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Abstract

Knowledge Base Question Answering (KBQA)
is a fundamental task that enables natural lan-
guage interaction with structured knowledge
bases (KBs). Given a natural language question,
KBQA aims to retrieve the answers from the
KB. However, existing approaches, including
retrieval-based, semantic parsing-based meth-
ods and large-language model-based methods
often suffer from generating non-executable
queries and inefficiencies in query execution.
To address these challenges, we propose GRV-
KBQA, a three-stage framework that decou-
ples logical structure generation from seman-
tic grounding and incorporates structure-aware
validation to enhance accuracy. Unlike previ-
ous methods, GRV-KBQA explicitly enforces
KB constraints to improve alignment between
generated logical forms and KB structures. Ex-
perimental results on WebQSP and CWQ show
that GRV-KBQA significantly improves perfor-
mance over existing approaches. The ablation
study conducted confirms the effectiveness of
the decoupled logical form generation and vali-
dation mechanism of our framework.

1 Introduction

Knowledge bases (KBs) such as Freebase (Bol-
lacker et al., 2008), Wikidata (Vrandečić and
Krötzsch, 2014), and DBpedia (Auer et al., 2007),
which contain vast amounts of structured data in
the form of triples, are widely used due to their
structured nature and the accuracy of the informa-
tion they represent. Knowledge Base Questioning
Answering (KBQA) is a popular application of KB,
aiming to retrieve accurate answers from the KB
for a given question.

Previous methods for Knowledge Base Ques-
tion Answering (KBQA) can be broadly catego-
rized into two main classes: Information Retrieval-
based (IR-based) (Miller et al., 2016; Sun et al.,
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methods.

2019; He et al., 2021a; Zhang et al., 2022) methods
and Semantic Parsing-based (SP-based) methods.
IR-based methods primarily focus on retrieving
relevant subgraphs from the KB and performing
reasoning over these subgraphs to derive the an-
swer. Besides, SP-based methods (Das et al., 2021;
Lan and Jiang, 2020; Ye et al., 2022; Shu et al.,
2022) aim to transform natural language questions
into executable logical forms, such as SPARQL
queries, which are then executed directly on the
KB to obtain the answer. Currently, as the large
language models (LLMs) have exceptional gener-
ative capabilities and powerful learning abilities,
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several research efforts have proposed sequence-to-
sequence (seq-to-seq) approaches based on LLMs,
which directly generate logical forms, align them
to the KB, and then execute them on the KB to
retrieve answers. KB-Coder (Nie et al., 2024) and
ARG-KBQA (Tian et al., 2024) have leveraged
LLMs for few-shot in-context learning, where a
small number of examples guides the model to gen-
erate logical forms. To fully leverage the capabili-
ties of LLMs while avoiding the use of black-box
models, ChatKBQA (Luo et al., 2024) fine-tunes
open-source models to enable them to generate log-
ical forms based on the given questions.

However, existing methods still face two key
issues: 1. Challenges in Generating Correct
Logical Forms: They suffer from generating non-
executable logical forms in many cases. For exam-
ple, the basic logical structure of generated logical
form is wrong, as shown in Figure 1. This limita-
tion primarily arises from the one-step generation
paradigm, which requires the model to simultane-
ously learn both the structural composition of the
query and the semantic grounding of its compo-
nents. This joint learning process increases the
model’s cognitive load, making it more prone to
errors in both aspects, which can lead to errors
in logical forms, including incorrect logical form
structures (e.g., incorrect nesting of operations or
missing/extra filtering conditions) and semantic
mismatches (e.g., generating non-existent entities
or relations). These errors often make the gen-
erated logical forms non-executable, preventing
the framework from retrieving the correct answers.
2. Inefficiency in Aligning with the Knowledge
Base: Existing methods, when executing the gen-
erated logical form, require aligning the generated
entities and relations to KB. However, previous
methods generate all possible combinations of can-
didates without considering available pruning op-
timizations, as shown in Figure 1, which would
result in an enormous search space, causing sig-
nificant time to be wasted on invalid queries and
greatly slowing down the query process.

To address these issues, we propose GRV-
KBQA: A Three-Stage Framework for Knowledge
Base Question Answering with Decoupled Log-
ical Structure Generation, Semantic Grounding,
and Structure-Aware Validation. For Challenges
in Generating Correct Logical Forms, we intro-
duce Decoupled Logical Structure Generation,
which simplifies the generation of nested logical
structures by employing a two-phase compositional

approach. This method leverages a subquery chain
template with placeholders for entities, relations,
and intermediate results, which are then specified
based on the question semantics and instantiated
with corresponding KB elements to produce the
complete logical form.

For Inefficiency in Aligning with the Knowl-
edge Base, we propose Structure-Aware Valida-
tion, which employ structure-aware validation tech-
niques to verify the consistency and correctness of
the relations and entities in the logical form, ensur-
ing that the structure of the logic form complies
with the constraints of the KB.

We conduct experiments on two widely used
datasets, WebQSP (Yih et al., 2016a) and
CWQ (Talmor and Berant, 2018a), and the results
demonstrate that GRV-KBQA outperforms other
baselines on these datasets, highlighting the effec-
tiveness of Decoupled Logical Structure Genera-
tion and Structure-Aware Validation.

In summary, our contributions are as follows:

• We propose Decoupled Logical Structure
Generation, a two-phase compositional ap-
proach that reduces the complexity of generat-
ing nested logical structures, leading to more
accurate and executable logical forms.

• We present Structure-Aware Validation,
which verifies the consistency and correctness
of generated logical forms, ensuring they com-
ply with the structural constraints of the KB.

• We validate the effectiveness of GRV-KBQA,
through experiments on the WebQSP and
CWQ datasets, demonstrating improved per-
formance over existing methods.

2 Related Work

Traditional Knowledge Base Question Answering
(KBQA) methods can generally be divided into two
main categories: information retrieval (IR)-based
methods and semantic parsing (SP)-based methods.
In the era of LLMs, several methods have emerged
that leverage LLMs to tackle the KBQA task.

IR-based methods (He et al., 2021b; Shi et al.,
2021; Dong et al., 2023; Zhang et al., 2022; Jiang
et al., 2023b) focus on extracting a subgraph from
the KB that is specific to the given question, and
then apply ranking algorithms to identify the top
entities or employ text decoders to directly generate
the answers.
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Figure 2: Overview of GRV-KBQA

SP-based methods transform natural language
questions to logical forms and execute on the KB
to generate answers. Yih et al. (2015) proposes
a novel semantic parsing framework, where logi-
cal form generation is framed as a staged search
problem, leveraging the KB to prune the search
space. TIARA (Shu et al., 2022), DECAF (Yu
et al., 2023), and RnG-KBQA (Ye et al., 2022)
all employ sequence-to-sequence models to fully
construct S-expressions and offer numerous en-
hancements to the semantic parsing process. FC-
KBQA (Zhang et al., 2023) extracts pertinent fine-
grained knowledge components from the KB and
reconfigures them into intermediate-level knowl-
edge pairs, which are subsequently used to generate
the final logical forms.

LLM-based methods generate logical forms ei-
ther by prompting or fine-tuning LLMs. Struct-
GPT (Jiang et al., 2023a) proposes a framework
that enhances the reasoning ability of LLMs by
using specialized interfaces to collect relevant
evidence. Li et al. (2024) enhances LLMs for

KGQA by introducing question decomposition and
atomic retrieval, using a decomposition tree to
guide atomic-level KG subgraph retrieval for an-
swering complex questions.. A series of training-
free frameworks for few-shot in-context learning
have been proposed by Li et al. (2023), Nie et al.
(2024) and Tian et al. (2024) which employ LLMs
to generate logical forms and ground them on
the KB. Additionally, some methods (Sun et al.,
2024; Huang et al., 2024) utilize strategies of step-
wise query construction and search answers from
the KB. In the realm of sequence-to-sequence ap-
proaches, ChatKBQA (Luo et al., 2024) proposes
a generate-then-retrieve framework that fine-tunes
open-source LLMs to generate logical forms.

In this paper, we present the GRV-KBQA frame-
work, which separates the processes of logical form
generation and semantic grounding while integrat-
ing structure-aware validation. Unlike previous
approaches, our framework leverages the inherent
structure of the KB to enhance the alignment of
logical forms.
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It is worth noting that KB-Binder also incorpo-
rates a KB-aware optimization module for execu-
tion. However, while KB-Binder (Li et al., 2023)
filters candidates by retrieving a fixed two-hop sub-
graph, our approach considers the exact number of
hops and the directionality specified by the query
structure.

3 Preliminaries

3.1 Definitions
Knowledge Base (KB) A Knowledge Base (KB)
is a RDF graph that stores various types of knowl-
edge about the real world. It can be represented
as a collection of triples, where each triple en-
codes a fact. Formally, a KB can be represented
as K = {(si, ri, ti)|i = 1, 2, . . . } where si is an
entity, ti is either an entity or a literal and ri is the
relation between si and ti. Each entity in the KB
is associated with a unique entity ID, which allows
precise identification of the corresponding entity
node within the KB. Additionally, each entity is la-
beled with a natural language description, making it
easier for humans to read and analyze. For example,
the label of entity ID "m.06by7" is "Rock Music".
Similarly, each relation is hierarchically labeled
to accurately represent the complex relationships
between entities, e.g., "music.artist.genre".

Logical Form A logical form is a highly struc-
tured intermediate representation derived from
knowledge base queries. It hierarchically illus-
trates the process of retrieving answers from the
KB. Compared to SPARQL queries, logical forms
are more readable and easier to understand. In
this work, the logical forms we employ primarily
involve operators such as JOIN, AND, TC, ARGMAX,
ARGMIN, and others. The JOIN operator is used for
projection and selection. For instance, (JOIN (R
<rel>) s) retrieves all tail entities that have the re-
lation "<rel>" with the given head entity s. (JOIN
<rel> t) retrieves all head entities that have the re-
lation "<rel>" with the given tail entity t. The AND
operator computes the intersection of two entity
sets. ARGMAX, ARGMIN, TC, LT, and GT are condi-
tional selection operators that filter results from a
given entity set based on specified conditions.

3.2 Problem Statement
Knowledge Base Question Answering (KBQA)
aims to retrieve answers from a structured KB given
a natural language question. Given a natural lan-
guage question q, the goal of KBQA is to gener-

ate a structured query Q that retrieves the correct
answer set A from K: Q = Convert(q), where
Convert(·) is the convert function. In this task, the
structured query Q is often formulated in SPARQL
or logical form. If Q is formulated as a logical
form, it must be converted into a SPARQL query
using a predefined transformation function. Finally,
the SPARQL query is executed on the knowledge
base K to obtain the final answer set A.

4 Methodology

4.1 Overview

As shown in Figure 2, GRV-KBQA is a three-stage
KBQA framework which leverages the generation
capability of LLMs and consists of three parts: De-
coupled Logical Structure Generation, Semantic
Grounding, and Structure-Aware Validation.

Given a natural language question, GRV-KBQA
first generates a subquery chain template. Based
on the template, GRV-KBQA constructs a query
structure graph which is a directed graph that de-
fines the structural constraints that candidate entity
IDs and relations must satisfy. Then, GRV-KBQA
determines the semantic information for each place-
holder based on the generated template and the
given natural language question. It retrieves candi-
date entity IDs and relations from the knowledge
base. GRV-KBQA leverages the generated rela-
tions to filter out entity IDs that do not maintain
structural consistency with the query structure. It
searches for the first valid candidate combination
that generates an executable logical form f . The
execution result of the generated logical form f
would be the final answer set A.

4.2 Decoupled Logical Structure Generation

One of the key challenges in KBQA is ensuring that
logical forms are both structurally well-formed and
semantically aligned with the KB. To address this,
we introduce a decoupled approach that separates
logical structure generation from semantic ground-
ing. Specifically, we employ an LLM to perform
two tasks. The first task is generating a subquery
chain template based on the input question q. The
second task aims to determine the textual content
for each placeholder in the template based on the
given question. Through these two tasks, we de-
couple the generation of the final logical form in
terms of both structure and content. We fine-tune
the LLM on these two tasks to enhance the perfor-
mance.
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Algorithm 1 Structure-Aware Validation
Input: Knowledge Base K, Subquery Chain Tem-
plate p, Threshold te, tr, Top-k Num ne, nr

Output: The Final Answer Set A
T ← GetQueryStructure(p)
Pe← GetEntityPlaceholders(p)
Pr ← GetRelationPlaceholders(p)
Le ← GetCandidateListsWithThreshold(Pe, ne, te)
Lr ← GetCandidateLists(Pr)
for pe, Lei ∈ zip(Pe,Le) do

L′
ei ← ∅

for e ∈ Lei do
Pa ← GetAssociatedRelationPlaceholders(pe)
if CheckStructuralConsistency(e,Pa, T ,K) then

L′
ei .Append(e)

end if
end for
L′

e.Append(L′
ei )

end for
R← FindNonEmptyResults(L′

e,Lr, T ,K)
ifR ̸= ∅ then

returnR
end if
for c ∈ GetCombinations(Le) do
L′

r ← ∅
for e, pe ∈ zip(c,Pe) do
Pa ← GetAssociatedRelationPlaceholders(pe)
for pr ∈ Pq do

r ←GetContent(pr)
nhop, direction← GetConnection(pe, pr, T )
Re ←GetRelations(e, nhop, direction,K)
R′

e ←TopkSimilarRelations(r,R′
e, tr, nr,K)

L′
ri ← L′

r . GetCandidates(pr)
if L′

ri = ∅ then
L′

r .SetCandidates(pr,R′
e)

else
L′

r .SetCandidates(pr,R′
e ∩ L′

ri )
end if

end for
end for
R← FindNonEmptyResults(L′

e,L′
r, T ,K)

ifR ̸= ∅ then
returnR

end if
end for
return ∅

Task 1: Subquery Chain Template Generation
The subquery chain template generation task aims
to construct the structural template p of the final
query based on the input question. The template
p is organized as a sequence of subqueries and
does not contain any specific semantic information.
Instead, all entities and relations are replaced with
placeholders such as [ENT_i] and [REL_j].

We design this task to guide the model in learn-
ing query structural patterns that are independent
of specific entities and relations. Meanwhile, the
fine-grained subquery chain helps determine the
overall graph structure of the query, which in turn
benefits the subsequent validation process. Further-
more, the subquery chain intuitively illustrates the

steps taken by the LLM to generate the final logi-
cal form, which can improve interpretability of the
generation process of the final logical form.

Task 2: Placeholder Specification This task
requires the model to determine the specific tex-
tual content for each placeholder in the template
generated from Task 1, based on the natural lan-
guage query, e.g. "[ENT_1] = ’Ken Barlow’",
"[ENT_2] = ’Coronation Street’". The tex-
tual content is then used to retrieve entity IDs or
relations from the knowledge base.

We adopt parameter-efficient fine-tuning (PEFT)
methods, which includes various methods such as
P-Tuning v2 (Liu et al., 2022), LoRA (Hu et al.,
2021), and Freeze (Geva et al., 2021), to fine-tune
the backbone LLM in our framework. The input
and output formats of both tasks can be found in
Appendix A. For both tasks, our optimization ob-
jective is next token prediction (NSP). The final
loss is defined as:

L = L1 + L2, (1)

where L1 represents the loss for the first task, and
L2 represents the loss for the second task.

4.3 Retrieval and Structure-Aware Validation
The LLM fine-tuned on Task 1 and Task 2 can
exhibit strong semantic parsing capabilities and
logical form generation ability.

Placeholder Candidate List Construction As
shown in Algorithm 1, from the output of the fine-
tuned LLM, we first extract the query structure T
and the semantic information for each placeholder
in the generated template. We utilize FACC1 entity
linking method to retrieve entity IDs that match the
textual content of entity placeholders.

Entity Filtering We discard entity IDs with oc-
currence probabilities below the threshold te and
obtain a refined candidate entity ID list Lei for the
entity placeholder ei. For relation placeholders, we
first assume that the model-generated relations are
sufficiently accurate. Therefore, the candidate list
Lri for the relation placeholder ri contains only
a single element, which corresponds to the gener-
ated textual content of the placeholder. For each
candidate entity ID in the candidate list of entity
placeholder ei, we validate whether its connectivity
in the knowledge base maintains structural consis-
tency with the query structure T . Only entity IDs
that satisfy the structure constrain are retained in
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the candidate list. Next, we rank the candidate en-
tity ID list based on their occurrence probabilities
in the knowledge base and select the top ne entities
as the final candidate entity set.

Logical Form Generation and Execution We
enumerate all possible assignments of candidate
entities and relations from their respective place-
holder lists and try to construct valid logical forms.
Each logical form is then converted into a SPARQL
query using a fixed convert function and executed
on the knowledge base. The first non-empty result
is returned as the final answer set A.

If none of the possible combinations yield a
non-empty result set, we attempt to change the
candidate lists for the relation placeholders. For
each entity ID combination ce, we take each en-
tity ID in ce as the central entity node and iden-
tify the relation placeholders associated with it and
try to change the candidate lists of these place-
holders. For each relation placeholder associated
with the central entity, we retrieve relations that
satisfy the directionality and distance constraints
imposed by the query structure T , from the knowl-
edge base K. We employ unsupervised retrieval
methods like SimCSE (Gao et al., 2021), Conrtiver
(Izacard et al., 2021) and BM25 (Robertson and
Zaragoza, 2009), to compute the similarity between
the retrieved relations and the model-generated re-
lation. The retrieved relations are ranked based
on their similarity to the model-generated relation.
Relations with similarity scores below a predefined
threshold tr are discarded. From the remaining
candidates, we select the top nr relations as the
updated candidate list for the relation placeholders.
Then we try to find the first non-empty results set
as our predicted answer with the updated candidate
lists.

5 Experiments

In this section, we introduce the basic setup of
the experiments, including the datasets, baselines,
and implementation details. We also provide an
analysis of the experimental results.

5.1 Setup

Datasets We evaluate the effectiveness of our
approach on two widely used KBQA datasets: We-
bQSP (Yih et al., 2016a) and ComplexWebQues-
tions (CWQ) (Talmor and Berant, 2018a). Both
datasets are constructed based on the Freebase (Tal-
mor and Berant, 2018b) knowledge base and con-

sist of a collection of knowledge-driven natural
language questions. Each question is paired with
a SPARQL query that retrieves the corresponding
answer set from Freebase. Table 1 presents the
statistics of WebQSP and CWQ.

Dataset # Train # Validation # Test
WebQSP 3,098 - 1,639

CWQ 27,639 3,519 3,531

Table 1: Statistics (Number of QA Pairs) of the Datasets

Baselines We compare our method with several
previous approaches. The baseline methods can be
categorized into three main groups: 1. Informa-
tion Retrieval-based (IR-based) Methods, which
are approaches that primarily rely on retrieval tech-
niques to fetch relevant knowledge from the knowl-
edge base; 2. Semantic Parsing-based (SP-based)
Methods: which are approaches that map natural
language questions to structured queries, such as
SPARQL, for precise answer retrieval; 3. Large
Language Model-based (LLM-based) Methods:,
which are methods that leverage LLMs for seman-
tic parsing, reasoning or knowledge retrieval. More
details about the baselines can be found in Ap-
pendix B.

Metrics We adopt the same evaluation metrics as
previous works (Shu et al., 2022; Yu et al., 2023;
Luo et al., 2024) to evaluate the overlap between
the retrieved answer set and the ground truth an-
swer set. Specifically, we use Accuracy (Acc), F1

score (F1), and Hits@1 as our evaluation metrics.

Implementation Details While our method is
generally applicable to relations of arbitrary hop
distances and directions, in this paper, we restrict
our consideration to relations within two hops.
For WebQSP and CWQ, we use LLama2-7B and
LLama2-13B (Touvron et al., 2023), respectively,
as the backbone LLMs in our framework. We
conduct our experiments on two NVIDIA A6000
GPUs with 48GB VRAM each. To reduce VRAM
consumption during training, we apply LoRA (Hu
et al., 2021). Further implementation details can
be found in Appendix C.

5.2 Results and Analysis

Table 2 presents our experimental results, aver-
aged over 3 runs. As can be observed, GRV-
KBQA outperforms the existing baseline methods

2623



on most evaluation metrics and demonstrates a sig-
nificant improvement over information retrieval-
based and semantic parsing-based methods across
all the evaluation metrics. Compared to large

Method WebQSP CWQ
F1 Hits@1 Acc F1 Hits@1 Acc

IR-based Methods
KV-Mem 34.5 46.7 - 15.7 21.1 -
Pull-Net - 68.7 - 47.2 -
Embed-KGQA - 66.6 - - 44.7 -
NSM+h 67.4 74.3 - 44.0 48.8 -
TransferNet - 71.4 - - 48.6 -
Subgraph Retrieval 64.1 69.5 - 47.1 50.2 -

SP-based Methods
STAGG 71.7 - 63.9 - - -
UHop 68.5 - - 29.8 - -
Topic Units 67.9 68.2 - 36.5 39.3 -
QGG 74.0 73.0 - 40.4 44.1 -
UniKGQA 72.2 77.2 - 49.4 51.2 -
CBR-KBQA 72.8 - 69.9 70.0 70.4 67.1
RnG-KBQA 75.6 - 71.1 - - -
Program Transfer 76.5 74.6 - 58.7 58.1 -
TIARA 78.9 75.2 - - - -
GMT-KBQA 76.6 - 73.1 77.0 - 72.2
UnifiedSKG 73.9 - - 68.8 - -
DecAF 78.8 82.1 - - 70.4 -
FC-KBQA 76.9 - - 56.4 - -

LLM-based Methods
StructGPT 72.6 - - - - -
Pangu 79.6 - - - - -
ToG - 82.6 - - 69.5 -
ChatKBQA 79.8 83.2 73.8 77.8 82.7 73.3
GRV-KBQA(ours) 80.5 83.2 75.1 78.8 82.5 74.9

Table 2: Comparison of Our Method with the Baseline
Methods. Most of the results are directly taken from the
corresponding original papers. The best result for each
evaluation metric is highlighted in bold.

language model-based approaches, GRV-KBQA
also achieves an improvement of approximately
1% in F1 and 1.5% in Accuracy. Furthermore, it
is noteworthy that the improvement in Accuracy is
particularly pronounced which indicates that our
method is more effective at precisely identifying
the correct answer.

6 Ablation Study

In order to assess the contribution of each compo-
nent in GRV-KBQA, we conduct an ablation study
by systematically removing or modifying key steps
and observing the impact on performance. Specifi-
cally, we design a series of experiments to evaluate
the effectiveness of each component. Specifically,
we conduct our ablation experiments on the We-
bQSP dataset.

6.1 Effectiveness of Task 1

The Subquery Chain Template Generation Task
(Task 1) structures the KBQA pipeline by provid-
ing an intermediate logical form before entity and
relation specification. To assess its impact, we
bypass this step and allow the LLM to directly
generate a complete logical form template without
subqueries, as in w/o T1 in Table 3.

Settings F1 Hits@1 Acc
GRV-KBQA 80.5 83.2 75.1

w/o T1 80.2 83.0 74.7
w/o T2 78.4 82.6 70.5
w/o Validation 79.5 82.4 73.7

Table 3: Ablation Study Results on the WebQSP Dataset

Removing Task 1 leads to a drop in accuracy
(75.1% → 74.7%) and F1 score (0.805 → 0.802).
The relatively minor impact suggests that the LLM
can still infer the logical structure from the input
question to some extent. However, Task 1 provides
an explicit and modular breakdown of the reason-
ing process, which benefits interpretability and al-
lows for easier analysis of error patterns in our
framework. By decomposing complex queries into
a structured form, Task 1 facilitates future refine-
ments and debugging, making the overall KBQA
pipeline more maintainable.

6.2 Effectiveness of Task 2

The Placeholder Specification task (Task 2) enables
the LLM to determine the correct entities and re-
lations for the placeholders in the structured tem-
plate generated by Task 1. Instead of following
this approach, w/o T2 modifies Task 1 to gener-
ate a subquery chain that already contains specific
entity and relation information, which means that
the LLM must directly infer KB elements during
subquery chain template generation.

As can be observed in Table 3, removing Task
2 results in a significant drop in accuracy (75.1%
→ 70.5%) and F1 score (0.805 → 0.784). With-
out explicit placeholder resolution, the LLM must
simultaneously generate the subquery chain and
extract the relevant semantic information from the
question, rather than resolving entity and relation
placeholders in a separate step. This may lead
to higher entity and relation misalignment rates.
The substantial accuracy drop (4.6%) demonstrates
that decoupling structure generation from semantic
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grounding significantly improves retrieval correct-
ness, thus leading to more precise answers.

6.3 Effectiveness of Structure-Aware
Validation

The Structure-Aware Validation mechanism en-
sures that retrieved entities and relations comply
with structural constraints derived from the gen-
erated template. In w/o Validation, this step is
omitted, meaning all possible combinations are ex-
ecuted without structural checks.

As shown in Table 3, removing Structure-Aware
Validation leads to a drop in accuracy from 75.1%
to 73.7% and a 1% decrease in F1 score. This sug-
gests that precision declines due to an increased
number of incorrect logical forms. Without struc-
tural validation, the framework is more likely to
attempt to execute structurally inconsistent logical
forms, which in turn results in more execution fail-
ures during query processing. This highlights the
crucial role of validation in filtering structurally
incompatible candidates, thus enhancing the relia-
bility of the final logical forms.

To further illustrate the impact of Structure-
Aware Validation, Table 4 presents a comparative
analysis of two key factors: the average number of
failed execution attempts and the exact match rate
(EMR) between the executed logical forms and the
ground-truth logical forms. The results show that
removing validation significantly increases execu-
tion failures due to structurally inconsistent queries.

Settings #Failed Execution (Average) EMR
GRV-KBQA 3390119.26 66.99%

w/o Validation 1802539361.46 62.66%

Table 4: Impact of Structure-Aware Validation on Exe-
cution Failures and Logical Form Accuracy.

To verify the effectiveness of the Structure-
Aware Validation step, we analyze the filtering rate
of the candidate list for each placeholder during
question processing and report the average across
all questions. The filtering rates on the WebQSP
and CWQ datasets are 90.0% and 83.8%, respec-
tively. Additionally, the logical form match rate
drops, which indicates that a structure-aware valida-
tion step can ensure greater alignment with the ex-
pected form. These findings confirm that enforcing
structural constraints not only prevents invalid logi-
cal forms from being executed but also improves
the overall accuracy of query generation.

Settings F1 Hits@1 Acc
GRV-KBQA 80.5 83.2 75.1

ChatGPT(1-shot) 13.8 16.5 11.4

Table 5: Comparison Between GRV-KBQA and Chat-
GPT API

6.4 Do We Have to Fine-Tune an LLM?

LLMs have demonstrated impressive zero-shot and
few-shot generation abilities, which also raises the
question of whether fine-tuning is truly necessary
for our framework.

To investigate this, we compare GRV-
KBQA with a variant that replaces the fine-
tuned LLM with an off-the-shelf LLM API
(gpt-4o-2024-11-20). Instead of fine-tuning the
backbone LLM on Task 1 and Task 2, this variant
performs one-shot generation, where ChatGPT is
prompted to directly produce the subquery chain
template and the semantic information for each
placeholder. By following the same validation
step as our framework, this setup allows us to
assess whether a non-fine-tuned LLM, guided only
by one-shot prompting, can achieve comparable
performance.

As the results shown in Table 5, the performance
gap between GRV-KBQA (fine-tuned LLM) and
ChatGPT(1-shot) is substantial, which indicates the
necessity of fine-tuning for our framework. The
drastic performance drop suggests that one-shot
generation is highly unreliable for our framework.
Without explicit fine-tuning, ChatGPT struggles to
generate well-formed subquery chains, which leads
to a high failure rate in execution. These results
demonstrate that fine-tuning plays a crucial role in
our framework. While LLMs exhibit impressive
generation abilities, direct prompting alone is insuf-
ficient for generating accurate, executable logical
forms.

6.5 Exact Match and Efficiency Comparison
with Baseline

To further demonstrate the advantages of our ap-
proach over ChatKBQA, we additionally compare
the two methods in terms of exact match rate.

Method WebQSP CWQ
ChatKBQA 59.40% 46.6%
GRV-KBQA 66.99% 60.0%

Table 6: Comparison with ChatKBQA on EMR
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As shown in Table 6, our GRV-KBQA frame-
work significantly outperforms ChatKBQA in
terms of exact match rate (EMR) on both WebQSP
and CWQ. Specifically, GRV-KBQA achieves an
improvement of 7.59% points on WebQSP and
13.4% points on CWQ.

These results further demonstrate that GRV-
KBQA can effectively increase the likelihood of
generating executable logical forms that match the
gold-standard answers. By separating query struc-
ture modeling from semantic grounding and verify-
ing structural consistency before execution, GRV-
KBQA reduces errors in both generation and align-
ment, leading to more reliable query execution.

We further compare the efficiency of GRV-
KBQA and ChatKBQA on the WebQSP dataset
in terms of average processing time per question.
Our method achieves an average speed of 0.9 min-
utes per question, compared to approximately 1.06
minutes for ChatKBQA. This further highlights the
efficiency advantage of our approach.

7 Conclusion

In this paper, we propose GRV-KBQA, a three-
stage framework for knowledge base question an-
swering (KBQA) that decouples logical structure
generation from semantic grounding while incorpo-
rating structure-aware validation. Existing KBQA
approaches, struggle with errors in logical forms,
incorrect entity and relation alignment, or ineffi-
ciencies in candidate selection, leading to execution
failures. Our framework addresses these challenges
by explicitly modeling the logical form through
subquery chain generation and placeholder specifi-
cation, and ensuring logical form validity through
structural constraints.

Experimental results on WebQSP and CWQ
show that GRV-KBQA significantly improves per-
formance over existing approaches, which demon-
strates its effectiveness in generating more accurate
and executable logical forms. The ablation study
conducted further validates that decoupling logi-
cal structure generation from semantic grounding
improves entity alignment, while structure-aware
validation enhances execution reliability.

Limitations

While GRV-KBQA improves KBQA performance
by decoupling logical structure generation from
semantic grounding and enforcing structure-aware
validation, it still has several limitations.

First, our approach relies on fine-tuning an LLM
for subquery chain generation and placeholder
specification. While fine-tuning enhances accuracy,
it requires substantial computational resources and
may limit generalization to unseen queries.

Second, the structure-aware validation stage in-
troduces computational overhead, as verifying the
structural consistency of candidate entities requires
multiple KB queries. This can be inefficient on
large-scale KBs, potentially limiting real-world de-
ployment.

Finally, as illustrated in Appendix D, our method
propagates errors across multiple stages, meaning
that mistakes in subquery chain generation or place-
holder resolution can negatively affect subsequent
validation and ultimately lead to query failures.
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A Input and Output Format

Table 8 and Table 9 present the input and output
formats used for fine-tuning on the two tasks.

B Baselines

In this section, we introduce the baselines used in
our experiments.

B.1 IR-Based Methods
KV-Mem (Miller et al., 2016) introduces a key-
value memory network that facilitates fact encod-
ing and reasoning for knowledge-based question
answering. It enhances the model’s ability to in-
tegrate relevant information and infer correct an-
swers.

PullNet (Sun et al., 2019) integrates retrieval
and reasoning in a unified framework for multi-hop
KBQA, iteratively constructing a question-specific
subgraph from both text corpus and knowledge
bases. By leveraging graph convolutional networks
(GCNs) for node expansion and answer extraction,
it enables effective reasoning over large, incom-
plete KBs.

EmbedKGQA (Saxena et al., 2020) leverages
knowledge graph embeddings to address multi-hop
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WebQSP CWQ
Hyper-parameters for LLM Fine-Tuning

Base Model LLama2-7B, LLama3-8B, QWen2.5-7B LLama2-13B, LLama3-11B, QWen2.5-14B
Batch Size 16 32

Learning Rate 1e-4, 2.5e-4, 5e-4 2.5e-4, 5e-4, 1e-3
Epoch 80, 100, 120 8, 10, 12

PEFT Method LoRA, P-Tuningv2, Freeze LoRA, P-Tuningv2, Freeze
LoRA Rank 8 8
LoRA Alpha 8 8

LoRA Dropout 0 0
Hyper-parameters for Inference

Beam Size 15 8
Inference Batch Size 1 1

Hyper-parameters for Answer Retrieval
ne 50 50
nr 5 5
te 1e-6 1e-5
tr 0 0

Relation Retrieval SimCSE SimCSE

Table 7: Implementation Details of GRV-KBQA

Input Question: Who is keyshia cole dad ?

Output

1. result_1 = JOIN [REL_1] [ENT_1]
2. relation_1 = R [REL_2]
3. result_2 = JOIN relation_1 [ENT_2]
4. [ANS] = AND result_1 result_2

Table 8: An Example of the Input and Output for Task 1

Input

Question: Who is keyshia cole dad ?
1. result_1 = JOIN [REL_1] [ENT_1]
2. relation_1 = R [REL_2]
3. result_2 = JOIN relation_1 [ENT_2]
4. [ANS] = AND result_1 result_2

Output

[ENT_1] = ’Male’
[REL_1] = ’people.person.gender’
[REL_2] = ’people.person.parents’
[ENT_2] = ’Keyshia Cole’

Table 9: An Example of the Input and Output for Task 2

reasoning in KBQA, effectively handling knowl-
edge graph sparsity without relying on external tex-
tual information. It also removes the constraint of
selecting answers from a fixed local neighborhood,
improving answer retrieval in incomplete KGs.

NSM+h (He et al., 2021a) employs a teacher-
student framework for multi-hop KBQA, where a
teacher network provides intermediate reasoning
supervision to stabilize learning. By leveraging
bidirectional reasoning, it enhances the reliability
of intermediate entity distributions, effectively mit-
igating spurious reasoning issues.

TransferNet (Shi et al., 2021) introduces a uni-
fied framework for multi-hop KBQA that supports

both structured (knowledge graph) and unstruc-
tured (text corpus) relations. By dynamically at-
tending to different parts of the question and trans-
ferring entity scores through activated relations, it
achieves interpretable multi-step reasoning with
improved optimization stability.

Subgraph Retrieval (Zhang et al., 2022) intro-
duces a trainable subgraph retriever (SR) that is
decoupled from the reasoning process, mitigating
reasoning bias caused by partial subgraphs. This
approach enhances any subgraph-based KBQA
model in a plug-and-play manner and improves
retrieval effectiveness through weakly supervised
pre-training and end-to-end fine-tuning.

B.2 SP-Based Methods

STAGG (Yih et al., 2016b) applies supervised se-
mantic parsing to KBQA, demonstrating that learn-
ing from structured representations yields higher
accuracy than relying solely on answer annotations.

UHop (Chen et al., 2019) introduces an
unrestricted-hop framework for KBQA that elim-
inates fixed hop constraints by employing a
transition-based search mechanism instead of ex-
haustive relation-chain search. This approach en-
ables dynamic halting, improves efficiency, and
significantly enhances performance on long rela-
tion paths.

Topic Units (Lan et al., 2019) introduces topic
unit linking, expanding beyond traditional entity
linking to improve KBQA answer retrieval. It em-
ploys a generation-and-scoring approach to refine
topic unit selection and uses reinforcement learn-
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ing for joint optimization of topic unit linking and
answer ranking.

CBR-KBQA (Das et al., 2021) introduces a
neuro-symbolic case-based reasoning framework
for KBQA, combining a nonparametric memory to
store question-logical form pairs with a retrieval-
based parametric model that generates logical
forms for new queries. It enables few-shot adapt-
ability, allowing the model to handle unseen KB
entities and relations without further training.

QGG (Lan and Jiang, 2020) enhances query
graph generation by incorporating both constraints
and multi-hop reasoning in a unified framework.
By integrating constraints early in the process, it
effectively prunes the search space, improving effi-
ciency in complex KBQA tasks.

RnG-KBQA (Ye et al., 2022) introduces a Rank-
and-Generate framework that combines contrastive
ranking and generation to improve KBQA gener-
alization. It first ranks candidate logical forms
retrieved from the knowledge graph, then refines
them with a tailored generation model, effectively
addressing the coverage issue while maintaining
strong generalization capability.

Program Transfer (Cao et al., 2022) enhances
program induction for KBQA by leveraging anno-
tated programs from resource-rich KBs to super-
vise learning on low-resource KBs. It introduces
a two-stage parsing framework, combining sketch
parsing for high-level program structure generation
and argument parsing for retrieving KB arguments,
with ontology-guided pruning to improve search
efficiency.

TIARA (Shu et al., 2022) enhances PLM-based
KBQA by incorporating multi-grained retrieval to
provide relevant KB context and constrained de-
coding to improve logical form generation. This
approach improves both coverage and generaliza-
tion, effectively addressing semantic understanding
and execution correctness challenges.

GMT-KBQA (Hu et al., 2022) enhances
generation-based KBQA by integrating multi-task
learning to jointly optimize entity disambiguation,
relation classification, and logical form generation.
It first retrieves candidate entities and relations via
dense retrieval, then leverages auxiliary tasks to im-
prove generalization and reduce errors from noisy
auxiliary information.

UnifiedSKG (Xie et al., 2022) unifies structured
knowledge grounding (SKG) tasks into a text-to-
text format, enabling systematic research across
diverse tasks, including KBQA. It benchmarks T5

with multi-task prefix-tuning, demonstrating SOTA
performance on most SKG tasks and facilitating
investigations into zero-shot and few-shot learning.

UniKGQA (Jiang et al., 2023b) unifies retrieval
and reasoning for multi-hop KGQA by integrating
them at both the model architecture and parame-
ter learning levels. It employs a semantic match-
ing module for question-relation alignment and a
matching information propagation module to guide
reasoning along KG edges, ensuring a more cohe-
sive retrieval-reasoning process.

DecAF (Yu et al., 2023) combines logical form
generation and direct answer prediction to enhance
KBQA accuracy while mitigating execution fail-
ures. Unlike most prior methods, it relies on free-
text retrieval instead of entity linking tools, improv-
ing adaptability across datasets.

FC-KBQA (Zhang et al., 2023) introduces a
Fine-to-Coarse Composition framework that en-
hances both generalization and executability in
KBQA. By extracting fine-grained knowledge com-
ponents from KBs and reformulating them into
middle-grained knowledge pairs, it enables more
robust logical form generation.

B.3 LLM-Based Methods
StructGPT (Jiang et al., 2023a) improves LLMs’
capability in structured data reasoning by employ-
ing an Iterative Reading-then-Reasoning (IRR) ap-
proach. It integrates specialized interfaces for struc-
tured data interaction, adopts a retrieval-augmented
reasoning mechanism, and utilizes an iterative pro-
cess to enhance structured data comprehension and
complex question answering.

Pangu (Gu et al., 2023) introduces a grounded
language understanding framework that integrates
a symbolic agent with a neural language model.
This approach enables incremental construction of
valid plans while leveraging the language model to
assess the plausibility of generated plans, improv-
ing structured reasoning and decision-making.

ToG (Think-on-Graph) (Sun et al., 2024) inte-
grates large language models (LLMs) with knowl-
edge graphs (KGs), treating the LLM as an agent
that interactively explores entities and relations to
enhance reasoning. It employs an iterative beam
search mechanism to discover optimal reasoning
paths, enabling deep reasoning, knowledge trace-
ability, and training-free adaptability across various
LLMs and KGs.

ChatKBQA (Luo et al., 2024) introduces a
generate-then-retrieve KBQA framework, first gen-
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Question Who will play Mr. Gray in the film?

Template Generation

1. relation_1 = R [REL_1]
2. result_1 = JOIN relation_1 [ENT_1]
3. relation_2 = R [REL_2]
4. [ANS] = JOIN relation_2 result_1

Placeholder Specification
[REL_1] = ’film.film_character.portrayed_in_films’
[ENT_1] = ’Mr. Gray’
[REL_2] = ’film.performance.actor’

Golden Logical Form (JOIN (R film.performance.actor) (JOIN (R film.film_character.portrayed_in_films) m.0nfjvrm))
Executed Logical Form (JOIN (R film.performance.actor) (JOIN (R film.film_character.portrayed_in_films) m.0v4dfpr))

Table 10: A Representative Case for Error Analysis

erating logical forms using fine-tuned LLMs, then
refining them via unsupervised entity and relation
retrieval. This approach enhances retrieval effi-
ciency, mitigates error propagation, and simplifies
KBQA pipelines, achieving state-of-the-art perfor-
mance on WebQSP and CWQ.

C Implementation Details

Table 7 presents the implementation details of our
experiments.

D Error Analysis

Although our method achieves superior perfor-
mance compared to existing baselines, we observe
that it still struggles on certain types of questions.
In this section, we present a representative example
to analyze the reasons behind the failure and dis-
cuss potential directions for future improvements.

Table 10 presents this representative case. In
this example, the subquery chain generated by our
method is structurally correct. Although the struc-
tural reasoning is logically sound, the query ulti-
mately returns an incorrect answer due to semantic
grounding failure. We find that the issue lies in
the generation of the entity placeholder [ENT_1].
The model generates it as “Mr. Gray”, whereas the
correct entity in the knowledge base is “Christian
Grey” (entity ID: m.0nfjvrm).

This issue may stem from discrepancies between
the parametric knowledge encoded in the large lan-
guage model and the factual knowledge stored in
the knowledge base. Our method relies on the
model’s parametric knowledge to implicitly com-
plete contextual information from the input ques-
tion and to guide the construction of logical forms.
Given the vast pretraining corpora of large lan-
guage models, they are often able to correctly infer
background context and relevant entities, enabling
accurate semantic interpretation in most cases.

However, in some instances, the model’s inter-
nal knowledge may interfere with the semantic
grounding process, which leads to inconsistencies
between the generated logical form and the actual
structure of the knowledge base. Although our pro-
posed structure-aware validation mechanism can
filter out some invalid entity–relation combinations
from a structural perspective, it cannot fully ad-
dress cases where the input query is inherently am-
biguous and the placeholder generation process
lacks direct alignment with the KB. In such cases,
the textual content of placeholders may remain se-
mantically vague, and the validation mechanism is
limited in its ability to correct these types of errors.
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