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Abstract

Cross-prompt trait scoring task aims to learn
generalizable scoring capabilities from source-
prompt data, enabling automatic scoring across
multiple dimensions on unseen essays. Exist-
ing research on cross-prompt trait essay scoring
primarily focuses on improving model general-
ization by obtaining prompt-invariant represen-
tations. In this paper, we approach the research
problem from a different perspective on invari-
ance learning and propose a scoring-invariant
learning objective. This objective encourages
the model to focus on intrinsic information
within the essay that reflects its quality dur-
ing training, thereby learning generic scoring
features. To further enhance the model’s ability
to score across multiple dimensions, we intro-
duce a trait feature extraction network based on
routing gates into the scoring architecture and
propose a trait consistency scoring objective to
encourage the model to balance the diversity of
trait-specific features with scoring consistency
across traits when learning trait-specific essay
features. Extensive experiments demonstrate
the effectiveness of our approach, showing ad-
vantages in multi-trait scoring performance and
achieving significant improvements with low-
resource prompts.

1 Introduction

Automated essay scoring (AES) is a common and
important application of artificial intelligence (AI)
in the field of education. Compared to the human
grading process, an effective AES system can pro-
vide language learners with timely feedback on
multiple perspectives, such as overall essay quality,
organization, prompt adherence, narrativity, etc.

In previous AES research, most studies focused
on a prompt1-specific setting, where both the train-
ing and unrated test essays belong to the same
prompt (Taghipour and Ng, 2016; Dong et al., 2017;

*Corresponding author
1Prompt represents the writing theme and genre of essay.

Figure 1: The illustration of cross-prompt essay trait
scoring and a summary of our main motivations.

Wang et al., 2018; Kumar et al., 2022; Xie et al.,
2022). However, real-world AES systems often
lack enough target-prompt essays, making it crucial
to develop methods that can reliably score essays
for prompts not included in the training data.

To address the aforementioned limitation, re-
searchers have begun focusing on cross-prompt
essay scoring (Ridley et al., 2020, 2021). Simi-
lar to the objective of domain generalization (DG)
(Wang et al., 2022a), this task aims to enable AES
models trained on source prompts to be effectively
applied to “unseen” prompts, as shown in Figure 1
(a). In our work, we also focus on scoring essays
while considering their trait-specific attributes.

Although existing studies have made progress in
enhancing prompt generalization (Do et al., 2023;
Chen and Li, 2023), most of them approach the
problem from the perspective of prompt-invariance,
aiming to improve model generalization by align-
ing features across essays from multiple source
prompts. Jiang et al. 2023 proposed a disentangled
learning approach to extract prompt-invariant repre-
sentations from source prompts. Chen and Li 2024
proposed a meta-learning-based approach that sim-
ulates prompt distribution shifts to enhance the gen-
eralization of essay representations. These existing
studies require constructing a large amount of coun-
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terfactual data (Jiang et al., 2023) or meta-learning
tasks (Chen and Li, 2023) to learn prompt-invariant
representations effectively, which significantly in-
creases the training burden.

In this work, we take a different perspective
on invariance learning and propose a scoring-
invariant learning approach. This approach en-
courages the model to focus on features relevant to
scoring, which arise from the internal structure of
the essays rather than prompt differences, thereby
capturing the intrinsic scoring information. The
motivation is illustrated in Figure 1 (b).

For an essay, whether obtaining the essay repre-
sentation from its grammatical structure or using
semantic information to extract the representation,
there should be certain dimensions in both repre-
sentations that can jointly reflect the essay’s quality.
Since these dimensions remain unchanged regard-
less of the method used to extract essay features,
we refer to them as scoring-invariant dimensions.
In this work, we first extract essay representations
from two dimensions (prompt-aware and prompt-
agnostic). Then, through the scoring-invariant ob-
jective we designed, we optimize the model’s train-
ing process to encourage the model to focus on the
intrinsic scoring features within the essay.

For multi-trait scoring tasks, learning diverse
trait-specific scoring features and consistency in-
formation across traits is beneficial in promoting
the model’s ability to score across multiple di-
mensions (Do et al., 2023; Wang and Liu, 2025).
Therefore, to address trait diversity, we introduce a
sentence-level routing gate network based on the
existing scoring architecture, leveraging the model-
ing approach of a mixture-of-experts (MoE) to en-
hance the model’s perception of target trait features
(Zhang et al., 2024; Liu et al., 2024). Regarding
trait consistency information, we further propose a
trait consistency learning objective, aiming to en-
able the model to further capture the relationships
between traits. Finally, we named our method as
Scoring-invariance Enhanced Cross-prompt Trait
Scoring (SICTS). To summarize, the main contri-
butions of our work can be summarized as follows:

1) From the perspective of scoring invariance,
we propose a simple yet effective method to
enhance the out-of-distribution transferability of
cross-prompt scoring models by facilitating the
learning of generalizable essay representations.

2) To enhance the diversity of trait-specific scor-
ing features, we introduce a routing gate network at
the shared encoding layer. Additionally, to achieve

the optimization goal of multi-trait scoring, we in-
troduce a trait consistency optimization objective
at both the trait-representation and score levels.

3) Extensive experiments on the public datasets
demonstrate that our approach outperforms the
baseline method. And our method achieves higher
scoring performance with fewer model parameters.

2 Related Work

In the early research on AES, most studies fo-
cused on prompt-specific scoring tasks, where the
training and testing data originated from the same
prompt. Researchers initially relied on handcrafted
features and applied machine learning methods
to score essays (Rudner and Liang, 2002; Attali
and Burstein, 2006; Phandi et al., 2015). With the
development of deep learning, more studies have
started using deep neural networks to automati-
cally extract quality features from essays, enabling
an end-to-end scoring process (Taghipour and Ng,
2016; Dong et al., 2017; Wang et al., 2018; Uto
et al., 2020; Wang et al., 2022b; Wang and Liu,
2025). Although existing prompt-specific essay
scoring methods have been widely studied and have
made some progress, exploring cross-prompt scor-
ing methods can reduce the need for annotations on
target prompts, thereby lowering annotation costs
and facilitating real-world applications.

Cross-prompt AES aims to train AES mod-
els that learn generalizable scoring abilities from
source prompts to score essays from unseen target
prompt(s) (Jin et al., 2018; Ridley et al., 2021; Do
et al., 2023; Chen and Li, 2024). In existing cross-
prompt AES research, one class of approaches fo-
cuses on evaluating the overall quality of essays.
Ridley et al. 2020 apply a neural-network-based
method to learn general essay features. Jiang et al.
2023 propose a prompt-aware neural AES model
to extract essay quality features. Another line of
research focuses on cross-prompt essay trait scor-
ing, Chen and Li 2023 utilize contrastive learning
to learn consistent prompt-agnostic representations
across different prompts. Do et al. 2023 introduce
a cross-prompt trait scoring method that can ex-
tract prompt-aware essay representations and topic-
coherence features.

Unlike existing cross-prompt AES methods, we
improve the prompt generalizability from the per-
spective of scoring-invariance learning.
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Figure 2: The scoring model architecture with the proposed sentence-level routing gating mechanism and illustrations
of our proposed scoring-invariant learning strategies.

3 Task Definition and Preliminary

3.1 Task Definition

Under the prompt generalization setting, the cross-
prompt essay trait scoring task can be defined as
follows: given essay data from N source prompts
SP = {SP1, SP2, . . . , SPN}, where each source
prompt contains Ni labeled essay instances with
M scoring dimensions {xSj , (yS1

j , . . . , ySM
j )}Ni

j=1,
where yS1

j is the overall score. The objective of
our approach is to learn a model from SP that
can score essays from an unseen target prompt TP
based on both overall quality and trait dimensions.

3.2 Invariant Learning in Cross-prompt AES

Invariant Learning (IL) has long been a popular
solution for addressing out-of-distribution gener-
alization problems (Lu et al., 2022; haoxin liu
et al., 2024). In domain generalization (DG) tasks,
learning domain-invariant representations is cru-
cial since DG primarily focuses on achieving in-
variance across domains. In cross-prompt AES,
previous studies have employed methods such as
contrastive learning (Chen and Li, 2023), disen-
tangled representation learning (Jiang et al., 2023),
and meta-learning (Chen and Li, 2024; Wang et al.,
2025) to achieve domain invariance for prompt gen-
eralization tasks. The optimization objective of the
above methods is as follows:

min
θ

L(fθ(x), y) s.t. fθ(x) ≈ fθ(x
′) (1)

where x ∼ P and x′ ∼ Q, P and Q represent
different prompts, fθ(x) typically represents the

domain-invariant features extracted from the input
data. This objective emphasizes the invariance of
the model across different prompt inputs, meaning
that even if there is a domain shift in the input data,
the model should produce consistent representa-
tions or predictions.

Unlike previous methods for obtaining prompt-
invariant essay features, we revisit the concept of
invariance in cross-prompt AES from a perspec-
tive more aligned with the nature of the AES task
itself. We assume that when evaluating the same
essay, the scoring model, regardless of whether it
extracts general essay features or prompt-specific
essay features, will always capture certain features
that consistently reflect the essay’s quality. There-
fore, these features can be referred to as scoring-
invariance. In our work, our aim is to set the opti-
mization objective to explore the invariant features.
The objective function can be formulated as:
min
θ

L(fθ(x), y), s.t. ∥gθ(x)− gθ(x
′)∥2 ≈ 0 (2)

where x ∼ P and x′ ∼ P ′, P and P ′ represent
different types of features that reflect the quality
of the same essay. gθ(x) represents the scoring-
invariant features extracted from the input data.

4 Our Method

4.1 Scoring Model Architecture

In our method, to fully capture the textual repre-
sentation of essays, we use a hierarchical structure
(Dong et al., 2017) to encode them. This hierarchi-
cal model architecture has been proven effective for
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AES and is widely used in cross-prompt AES tasks
(Ridley et al., 2021; Do et al., 2023; Chen and Li,
2023, 2024). The hierarchical encoding framework
first utilizes CNN and attention pooling to extract
Sentence-level features from essay words, and then
employs LSTM and another attention pooling to ob-
tain Document-level essay features. Additionally,
to score essays for multiple traits, similar to exist-
ing methods (Ridley et al., 2021; Do et al., 2023),
we added trait-specific layers to the base model
on top of the shared layer. The shared layer and
trait-specific layers are used for sentence-level and
document-level essay representations, respectively.

Unlike existing cross-prompt AES models that
rely on LSTM (Ridley et al., 2021; Chen and
Li, 2024) or multi-head self-attention (Do et al.,
2023) to capture document-level features from trait-
shared sentence features, we argue that in multi-
trait scoring tasks, the document-level features ex-
tracted by different trait scoring modules should
be distinct. In other words, the shared features em-
phasized by different trait-scoring models should
exhibit some variability. To better capture trait-
specific features, we propose a Sentence-level Rout-
ing Gating network, inspired by the MoE model
(Zhang et al., 2024), which enhances feature diver-
sity through selective routing. By using this routing
network, we increase the features variability of dif-
ferent traits. The whole illustration of our approach
is shown in Figure 2.

4.1.1 Prompt-Agnostic Representation
Shared Encoder Following previous work (Ri-
dley et al., 2021), we utilize part-of-speech (POS)
embeddings to represent the generalized essay fea-
tures. For POS tagging, we employ the NLTK2

toolkit. Each tagged word is then mapped to a
dense vector. To obtain sentence-level representa-
tion, a convolutional layer followed by attention
pooling (Sentence-Level Encoder) is applied. The
equations are as follows:

ci = CNN([wi : wi+k−1]) (3)

s = Attention([ci : cm]) (4)
where wi represents the POS embeddings (i =
1, 2, . . . ,m), k is the kernel size of the CNN, ci is
the feature representation after the convolutional
layer, and s is the final sentence representation.
Trait-specific Encoder Since the scoring dimen-
sions for different traits are not the same, to ob-
tain essay representations that capture diverse trait-

2http://www.nltk.org

specific features, we propose using a sentence-level
gated routing network to enhance the diversity of
trait-representation. This approach allows different
trait scoring network modules to focus more effec-
tively on capturing essay features that are beneficial
for the specific trait being evaluated.

Gate weights w are computed by passing sen-
tence representations S = {s1, . . . , sn} through a
dense layer and applying softmax to derive routing
weights for traits:

w = softmax(Dense(S)) (5)
for each trait j = 1, . . . ,m, a trait-specific routing
weight wj is extracted and applied element-wise to
S, generating a weighted sentence representation
Sj = wj · S. Then, the generated trait-specific
sentence representations Sj are passed through
self-attention mechanism to further extract trait-
relevant features. We hypothesize that combin-
ing gated routing with the attention mechanism
allows different trait scoring modules not only to
capture the corresponding essay features but also
to easily grasp the relationships between differ-
ent dimensions within the essay. Unlike existing
studies (Wang and Liu, 2025), where the mixture-
of-experts network was primarily applied at the to-
ken level within pre-trained language models, our
work focuses on constructing essay representations
from sentence-level features. We leverage atten-
tion mechanisms to extract relevant features and
enhance document-level representation learning.

Next, the document-level essay representation
can be extracted by the LSTM and another attention
pooling (Ridley et al., 2021) from all trait-specific
sentence representations:

thji = LSTM(tsji−1, ts
j
i ) (6)

where thji represents the output of LSTM for the j-
th task at the i-th time step, tsj is the concatenated
output of the previous layer, then it is followed by
the attention layer (Document-Level Encoder).

4.1.2 Prompt-Aware Representation

To achieve the goal of invariance learning in the
cross-prompt scoring scenario proposed in this pa-
per, after obtaining prompt-agnostic essay features,
we extract scoring features that reflect essay qual-
ity from another scoring perspective. Similar to
Do et al. 2023, we also encode both the prompt
and the essay together to produce representations
that more effectively highlight variations in quality
(Prompt-Aware Representation).

To obtain prompt-aware essay representations,
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we first extract the corresponding prompt represen-
tation for each essay. This involves embedding the
prompt using pre-trained GloVe (Pennington et al.,
2014) combined with POS embeddings, followed
by a convolutional layer with attention pooling,
multi-head self-attention with LSTM, and another
attention pooling layer. Unlike essay representation
extraction, this process focuses on capturing the
specific descriptive content of the prompt. Specif-
ically, after obtaining the POS embeddings and
word embeddings of the prompt, we first add them
together to obtain the prompt embedding encoding
with semantic information. Then, through the pro-
cess of obtaining the textual representation of the
essay, we use a sentence-level feature extraction
network and a document-level feature extraction
network to obtain the final prompt representation.
It is important to note that, in order to further cap-
ture the dependencies between multiple sentences,
we use a multi-head attention mechanism to extract
sentence-level features. Consider the task of pre-
dicting the j-th trait score. The output is a matrix
of sentence representations that serve as the query,
key, and value, which denoted as S, :

H i
j = Att(W i1

j ,W i2
j ,W i3

j ) (7)

MH(S)j = Concat(H1
j , . . . ,H

h
j )W

O
j (8)

here, Att represents the scaled dot-product atten-
tion, and H i

j is the output of the i-th attention head.
W i1

j ,W i2
j , and W i3

j are the parameter matrices.
After obtaining the prompt representation, un-

like Do et al. 2023 using multi-head attention
to obtain prompt-aware representation, we com-
bine the prompt representation with the extracted
prompt-agnostic essay representation. Then, a lin-
ear layer with attention pooling is applied to obtain
the prompt-aware essay representation.

By acquiring representations from two differ-
ent scoring perspectives, we further extract shared
features that reflect essay quality from both rep-
resentations to achieve the optimization goal of
scoring-invariance. The specific consistency learn-
ing strategy is detailed in Section 4.2.
Trait-specific Scorer Finally, the obtained repre-
sentations are combined with non-prompt-specific
features (Ridley et al., 2021; Do et al., 2023). These
features are meticulously engineered to represent
various aspects of general essay quality. Following
Ridley et al. 2021, we also apply trait-attention to
capture relationships among traits. The predicted

trait score, ŷj , is then calculated by applying a lin-
ear layer with the sigmoid function:

ŷj = sigmoid(wj
y · zj + bjy) (9)

where wj
y is the trainable weight matrice, bjy is the

bias vector and zj is the obtained final trait repre-
sentation. Given the trait set Y under a prompt, the
specific trait set Yi for each i-th training sample
varies depending on its prompt. Therefore, to han-
dle missing gold scores for traits, a masking mecha-
nism is applied (Ridley et al., 2021; Do et al., 2023).
For the i-th sample and its j-th trait, the mask is
defined as:

maskij =

{
1, if Yj ∈ Y i,

0, otherwise.
(10)

This mask is used to adjust the true values (yi)
and predicted values (ŷi) through element-wise
multiplication: yi = yi⊗maski, ŷi = ŷi⊗maski.
This ensures that only traits with valid gold scores
contribute to calculations such as loss and evalua-
tion metrics, avoiding errors from missing annota-
tions and maintaining accuracy.

4.2 Scoring-Invariance Objective

After obtaining essay representations of different
types (prompt-aware & prompt-agnostic), next, to
enable the scoring model to capture the information
that consistently reflects essay quality from both
types of trait representations, Zagnostic and Zaware,
we propose a novel invariance learning objective
for cross-prompt AES. We assume that each per-
spective in the different types of representation
follows a Gaussian distribution. By using this in-
variance as an optimization target, we encourage
the trait representations to remain consistent across
perspectives, thereby promoting the model to focus
on the features that commonly reflect essay quality
across the two distributions. Formally, the learning
objectives (Inv) can be formulated as follows:

min
∑

i

||Zaware
i − Zagnostic

i ||22,

s.t.||Std(Zaware
i )− Std(Zagnostic

i )||22 ≈ 0 (11)

where Zagnostic
i and Zaware

i denote the i-th dimen-
sion of two scoring perspective feature matrices.
The first term enforces alignment of feature values
while the second term constrains the consistency of
standard deviations. The aim of this objective is to
learn consistent scoring features between prompt-
agnostic and prompt-aware essay representations.

By minimizing the consistency between different
scoring-perspective features, the model is encour-
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aged to focus on more general scoring features,
leading to more generalizable trait representations.
Considering multi-trait scoring as a scoring task un-
der the multi-task learning paradigm, in the cross-
prompt AES task, it is necessary to aim for scoring
invariance across multiple traits. Therefore, the
final optimization objective for cross-prompt multi-
trait scoring invariance in this paper is as follows:

LSIL =
1

m

m∑

t

Inv(Zaware
t , Zagnostic

t ) (12)

where m is the number of essay traits.

4.3 Loss Function

In the multi-trait scoring task, different essay traits
often exhibit a certain intrinsic scoring consis-
tency. Therefore, constructing such a scoring con-
sistency objective helps improve the model’s multi-
dimensional scoring capability (Chen and Li, 2023).
In existing research, Trait Similarity Loss (TSL)
(Do et al., 2023) has been proposed to obtain such
consistency from the predicted score level. How-
ever, using only target score predictions as the
consistency objective makes it challenging to truly
align traits in the hidden space, thereby hindering
the promotion of writing proficiency across traits.
Moreover, this method only learns the consistency
among traits, while ignoring the consistency be-
tween individual traits and the overall score. In
our work, to achieve alignment of essay traits in
the latent state space, we further introduce Trait-
representation Consistency Loss (TCL). As TSL,
we also use the Pearson correlation coefficient
(PCC, P ) to calculate the consistency between dif-
ferent trait scores, in order to identify trait relation-
ships with strong scoring consistency in the essays.
The TCL is formally defined as follows:

LTCL = log
(1
c

M∑

j=1

M∑

k=j+1

Cons(zj , zk, yj , yk)
)

(13)

Cons =

{
exp(cos(zi, zj)/τ), ifP (yj , yk) ≥ δ,

0, otherwise.
(14)

where zj = [z1j , z2j , ...zNj ] is extracted j-th
trait representation, yj = [y1j , y2j , ..., yNj ] is j-
th ground-truth trait vector, cos denotes the cosine
similarity, τ denotes the temperature parameter, δ
is the threshold and c is the number of calculated
Cons that is not 0.

Finally, the overall loss function LFinal is the
summation of the ground truth MSE loss LMSE ,

TSL loss LTSL, SIL loss LSIL, TCL loss LTCL:

LFinal = λLMSE + (1− λ)LTSL

+ αLSIL + βLTCL (15)

where λ, α,and β are hyperparameters.

5 Experiment

5.1 Datasets and Evaluation

Datasets. We conduct experiments on Automated
Student Assessment Prize (ASAP3) and ASAP++
(Mathias and Bhattacharyya, 2018) dataset, which
have been widely used for AES (Ridley et al., 2021;
Chen and Li, 2024). The dataset contains eight sets
of essays, each corresponding to a different essay
prompt. More details are provided in Appendix A.
Evaluation. Following research on cross-prompt
AES (Do et al., 2023; Chen and Li, 2024), to eval-
uate the performance of our model, we use the
widely-adopted Quadratic Weighted Kappa (QWK)
metric (Cohen, 1968).

5.2 Implementation Details

In our method, to ensure fairness in the experiment
results, the model parameters in our model are set
consistent with those in previous studies (Ridley
et al., 2021; Do et al., 2023). The dropout rate
was set to 0.5, with the CNN filter size and kernel
size configured as 100 and 5, respectively. LSTM
units were set to 100, while the POS embedding
dimension was set to 50, and the batch size was 10.
For multi-head attention layer, we used two heads
with an embedding dimension of 100. Among the
50 training epochs, we selected the one with the
highest average QWK score across all traits in the
development set for testing. The number of param-
eters in our model is 1.86M. More experimental
details are provided in Appendix B.

5.3 Baseline Methods

We compare our method with the following meth-
ods under the cross-prompt essay scoring setting.
Fine-tuning BERT (Devlin et al., 2019) to evalu-
ate the cross-prompt feature scoring capability of
pre-trained models. PAES (Ridley et al., 2020):
This model is based on the CNN-LSTM architec-
ture (Dong et al., 2017) and models each attribute
separately for multi-attribute scoring. CTS (Rid-
ley et al., 2020): Building on PAES, this model
proposed a trait-attention mechanism to establish
interactions between different traits. PMAES

3https://www.kaggle.com/c/asap-aes
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Model P1 P2 P3 P4 P5 P6 P7 P8 AVG↑

BERT (Devlin et al., 2019) 0.542 0.546 0.574 0.603 0.630 0.459 0.256 0.235 0.481
PAES (Ridley et al., 2020) 0.605 0.522 0.575 0.606 0.634 0.545 0.356 0.447 0.536
CTS (Ridley et al., 2021) 0.623 0.540 0.592 0.623 0.613 0.548 0.384 0.504 0.553

PMAES (Chen and Li, 2023) 0.656 0.553 0.598 0.606 0.626 0.572 0.386 0.530 0.566
ProTACT (Do et al., 2023) 0.647 0.587 0.623 0.632 0.674 0.584 0.446 0.541 0.592

PLAES (Chen and Li, 2024) 0.648 0.563 0.604 0.623 0.634 0.593 0.403 0.533 0.575

SICTS (Ours) 0.665 0.595 0.625 0.638 0.669 0.586 0.450 0.593 0.602

Table 1: Average QWK scores across all traits for each prompt. Bold text indicates the highest value.

Model Overall Content Org WC SF Conv PA Lang Nar AVG↑

BERT 0.499 0.492 0.370 0.473 0.408 0.331 0.591 0.529 0.608 0.478
PAES 0.657 0.539 0.414 0.531 0.536 0.357 0.570 0.531 0.605 0.527
CTS 0.670 0.555 0.458 0.557 0.545 0.412 0.565 0.536 0.608 0.545
PMAES 0.671 0.567 0.481 0.584 0.582 0.421 0.584 0.545 0.614 0.561
ProTACT 0.674 0.596 0.518 0.599 0.585 0.450 0.619 0.596 0.639 0.586
PLAES 0.673 0.574 0.491 0.579 0.580 0.447 0.601 0.554 0.631 0.570

SICTS (Ours) 0.677 0.606 0.548 0.612 0.604 0.485 0.612 0.587 0.639 0.597

Table 2: Average QWK for each trait over all prompts.

(Chen and Li, 2023): This method leverages con-
trastive learning to facilitate feature transfer be-
tween source and target topics. ProTACT (Do
et al., 2023): This model introduces an essay rep-
resentation framework that integrates topic infor-
mation and improves the model’s understanding
of target-topic essays by incorporating topic coher-
ence features. PLAES (Chen and Li, 2024): This
model uses meta-learning and a writing proficiency
learning strategy to enhance the model’s ability.

5.4 Main Results

Following previous works (Do et al., 2023; Chen
and Li, 2024), we also present the comparison re-
sults of our method with the baseline method from
two dimensions. Firstly, we report the scoring per-
formance of the models on each prompt, with the
specific results shown in Table 1. From the table,
we can see that our method achieves the best re-
sults on most prompts and obtains the best average
result. Secondly, we show the scoring performance
of the models on each attribute in Table 2. It can
be seen that in terms of scoring performance for
each attribute, our method also achieves the best
average performance. Especially for the Org and
Conv attributes, our method directly improves the
prediction accuracy by about 3%. We conducted
a statistical experiment employing a paired t-test
in comparison to ProTACT and PLAES. For the

Figure 3: Comparison of scoring performance on low-
resource prompts 1, 2, 7 and 8.

significance calculation of the average QWK for
each trait across all prompts, the obtained p-value
compared to PLAES is 0.0005, and compared to
ProTACT, the p-value is 0.041. These results indi-
cate that our method is statistically significant in
comparing with the latest method. Besides, rely-
ing heavily on semantic representations (i.e., the
outputs of BERT) as inputs to trait scorers in cross-
prompt settings tends to cause underfitting, thereby
impairing the model’s generalization ability.

To further demonstrate the performance of our
method, we further investigated the low-resource
prompt scenario, where the training data provides
a small amount of essays consistent with the target
prompt. As shown in Table 6, when prompts 1, 2,
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Method P1 P2 P3 P4 P5 P6 P7 P8 AVG↑

MSE + TSL (Baseline) 0.659 0.582 0.602 0.600 0.665 0.582 0.410 0.560 0.583

w/ TCL 0.641 0.598 0.602 0.564 0.650 0.575 0.413 0.578 0.578
w/ SIL 0.642 0.579 0.608 0.626 0.667 0.587 0.445 0.601 0.595
w/ SIL & TCL (SICTS) 0.665 0.595 0.625 0.638 0.669 0.586 0.450 0.593 0.602

Table 3: Results of ablation studies. Average QWK scores across all traits for each prompt. TCL indicates the trait
representation consistency loss. SIL indicates scoring-invariant learning strategy.

Method Overall Content Org WC SF Conv PA Lang Nar AVG↑

MSE + TSL (Baseline) 0.647 0.586 0.534 0.611 0.600 0.468 0.593 0.577 0.628 0.583

w/ TCL 0.668 0.577 0.520 0.613 0.597 0.461 0.584 0.554 0.581 0.573
w/ SIL 0.679 0.598 0.540 0.604 0.603 0.468 0.605 0.587 0.634 0.590
w/ SIL & TCL (SICTS) 0.677 0.606 0.548 0.612 0.604 0.485 0.612 0.587 0.639 0.597

Table 4: Results of ablation studies. Average QWK for each trait over all prompts.

Method Model Params Scoring Performance↑
ProTACT 2,764,493 0.592

SICTS 1,859,084 0.602
∆ -32.75 % 1.68%

Table 5: Comparison results with the SOTA method. ∆
represents the magnitude of improvement.

7 and 8 are respectively used as the target prompts,
only one type of prompt essay is consistent with
the target prompt in the source prompt data. The
final comparison results are shown in Figure 3. The
results clearly show that our method demonstrates
a significant improvement in scoring performance
on low-resource prompts, especially on prompt 8,
where our method improves by 5.2%. It is worth
noting that prompts 1, 2, 7 and 8 all involve long
essays that require strong encoding abilities (Table
6), but our method shows improvement on all four
prompts, indicating the effectiveness of our model
in learning essay scoring representations.

To further demonstrate the effectiveness of our
proposed method, we compared it with current
state-of-the-art (SOTA) method (Do et al., 2023)
from the perspective of scoring efficiency. The
comparison results are shown in Table 5. We eval-
uated both the model parameter and the scoring
performance. As can be seen from the table, com-
pared to the current SOTA method (ProTACT), our
proposed method achieves better scoring perfor-
mance while reducing the model parameter count
by nearly 33%.

5.5 Ablation Study

To further investigate the effectiveness of our pro-
posed learning strategies, we conducted ablation
studies. The ablation results are presented from two
dimensions as before. As shown in Table 3, we use
MSE and TSL as baseline methods, and then grad-
ually incorporate our proposed training strategies.
The combined performance of the proposed learn-
ing strategies (w/ SIL & TCL) proposed in this pa-
per outperforms the use of either the SIL strategy or
the TCL strategy alone. This indicates that the inte-
gration of these two strategies can further enhance
the generalization ability of the cross-prompt scor-
ing model. Notably, our experimental results (w/
TCL) reveal that in the cross-prompt trait scoring
task, solely focusing on the correlations between
traits may reduce the model’s generalization ability.
However, further enhancing the model’s general-
ization ability (w/ SIL) proves to be significantly
beneficial for the cross-prompt trait scoring task.
This experiment demonstrates that enhancing the
model’s general scoring ability is beneficial for im-
proving its cross-prompt trait scoring performance,
validating the rationale behind our designed opti-
mization objective. More ablation experimental
results can be found at Appendix C.

5.6 Visualization for Generalization
Consistency

To verify that our approach can learn more gen-
eralizable essay representations, we further con-
ducted a visual analysis on the prompt representa-
tions learned by the model using t-SNE (Van der
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training w/ SIL & TCL training w/o SIL & TCL 

epoch 5 epoch 10 epoch with best performance

epoch 5 epoch 10 epoch with best performance

Figure 4: Visualization of changes in source prompt representations during training with our method w/o SIL &
TCL (bottom) and w/ SIL & TCL (top), when P4 is the target prompt. The figures represent the visualization of
source prompt essay representations at epoch 0 (original), 5, 10 and epoch with best performance, respectively.

Maaten and Hinton, 2008). Specifically, we visu-
alized the representations of all essays on source
prompts in the training data, which are generated
by shared representations under random initializa-
tion (original), training with our method w/o SIL
& TCL and w/ SIL & TCL, respectively.

Figure 4 further illustrates how learned source
prompt representations change during training pro-
gresses, we visualize the essay representations gen-
erated at epoch 0 (original), 5, 10 and epoch with
best performance during training with and without
SIL & TCL, using P4 as the target prompt. The
top row presents the results with SIL & TCL, while
the bottom row shows the results without SIL &
TC. The visualizations show that the representa-
tions produced by the two models are quite differ-
ent at the start of training. As the training epochs
increase, training with the proposed learning strat-
egy can obtain more consistent prompt represen-
tations. The visualization analysis highlights that
our method can significantly make source prompt
representations more consistent to improve scoring
performance.

6 Conclusion

In this paper, we focus on the cross-prompt essay
trait scoring task. To enhance the model’s ability
to obtain more generalized essay representations,
we adopt a scoring-invariance perspective and de-
sign a scoring-invariance optimization objective,
which promotes the model’s general scoring capa-
bility. To further improve the cross-prompt trait
scoring ability, we propose a novel cross-prompt

scoring model based on a sentence-level routing
gate mechanism to obtain trait-sharable scoring
features. Experimental results demonstrate the sig-
nificant effectiveness of the proposed method in
cross-prompt multi-trait scoring tasks.

Limitations

The limitations of our work can be summarized
as follows. While the model demonstrated en-
hancements on the particular datasets ASAP and
ASASP++, it has not been tested on other datasets
and other languages. For cross-prompt essay scor-
ing, learning generalizable essay representations
helps enhance the model’s ability to score across
different prompts. Therefore, further exploration of
methods that enhance the generalizability of essay
representations could further improve the model’s
cross-prompt scoring capabilities.
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Prompt ID No.of Essays Essay Type Attributes Overall Score Range Attribute Score Range
P1 1,783 Argumentative Cont, Org, WC, SF, Conv 2-12 1-6
P2 1,800 Argumentative Cont, Org, WC, SF, Conv 1-6 1-6
P3 1,726 Source-Dependent Cont, PA, Lan, Nar 0-3 0-3
P4 1,772 Source-Dependent Cont, PA, Lan, Nar 0-3 0-3
P5 1,805 Source-Dependent Cont, PA, Lan, Nar 0-4 0-4
P6 1,800 Source-Dependent Cont, PA, Lan, Nar 0-4 0-4
P7 1,569 Narrative Cont, Org, Conv 0-30 0-6
P8 723 Narrative Cont, Org, WC, SF, Conv 0-60 2-12

Table 6: Composition of the ASAP/ASAP++ combined dataset. The prompt is an instruction that defines the writing
theme. Over: Overall, WC: Word Choice, Org: Organization, SF: Sentence Fluency, Conv: Conventions, PA:
Prompt Adherence, Nar: Narrativity, Lang: Language.

A Statistics on ASAP an ASAP++

In this section, we present additional statistics on
the ASAP and ASAP++ dataset. Table 6 provides
the detail for various relevant traits across Prompts
1–8. The total number of essays in ASAP as well
as the scoring range are also shown in this table.

B Implementation Details

To demonstrate the effectiveness of our proposed
approach, we apply the same data pre-processing
steps as in (Ridley et al., 2021; Do et al., 2023;
Chen and Li, 2024). We remove traits that appear in
only one prompt, as this is necessary to ensure that
no training samples (i.e., essays from non-target
prompts) lack trait scores when the prompt is a
target prompt. Specifically, we remove the trait
style from Prompt 7 and voice from Prompt 8.

We implement all methods with Tensorflow and
Python 3.8.18. We run the model five times with
different seeds, the average scores represent the
final scores. The handcrafted features are from Rid-
ley et al. 2021, including features of Length-based,
Readability, Text Complexity, Text Variation, Sen-
timent and Topic-coherence (Do et al., 2023). The
RMSprop algorithm (Dauphin et al., 2015) is used
for optimization. The learning rate is 1e− 3. Our
model is trained on 1 NVIDIA GeForce RTX4090
GPU. Running the model five times with different
seeds, {12, 22, 32, 42, 52}. For the final loss, the
parameters λ is set to 0.7. And α and β are tune
∈ {0.5, 1.0} accoring to develop set performance.
For TCL loss, δ is set to 0.7 and τ is 0.1. For TSL
loss, we set the same setting with Do et al. 2023.
The average scores represent the final scores. We
perform prompt-wise eight-fold cross-validation,
where essays from the target prompt are used as
test data, and essays from non-target prompts are
used as training data.

Figure 5: Results of detailed ablation studies.

C More Experimental Results

C.1 Compared with Large Language Model

Recently, the application of large language models
to automated essay scoring tasks has attracted in-
creasing research attention (Xiao et al., 2025; Lee
et al., 2024). To further demonstrate the effective-
ness of our method, we conducted a comparison
with ChatGPT-3.5-turbo under a zero-shot setting
as Li and Pan 2025. The specific experimental
results are shown in Table 7 and Table 8. It can
be observed that the general large language model
does not exhibit a significant advantage, indicat-
ing that for the task of cross-prompt essay scoring,
domain-specific small models still hold consider-
able value in automated essay scoring research. We
follow and adapt the prompt templates proposed
by Lee et al. 2024 to guide the LLM in automated
essay scoring. An example prompt template for
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Model P1 P2 P3 P4 P5 P6 P7 P8 AVG↑

GPT-3.5 (zero-shot) 0.231 0.501 0.382 0.419 0.532 0.491 0.153 0.297 0.376

SICTS (Ours) 0.665 0.595 0.625 0.638 0.669 0.586 0.450 0.593 0.602

Table 7: Average QWK scores across all traits for each prompt when compared with LLM.

Model Overall Content Org WC SF Conv PA Lang Nar AVG↑

GPT-3.5-turbo(0-shot) 0.390 0.423 0.281 0.335 0.301 0.285 0.430 0.471 0.410 0.369

SICTS (Ours) 0.677 0.606 0.548 0.612 0.604 0.485 0.612 0.587 0.639 0.597

Table 8: Average QWK for each trait over all prompts.

Figure 6: Performance of different shared layer essay
feature extraction methods.

scoring an essay from prompt 1 is provided below:
You are a member of the English essay writ-

ing test evaluation committee. Your task is to per-
form automated essay scoring on five specific traits.
Please carefully read the following essay and as-
sign a score for each trait: Content, Word Choice,
Conventions, Organization, Sentence Fluency, and
Overall quality. Each trait should be scored on a
scale from 1 to 6, and the Overall score ranges
from 1 to 12. After assigning a score for each trait,
provide a explanation to justify your score.

Essay Prompt: Prompt
Essay: Essay
Please use the following format for each trait:

[Trait] Score: ..., Explain: ...

C.2 More Ablation Studies

In our main paper, we have conducted the ablation
analysis in Section 5.5 to illustrate the effect of
the proposed learning strategies. The experimen-
tal results show that adding the proposed learning
strategies yield the greatest performance improve-
ment. In the ablation experiments presented in the
main text, we only report the results of ablating the
SIL and TCL losses. To further demonstrate the ad-

vantages of the proposed method, we removed the
Trait-Similarity Loss from the final loss function
and used MSE, SIL, and TCL losses as optimiza-
tion objectives to train the model. Experimental
results can be found in Figure 5. The experimen-
tal results also indicate our proposed methods can
yield synergies when jointly applied.

C.3 Effect of Sentence-Level Gated Routing
To further validate the effectiveness of the pro-
posed Gated Routing method for extracting shared
features at the sentence-level in essays, we de-
signed an incremental analysis experiment. Start-
ing from encoding essay representation with a ba-
sic shared feature extraction method as Ridley et al.
2021, we gradually incorporated the multi-head
self-attention mechanism (Do et al., 2023) and the
routing gate control mechanism. The experimen-
tal results are shown in Figure 6. It can be ob-
served that, compared to the other two shared layer
feature extraction methods, our proposed routing
gating mechanism demonstrates a certain advan-
tage in most trait score prediction capabilities and
overall average performance. Although the routing
mechanism shows a slight disadvantage in predict-
ing the overall essay score compared to the other
two methods, its performance in predicting overall
score significantly improves when combined with
our proposed scoring strategies (as shown in Table
4). This enhancement further demonstrates the ef-
fectiveness of our approach in boosting the model’s
prompt generalization capabilities.

C.4 Effect of Hyper-parameters
For the hyper-parameter search, we use grid search
to search for the best values and select the value
that performs the best on the validation set. We
experimented with the different values of the hyper-
parameter δ of TCL. The results of Table 9 show
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Setting δ = 0.6 δ = 0.7 δ = 0.8 δ = 0.9
QWK 0.599 0.602 0.602 0.601

Table 9: Effect of the thresholds of TCL.

Setting α = 0.5 α = 0.5 α = 1 α = 1
β = 0.5 β = 1 β = 0.5 β = 1

QWK 0.591 0.583 0.593 0.589

Table 10: Effect of the parameters setting of α and β on
Prompt 8.

that different δ values greater than 0.6 and condi-
tion change have little influence.

Furthermore, we investigated the impact of dif-
ferent parameter configurations on the model’s gen-
eralization performance. As shown in the Table
10, we report the evaluation results on P8 under
various parameter settings. The experimental re-
sults indicate that, in the overall optimization objec-
tive, an excessive focus on trait-level consistency
may impair the model’s generalization ability in
scoring traits, which is consistent with the conclu-
sions drawn from our ablation studies. In addition,
improving the model’s generalization ability con-
tributes to learning more generalized representa-
tions. This suggests that, for cross-prompt trait
scoring tasks, emphasizing the learning of univer-
sal representations can effectively enhance model
generalization.
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