratio for the dataset D, with πD represent-
ing data redundancy. In each cycle, it picks K1

samples with the smallest πD1 to create an initial
pool DK1 . It then calculates the compression ra-
tio of the combined set when adding each sample
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in DK1 to the selected set Dtrain, updating the re-
dundancy πD1 . Based on sample scores in DK1 ,
ZIP chooses DK2 samples with the smallest scores.
Next, an empty set DK3 is initialized, and the com-
pression ratio for the union of DK3 and each DK2

sample is computed. The sample with the lowest
ratio is added to DK3 and removed from DK2 . Fi-
nally, each DK3 sample is included in Dtrain. The
compression ratio g(C(D)) in ZIP is computed as:

g(C(D)) =
Bits(D)

Bits(C(D))
(9)

4 Experiment

4.1 Datasets

In practice, researchers often deal with large and
imperfect datasets from diverse sources in SFT.
This study, instead of using the usual IT datasets
like alpaca (Taori et al., 2023), uses two large-
scale IT datasets at the million level, Openher-
mes2.5 (Teknium, 2023) and WildChat-1M (Zhao
et al., 2024), to evaluate how current data selection
methods perform with large datasets and to assess
their performance in real-world scenarios.

Openhermes2.5 is introduced in (Teknium,
2023) with over 1 million entries, characterized
by its extensive coverage and quality. It mainly
includes generated guides and conversations from
16 sources, such as metamath (Yu et al., 2023),
CamelAI (Li et al., 2023a), etc., covering topics
like mathematics, programming and etc..

WildChat-1M from (Zhao et al., 2024) contains
exclusively non-toxic user inputs and ChatGPT
exchanges, totaling 1 million dialogues. About
25.53% involve GPT-4, the rest GPT-3.5, featuring
varied interactions like ambiguous queries and po-
litical talks. This study extracts over 440k English
dialogues from WildChat.

4.2 Benchmarks

To evaluate LLM capabilities, we explore various
methods across downstream tasks. We use two
datasets, GSM (Cobbe et al., 2021) and BBH (Suz-
gun et al., 2022), to test reasoning in the CoT set-
ting (Wei et al., 2022). For code generation, we em-
ploy the HumanEval dataset (Chen et al., 2021) and
reported pass@1 results. We gauge factual knowl-
edge using MMLU (Hendrycks et al., 2021) with
5-shot results and assess instruction-following us-
ing IFEval (Zhou et al., 2023b) with strict and loose
scores. Additionally, we use Open-Instruct scripts

covering key benchmarks (Wang et al., 2023a; Ivi-
son et al., 2023, 2024).

4.3 Implementation Details

Specifically, we leverage the widely-used
LLaMA3-8B (AI@Meta, 2024) and Qwen2-
7B (qwe, 2024) as our base models, and fine-tune
them using the Llama-Factory framework (Zheng
et al., 2024). We train these models for 3 epochs
with a batch size of 128. Our training process
employs a cosine learning rate scheduler beginning
at 7e− 6, which decays to 0.1, warms to 0.01, and
utilizes an input length of 4096. To replicate our
baseline methods on Openhermes and WildChat,
we adjust some original parameters and implemen-
tations to fit the large-scale datasets. The specific
details of model reproduction are in Appendix A.1.

5 Discussion

5.1 Baseline Methods vs Random

This section replicates baseline methods for
LLaMA3-8B and Qwen2-7B experiments on Open-
Hermes2.5, with results in Table 2 and WildChat
results in Table 3. We evaluate these models with
and without full dataset fine-tuning, using SFT data
selection methods to pick 10k samples as per Sec-
tion 4.3. We conduct 5 random runs and the out-
comes are in the tables. Additionally, 50k samples
from various methods are in Appendix Table 6,
7. Due to the excessively long runtime of some
baselines, we have not conducted experiments on
larger-scale data subsets, such as a filtered 100k
dataset.

Llama3-8B Qwen2-7B
OpenHermes WildChat OpenHermes WildChat

LESS 0.77 0.45 0.80 0.86
IFD 0.85 0.53 0.85 0.68

SelectIT 0.71 0.79 0.60 0.58
Entropy 0.92 0.46 0.78 0.30
Diverse 0.39 0.58 0.37 0.45

zip 0.55 0.36 0.42 0.31

Table 1: The P-values of the significance tests for each
method against the results of five rounds of random
selection.

As indicated in Table 2 and 3, it is evident
that when dealing with extensive and diverse IT
datasets, no data selection techniques consistently
outperform random sampling by a substantial mar-
gin, which implies that the average score exceeds
the random score by more than 1%. In most cases,
the results of the baseline method are within the
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random 1 59.72 82.41 62.10 68.30 33.27 36.41 57.04 64.72 53.90 45.21 63.20 39.19 43.62 51.64

Random 2 61.48 83.47 64.33 67.90 38.08 40.30 59.26 60.83 56.86 48.99 62.70 41.77 45.47 52.77

Random 3 61.85 81.65 62.90 68.10 36.78 38.45 58.29 63.43 59.74 46.83 62.70 43.25 46.21 53.69

Random 4 61.20 82.71 59.27 68.00 36.60 39.19 57.83 63.98 59.59 45.18 63.80 44.36 47.13 54.01
Random 5 61.30 82.71 62.23 68.90 35.86 37.71 58.12 62.31 56.10 42.07 63.50 44.55 48.80 52.89

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79

IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69

SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79

Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

Diverse 61.11 81.73 61.71 68.65 40.85 43.44 59.58 65.00 56.25 44.51 63.84 43.99 47.13 53.45

ZIP 60.65 80.52 66.10 68.60 37.15 39.56 58.76 63.98 59.67 40.70 62.60 43.81 46.58 52.89

Table 2: The overall results (%) on a variety of downstream tasks based on Openhermes2.5 dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second
highest score.

range of the results obtained by 5 random runs,
and a few methods are even worse than the worst
random result, For instance, when evaluating Cross-
Entropy on Qwen2-7B using Openhermes2.5, the
average result is a mere 54.02, significantly below
the lowest score of 57.04 obtained in the 5 ran-
dom trials. Besides, We also conducted the Mann-
Whitney U test for each method against the results
of 5 rounds of random selection. We adopted the
right-tailed test approach, with the testing hypoth-
esis being that the scores of each baseline method
on different test tasks are greater than those of the
random method. We reported the p-value for each
method being significantly better than that of the
random method in table 1. We found that the p-
values of all methods is higher than 0.05, which
indicates that the results of all baseline methods are
not greater than those of the random method.

Based on the experimental results, when deal-
ing with an extensive SFT dataset, it is more effi-
cient to randomly select training data instead of
spending significant time and resources to metic-
ulously choose seemingly optimal training data.
Random selection reduces costs and yields superior
training results.

5.2 Quality vs Diversity

Tables 2 and 3 demonstrate that the diversity-based
selection strategies outperforms the quality-based

one. To examine whether prioritizing diversity
over data quality improves data selection, we de-
signed a supplementary experiment by incorporat-
ing a K-means clustering process on the OpenHer-
mes dataset. Instead of selecting data based solely
on method scores, we choose higher-scoring data
within each cluster to boost the final training set’s
diversity.

Table 5 illustrates that integrating the K-means
clustering with quality-based selection methods en-
hances the effectiveness for most approaches. No-
tably, Cross Entropy on both Llama3 and Qwen2
models shows improvement over 5% and 3%, re-
spectively, when K-means is used to diversify the
data. This suggests that for a large-scale IT dataset,
data diversity holds more importance than data
quality. This also clarifies why random selection
often outperforms most SFT data selection meth-
ods, as the random process preserves the dataset’s
original distribution and diversity to the greatest
possible extent.

5.3 Baseline Analysis

In this part, we mainly analyze several methods
and try to find the reasons why these methods fail
in large-scale data sets and why these methods are
not applicable to practical applications.

The lack of availability of Less is primarily evi-
dent in how its influence score is calculated. Since
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random 1 61.30 82.64 61.98 68.10 40.30 42.33 59.44 63.70 56.48 51.92 63.30 39.37 41.95 52.79

Random 2 60.93 81.96 61.43 67.50 38.63 40.67 58.52 62.41 52.62 49.33 64.00 44.18 46.77 53.22

Random 3 60.28 82.64 62.07 68.30 41.04 42.88 59.54 63.52 58.38 43.90 64.10 42.33 45.29 52.92

Random 4 61.11 80.36 65.46 67.50 37.34 40.67 58.74 63.33 55.42 51.10 64.50 41.96 44.55 53.48

Random 5 61.57 81.50 60.27 68.20 41.77 43.99 59.55 64.91 60.27 48.66 64.30 42.14 45.84 54.35

LESS 52.59 60.50 61.19 68.00 38.82 41.77 53.81 63.43 57.01 50.43 64.50 40.85 44.92 53.52

IFD 60.56 76.27 65.24 68.00 36.23 38.26 57.43 63.33 59.29 47.16 64.60 40.30 43.81 53.08

SelectIT 60.37 82.34 64.97 68.50 36.97 39.19 58.72 61.48 53.22 46.01 63.20 40.11 42.88 51.15

Entropy 60.37 81.96 62.90 68.40 42.51 46.21 60.39 63.15 56.10 47.71 63.00 45.10 49.54 54.10

Diverse 61.02 80.82 65.09 67.33 41.04 42.88 59.70 62.59 53.30 33.48 64.46 47.87 50.65 52.06

ZIP 62.59 81.80 68.17 68.00 40.11 42.33 60.50 62.31 60.96 46.58 64.50 45.10 48.06 54.59

Table 3: The overall results (%) on a variety of downstream tasks based on WildChat dataset. CODE means
HumanEval, Random n denotes the nth random selection. Except for fine-tuning with the entire Openhermes
dataset, the bold numbers indicate the best score of each part, and the underlined numbers indicate the second
highest score.

Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

OpenHermes 60.65 80.74 60.18 68.33 37.89 41.40 58.20 64.63 61.33 45.70 64.41 48.43 52.87 56.23

WildChat 61.67 81.05 59.21 67.82 39.56 42.14 58.58 66.11 60.35 51.16 63.91 43.81 47.69 55.51

Table 4: The overall results (%) of token length selection.

it requires computing the score for the final data
point in the target task, it is essential to meticu-
lously design a target set for each task to filter the
data. However, in practical applications, we face a
variety of training tasks that require our target data
to be comprehensive and diverse. Hence, the effec-
tiveness of LESS is strongly related to the quality
of Dval.

The IFD approach determines the ultimate IFD
score by evaluating the perplexity (ppl) of the re-
sponse. However, the length of the data signifi-
cantly affects the ppl value. In particular, shorter
data tend to produce excessively high ppl values,
which contradicts with our expected results. Ul-
timately, we note that the IT data instructions se-
lected by the IFD approach are quite brief, averag-
ing merely 42 tokens on Openhermes, which aligns
with the findings reported by (Liu et al., 2023).

SelectIT can perform well at the model level, but
it necessitates combining LLMs with various sizes
to score the data. As IT datasets become larger, the

computational cost required for LLMs with more
parameters tends to increase exponentially, which
limits their applicability to extensive datasets.

Cross-entropy is influenced by the length of re-
sponses. Typically, cross-entropy favors data with
lengthy responses, whereas it shows no specific
preference towards instructions. Consequently, the
training samples will include simple instructions
but extensive responses.

We exclude NUGGETS (Li et al., 2023d) as
a baseline due to its extensive computational de-
mands, requiring over 2,000 hours on 40 A100
80G GPUs. Given this high time cost, we decide
to abandon this method.

The diversity-based approach usually outper-
forms the quality-based selection methods, how-
ever, one main issue with the diversity-based ap-
proach is its time and memory consumption.

To replicate DiverseEvol, we used 8 A100 80G
GPUs across 3 iterations, each lasting 1-2 days,
totaling 5-7 days to select the final subset. When
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

LESS 61.20 81.65 53.26 67.60 32.16 37.15 55.50 61.39 57.70 41.43 64.20 38.08 41.96 50.79

IFD 57.96 79.23 68.48 56.70 33.27 35.12 55.13 57.41 53.53 32.41 59.90 43.07 45.84 48.69

SelectIT 59.17 80.44 66.46 67.20 35.86 38.82 57.99 62.59 61.56 42.38 63.60 38.45 42.14 51.79

Entropy 61.30 55.04 61.04 68.90 37.34 40.48 54.02 58.61 50.72 44.02 61.40 32.90 37.89 47.59

LESSkm 61.30 81.96 54.63 67.79 34.38 38.26 56.39 60.93 50.27 48.11 63.97 39.74 44.55 51.26
IFDkm 60.19 78.77 59.70 66.81 30.31 31.79 54.60 60.74 58.98 40.37 62.95 40.67 42.70 51.07
SelectITkm 60.93 82.34 61.04 67.85 36.78 39.19 58.02 62.96 59.36 40.85 63.43 39.74 43.07 51.57

Entropykm 60.37 81.12 59.27 68.55 35.67 38.45 57.24 61.02 61.64 48.32 61.12 39.00 43.99 52.52

Table 5: Overall results (%) for various downstream tasks are based on the Openhermes2.5 dataset. The notation
Methodkm refers to the method incorporating the k-means process. Bold numbers represent the average performance
gain following the addition of the K-means phase.
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Figure 2: The average score (%) of each methods on Llama3 and Qwen2.

dealing with large-scale data sets, the results of-
ten fall within the random range, though optimal
results occur sporadically. This may be due to
modifications in our implementation to address
memory constraints during replication (see Sec-
tion 4.3), which may have slightly diminished the
method’s performance. In contrast, ZIP does not
need GPU resources, but the computing process is
greedy. It incrementally adds 100 data at a time to
the final training subset. For large data scales, it
takes approximately 7 days to select 50,000 data.
In addition, ZIP serves as a data selection method
that operates independently of the model, meaning
that the selected data cannot be adaptively tuned
on the basis of the model. As illustrated in Tables
2 and 3, the data chosen by ZIP in OpenHermes
perform poorly in both Llama3-8B and Qwen2-7B,
whereas the data selected in WildChat exhibit the
best performance across these models.

Moreover, we attempt to utilize DQ (Zhou et al.,
2023a) as our baseline method. However, DQ uses
a submodular strategy to choose a subset by opti-
mizing submodular gains within the feature space.
When dealing with millions of data points, it re-

quires more than 1TB memory resources. Eventu-
ally, we decide to forgo this approach.

5.4 Which method is the best?

By examining the average results, we notice that
the majority of methods perform better with Wild-
Chat as the data source compared to OpenHermes,
as illustrated in Figure 2, which is rather unex-
pected. Nonetheless, from a quality perspective,
WildChat’s conversation data tends to be noisy, par-
ticularly since the context of multiple conversation
rounds is sometimes unrelated, while OpenHer-
mes’s data quality should be substantially higher
than WildChat. However, the performance patterns
for these data sources are contrary to our predic-
tions. WildChat’s average token length is 1142,
compared to 354 for OpenHermes. Inspired by
(Shen, 2024), we designed a new experiment fo-
cused on selecting data by token length. We ap-
plied K-Means to form N clusters, then chose a
data quantity from each cluster proportional to its
size, based on token length. Results are in Table 4.

Based on Table 4, it is evident that using token
length as the criterion for data selection generally
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yields optimal results. Specifically, for Llama3,
regardless of whether the data source is OpenHer-
mes or WildChat, the results are superior to those
achieved by other methods. In addition, the aver-
age score on WildChat (55.51) surpasses that ob-
tained by fine-tuning with the entire dataset (54.58).
Since random selection may not ensure the best
fine-tuning results, we believe that selecting data
by token length can stably obtain a relatively
high training benefit, reduce the uncertainty
caused by randomness, and reduce costs. This
approach is particularly beneficial for BASE lan-
guage models which generally have limited capa-
bilities, as they tend to derive the most significant
benefits from training on longer texts. Notably,
both Qwen2 (qwe, 2024) and Llama3 (AI@Meta,
2024) incorporate long-text training components in
their pre-training stages. Based on this observation,
we posit that with the continuous iteration of foun-
dational models, the advantages of length-based
data selection will gradually diminish.

6 Conclusion

In this study, we observe that many SFT data se-
lection methods depend on small-scale data sets,
which do not meet the actual needs in real-world
scenarios. This finding makes us rethink whether
SFT data selection methods can work when they
are required to handle large-scale IT datasets. We
reproduce some existing self-scoring data selec-
tion approaches that do not need external LLMs’
support on two million-scale datasets and find that
almost all present methods do not significantly sur-
pass random selection when dealing with large-
scale datasets. Moreover, our analyses show that
during the SFT phase, data diversity in data selec-
tion plays a more significant role than data quality.
In addition, using token length as the quality metric
is more appropriate for SFT data selection com-
pared to other carefully crafted quality metrics.

7 Limitations

Due to financial limitations, the External-scoring
Method was not implemented as a comparative
approach in this study. We were unable to identify
a data selection technique that universally applies
to all LLMs. While accounting for both temporal
costs and model effectiveness, it appears that token
length typically yields optimal outcomes; however,
this method is not suitable for every model.

8 Ethics Statement

The primary aim of this study is to select specific
portions of data from existing open-source public
datasets to be used in the supervised fine-tuning
of LLMs. We have chosen two datasets for this
purpose: OpenHermes2.5 and WildChat. Open-
Hermes2.5 comprises various general open-source
datasets that are free from security or ethical con-
cerns. Meanwhile, the WildChat dataset has been
curated to exclude toxic user inputs, thus guaran-
teeing its safety.

Acknowledgement

We thank the anonymous reviewers for their valu-
able and helpful comments. This work is sup-
ported by the National Key Research and Devel-
opment Program of China (No.2023YFF0905400),
the National Natural Sci- ence Foundation of China
(No.U2341229), as well as the Reform Commis-
sion Foundation of Jilin Province (No.2024C003),
and is also supported by the Fundamental Research
Funds for the Central Universities at JLU.

References
2024. Qwen2 technical report.

AI@Meta. 2024. Llama 3 model card.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa
Gunaratna, Vikas Yadav, Zheng Tang, Vijay Srini-
vasan, Tianyi Zhou, Heng Huang, et al. 2023. Al-
pagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluat-
ing large language models trained on code. Preprint,
arXiv:2107.03374.

2706

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374


Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Grégoire Delétang, Anian Ruoss, Paul-Ambroise
Duquenne, Elliot Catt, Tim Genewein, Christo-
pher Mattern, Jordi Grau-Moya, Li Kevin Wenliang,
Matthew Aitchison, Laurent Orseau, Marcus Hut-
ter, and Joel Veness. 2024. Language modeling is
compression. In ICLR.

Qianlong Du, Chengqing Zong, and Jiajun Zhang. 2023.
Mods: Model-oriented data selection for instruction
tuning. arXiv preprint arXiv:2311.15653.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junx-
ian He. 2024. Compression represents intelligence
linearly. Preprint, arXiv:2404.09937.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu
Wu, Valentina Pyatkin, Nathan Lambert, Noah A.
Smith, Yejin Choi, and Hannaneh Hajishirzi. 2024.
Unpacking dpo and ppo: Disentangling best prac-
tices for learning from preference feedback. Preprint,
arXiv:2406.09279.

Hamish Ivison, Yizhong Wang, Valentina Pyatkin,
Nathan Lambert, Matthew Peters, Pradeep Dasigi,
Joel Jang, David Wadden, Noah A. Smith, Iz Belt-
agy, and Hannaneh Hajishirzi. 2023. Camels in a
changing climate: Enhancing lm adaptation with tulu
2. Preprint, arXiv:2311.10702.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani
Itani, Dmitrii Khizbullin, and Bernard Ghanem.
2023a. Camel: Communicative agents for "mind"
exploration of large scale language model society.
Preprint, arXiv:2303.17760.

Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang
Chen, Ning Cheng, Jianzong Wang, Tianyi Zhou, and
Jing Xiao. 2023b. From quantity to quality: Boosting
llm performance with self-guided data selection for
instruction tuning. arXiv preprint arXiv:2308.12032.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023c. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang,
Min Yang, Lei Zhang, Shuzheng Si, Junhao Liu,
Tongliang Liu, Fei Huang, et al. 2023d. One shot
learning as instruction data prospector for large lan-
guage models. arXiv preprint arXiv:2312.10302.

Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li,
Ziyi Wang, Baotian Hu, and Min Zhang. 2024. Se-
lectit: Selective instruction tuning for large language
models via uncertainty-aware self-reflection. arXiv
preprint arXiv:2402.16705.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and
Junxian He. 2023. What makes good data for
alignment? a comprehensive study of automatic
data selection in instruction tuning. arXiv preprint
arXiv:2312.15685.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
Le, Barret Zoph, Jason Wei, et al. 2023. The flan
collection: Designing data and methods for effective
instruction tuning. arXiv preprint arXiv:2301.13688.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Jun-
yang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. 2023. # instag: Instruction tagging for analyz-
ing supervised fine-tuning of large language models.
In The Twelfth International Conference on Learning
Representations.

Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guil-
laume Leclerc, and Aleksander Madry. 2023. Trak:
Attributing model behavior at scale. In International
Conference on Machine Learning (ICML).

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Yulei Qin, Yuncheng Yang, Pengcheng Guo, Gang Li,
Hang Shao, Yuchen Shi, Zihan Xu, Yun Gu, Ke Li,
and Xing Sun. 2024. Unleashing the power of data
tsunami: A comprehensive survey on data assess-
ment and selection for instruction tuning of language
models. arXiv preprint arXiv:2408.02085.

Ming Shen. 2024. Rethinking data selection for super-
vised fine-tuning. arXiv preprint arXiv:2402.06094.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny
Zhou, , and Jason Wei. 2022. Challenging big-bench

2707

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2404.09937
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2406.09279
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2311.10702
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://github.com/tatsu-lab/alpaca_eval


tasks and whether chain-of-thought can solve them.
arXiv preprint arXiv:2210.09261.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist llm assistants.

Jiahao Wang, Bolin Zhang, Qianlong Du, Jiajun Zhang,
and Dianhui Chu. 2024. A survey on data se-
lection for llm instruction tuning. arXiv preprint
arXiv:2402.05123.

Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack
Hessel, Tushar Khot, Khyathi Raghavi Chandu,
David Wadden, Kelsey MacMillan, Noah A. Smith,
Iz Beltagy, and Hannaneh Hajishirzi. 2023a. How far
can camels go? exploring the state of instruction tun-
ing on open resources. Preprint, arXiv:2306.04751.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xing-
shan Zeng, Wenyong Huang, Lifeng Shang, Xin
Jiang, and Qun Liu. 2023b. Aligning large lan-
guage models with human: A survey. arXiv preprint
arXiv:2307.12966.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Lai Wei, Zhiquan Tan, Chenghai Li, Jindong Wang,
and Weiran Huang. 2024. Large language model
evaluation via matrix entropy. arXiv preprint
arXiv:2401.17139.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin,
Qi Su, and Chang Zhou. 2023. Self-evolved diverse
data sampling for efficient instruction tuning. arXiv
preprint arXiv:2311.08182.

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan,
Sanjeev Arora, and Danqi Chen. 2024. LESS: Se-
lecting influential data for targeted instruction tuning.
In International Conference on Machine Learning
(ICML).

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng,
Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. 2024. WizardLM: Empow-
ering large pre-trained language models to follow
complex instructions. In The Twelfth International
Conference on Learning Representations.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei
Guo, Yasheng Wang, Yong Liu, Ruiming Tang, Defu
Lian, and Enhong Chen. 2024. Entropy law: The
story behind data compression and llm performance.
arXiv preprint arXiv:2407.06645.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie,
Yejin Choi, and Yuntian Deng. 2024. Wildchat: 1m
chatGPT interaction logs in the wild. In The Twelfth
International Conference on Learning Representa-
tions.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
Preprint, arXiv:2306.05685.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer,
Jiao Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping
Yu, Lili Yu, et al. 2024a. Lima: Less is more for
alignment. Advances in Neural Information Process-
ing Systems, 36.

Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,
Dongze Lian, Yifan Zhang, Yang You, and Jiashi
Feng. 2023a. Dataset quantization. arXiv preprint
arXiv:2308.10524.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. 2023b. Instruction-following evaluation for
large language models. Preprint, arXiv:2311.07911.

Kun Zhou, Beichen Zhang, Jiapeng Wang, Zhipeng
Chen, Wayne Xin Zhao, Jing Sha, Zhichao Sheng,
Shijin Wang, and Ji-Rong Wen. 2024b. Jiuzhang3.
0: Efficiently improving mathematical reasoning by
training small data synthesis models. arXiv preprint
arXiv:2405.14365.

2708

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://arxiv.org/abs/2306.04751
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=CfXh93NDgH
https://openreview.net/forum?id=Bl8u7ZRlbM
https://openreview.net/forum?id=Bl8u7ZRlbM
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911


A Appendix

A.1 Model Reproduction Details
In term of LESS, individual models are built and
trained on specific tasks. However, in practical ap-
plications, our goal is to train a model that enhances
performance across various scenarios. Thus, given
that the two datasets we select are both extensive
and diverse, we randomly select 1000 data points
from each dataset as Dval. Additionally, due to
the volume of our data, we randomly pick 10,000
data points for warm-up training, differing from
the method described in (Xia et al., 2024). The
warm-up data size is set to 10k, primarily because
the dataset scale reaches the million level, far ex-
ceeding that of previous works. Using a fixed pro-
portion (e.g., 5%) would require over 50k samples,
which contradicts our research goal of achieving
efficient fine-tuning with minimal data. The 10k
setting represents a reasonable compromise that
ensures stable model initialization while enabling
effective evaluation of data selection methods un-
der practical, resource-constrained conditions.

As for IFD, we initially generate 1000 clusters
on instruction embeddings, which differs from the
settings given in (Li et al., 2023b). For SelectIT,
we adopt model-level selection as the final strategy
for the Qwen2 model and evaluate the model-level
score on Qwen2-1.5B and Qwen2-7B. While for
Llama3, we employ sentence-level selection as the
final approach. Considering that the Llama3 fam-
ily only has two public variants, Llama3-8B and
Llama3-70B, and to mitigate time costs, we com-
pute the score based solely on Llama3-8B.

Within DiverseEvol, during each iteration’s K-
Center-Sampling stage, data points are selected
based on maximizing their distance to the nearest
existing training data points, one at a time, until the
desired count is reached. Consequently, it is essen-
tial to maintain a n × n float-type matrix for the
entire computation, where n represents the dataset
size. Given that our OpenHermes dataset exceeds
1 million entries, the matrix calculation would re-
quire more than 1 terabyte of memory. Therefore,
we revised this part to select all required data points
once for each iteration, which significantly reduces
the memory requirement.

A.2 Other Results
In this section, table 6, 7 includes training results
of various methodologies with a training dataset
comprising 50,000 entries 6, 7.
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 61.39 80.12 63.32 68.50 40.85 44.18 59.73 63.33 73.24 46.43 63.90 46.40 49.72 57.17

Random1 62.87 80.67 62.44 68.33 34.75 38.08 57.86 63.89 64.37 46.19 62.75 45.10 49.72 55.34

Random2 61.11 80.82 65.76 68.12 38.08 40.67 59.09 62.13 66.57 47.32 61.57 46.58 49.54 55.62
Random3 61.02 81.35 60.15 68.54 38.63 40.85 58.42 65.65 63.53 44.05 61.96 42.51 46.21 53.99

Random4 60.37 80.06 55.98 68.95 37.34 40.30 57.17 62.78 62.40 45.12 62.41 47.87 50.83 55.24

Random5 60.19 80.14 63.29 69.16 38.08 40.85 58.62 64.72 65.13 45.18 62.51 45.47 49.17 55.36

LESS 60.46 80.29 58.66 67.40 39.00 43.25 58.18 61.02 57.85 17.01 63.01 40.30 46.40 47.60

IFD 57.50 80.52 67.13 66.79 35.86 38.08 57.65 61.94 52.84 44.63 63.36 41.04 43.99 51.30

SelectIT 60.56 79.98 62.77 67.96 36.04 39.00 57.72 61.20 64.22 40.03 62.40 41.96 44.92 52.46

Entropy 60.83 77.56 59.24 69.02 36.78 39.56 57.17 60.65 55.50 49.02 57.51 47.13 51.02 53.47

Diverse 61.67 81.35 61.89 68.60 44.55 46.40 60.74 63.33 61.11 48.75 63.62 46.21 49.17 55.37

zip 59.81 82.03 68.48 68.08 35.67 38.26 58.72 63.89 57.92 42.65 62.58 43.25 46.95 52.87

LESSkm 61.20 81.88 54.51 67.77 32.90 36.60 55.81 61.02 59.44 47.04 63.35 42.14 47.32 53.39

IFDkm 59.81 78.92 60.55 67.09 28.65 31.24 54.38 63.43 63.23 43.41 61.19 40.11 43.81 52.53

SelectITkm 61.20 81.20 66.52 69.10 34.57 38.45 58.51 61.85 61.49 45.76 61.64 43.44 48.43 53.77

Entropykm 61.02 80.82 66.04 68.25 36.78 39.37 58.71 61.85 64.22 48.66 61.85 42.70 46.58 54.31

Lengthkm 60.46 83.62 63.35 68.79 38.26 41.59 59.35 65.09 62.70 47.29 62.73 45.10 49.17 55.35

Table 6: The comprehensive results (%) on various downstream tasks using OpenHermes. Mention that CODE
means Humaneval. Algorithmkm means the algorithm has a Kmeans process, and Randomx denotes the xth random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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Qwen2-7B Llama3-8B

BBH GSM CODE MMLU IFEVAL
AVG

BBH GSM CODE MMLU IFEVAL
AVG3 shot 8 shot pass 1 5 shot strict loose 3 shot 8 shot pass 1 5 shot strict loose

Base 59.07 72.40 55.67 70.20 28.84 31.24 52.90 60.93 55.12 37.59 65.30 19.41 21.07 43.24

all data 62.87 80.82 62.84 68.70 45.84 48.80 61.65 63.70 56.94 47.44 63.30 46.40 49.72 54.58

Random1 61.85 81.50 60.55 68.02 40.48 42.70 59.18 63.61 55.72 48.90 64.07 42.51 45.66 53.41

Random2 60.74 82.03 58.72 68.05 40.67 44.36 59.10 61.76 54.66 50.95 63.38 42.88 46.03 53.28

Random3 59.07 81.35 64.45 67.63 41.77 44.92 59.87 63.98 55.42 53.11 63.33 43.81 46.77 54.40

Random4 62.41 82.34 60.95 68.43 42.51 45.10 60.29 63.70 58.91 50.09 63.84 43.62 46.03 54.37

Random5 61.30 82.49 59.05 67.60 42.70 44.92 59.68 64.54 55.65 49.91 64.16 42.70 45.84 53.80

LESS 58.80 81.35 66.95 68.10 41.04 43.99 60.04 63.43 57.01 50.43 64.50 40.85 44.92 53.52

IFD 59.44 81.50 66.46 67.90 38.45 40.85 59.10 63.33 59.29 47.16 64.60 40.30 43.81 53.08

SelectIT 60.74 84.23 60.49 69.24 41.04 44.36 60.02 61.48 53.22 46.01 63.20 40.11 42.88 51.15

Entropy 61.02 81.96 60.88 68.40 43.07 46.58 60.32 61.48 55.34 48.90 64.02 47.50 51.02 54.71

Diverse 59.81 82.03 67.10 68.00 41.77 44.36 60.51 65.09 56.18 38.81 63.03 44.36 47.13 52.43

zip 59.91 79.83 71.04 67.97 42.88 45.84 61.25 64.72 57.16 41.49 61.54 45.84 48.43 53.20

LESSkm 59.54 80.89 67.84 68.20 43.62 46.95 61.17 61.94 54.74 48.99 64.10 43.99 46.95 53.45

IFDkm 59.26 80.67 68.41 68.13 41.77 43.99 60.37 62.69 56.10 48.63 63.02 40.85 42.70 52.33

SelectITkm 60.46 83.17 59.39 68.79 39.93 43.07 59.14 61.20 54.89 45.88 63.50 43.99 48.06 52.92

Entropykm 60.93 82.79 59.82 67.01 39.19 42.14 58.65 63.06 58.45 45.73 63.85 41.04 45.10 52.87

Lengthkm 61.30 79.76 59.76 68.19 42.88 45.29 59.53 62.41 60.05 49.82 64.23 45.47 48.80 55.13

Table 7: The comprehensive results (%) on various downstream tasks using WildChat. Mention that CODE means
Humaneval. Algorithmkm means the algorithm has a Kmeans process, and Randomx denotes the xth random
selection. The bold numbers indicate the best avg score of each part, and the underlined numbers indicate the second
highest score.
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