% CAcHE SAVER: A Modular Framework for Efficient, Affordable,

and Reproducible LLM Inference
Nearchos Potatmitis,* * Lars Klein,* ¢ Bardia Mohammadi,® Chongyang Xu,*
Attreyee Mukherjee,® Laurent Bindschaedler,® Niket Tandon,Y Akhil Arora*

°EPFL ®MPI SWS

¥Microsoft Research ~ *Aarhus University

nearchos.potamitis@cs.au.dk, lars.klein@epfl.ch
bmohamma@mpi-sws.org, atmukher@mpi-sws.org, cxu@mpi-sws.org
bindsch@mpi-sws.org, niket.tandon@microsoft.com, akhil.arora@cs.au.dk

Abstract

Inference constitutes the majority of costs
throughout the lifecycle of a large language
model (LLM). While numerous LLM infer-
ence engines focusing primarily on low-level
optimizations have been developed, there is
a scarcity of non-intrusive client-side frame-
works that perform high-level optimizations. In
this paper, we introduce CACHE SAVER, a mod-
ular, plug-and-play, and asynchronous frame-
work that facilitates high-level inference op-
timizations, thereby integrating cleanly into
existing systems without requiring changes to
the end-user application logic or the underly-
ing LLM. The key novelty is a namespace-
aware list-valued cache that ensures statisti-
cal integrity of LLM responses by generating
i.i.d. responses within a namespace as well as
ensuring reproducibility. Moreover, as a di-
rect consequence of operating at a high level,
CAcHE SavEer supports both local and online
models. We conduct extensive experiments
with five representative state-of-the-art reason-
ing strategies, five diverse benchmark tasks,
and three different LLMs. On average across
all methods, tasks, and LLMs, CACHE SAVER
reduces cost by ~ 25% and CO, by ~ 35%.
Notably, CAcHE SAVER excels in practical ma-
chine learning scenarios such as benchmarking
across multiple methods or conducting ablation
analysis of a specific method, obtaining sub-
stantial cost and carbon footprint reduction of
~ 60%. CacHE SAVER is publicly available at
https://github.com/au-clan/cachesaver.

1 Introduction

Large language models (LLMs) have taken the
world by storm. Most mainstream web applica-
tions (e.g., Facebook, Twitter/X, WhatsApp, Red-
dit, Google/Bing Search, etc.) now offer some form
of LLM-based companion or assistant. Not surpris-
ingly, LLMs are estimated to account for ~ 2%

*Equal contribution.

!pip install CacheSaver

Client Initialisation

Iclient = CacheSaver(OpenAI()ﬂ
One-Line Change!

Client Initialisation

client = OpenAI()

Generate a response # Generate a response

response = response =

client.chat.completions.create(|| client.chat.completions.create(

messages=..., messages=...,

n=..., n=...,

temperature=...,) temperature=...,)

Figure 1: Illustration of Cache Saver’s seamless integra-
tion: a one-line change enables its modular, transparent
optimization layer.

of global electricity consumption and greenhouse
emissions (Crawford, 2021), a figure projected to
rise to =~ 8% by 2030 (IEA, 2025). Most costs
in an LLM’s lifecycle come from inference (Fu
et al., 2024), which is expensive, especially with
the rise of autonomous agents (Fan et al., 2022),
test-time scaling (Muennighoff et al., 2025), multi-
step reasoning strategies (Yao et al., 2024; Klein
et al., 2025; Shinn et al., 2023; Hao et al., 2023),
and native reasoning models (OpenAl, 2024). For
instance, OpenAl’s 03 costs ~21000$ per task on
the ARC-AGI benchmark (Chollet et al., 2019).

Existing work and challenges. To address this
issue, numerous LLM inference engines—most no-
tably vLLM (Kwon et al., 2023a)-have been de-
veloped in recent years. However, owing to their
focus on low-level optimizations such as efficient
key-value (KV) caching and memory manage-
ment (Kwon et al., 2023b; Ainslie et al., 2023; Park
et al., 2025), it is non-trivial to leverage these en-
gines for novel applications/LLMs without either
modifying the application logic or the LLM or both.
Notably, these engines cannot be used with online
API-based LLMs. While recent work on client-side
caching (Bang, 2023a; Helicone; LangChain) is a
step in the right direction, these approaches are typi-
cally limited to generic semantic matching, and /ack
guarantees for reproducibility, statistical integrity,

25703

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 25703-25724
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/au-clan/cachesaver

Search Tree (T, UT,)
(CacheSaver View)

S @

@ Unique states (T,)
@ Common States (T, NT,)

Search Tree (T,

q«»

Search Tree (T,)

B Duplicates mm Unique

. 100
E 34.3%
9 40.3% 3%

g 75 47.2%
&
2 50
g 25 52.3% 59.7% 65.7%
a

@ Unique states (T,) 0

Standalone Benchmark Ablate

® Discarded states (One-F/W) (Cross-F/W) (One-F/W)

Figure 2: (Left) Search trees T; and T, corresponding to independent executions of two search strategies, and T, U
T,, the combined search tree as seen by CAcHE SAVER recognizing the reuse potential through the common states.
(Right) Analyzing the prompt redundancy for three different CAcHE SAVER configurations across 5 representative
SOTA methods and tasks. On average, CACHE SAVER results in 21%, 36%, and 45% cost savings, respectively.

or support for complex experimental workflows.
Moreover, since in many practical application sce-
narios, such as stochastic sampling, uncertainty es-
timation, or ensuring policy diversity, reasoning
strategies require multiple independent responses
to the same prompt, a naive KV cache that maps
each unique prompt to a single LLM response is
undesirable.

Reuse potential. To better illustrate the reuse po-
tential, consider a math puzzle solved step-by-step
using a tree search. Each node represents a state
in the solution trajectory, and a prompt asks the
LLM to suggest the next step. While a breadth-first
search (BFS) may try to discover all child nodes of
a current node by repeatedly calling the next-step
prompt and aggregating suggestions, a depth-first
search (DFS), by contrast, will commit to one path
and go deep, expanding it repeatedly before back-
tracking. Both strategies use the same prompts
and may visit similar regions of the state space. It
is necessary for their samples to be independent
within each search, so that repeated queries for the
next step can discover branches in the search tree.
However, to compare these two strategies fairly,
it is important that they explore the same graph,
i.e., when they encounter the same state, they re-
ceive the same samples. This is a form of stochastic
coupling and can be achieved by reusing samples
across frameworks. Fig. 2(Left) shows for toy data
how two tree-search strategies (T; and T,) may be
coupled to explore the same tree, and how the par-
tial views onto the search space are assembled into
a shared latent tree (T, U T,) in the cache. Further,
Fig. 2(Right) presents the real-world reuse potential
by showcasing average prompt redundancy across
5 representative state-of-the-art (SOTA) methods
and tasks. Notably, we observe substantial dupli-
cates ~50—65% both during executions of a single
method (Bars 1 and 3), which is expected owing to
similarity across variations of a single method, and

across methods (Bar 2), which is an interesting
and novel finding of our work.

Present work (CAcCHE SAVER). We implement
CacHE Saver (Fig. 3) as a set of pluggable, com-
posable components that together form a modular
request pipeline between the user and the LLM with-
out imposing architectural constraints or design pat-
terns. At its heart is a fundamentally novel caching
paradigm operationalized using a list-valued cache
and managed using the concept of namespacing
to control how and where samples may be reused.
Within a namespace, samples are guaranteed to be
i.i.d., whereas across namespaces, samples may be
reused. An implementation of Fig. 2(Left) would
rely on two namespaces ”T1” and ”T2”. Beyond
the novel cache, CACHE SAVER also substantially
benefits by managing incoming queries with mini-
mal redundancy and maximum efficiency (batcher
and deduplicator), ensuring deterministic request
handling and consistent output ordering for re-
producibility (reorderer), and precise tracking of
prompt-response mappings (cacher), enabling con-
trolled experimentation and more reliable bench-
marking across diverse configurations. On average,
CACHE SAVER results in 21%, 36%, and 45% cost
savings, respectively, across the three scenarios
presented in Fig. 2(Right).

Contributions.

e We convincingly motivate (both intuitively and
empirically) the existence of a substantial prompt
reuse potential in both intra- and inter-framework
settings (§ 1 and § 4).

e We propose CACHE SAVER, a modular, plug-and-
play (Fig. 1), and asynchronous framework for effi-
cient and reproducible LLM inference. Additional
advantages include low memory overhead owing
to a disk resident cache and its ease of deployment:
CacHE Saver is designed as a fully transparent
man-in-the-middle optimization layer that can be

25704

[R‘]) R2) R3]

LLM

B
NS,:Q c
‘T\ NS]: Q 'z A |QXx3
c NS;: Q D E:,:gxg g ———
. X
': NS,:Q g ’ e [(RvRaRal
R NS;: Q L
J Ry
[Rp R2] Q zi
Cold start: Empty cache
Warm start: Pre-initialized cache
[Ry; Ry, R3]
B) () () 4 LLM
A D =
NS,;: Q A
T NS, Q E c |Qx1 @
c : D NS,: Q x4
H NS,: Q u H <—[R]
E NS;: Q 5 E 4
Ry
R) \ J \ J G R J R,
) Q Ry
[Ry, Ry, R3, Ryl R,

Figure 3: Overview of our CAcHE Saver framework: (Top) Cold-start and (Bottom) Warm-start.

readily integrated into any LLM inference stack.
(§3).

e Powered by structured namespace-aware caching,
ours is the first work to enable response reuse in
LLMs without sacrificing the statistical integrity of
the generative LLM. Our new approach to caching
works on top of existing optimizations and allows
for a new level of sample-reuse. Based on the con-
cept of stochastic coupling, it is tailored specifically
for structured reasoning algorithms and agentic Al
deployments. (§ 3.1).

e We conduct extensive experiments on five rea-
soning strategies' and benchmark tasks using three
LLMs as base models. On average across all meth-
ods, tasks, and LLMs, CAcHE SAVER reduces cost
by =~ 25% and CO, by =~ 35%. Notably, CACHE
Saver excels in performing practical tasks such
as benchmarking or ablation analysis, obtaining
substantial cost and carbon footprint reduction of
~ 60%.

2 Related Work

Backend optimizations. LLM serving engines
optimize inference on the server side, with many
optimizations focusing on efficient memory man-
agement and KV cache reuse (Kwon et al., 2023b;
Del Corro et al., 2023; Hooper et al., 2024; Chu
et al.; Ainslie et al., 2023; Zheng et al., 2024a;
Yao et al., 2025; Park et al., 2025). PagedAtten-
tion treats the attention key-value cache like a vir-

!'Single-step reasoning methods such as 10, CoT, CoT-SC,
have no reuse potential as there are no repetitions, and as such,
they cannot benefit from a framework like CACHE SAVER.

tual memory system, reducing fragmentation and
allowing KV cache sharing within and across re-
quests (Kwon et al., 2023b). KVQuant reduces
memory usage by quantizing the KV cache (Hooper
et al., 2024). Grouped Query Attention improves
memory and computation efficiency by grouping
queries to reduce redundant attention computa-
tions (Ainslie et al., 2023). CaR introduces a
multi-tier caching system to facilitate the reuse
and sharing of attention KV caches across differ-
ent requests (Chu et al.). Additional optimiza-
tions target prompt batching and scheduling ef-
ficiency (Agrawal et al., 2023; Li et al., 2024;
Stojkovic et al., 2025; Zheng et al., 2024b; Yu
et al., 2022), as well as improvements in atten-
tion and decoding operations (Dao et al., 2022; Ye
et al., 2025; Leviathan et al., 2023). For exam-
ple, FlashAttention-2 enhances attention computa-
tion through improved parallelism and work parti-
tioning (Dao et al., 2022). Most production-grade
LLM serving systems, such as vVLLM (Kwon et al.,
2023a), Hugging Face Transformers (Wolf et al.,
2020), and NVIDIA Triton Inference Server (Tri-
ton), incorporate several such optimizations. Other
engines, including DeepSpeed-FastGen (Holmes
et al., 2024), llama.cpp (ggml.ai, 2023), MLC
LLM (MLC-AI, 2023), SGLang (Zheng et al.,
2024a), and LightLLM (Lightllm Team, 2023),
further specialize for low-latency decoding, effi-
cient edge deployment, and server-side batching
and memory management. Overall, these optimiza-
tions remain largely invisible to the practitioners
and aim to reduce costs for the model providers.
However, they may increase opacity, potentially

25705

Table 1: Sample allocation: (Left) Independent vs. (Right) CACHE SavEr-coupled experiments.

Experiment ‘ Observed Samples (Independent) ‘ Observed Samples (Coupled)

E, (NSy)
B, (NS,)

2y, Zy, Zgy . 2y,
Z 12 Z s 2,

>Ny +ng

E3 (Nsd) Zn1+n2+13 Zn1+n2+2> cet Zn1+n2+n3

2y Ly, Dy o 2,
Zl7 Z27 ZB? sery Zn
Z17 Z27 ZBv LA Z

n3

1

2

diminish the quality of results, and the cost savings
are rarely passed on to the end user.

Client-side caching. Client-side caching addresses
the challenges of reducing redundant requests, min-
imizing latency, and lowering operational costs.
While Retrieval-Augmented Generation (RAG)
methods reduce the need for LLMs to generate an-
swers from scratch by retrieving relevant informa-
tion from external sources (Lewis et al., 2021), their
primary focus is not caching. Instead, we examine
various client-side caching systems that aim to op-
timize LLM performance. Helicone implements a
key-based caching mechanism by storing LLM re-
sponses at the edge using Cloudflare Workers (Heli-
cone). GPTCache is an open-source semantic cache
that transforms queries and LLM responses into em-
beddings, conducting similarity searches to retrieve
cached responses (Bang, 2023a). Developer frame-
works like LangChain offer a framework-specific
caching layer that supports both exact and semantic
matching (LangChain). GPT Semantic Cache uti-
lizes semantic embedding caching by storing query
embeddings in in-memory storage systems, such as
Redis (Regmi and Pun, 2024). MeanCache intro-
duces a user-centric semantic caching system that
preserves privacy through a learned federated simi-
larity model (Gill et al., 2024a). GenerativeCache
goes beyond traditional caching by synthesizing
new responses from multiple cached entries (Iyen-
gar et al., 2025). LLMProxy is a proxy service that
implements a single endpoint for applications, sup-
porting model selection, context management, and
caching (Martin et al., 2024). In summary, client-
side caching solutions for large language models
(LLMs) are commonly used, primarily addressing
generic workloads through semantic caching (Zhu
et al., 2024).

Key differences. Existing client-side solutions of-
ten lack guarantees for statistical integrity and re-
producibility. To the best of our knowledge, by
employing a namespace-aware list-valued cache,
CacHE SAVER is the only framework that enables

response reuse without sacrificing the statistical
integrity of the generative LLM.

3 CACHE SAVER

Overview. CACHE SAVER is a modular framework
composed of three key modules: (1) a Batcher
(§ 3.2), (2) a Deduplicator (§ 3.2), and (3) a
Cacher (§ 3.1). Fig. 3 presents an overview of
its inner workings using a toy example, where
three search strategies, independently exploring
a dynamic search tree in their own namespace
(NS; through NS.), request responses for the same
prompt (). Fig. 3 (top) illustrates the cold-start sce-
nario, where the cache is empty. The asynchronous
batcher collates the five incoming requests into a
single batch and passes it to the deduplicator, which
groups identical prompts for each namespace and
emits two aggregate requests, requesting three and
two i.i.d. responses to () for NS; and NS,, re-
spectively. The cacher, which relies on a system
of asynchronous mutexes to avoid redundant or
overlapping requests, receives these two aggregate
requests and sends a single request to the LLM,
asking for three responses to (). Finally, the LLM
responses ([R, R, R3]) are stored in the cache and
used to resolve the requests from NS; and NS,. In
the warm-start scenario (Fig. 3 bottom), an aggre-
gate request asking for four i.i.d. responses to () is
triggered from NS;, however, since three responses
are already cached, the cacher asks for one addi-
tional response from the LLM and stores it in the
cache. The four requests are then resolved by serv-
ing ([R,, Ry, R3]) from the cache along with the
newly generated response ([?,). For additional de-
tails (pseudocode, practical considerations: cache
eviction, consistency, etc.), please see Appx. A.

3.1 The Cacher

As motivated in Fig. 2 (§ 1), the prompts issued
by internal reasoning steps of multi-step reasoning
strategies are highly repetitive. Moreover, in many
practical application scenarios, such as stochastic
sampling, uncertainty estimation, or ensuring pol-

25706

Table 2: Comparison of CACHE SAVER alongside existing inference-time optimization methods across key attributes.

Legend: v'= Yes, X=No, &= Partial

System

Statistical Correctness Reproducibility Plug-and-play No GPU Cost Response Lvl. Client side Backward Comp.

CacheSaver (Ours)
Helicone (Helicone, 2024)
Langchain (LangChain, 2024)

GPT Semantic Cache (Regmi and Pun, 2024)
GPTCache (Bang, 2023b)
MeanCache (Gill et al., 2024b)
GenerativeCache (Iyengar et al., 2025)
LLMProxy (Martin et al., 2024)
SEED (Chen et al., 2023)
vCache (Schroeder et al., 2025)
Dynamic Cheatsheet (Suzgun et al., 2025)
vLLM (Kwon et al., 2023c)
CacheBlend (Yao et al., 2025)
SGLang (Zheng et al., 2024a)
CacheGen (Liu et al., 2024)
MemServe (Hu et al., 2024)
QuickSilver (Khanna et al., 2025)

NAUX X NNUX F XX XXX XXX
XN N X X X X X X X X X X XN XN

AN N NN Y

X AX XXX N> NSNS
J}X XXX XXX XXX XXX AN
B /A N NN 2R NN

BRI TN NI N /A NENENE NN

N X N X X% X% NN\ %

icy diversity, reasoning strategies require multiple
independent responses to the same prompt. A naive
KV cache that maps each unique prompt to a single
LLM response is undesirable in such scenarios.

Our cacher circumvents the aforementioned con-
cerns by employing a /list-valued cache (Appx. C.4
shows a snapshot of the cache on real-world tasks)
that maintains a sequence of responses for each
unique prompt. Additionally, to enable response
reuse without sacrificing the statistical integrity of
the generative model (in this case, an LLM), we
introduce the concept of namespaced caching. This
implies that all responses to a given prompt are in-
dependent within a namespace, whereas responses
may be reused across namespaces. In other words,
responses can never be reused within a namespace.
Revisiting the example presented in Fig. 3, let’s
say that the search strategy in NS; now requires
two additional responses to (). The cache contains
four responses ([R, Ry, R3, R,]) to @, of which
the first three have already been used once in NS;;
thus, they cannot be reused. Following namespaced
caching, one new response Ry will be obtained by
the LLM, and [R,, R5] will be used to resolve the
request. Formally, namespaced caching is achieved
via a stochastic coupling of LLM responses.

Sample reuse through stochastic coupling. Con-
sider an LLM as a probabilistic oracle. Given a
prompt p and a parameter set § (e.g., sampling tem-
perature, top-p threshold, etc.), LLM responses fol-
low a probability distribution p,, ,. We assume that
the pair (p,) fully parameterizes this distribution.

Initially, consider a scenario with a series of ex-
periments £, (corresponding to namespaces NS;.),
each independently requesting samples drawn i.i.d.
from p,, . Formally, let (Z;)72, denote an infi-

. . . iid
nite sequence of random variables with Z;, ~ p,, ,.

Each experiment independently accesses distinct
samples leading to a non-overlapping partitioning
of the infinite sequence.

However, in practice, generating independent
samples for each experiment is inefficient. CACHE
Saver explicitly couples these experiments by us-
ing a shared prefix of the same infinite sequence
(Z;)2,. Intuitively, this corresponds to using a
shared random seed across all experiments and
caching seeded random samples. Within each
experiment E,, samples are i.i.d. by construc-
tion, directly inherited from the infinite sequence
(Z;). For two experiments E; and E,, let m =
min(n;, n;). Their first m samples coincide almost
surely: fi(Z), = f{(Z2), = Z Yk <m.

Table 1 shows a side-by-side comparison of the
two sampling strategies. The cacher (Alg. 1) en-
sures a shared seed for all coupled random variables.
The first evaluation of a random variable sets its
value across all experiments. Race conditions be-
tween experiments are resolved by the use of a
dynamically generated asynchronous mutex table.

3.2 Beyond Caching

Batcher. CacHE SAVER’s position between the rea-
soning strategy and the LLM allows for a range of
additional, transparent optimizations. As shown in
Fig. 3, we extend the caching layer into a pipeline
of modular and composable building blocks. The
first of these is a batching layer (Alg. 2), which
uses an asynchronous producer-consumer queue
to collect incoming requests and group them into
batches. The batching mechanism is governed by
two tunable parameters: a timeout and a batch size,
which together control the trade-off between respon-
siveness and throughput. Under light load, small

25707

Il No Cache Saver

L
==
I == 0=

(,op‘»‘o p.

*
W

(b) Llama4 Scout

(a) GPT4.1 Nano

Cost (USD)

Cache Saver

1.66 909
1.11 £ 606
2
0.55 O 303 |
I)
0.00 I ol HE == - Il En
> <k o® D ob o CCoP oF
<O '(° Bagla (:(9 <o <o V&P QJ:’\C(‘)

(c) GPT4 1- Nano (d) Llama4-Scout

Figure 4: Comparing the (a)-(b) quality, (c) cost (US$), and (d) CO, (gm) for each method with and without CAcHE
SAvVER, using GPT4.1-Nano (OpenAl API) and Llama4-Scout (deployed locally) as base LLMs, respectively.

batches pass through quickly with minimal delay;
under heavy load, larger batches form naturally, im-
proving efficiency. This batching is immediately
beneficial for local models, where it allows better
hardware utilization. In combination with other
CacHE SAVER building blocks, it also improves ef-
ficiency and reproducibility in online API settings.

Reordering Requests for Reproducible Results.
The order in which requests are resolved in asyn-
chronous computing is non-deterministic and can
therefore change results even across identical runs.
To ensure reproducibility, CACHE SAVER includes a
reordering module (Alg. 3) that ensures a determin-
istic order within each batch. Requests are sorted by
a stable identifier before being passed to the LLM
and reordered back to their original positions after
the LLM responds. The asynchronous reorderer
can guarantee reproducible request resolution in
scenarios where the asynchronous batcher is able
to group all in-flight requests into a single batch.

Deduplicator. Many LLM inference engines sup-
port efficient same-input, multiple-response use
cases, which are enabled by optimizations such
as paged attention, prefix prompt caching, input
sharing, etc.. Such optimizations are afforded by
most online platforms (e.g., OpenAl, Anthropic,
etc.), allowing users to request multiple i.i.d. sam-
ples for a given prompt, charging for input tokens
only once, and returning a list of completions; and
can be enabled for local deployments via infer-
ence engines such as vVLLM (Kwon et al., 2023c).
Overall, these optimizations incentivize grouping
identical requests to reduce redundant input pro-
cessing. CacHE SAVER’s deduplication module
(Alg. 4) takes advantage of this by identifying re-
quests within a batch that share the same prompt,
parameters, and namespace. These requests are
merged into a single LLM call with an aggregated
sample count, reducing both cost and latency.

4 Experiments

We assess the effectiveness of CACHE SAVER
through extensive experiments and analyses com-
prising 6 reasoning strategies, 5 benchmark tasks,
and 3 LLMs. Additional details, e.g., implementa-
tion, hyperparameters, additional results, etc. are
presented in Appx. C. The resources for repro-
ducing our experiments are available at https://
github.com/au-clan/cachesaver.

4.1 Setup

Base model. We use GPT4.1-Nano as the base
model for the main results presented in this pa-
per. To showcase the generalizability of our find-
ings, we report results with other base models,
namely, Llama4-Scout and Claude3.5-Haiku in the
Appendix. While Llama4-Scout is run locally on a
machine with 8 H200 GPUs, an AMD EPYC 9555
64-Core Processor, and 2TB of RAM, experiments
with other LLMs were performed via API calls to
their respective online platforms.

Number of runs. For § 4.2,4.3, and § 5.1, we run
each experiment 10 times and report both mean and
standard error of the evaluation metrics. For cost
reasons?, other experiments were only run once.

Prompts. To ensure a fair assessment of the bench-
marked reasoning strategies, we reuse the prompts
provided by the existing methods. For cases where
there are no existing prompts, e.g., novel tasks or
base LLMs, we adapt the original prompts provided
by the methods. For details, please see Appx. C.4.

Tasks and data. We conduct experiments on
a judicious mix of 5 benchmark tasks that re-
quire a variety of reasoning, planning, and gen-
eral problem-solving skills. Our tasks span diverse

2Since we report results for multiple reasoning strategies,
tasks, and base LLMs, costs blow up owing to a combinatorial
explosion; thus, experiments crucial for the main takeaways
were prioritized for multiple runs.

25708

https://github.com/au-clan/cachesaver
https://github.com/au-clan/cachesaver

B Average

_0.7 41
Qo5 231
203 250
4';" ()]
@ 0.2 €10
o

0.0 0.0

Al A2 A3 Al A2 A3

W Average (with CS)

B Marginal (with CS)

140.4 4.8
=
2105.3 236
70.2 924
o
35.1 =12
Al A2 A3 Al A2 A3

a b C d
Figure 5: Comp(arl)ng the performance of con((iugting 3 practical machine le(arzling tasks: Al: hyperpararsleeer tuning,
A2: ablation analysis, and A3: benchmarking, with and without CAcHE Saver using GPT4.1-Nano as base LLM.

application domains: (1) mathematical reasoning:
Game of 24 (Yao et al., 2024), (2) coding: Hu-
manEval (Chen et al., 2021), (3) question answer-
ing: HotpotQA (Zhilin et al., 2018), (4) scientific
reasoning: SciBench (Wang et al., 2024a), and
(5) creative writing: Shakespearean Sonnet Writ-
ing (Suzgun and Kalai, 2024). For evaluation, we
use the test sets as provided in the original bench-
marks. For additional details, please see Appx. C.1.

Reasoning strategies. We conduct experiments
with 5 representative SOTA reasoning strategies:
(1) React (Yao et al., 2023), (2) ToT (Yao et al.,
2024), (3) RAP (Hao et al., 2023), (4) ReST-
MCTS* (Zhang et al., 2024), and (5) FoA (Klein
et al., 2025). We only include methods that have
made their code available for at least one task bench-
marked in this study. Thus, we exclude GoT (Besta
etal., 2024), TouT (Mo and Xin, 2024), and Rec-
Mind (Wang et al., 2024b). Moreover, we exclude
BoT (Yang et al., 2024), where although the code is
available, an important resource (the meta-buffer)
to reproduce their results is unavailable. We ex-
clude LATS (Zhou et al., 2024) owing to its exor-
bitant cost footprint. Finally, owing to their lack of
reuse potential, we exclude all single-step reason-
ing strategies such as 1O prompting, CoT (Wei etal.,
2022), CoT-SC (Wang et al., 2023), and AoT (Sel
et al., 2024). For details, please see Appx. C.2.

Evaluation metrics. We assess the efficacy: Qual-
ity, efficiency: Latency, Throughput, #Tokens, and
Running Time, and cost. For API-based LLMs,
we report the cost (in USD), whereas for locally
hosted LLMs, we report the energy consumption
(in kWh) and the carbon footprint (CO, emissions
in grams) measured using Carbontracker (Anthony
et al., 2020). For details, please see Appx. C.3.

4.2 Basis for CAcHE SAVER Effectiveness

Fig. 6 shows the reuse potential using GPT4.1-
Nano as the base LLM by analyzing the percent-
age of duplicate prompts across all tasks and rea-

soning strategies benchmarked in this study. Re-
sults with Llama4-Scout are similar and are there-
fore presented in the Appendix. It is evident that
overall ~ 50% prompts are duplicates, which im-
plies that there exists a large overall reuse poten-
tial, which is not an artefact of a particular rea-
soning strategy or benchmark task or base LLM.
Moreover, Fig. 6(Left) further shows that while
all methods possess a similar number of duplicate
prompts, React reports a substantially low reuse
potential. This is largely expected as, despite being
an iterative strategy, React only performs 2 retrials,
which is consistent with conventions in the litera-
ture (Shinn et al., 2023). Thus, more retrials should
result in a larger reuse potential. On the other hand,
Fig. 6(Right) does not show any aberrations.

B Duplicate mm Unique

E: 100 [9.1% |
24.6%) .

3 N 24.9%) 392/ XL [sosollea o
B 74.4%)
ﬁ 50 90.9%)

75.4% 875.1%]|
g' 25 60.8%) 63.8%65-9% Nco.19: M 4o,
g zs 6%
a o

¢oP 10‘ p.‘- —(‘.; 'lA‘ gﬂa 09

Wwe c‘“ a“ (\
G? 9 et «\ \,\o
50“

Figure 6: Reuse potential: Analyzing the prompt redun-
dancy for (Left) each method by averaging over all tasks
and (Right) each task by averaging over all methods.

4.3 Statistical integrity of CACHE SAVER

Figs. 4(a)-(b) shows the quality across all tasks and
reasoning strategies benchmarked in this study us-
ing GPT4.1-Nano and Llama4-Scout, respectively.
We report the average and standard error over 10
independent runs. It is clear that the quality values
with and without CACHE SAVER are statistically in-
distinguishable (overlapping intervals), which fur-
ther provides strong empirical validation to our
claim (by construction) regarding the statistical
integrity of CAcHE SAVER (§ 3.1). At the same
time, Figs. 4(c)-(d) portray substantial cost (=~225%)
and carbon emission (=~235%) savings, respectively,

25709

0.8+

5.11
Doc. S5,

g 0.6 §3.9

Z 0.4 € 2.6

% 9

002 S 1.3

S iI 2 _

0.01 0.01 n

Il Original

B Dedup MW Cacher

=

CacheSaver

56.0
> 42.01
e
@ 28.0-
e
(1]
= 14.0 i
0.0- O

Figure 7: Ablation analysis to study the impact of the deduplicator and cacher modules of CACHE SAVER on the
performance of FoA (Klein et al., 2025) in the Game of 24 task with GPT4.1-Nano as the base LLM.

with the biggest improvements achieved for RAP
while the least for React, which is consistent with
the findings from Fig. 6(Left). It is important to
note that while the absolute values (e.g., cost in
Fig. 4c) might appear small, which is just due to
the extremely low cost of GPT4.1-Nano, we report
relative percentage savings. In fact, we conducted
the same experiment with GPT4.1, and found that
RAP required 34.87 and 12.56 US$ with and with-
out CACHE SAVER, respectively, roughly portraying
a similar savings as for GPT4.1-Nano.

4.4 CacHE SAVER for practical applications

In this experiment, we evaluate CACHE SAVER’S
ability to support practical machine learning ap-
plications, namely, Al: tuning hyperparameters,
A2: performing ablation analysis of a reasoning
strategy, and A3: benchmarking multiple reason-
ing strategies to identify the best. In all cases, we
use GPT4.1-Nano as the base LLM, three bench-
mark tasks, namely “Game of 24”, “HumanEval”,
and “SciBench”, and report average cost (with and
without CacHE SavER) and the marginal cost (with
CacHE SAVER), which represents the additional cost
of adding a new method (A3) or a new hyperparam-
eter configuration (A1l). The results are presented
in Fig. 5.

Al: Hyperparameter tuning. For Al, we tune
the hyperparameters for ToT (Yao et al., 2024)
by conducting a grid-search over tree-width: [1,
3, 5], tree-depth: [2, 3, 4], and #evaluations of
the value prompt: [1, 2, 3]. We find that CAcHE
SAVER reports substantial performance improve-
ments: 6x lower cost, tokens, and latency and 7x
higher throughput. While average (with CS, yel-
low bar) presents the realistic setting of executing
the full experiment, the marginal (with CS, green
bar) is also valuable as it presents the added cost of
incorporating a new variation in the experiment.

A2: Ablation analysis. For A2, we analyze the
three major variations of the FoA (Klein et al., 2025)
algorithm, in particular, by removing the (1) selec-
tion phase, backtracking mechanism, and resam-
pling strategy. Here, CACHE SAVER only obtains a
2.5x performance improvement. We hypothesize
that running the same method with a different hy-
perparameter configuration should result in a more
similar reasoning strategy when compared to run-
ning a different variation of a method, which offers
a plausible explanation for the differences in the
observed performance improvements.

A3: Benchmarking. For A3, we evaluate all the
structured reasoning strategies benchmarked in our
study, i.e., ToT (Yao et al., 2024), GoT (Besta et al.,
2024), and FoA (Klein et al., 2025). Here, CACHE
SAVER obtains a 2x (slightly lower than A2) perfor-
mance improvement. The hypothesis remains simi-
lar: the potential for reuse is even lower when con-
sidering entirely different reasoning strategies than
variations of a specific reasoning strategy. That
said, a cross-framework reuse potential is an inter-
esting and novel finding in its own right.

5 Analyses

5.1 TImpact of Namespace Size

§ 3.1 formalized the relationship between the
namespace configuration and statistical integrity
of an experiment. Let n and N be the number of
datapoints in a namespace and a benchmark, re-
spectively. We define namespace fraction (NF) to
be n/N, which naturally lies between [0, 1] as n
is upper-bounded by N. Here, we analyze the im-
pact of NF on the cost and carbon footprint (Fig. 15
presents the results). Recall that NF=1 corresponds
to the statistically correct configuration (§ 3.1),
whereas NF=0 corresponds to the maximum cost-
saving configuration. We find that the cost and
carbon footprint increase with increasing NF; how-

25710

ever, interestingly, we noticed that the quality still
remains statistically indistinguishable across all NF
values. While all the main results reported in the
paper correspond to NF=1, in practical settings, NF
could even be set to a lower value to increase cost
savings even further.

5.2 CacHE SAVER Ablation Analysis

Fig. 7 presents the impact of the deduplicator
and cacher of CacHE Saver. We report perfor-
mance metrics: (1) without CACHE SAVER, (2) with
only deduplicator, (3) with only cacher, and (4)
with CacHe Saver. We find that the cacher con-
tributes the most to the improvements seen by
CACHE SAVER, followed by the batcher. This result
shows the strength of our novel caching paradigm,
while also highlighting the practical improvements
obtained by other CACHE SavER modules.

5.3 Existing optimizations vs. CACHE SAVER

Table 3: Analyzing the impact of existing optimizations
and CAcHE Saver on the cost (in US$) of ToT (Yao et al.,
2024), FoA (Klein et al., 2025) and GoT (Besta et al.,
2024) across Game of 24, SciBench, and HotpotQA
using GPT-4.1-Nano as the base LLM. Values indicate
the percentage reduction in cost relative to the original.

Task Existing CacheSaver Both
Game 24 0.0% 29.7% 29.7%
SciBench 0.3% 47.8% 48.0%
HotopotQA 6.2% 33.2% 38.5%
Average 3.2% 36.9% 38.7%

Finally, we study how much CACHE SAVER saves
over and above existing platform-specific optimiza-
tions (such as KV caching, paged attention, etc.)
as already provided by OpenAl or vLLM. Table 3
presents the results. We find that while existing
optimizations lead to savings of ~3.3% on aver-
age, CacHE SAVER alone obtains ~36.9%. How-
ever, when both optimizations are switched on,
the overall improvement reported by CACHE SAVER
alongside existing optimizations is ~38.7%. This
shows that these optimizations do not collide with
each other, but rather complement each other, with
CAcHE SAVER providing orthogonal gains to those
from low-level platform-specific techniques.That
said, studying co-optimization strategies constitutes
as future work.

6 Discussion and Concluding Insights
6.1 Summary of Findings

Reasoning strategies portray ~ 50% prompt re-
dundancy. We show, both intuitively (§ 1) and em-
pirically (§ 4.2), the existence of substantial prompt
reuse potential across five representative SOTA rea-
soning strategies and diverse benchmark tasks.

Namespaced caching preserves statistical in-
tegrity of LLM responses. We convincingly
present the statistical correctness of CACHE SAVER
by construction (§ 3.1) and experiments (§ 4.3).

Other advantages. CACHE SAVER saves up to 60%
cost and carbon emissions of LLM reasoning strate-
gies across a variety of reasoning strategies and
benchmarks. Moreover, CACHE SAVER does not
possess any memory overhead, is plug-and-play,
and easily extendible to new reasoning strategies
or benchmark tasks.

6.2 Implications and Broader Impact

Integrity in Experimentation. We have intro-
duced a principled approach to LLM evaluation
by enforcing consistent seeding and input order-
ing, enabling statistically sound and reproducible
experimentation.

Environmental Efficiency. We have demon-
strated that avoiding redundant computation leads
to substantial reductions in energy usage and carbon
emissions, contributing to more sustainable LLM
experimentation.

Accessibility, Reproducibility, and Collabora-
tion. We have designed the cache to be publicly
shareable with the broader ML community, par-
ticularly benefiting researchers conducting applied
work with LLMs. This facilitates low cost follow-
up studies, ensures reproducibility of benchmark re-
sults, and significantly accelerates new community-
driven research by making shared resources easily
accessible.

Limitations

Currently, we evaluate each method in a plug-and-
play fashion; however, the implementations could
be further optimized to fully leverage the capabili-
ties of the CacHE SAVER framework. Additionally,
we could extend our workflows to optimize multi-
step pipelines by optimizing and then leveraging
the parallelization between independent steps.

25711

While the CAcHE SAVER framework is designed
to be modular and compatible with existing infer-
ence engines, optimizations within our system may
not always align with those in other frameworks.
For example, caching strategies or batching heuris-
tics used by CAcHE SAVER may conflict with the par-
allelism, memory management, or scheduling deci-
sions employed by underlying inference systems.
At present, we do not focus on co-optimization
across such system boundaries.

Our caching mechanism currently relies on ex-
act matches, which limits reuse when inputs vary
slightly. In future work, we aim to explore more
advanced strategies. Fuzzy caching could support
approximate or semantic matches to increase hit
rates. Cascading caches across memory tiers (e.g.,
RAM, SSD, distributed) could help balance latency
and cost. Sparsity-aware caching could store only
the most relevant context fragments, especially for
long prompts. Additionally, improving cache ob-
servability—through tools for hit/miss analysis, er-
ror tracing, and adaptive tuning—will be essential
for enhancing performance and debugging.

Because the framework operates at the user level,
our current focus is on high-level orchestration
rather than hardware- or system-level optimization.
Future work will explore low-level improvements
such as a hardware-optimized batcher that groups
requests by context length or cache affinity to im-
prove GPU utilization. We also plan to implement
prefetching strategies that proactively load or gen-
erate likely-needed cache entries, thereby reducing
latency and improving responsiveness.

Ethical considerations

In our opinion, this work has no major ethical con-
siderations. All the datasets and resources used in
this work are publicly available and do not contain
any private or sensitive information about human
subjects. Moreover, we use standard and vetted
benchmark datasets following the corresponding
licensing and fair use terms and conditions. Fi-
nally, the research presented in this paper does
not involve any interactions whatsoever with hu-
man subjects. That said, and similar to all other
LLM-based research, our work does have a neg-
ative impact on the environment, in particular by
contributing to the stark rise in greenhouse gas emis-
sions and electricity consumption on account of
generative Al models and tools. However, with
CacHE SAVER, our work provides an explicit solu-

tion to mitigate the negative impact of LLM-based
research on the environment by reducing the infer-
ence time, cost, and carbon footprint of LLM-based
reasoning frameworks. Furthermore, in the spirit
of complete transparency and for enabling external
scrutiny, all the resources required to reproduce the
experiments in this paper are publicly available in a
well-documented and organized GitHub repository.
We confirm that we have read and abide by the
EMNLP code of ethics.

Acknowledgements

We thank Oskar Regild Vestergaard, André Slot
Kristensen, Ewa Alicja Roszczyk, and Tereza
Ehnova for early contributions, and Francisco
Guzman, Vishrav Chaudhary, Valentin Hartmann,
Anil Murty, Damian K. Kowalczyk, Emre Kici-
man, and Kyle Cranmer for insightful discussions.
Arora’s lab is partly supported by grants from the
Novo Nordisk Foundation (NNF240C0099109),
the Pioneer Centre for Al, and EU Horizon 2020
(101168951). We also gratefully acknowledge gen-
erous gifts from Microsoft and It-vest - networking
universities.

References

Amey Agrawal, Ashish Panwar, Jayashree Mohan,
Nipun Kwatra, Bhargav S Gulavani, and Ramachan-
dran Ramjee. 2023. Sarathi: Efficient llm infer-
ence by piggybacking decodes with chunked prefills.
arXiv preprint arXiv:2308.16369.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong,
Yury Zemlyanskiy, Federico Lebron, and Sumit Sang-
hai. 2023. Ggqa: Training generalized multi-query
transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245.

Lasse F. Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. 2020. Carbontracker: Tracking
and predicting the carbon footprint of training deep
learning models. ICML Workshop on Challenges in
Deploying and monitoring Machine Learning Sys-
tems. ArXiv:2007.03051.

Fu Bang. 2023a. Gptcache: An open-source semantic
cache for llm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for
Natural Language Processing Open Source Software
(NLP-OSS 2023), pages 212-218.

Fu Bang. 2023b. Gptcache: An open-source semantic
cache for l1lm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for
Natural Language Processing Open Source Software
(NLP-OSS 2023), pages 212-218.

25712

https://github.com/au-clan/cachesaver

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
AAAI volume 38, pages 17682—17690.

Chen et al. 2021. Evaluating large language models
trained on code. ArXiv eprint 2107.03374, cs.LG,
https://arxiv.org/abs/2107.03374.

Zui Chen, Lei Cao, Sam Madden, Tim Kraska, Zeyuan
Shang, Ju Fan, Nan Tang, Zihui Gu, Chunwei Liu,
and Michael Cafarella. 2023. Seed: Domain-specific
data curation with large language models. arXiv
preprint arXiv:2310.00749.

Frangois Chollet et al. 2019. The arc agi benchmark.
https://arcprize.org/arc-agi.

Kexin Chu, Tzechinh Liu, Yunding Li, Pengchao Yuan,
and Wei Zhang. Car: An efficient kv cache reuse
system for large language model inference.

Kate Crawford. 2021. The Atlas of Al: Power, Poli-
tics, and the Planetary Costs of Artificial Intelligence.
Yale University Press.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in neural information processing systems,
35:16344-16359.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee.2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient llm inference.
arXiv preprint arXiv:2307.02628.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS:
Datasets and Benchmarks Track.

Zhenxiao Fu, Fan Chen, Shan Zhou, Haitong Li, and
Lei Jiang. 2024. Llmco2: Advancing accurate carbon
footprint prediction for llm inferences. arXiv preprint
arXiv:2410.02950.

ggml.ai. 2023. llama.cpp.

Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Am-
mar Ahmed, Ali Anwar, and Muhammad Ali Gulzar.
2024a. Meancache: User-centric semantic cache

for large language model based web services. arXiv
preprint arXiv:2403.02694.

Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Am-
mar Ahmed, Ali Anwar, and Muhammad Ali Gulzar.
2024b. Meancache: User-centric semantic cache
for large language model based web services. arXiv
preprint arXiv:2403.02694.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In EMNLP.

Helicone. Helicone OS Caching. https://docs.
helicone.ai/features/advanced-usage/caching,.

Helicone. 2024. LLM Caching - Helicone OSS LLM
Observability. https://docs.helicone.ai/features/
advanced-usage/caching. Accessed: August 2024.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, et al. 2024. Deepspeed-
fastgen: High-throughput text generation for llms
via mii and deepspeed-inference. arXiv preprint
arXiv:2401.08671.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun S Shao, Kurt Keutzer,
and Amir Gholami. 2024. Kvquant: Towards 10
million context length 1lm inference with kv cache
quantization. Advances in Neural Information Pro-
cessing Systems, 37:1270-1303.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu,
Xusheng Chen, Tao Xie, Chenxi Wang, Sa Wang,
Yungang Bao, Ninghui Sun, et al. 2024. Mem-
serve: Context caching for disaggregated Illm serv-
ing with elastic memory pool. arXiv preprint
arXiv:2406.17565.

IEA. 2025. Ai is set to drive surging electricity de-
mand from data centres. https://tinyurl.com/
iea-energy-2030.

Arun Iyengar, Ashish Kundu, Ramana Kompella, and
Sai Nandan Mamidi. 2025. A generative caching
system for large language models. arXiv preprint
arXiv:2503.17603.

Danush Khanna, Aditya Kumar Guru, Srivarshinee Srid-
har, Zidan Ahmed, Rubhav Bahirwani, Meetu Malho-
tra, Vinija Jain, Aman Chadha, Amitava Das, and Kri-
pabandhu Ghosh. 2025. Quicksilver—speeding up llm
inference through dynamic token halting, kv skipping,
contextual token fusion, and adaptive matryoshka
quantization. arXiv preprint arXiv:2506.22396.

Lars Henning Klein, Nearchos Potamitis, Roland Aydin,
Robert West, Caglar Gulcehre, and Akhil Arora. 2025.
Fleet of agents: Coordinated problem solving with
large language models. In Forty-second International
Conference on Machine Learning.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023a. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611-626, New York, NY, USA. Associa-
tion for Computing Machinery.

25713

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arcprize.org/arc-agi
http://www.jstor.org/stable/j.ctv1ghv45t
http://www.jstor.org/stable/j.ctv1ghv45t
http://arxiv.org/abs/2410.02950
http://arxiv.org/abs/2410.02950
https://github.com/ggml-org/llama.cpp
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://tinyurl.com/iea-energy-2030
https://tinyurl.com/iea-energy-2030
https://openreview.net/forum?id=yNpYb376zf
https://openreview.net/forum?id=yNpYb376zf
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023b. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611-626.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023c. Efficient
memory management for large language model serv-
ing with pagedattention. In SOSP, pages 611-626.

LangChain. LangChain Caching. https://python.
langchain.com/docs/integrations/llm _ caching.

LangChain. 2024. LLM Caching. https:
//python.langchain.com/v0.1/docs/modules/
model_io/llms/llm_ caching/. Accessed: August
2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274-19286. PMLR.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
tdschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. CoRR.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh
Tiwari. 2024. Llm inference serving: Survey of
recent advances and opportunities. arXiv preprint
arXiv:2407.12391.

Lightllm Team. 2023. Lightllm: A light and fast infer-
ence service for llm.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi
Yao, Shan Lu, Ganesh Ananthanarayanan, et al. 2024.
Cachegen: Kv cache compression and streaming for
fast large language model serving. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 38-56.

Noah Martin, Abdullah Bin Faisal, Hiba Eltigani,
Rukhshan Haroon, Swaminathan Lamelas, and Fa-
had Dogar. 2024. Llmproxy: Reducing cost to
access large language models. arXiv preprint
arXiv:2410.11857.

MLC-AL 2023. Mlc llm: Universal llm deployment
engine with ml compilation.

Shentong Mo and Miao Xin. 2024. Tree of uncertain
thoughts reasoning for large language models. In
ICASSP, pages 12742—-12746.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling.

OpenAl. 2024. Gpt-4o system card.

Sihyeong Park, Sungryeol Jeon, Chaelyn Lee, Seokhun
Jeon, Byung-Soo Kim, and Jemin Lee. 2025. A sur-
vey on inference engines for large language models:
Perspectives on optimization and efficiency.

Sajal Regmi and Chetan Phakami Pun. 2024. Gpt
semantic cache: Reducing llm costs and latency
via semantic embedding caching. arXiv preprint
arXiv:2411.05276.

Luis Gaspar Schroeder, Aditya Desai, Alejandro
Cuadron, Kyle Chu, Shu Liu, Mark Zhao, Stephan Kr-
usche, Alfons Kemper, Matei Zaharia, and Joseph E
Gonzalez. 2025. vcache: Verified semantic prompt
caching. arXiv preprint arXiv:2502.03771.

Bilgehan Sel, Ahmad Tawaha, Vanshaj Khattar, Ruoxi
Jia, and Ming Jin. 2024. Algorithm of thoughts: En-
hancing exploration of ideas in large language models.
In ICML.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In NeurIPS, pages 8634—8652.

Jovan Stojkovic, Chaojie Zhang, Ifiigo Goiri, Esha
Choukse, Haoran Qiu, Rodrigo Fonseca, Josep Tor-
rellas, and Ricardo Bianchini. 2025. Tapas: Thermal-
and power-aware scheduling for llm inference in
cloud platforms. In Proceedings of the 30th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 2, pages 1266—1281.

Mirac Suzgun and Adam Tauman Kalai. 2024.
Meta-prompting: Enhancing language models
with task-agnostic scaffolding. arXiv preprint
arXiv:2401.12954.

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi,
Dan Jurafsky, and James Zou. 2025. Dynamic cheat-
sheet: Test-time learning with adaptive memory.
arXiv preprint arXiv:2504.07952.

Triton. NVIDIA Triton Inference Server.

https://docs.nvidia.com/deeplearning/

triton-inference-server/.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yangqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2024a. Scibench: evaluating college-level scientific
problem-solving abilities of large language models.
In ICML.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
ICLR.

25714

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://python.langchain.com/docs/integrations/llm_caching
https://python.langchain.com/docs/integrations/llm_caching
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://llm.mlc.ai/
https://llm.mlc.ai/
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2401.12954
http://arxiv.org/abs/2401.12954
https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/

Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang,
Yingxue Zhou, Eunah Cho, Xing Fan, Yanbin Lu,
Xiaojiang Huang, and Yingzhen Yang. 2024b. Rec-
mind: Large language model powered agent for rec-
ommendation. In NAACL-HLT (Findings), pages
4351-4364.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS, pages 24824-24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38—45.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E. Gonzalez,
and Bin Cui. 2024. Buffer of thoughts: Thought-
augmented reasoning with large language models. In
NeurIPS.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yi-
hua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. 2025. Cacheblend: Fast large lan-
guage model serving for rag with cached knowledge
fusion. EuroSys’25.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. NeurIPS, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. In ICLR.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, et al.
2025. Flashinfer: Efficient and customizable atten-
tion engine for llm inference serving. arXiv preprint
arXiv:2501.01005.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for { Transformer-Based }
generative models. In /6th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521-538.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In NeurIPS.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie,
Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi

Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonza-
lez, et al. 2024a. Sglang: Efficient execution of struc-
tured language model programs. Advances in Neural
Information Processing Systems, 37:62557-62583.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou,
Chuanjie Liu, and Gang Peng. 2024b. Batchllm: Op-
timizing large batched 1lm inference with global pre-
fix sharing and throughput-oriented token batching.
arXiv preprint arXiv:2412.03594.

Yang Zhilin, Qi Peng, Zhang Saizheng, Bengio Yoshua,
Cohen William, Salakhutdinov Ruslan, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning, acting, and
planning in language models. In /ICML.

Hanlin Zhu, Banghua Zhu, and Jiantao Jiao. 2024. Effi-
cient prompt caching via embedding similarity. arXiv
preprint arXiv:2402.01173.

25715

https://arxiv.org/abs/2405.16444
https://arxiv.org/abs/2405.16444
https://arxiv.org/abs/2405.16444
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259

A CAcHE SAVER: Additional Details

The pseudocode for different modules of the CacHE SavER framework are presented in Algorithms 1—4.

Algorithm 1 CAcHER

Global State:

Cache C : (p,0) — [Z,, Z,, ...], initially empty
Usage counters U : (Ey,p,0) — u € Ny, initially 0
Mutex table M : (p, 6) > async lock

Asynchronous Procedure RequestSamples(r)
Input: Request r = (E,,p,0,n,id)
Output: Future fresolvingto (Z,,q,..., Z,1n)

f < new Future

key < (p,0)

. ifkey ¢ M then

M [key] < new async mutex

: end if

R T AN AN S

—_—
W NN = O

14: async acquire) [key]

15: ifkey ¢ C then

16: Clkey] <[]

17: endif

18: if (Ey,p,0) ¢ U then

19: U(E),p,0)] <0

20: endif

21w+ U[(Ey,p,0)]

22: 7 < Clkey]

230 Mpegy < max(0, u+n—1[Z|)

24: if ng.y > 0 then

25: Draw fresh samples (Z| 5.1, s 27140,) N Pp.6
26: Extend: Clkey| <= Z + (Z 71315+ Z 1 7/4m,,,)
27: 7Z <+ Clkey|

28: end if

29: Extract samples: (Z,, 1,..., Z,)

30: Resolve fwith value (Z,,,,...,Z,,,)

31: Update usage: U[(Ey,p,0)] < u+n
32: release) [key]
33: return f

A.1 Cache management: storage and eviction

Since retrieving cached responses from the disk is many orders of magnitude faster than issuing a new LLM
query, especially for remote APIs, CACHE SAVER persists all cache entries to the disk by default. Unlike
typical in-memory caches, where storage is a limiting factor, here storage is cheap and recomputation
is costly, so no advanced eviction policy is necessary for most use cases. That said, should eviction be
required (e.g., due to storage constraints), the simplest approach is to evict all responses associated with a
given prompt and parameter set. When the evicted prompt is encountered again, the cache miss results in
requests to the underlying LLM, and the newly generated responses are stored in the cache. This preserves
the cache’s guarantee of i.i.d. samples within each namespace.

25716

Algorithm 2 Async BATCHER

1: Global State: Queue O < ||

2: Parameters: batch size NV, timeout ¢, overflow flag overflow
3:

4: Asynchronous Procedure RequestSamples([ry, ..., 7,,])
5. Input: List of m requests r, = (E.,p*, 6%, n', idi)
6: Output: List of futures [f}, ..., f,,], where each f; resolves to n’ samples
7: fori=1tomdo
8: t < current time

9: f, + new Future

10: enqueue (7;,t, f;) into Q

11: end for

12: return [f;,..., f,,]

13:

14: Asynchronous Background Task BatchWorker()
15: while true do

16: (rq,ty, f1) < async Q.get()

17: Initialize: B < [ry], F < [f4]

18: tstart A tl

19: while true do

20: T <— § — (current time — tg,,)

21 if | 3| > N or 7 < 0 then break

22: try

23: (r;,t;, f;) < async Q.get() with timeout 7

24: Append r; to B, f; to F

25: catch timeout: break

26: end while

27: if overflow then

28: while Q is not empty do

29: (r;t;, f;) < Q.get_nowait()

30: Append r; to B, f,to F

31: end while

32: endif

33: responses <— model.batch_request(25)

34: fori=1to|B|do

35: resolve f; < responses|[i]

36: end for
37: end while

A.2 Cache consistency

To ensure cache consistency in concurrent asynchronous environments, CACHE SAVER utilizes per-key
mutex locks. When a request is received, a unique hash-based key is generated, and a corresponding
mutex is initialized if no other request holds the mutex. Alternatively, if a different request currently
holds the mutex, it is retrieved from that request once it is freed. This mutex guards access to the critical
section where the cache, potentially updated with fresh model responses, is read, and usage counters are
incremented. By serializing access to cache entries on a per-key basis, the implementation prevents race
conditions and ensures accurate tracking of response usage. At the same time, requests for different keys
proceed concurrently, maintaining overall efficiency.

25717

Algorithm 3 Async REORDERER

1: Asynchronous Procedure RequestSamples([ry, ..., 7,,])
2: Input: List of m requests r; = (EL, p’, 0", n’,id")
3. Output: List of futures [f;, ..., f,,], each resolving to n’ samples
4: Create futures: f; <— new Future fori = 1tom
5: Let R« [ry, ..., Jand F < [fy, ..., fo.]
6: Compute sorted indices: J .4 < sort indices of R by id"
7. Reorder requests and futures:

8 ‘Wsorted — W[ysorted]

9: ‘,)Tsorted — ?[jsorted]

10: asynchronously:

11: responses <— await model.request(K oq)

12: for i =1 to m: resolve F 47| < responses[i]

13: return [f17) fm]

Algorithm 4 Async DEDUPLICATOR

1: Asynchronous Procedure RequestSamples([ry,...,7,,])
2: Input: List of m requests r; = (EL, p’, 0", n’,id")

3: Output: List of futures [f;, ..., f,,], €ach resolving to n’ samples
4: Initialize:

5. X < {} {Deduplication key — (E,,p,0)}

6: N « {} {Key + total requested samples}

7. M + {} {Key > list of (future, count) pairs}

8: fori =1tomdo

9. r, = (ELp 0 n, idi)

10: k; « Hash(E!,p’, 6"

11: f; < new Future

12: Append (f;,n?) to M[k,]

13 X[k;| < (E},p',0")

14: N[k, < N[k;] +n’

15: end for

16: for each key k do

17 (E,p,0) « X[k

18: Nyotal <~ N[k]

19: asynchronously:

20: responses <— await model.request(Fy, p, 0, 1)
21: resolve all futures in M [k] using responses, in order
22: end for

23: return [fy, ..., f,.]

A.3 Batcher: Handling batch overflows

To improve efficiency in scenarios where multiple clients issue identical requests concurrently, CACHE
Saver includes an option that allows the batch to overflow. When enabled, this mechanism allows
additional requests to be added to a batch even after the specified batch size has been reached, but only if
they are duplicates, i.e., they share the same input (prompt and decoding parameters) as an existing request
in the batch. Overall, this enables the deduplicator module of CacHE Saver to work at full efficiency,
improving the overall performance of the CACHE SAVER pipeline.

25718

A.4 Practical considerations

CAcCHE SAVER is built from modular building blocks, allowing users to flexibly compose different pipelines
that combine caching, batching, deduplication, and reordering in any order or subset, depending on their
application needs. In particular, the choice of namespace assignment gives precise control over the
trade-off between strict sample independence (one namespace per benchmark) for unbiased benchmarking
and maximal cost savings (one namespace per benchmark puzzle or /V namespaces per benchmark, where
N is the number of puzzles in the benchmark) for large-scale ablations or production deployments. For
example, users can construct pipelines with full independence across benchmarks or enable aggressive
reuse within a benchmark as appropriate.

B The Statistics Of Cachesaver

CacHE SAVER’s namespacing paradigm offers a way to cache randomness while preserving statistical
integrity. This is useful for experiments that study a random distribution with a high sample cost, e.g.
LLMs. For each experiment, it is important to obtain a number of independent samples sufficient for
statistical significance. At the same time, it is permissible, even desirable, to seed the randomness across
experiments, to make individual experiment outcomes more comparable. CACHE SAVER is based on
the concept of stochastic coupling and implements a transparent, man-in-the-middle caching layer that
associates samples with namespaces and ensures that within a namespace (e.g. an experiment) all samples
are i.i.d., while across namespaces the sample reuse is maximized. To illustrate this behaviour, consider a
simple toy example: Drawing samples from a normal distribution.

* First, draw N samples without CACHE SAVER.
* Then draw N samples with CACHE SAVER, in a namespace "A”.
* Finally, draw 2N samples with CACHE SAVER, in a namespace ”B”.

We assert: All three sets of samples follow a normal distribution. For a statistical test, the three sets seem
to come from the same underlying distribution (which is indeed true). The direct samples, drawn in the
first step, are different from the samples in A and B. The first /V samples in A and B are identical. The
second N samples in B are different. All 2 «+ N samples in B are i.i.d.

This behaviour is illustrated in Fig. 8. We draw 200 samples from a 2D multivariate Gaussian distribution
in namespace ”A”, then 400 samples in namespace ”B”. The 200 samples in ”A” and the first 200 samples
in ”B” are identical. All samples in ”A” and ”B” are jointly Gaussian and, within their namespace, i.i.d.

C Additional Experimental Details

C.1 Detailed Task Descriptions
C.1.1 Game of 24

The Game of 24 is a math puzzle where players are given four numbers and must use each of them exactly
once, along with the basic arithmetic operations (+, —, X, +), to form an expression that evaluates to 24.

Our benchmark includes 1,362 such puzzles collected from 4nums.com, organized in ascending order
of difficulty. Each puzzle provides four input numbers, and the goal is to generate a valid equation that
results in 24. Following the approach of ToT (Yao et al., 2024), we designate puzzles numbered 901 to
1000 as our test set.

C.1.2 SciBench

SciBench (Wang et al., 2024a) is a scientific reasoning benchmark designed to evaluate college-level
problem-solving abilities across subjects such as mathematics, physics, and chemistry. Each task presents
an open-ended problem that requires multi-step reasoning, domain-specific knowledge, and advanced
computations, including calculus and differential equations. Problems are drawn from widely used
textbooks and university exams.

25719

First: Draw 200 samples in namespace A Second: Draw 400 samples in namespace B

41 4
@ Samples reused from A
o L o Fresh samples
3 3
° ° e ° ce °
°
2 o ° 2 °
00 © o @0 0o ° °
° ® oo® ° % ° ° o s ©0.%® °
1 ° %00 o ° hd 1 v ce o oY s . %3 °
#°0 00 B0 ¢%00 ©, CX T Y Oa% ° ’o°
020,00 @ © ° ° d ° 0 o%elw .Qx ° e °e °
o e ®%o0o0 °9°% 0". %o Y o ° eee 9,9.,0% 0o [. ©®
0 ° oo""’l?‘e’..:‘ o ©® oo 0 o 'y o-% 8%e .’.3 @ %, ©o
° g 0P O® o o° ° g o OOO” e r °® e
° ° .} °° o ® ° ° R L ” @™ _o
-1 % ®oo oo e -1 o o% ".000020 o oo "o
o, e © Y ° ° o o, Y . ° o , °
o o @ ° ® %% o®
-2 ° -2 - ° ° i
e o e o
° ° e e ° ° ¢ o R
-3 -3 ° °
3 ey -1 0 1 2 3 3 Y -1 0 1 2 3
X1 X1
KDE for namespace A KDE comparison: Cached vs All B
4 4
mmm KDE for namespace A == KDE for the first 200 samples (identical to A)
KDE for all samples
3 3

X2
o

X2
o

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X1 X1

Figure 8: Sample Reuse for a Multivariate Gaussian

Following the approach of ReST-MCTS (Zhang et al., 2024), we sampled 109 problems spanning
different subjects to form the test set. Quality is measured using an accuracy metric, defined as the
proportion of problems correctly solved according to the official solutions (exact matching).

C.1.3 HumanEval

HumanEval (Chen et al., 2021) is a code generation benchmark where participants are given natural
language docstrings and must generate Python functions that correctly implement the described behavior.
Each problem includes a hidden test suite used to verify functional correctness.

Following the setup from Reflexion (Shinn et al., 2023), the benchmark consists of 100 programming
tasks in the test set. We evaluate performance using the pass@ /! metric, which measures the proportion of
problems solved correctly on the first attempt.

C.1.4 HotpotQA

HotpotQA (Zhilin et al., 2018) is a large-scale question answering benchmark that tests an agent’s ability
to perform multi-hop reasoning across multiple documents. Multi-step approaches, such as ToT, are
permitted to interact with an API that enables document retrieval and targeted information lookup.
Following prior work (Zhou et al., 2024; Shinn et al., 2023), we evaluate on a set of 100 randomly
selected questions. The quality of a response is judged based on exact match (EM) with the oracle answer.

C.1.5 Shakespearean Sonnet Writting

Shakespearean Sonnet Writing (Suzgun and Kalai, 2024) is a creative generation task where the goal is to
compose a 14-line sonnet adhering to the classic rhyme scheme “ABAB CDCD EFEF GG”. Each sonnet
must include three provided words verbatim.

Following Suzgun et al. (Suzgun and Kalai, 2024), we randomly sampled 50 datapoints to form the
test set. Quality is measured using an accuracy metric, which reflects the proportion of sonnets that both
satisfy the rhyme scheme and include all three required words exactly as given.

25720

C.2 Detailed Descriptions of Reasoning Strategies

Multi-step reasoning strategies can be broadly grouped into two high-level categories: (1) structured
reasoning and (2) iterative reasoning, which capture the major design paradigms in the space of LLM
reasoning. To systematically assess the effectiveness of CACHE SAVER in contemporary multistep reasoning
settings, we pick three and two representative state-of-the-art (SOTA) methods from the two categories,
respectively, that incorporate distinct algorithmic choices and reasoning dynamics. Specifically, we pick
ToT and FoA from structured reasoning, and React, RAP, and ReST-MCTS from iterative reasoning. The
five representatives are described below.

C.2.1 Tree of Thoughts (ToT)

Decomposes the problem into multiple chains of thoughts, organized in a tree structure. Thought evaluation
and search traversal algorithms are utilized to solve the problem (Yao et al., 2024).

C.2.2 Fleet of Agents (FoA)

Decomposes the problem into multiple chains of thoughts. Employs a genetic-type particle filtering
approach to navigate through dynamic tree searches to solve the problem (Klein et al., 2025).

C.2.3 Graph of Thoughts (GoT)

Allows the organization of thoughts in a graph structure (Besta et al., 2024). It introduces arbitrary
graph-based thought transformations such as thought aggregation and thought refinement.

C.24 ReAct

A reasoning method that interleaves reasoning (thought generation) and acting (taking environment-
interacting actions) to solve problems interactively. Each action’s output informs subsequent reasoning,
enabling adaptive and dynamic problem-solving (Yao et al., 2023).

C.2.5 Reasoning via Planning (RAP)

is a reasoning framework that equips Large Language Models (LLMs) with an internal world model and
employs Monte Carlo Tree Search (MCTYS) for strategic exploration of reasoning paths. RAP repurposes
the LLM to simulate future states and evaluate potential actions, enabling deliberate planning and improved
problem-solving performance (Hao et al., 2023)

C.2.6 ReST-MCTS*

A reasoning method that employs a modified Monte Carlo Tree Search (MCTS) algorithm, guided by a
process reward model (PRM), to explore and evaluate reasoning paths. In this work, we only evaluate
in-context reasoning strategies; thus, we utilize only the MCTS* component of ReST-MCTS*, excluding
the self-training aspects involving policy and reward model updates (Zhang et al., 2024).

C.3 Detailed Descriptions of Evaluation Metrics

* Quality indicates how well a reasoning strategy performs on a benchmark task. It depends on the
task type and can be measured by accuracy, score, or success rate. The exact definition of the quality
metric is provided with the description of each benchmark task in Appx. C.1.

+ Latency measures how long it takes for an LLM to respond to a request. For each reasoning strategy
and benchmark task, we report the average latency, i.e., the average time required per call.

* Throughput. Let each datapoint in a benchmark task be referred to as a puzzle. For each reasoning
strategy, we report the number of puzzles solved per second. Overall, throughput reflects a system’s
ability to process multiple tasks concurrently.

+ #Tokens denote the total number of tokens used by a reasoning strategy to solve a benchmark task.
We report the total, including both the input tokens sent to the model and the output tokens in the
response generated by an LLM.

25721

* Time refers to the wall clock time, i.e., the total time taken by a reasoning strategy to solve a
benchmark task from start to finish, including all processing and waiting times.

* Cost (API-based LLMs only) denotes the total monetary cost (in USD) of executing a reasoning
strategy on a benchmark task when using an LLM via an API call to an online platform. We compute
the cost based on the number of tokens processed and the platform provider’s pricing.

* Energy consumption and Carbon footprint (Local LLMs only) measures the total energy con-
sumption (in kWh) and the estimated CO, emissions (in grams) to run a reasoning strategy for a
benchmark task. We measure these quantities using Carbontracker (Anthony et al., 2020).

C.4 Implementation Details
C.4.1 Platforms, Model checkpoints, and Prices

The GPT models were accessed through the OpenAl API while Claude models were accessed through
the Anthropic API. For our local experiments, our models were deployed using the vLLM (Kwon et al.,
2023a) inference engine.

To compute the costs of the online experiments, we used the current model prices indicated by the
corresponding platform. The specific models snapshot used in this work, along with their respective prices,
are presented in 4. Note that Llama4-Scout was run locally, and thus, the cost is listed as N/A.

Table 4: Base LLM snapshot prices. OpenAl and Anthropic prices for each model used during the implementation
of the project.

USS per IM prompt tokens | US$ Per 1M completion tokens
GPT4.1-Nano-2025-04-14 0.10 0.40
Claude3.5-Haiku 0.8 4
Llama4-Scout-17B-16E-Instruct N/A N/A

C.4.2 Model configurations

Generation parameters specified when making calls to any of the models used throughout this project.
These parameters were not defined by us, but by the implementation where the respective prompts were
introduced. However, as newer models were used for this study, we only adjusted the maximum allowed
completion tokens as needed to ensure compatibility and successful completion of responses.

C.4.3 CacHE SAVER Hyperparameters

The CacHE Saver framework itself has two hyperparameters: (1) batch size and (2) timeout of the
asynchronous batcher. The batch size should be chosen large enough to allow the deduplicator to identify
and group duplicate prompts efficiently. At the same time, too large a batch size can trigger timeouts.
We use CACHE SAVER in a setup where many tasks, frameworks, configurations, etc. are evaluated
asynchronously and choose a batch size of 300 and a timeout of 2 seconds.

Importantly, when running a set of experiments at the same time, tuning the batch size carefully can
lead to further cost savings. The batch size for the asynchronous batcher may be larger than batch sizes
that can be processed within the memory constraints of a local model or the rate limits of a third-party

Table 5: Generation parameters specified when making requests to a base LLM.

max_tokens | temperature | top_p | stop
Game of 24 200 0.7 1 Null
SciBench 300 0.7 1 Null
HumanEval 200 0.7 1 Null
HotpotQA 300 0.7 1 Null
Sonnet Writing 800 1.0 1 Null

25722

https://platform.openai.com/docs/overview
https://docs.anthropic.com/en/api/overview

API to a model hosted at an online platform. Slicing a batch into optimal chunks is a downstream task and
should be implemented in a model-specific wrapper.

C.4.4 Prompts

Due to the large number of methods and tasks presented in this paper, including all corresponding prompts
would be impractical within the main text. Therefore, we provide a comprehensive collection of all
prompts used in our experiments on our GitHub repository: https://github.com/au-clan/cachesaver/
prompts.md.

C.5 Additional Results
C.5.1 Hyperparameter tuning

Emm Cache Saver B No Cache Saver

o
o
w
o
w
o

97.6 0.4

- - o
9) 0.5 227 3732 3,0.3 327
=] c = 'g,
<03 €18 @ 48.8 S 0.2 D18
1]) ® 3 °
go2 Tc_f 0.9 =214 ﬁ Co1 Eoo

=

0.0 L 0.0 0.0 -__ 0.0 0.0 [-
7— “C e 7— “C 'I—A “C“ ?— “C e 'I—A' “C“
o™ “ga®® Go™° ga®® Ga™® g Ga™® “g®® o™ ga®®

Figure 9: OpenAl: Hyperparameter tuning for Tree of Thoughts across tasks

Il Cache Saver @ No Cache Saver

o
w
w
w
B
=

. , 64.2 0.6 .
- - -
Qo4 =26 2481 ‘?05 5_3.1
203 218 § 321 To3 221
= Q = 3 °
7] ~ e o =
go1 L g 09 L 16.0 02 - g 10
0.0 0.0 0.0 L 0.0
28 o 28 o 28 o 26 o 24 o
Ga™° gr.'\“e“ Ga™° 5c\®® e Ga™° 5c\®® e® c,a‘“e 5c\®® e o™ 5(,‘\33“
Figure 10: Llama: Hyperparameter tuning for Tree of Thoughts across tasks
C.5.2 Ablation Analysis
mmm No Cache Saver mmm CacheSaver
0.8 51 56.0 0.4 09
Qo6 239 2420 203 5_0.7
204 226 § 28.0 T o2 Dos
=] = 3
§ 02 i i § 13 i ii 3140 i o1 E 0.2 I
0.0 i; 0.0 [0.0 Ii i- 0.0 " 0.0 .i
val, onch val onch val onch eval ach eval nch
cefy “\a“E aee™ cam o ma“e aee’ c,a‘_‘\‘ E a8 cam i “\a“ aee’ colu ma“ ase”

Figure 11: OpenAl: Ablation analysis for Fleet of Agents across tasks

C.5.3 Benchmarking
C.5.4 Impact of Namespace size
C.5.5 Optimization interference

3The best performing implementation of Mini Crosswords for ToT is using its Depth-First Search variation. As a result, by
definition all the states that the algorithm traverses through are unique, and because of this, most prompts are as well. Since the
prompts are unique, minimal reuse is possible and by extension the percentage of cache retrievals is nominal in this experiment.

25723

https://github.com/au-clan/cachesaver/prompts.md
https://github.com/au-clan/cachesaver/prompts.md

I No Cache Saver CacheSaver
0.7 5.0 79.1 0.5 0.6
- —_ -
Qos =37 5593 204] 305 I l
=] " g £ £
:0.4 525 3396 gO.Z 30.3
§ 0.2 I L fé 12 310 I I i Co1 I £o02 i
- S I
0.04 0.0 0.0 0.0
val “c“ val _nch val _nch val _ach
cal) “‘a“e BeT G ma“ sc‘“e Galy ma“e BT Gard ma“esd BeT G\ ma“e Be
nu nw nw nw nw
Figure 12: Llama: Ablation analysis for Fleet of Agents across tasks
-~-- No Cache Saver Cache Saver
042 | P30/ - S — 53 2 0.66
20.38 Z527 347 2060
20.35 £2.05 §42 20.54
8031 %183 837 20_48
0.28 Fie1 32 Fo.42

0.00.20.40.60.8 1 0.00.20.40.60.8 1

0.00.20.40.60.8 1

0.00.20.40.60.8 1 0.00.20.40.60.8 1

Figure 13: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on

the Game of 24 task, for the Tree of Thoughts method.

P T 1) [— 40
2037 2108 233
20.34 21.78 326
20.32 2157 & 20

0.29 F 136 13

- No Cache Saver

Cache Saver

w071
20.60
5
20.49
e
£038

Fo27

0.00.20.40.60.8 1 0.00.20.40.60.8 1

0.00.20.40.60.8 1

0.00.20.40.60.8 1

0.00.20.40.60.8 1

Figure 14: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on

the Game of 24 task, for the Fleet of Agents method.

No Cache Saver

Cost (USD)

T T T T T T

0 0.2 0.4 0.6 0.8 1

Cache Saver

T T T T T T

0 0.2 0.4 0.6 0.8 1

Figure 15: Namespace impact: Analyzing the impact on cost as a function of the percentage of puzzles sharing
the same namespace for GPT-4.1-Nano (Left, cost in USD) and LLaMA4-Scout (Right, cost in estimated CO,

emissions)

Cache retrievals (%) ToT FoA ‘ Average
Game of 24 50.39 43.04 | 46.71
Mini Crosswords 1.983 5278 | 27.38

Average

26.19 4791 | 37.04

Table 6: Percentage of prompt responses retrieved from the cache instead of being generated by the LLM during the
intra-framework namespace sharing experiment. By allowing each puzzle instance to reuse responses produced by
others (with one-time usage constraints), CacheSaver significantly reduces redundant generation, highlighting its
effectiveness in promoting efficiency through controlled response sharing.

25724

