
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 25703–25724
November 4-9, 2025 ©2025 Association for Computational Linguistics

Cache Saver: A Modular Framework for Efficient, Affordable,

and Reproducible LLM Inference

Nearchos Potatmitis,* ♣ Lars Klein,* ♢ Bardia Mohammadi,♤ Chongyang Xu,♤

Attreyee Mukherjee,♤ Laurent Bindschaedler,♤ Niket Tandon,♥ Akhil Arora♣

♢EPFL ♤MPI SWS ♥Microsoft Research ♣Aarhus University

nearchos.potamitis@cs.au.dk, lars.klein@epfl.ch
bmohamma@mpi-sws.org, atmukher@mpi-sws.org, cxu@mpi-sws.org

bindsch@mpi-sws.org, niket.tandon@microsoft.com, akhil.arora@cs.au.dk

Abstract

Inference constitutes the majority of costs

throughout the lifecycle of a large language

model (LLM). While numerous LLM infer-

ence engines focusing primarily on low-level

optimizations have been developed, there is

a scarcity of non-intrusive client-side frame-

works that perform high-level optimizations. In

this paper, we introduce Cache Saver, a mod-
ular, plug-and-play, and asynchronous frame-

work that facilitates high-level inference op-

timizations, thereby integrating cleanly into

existing systems without requiring changes to

the end-user application logic or the underly-

ing LLM. The key novelty is a namespace-

aware list-valued cache that ensures statisti-

cal integrity of LLM responses by generating

i.i.d. responses within a namespace as well as

ensuring reproducibility. Moreover, as a di-

rect consequence of operating at a high level,

Cache Saver supports both local and online

models. We conduct extensive experiments

with five representative state-of-the-art reason-

ing strategies, five diverse benchmark tasks,

and three different LLMs. On average across

all methods, tasks, and LLMs, Cache Saver
reduces cost by ≃ 25% and CO2 by ≃ 35%.

Notably, Cache Saver excels in practical ma-
chine learning scenarios such as benchmarking

across multiple methods or conducting ablation

analysis of a specific method, obtaining sub-

stantial cost and carbon footprint reduction of

≃ 60%. Cache Saver is publicly available at
https://github.com/au-clan/cachesaver.

1 Introduction

Large language models (LLMs) have taken the

world by storm. Most mainstream web applica-

tions (e.g., Facebook, Twitter/X, WhatsApp, Red-

dit, Google/Bing Search, etc.) now offer some form

of LLM-based companion or assistant. Not surpris-

ingly, LLMs are estimated to account for ≃ 2%

*Equal contribution.

Client Initialisation

client = OpenAI()

Generate a response

response =

client.chat.completions.create(

messages=...,

n=...,

temperature=...,)

!pip install CacheSaver

Client Initialisation

client = CacheSaver(OpenAI())

Generate a response

response =

client.chat.completions.create(

messages=...,

n=...,

temperature=...,)

One-Line Change!

Figure 1: Illustration of Cache Saver’s seamless integra-

tion: a one-line change enables its modular, transparent

optimization layer.

of global electricity consumption and greenhouse

emissions (Crawford, 2021), a figure projected to

rise to ≃ 8% by 2030 (IEA, 2025). Most costs

in an LLM’s lifecycle come from inference (Fu

et al., 2024), which is expensive, especially with

the rise of autonomous agents (Fan et al., 2022),

test-time scaling (Muennighoff et al., 2025), multi-

step reasoning strategies (Yao et al., 2024; Klein

et al., 2025; Shinn et al., 2023; Hao et al., 2023),

and native reasoning models (OpenAI, 2024). For

instance, OpenAI’s o3 costs ≃1000$ per task on
the ARC-AGI benchmark (Chollet et al., 2019).

Existing work and challenges. To address this

issue, numerous LLM inference engines–most no-

tably vLLM (Kwon et al., 2023a)–have been de-

veloped in recent years. However, owing to their

focus on low-level optimizations such as efficient

key-value (KV) caching and memory manage-

ment (Kwon et al., 2023b; Ainslie et al., 2023; Park

et al., 2025), it is non-trivial to leverage these en-

gines for novel applications/LLMs without either

modifying the application logic or the LLM or both.

Notably, these engines cannot be used with online

API-based LLMs. While recent work on client-side

caching (Bang, 2023a; Helicone; LangChain) is a

step in the right direction, these approaches are typi-

cally limited to generic semantic matching, and lack

guarantees for reproducibility, statistical integrity,

25703

https://github.com/au-clan/cachesaver

Search Tree (T2)Search Tree (T1 U T2)
(CacheSaver View)

Search Tree (T1)

Unique states (T1) Unique states (T2)
Common States (T1∩ T2) Discarded states Standalone

(One-F/W)
Benchmark
(Cross-F/W)

Ablate
(One-F/W)

0

25

50

75

100

Pr
om

pt
 P

er
ce

nt
.

52.3%

47.2%

59.7%

40.3%

65.7%

34.3%

Duplicates Unique

Figure 2: (Left) Search trees T1 and T2 corresponding to independent executions of two search strategies, and T1∪
T2, the combined search tree as seen by Cache Saver recognizing the reuse potential through the common states.
(Right) Analyzing the prompt redundancy for three different Cache Saver configurations across 5 representative
SOTA methods and tasks. On average, Cache Saver results in 21%, 36%, and 45% cost savings, respectively.

or support for complex experimental workflows.

Moreover, since in many practical application sce-

narios, such as stochastic sampling, uncertainty es-

timation, or ensuring policy diversity, reasoning

strategies require multiple independent responses

to the same prompt, a naïve KV cache that maps

each unique prompt to a single LLM response is

undesirable.

Reuse potential. To better illustrate the reuse po-

tential, consider a math puzzle solved step-by-step

using a tree search. Each node represents a state

in the solution trajectory, and a prompt asks the

LLM to suggest the next step. While a breadth-first

search (BFS) may try to discover all child nodes of

a current node by repeatedly calling the next-step

prompt and aggregating suggestions, a depth-first

search (DFS), by contrast, will commit to one path

and go deep, expanding it repeatedly before back-

tracking. Both strategies use the same prompts

and may visit similar regions of the state space. It

is necessary for their samples to be independent

within each search, so that repeated queries for the

next step can discover branches in the search tree.

However, to compare these two strategies fairly,

it is important that they explore the same graph,

i.e., when they encounter the same state, they re-

ceive the same samples. This is a form of stochastic

coupling and can be achieved by reusing samples

across frameworks. Fig. 2(Left) shows for toy data

how two tree-search strategies (T1 and T2) may be

coupled to explore the same tree, and how the par-

tial views onto the search space are assembled into

a shared latent tree (T1∪ T2) in the cache. Further,

Fig. 2(Right) presents the real-world reuse potential

by showcasing average prompt redundancy across

5 representative state-of-the-art (SOTA) methods

and tasks. Notably, we observe substantial dupli-

cates ≃50–65% both during executions of a single

method (Bars 1 and 3), which is expected owing to

similarity across variations of a single method, and

across methods (Bar 2), which is an interesting

and novel finding of our work.

Present work (Cache Saver). We implement

Cache Saver (Fig. 3) as a set of pluggable, com-

posable components that together form a modular

request pipeline between the user and the LLMwith-

out imposing architectural constraints or design pat-

terns. At its heart is a fundamentally novel caching

paradigm operationalized using a list-valued cache

and managed using the concept of namespacing

to control how and where samples may be reused.

Within a namespace, samples are guaranteed to be

i.i.d., whereas across namespaces, samples may be

reused. An implementation of Fig. 2(Left) would

rely on two namespaces ”T1” and ”T2”. Beyond

the novel cache, Cache Saver also substantially

benefits by managing incoming queries with mini-

mal redundancy and maximum efficiency (batcher

and deduplicator), ensuring deterministic request

handling and consistent output ordering for re-

producibility (reorderer), and precise tracking of

prompt-response mappings (cacher), enabling con-

trolled experimentation and more reliable bench-

marking across diverse configurations. On average,

Cache Saver results in 21%, 36%, and 45% cost

savings, respectively, across the three scenarios

presented in Fig. 2(Right).

Contributions.

• We convincingly motivate (both intuitively and

empirically) the existence of a substantial prompt

reuse potential in both intra- and inter-framework

settings (§ 1 and § 4).

• We propose Cache Saver, a modular, plug-and-
play (Fig. 1), and asynchronous framework for effi-

cient and reproducible LLM inference. Additional

advantages include low memory overhead owing

to a disk resident cache and its ease of deployment:

Cache Saver is designed as a fully transparent

man-in-the-middle optimization layer that can be

25704

Figure 3: Overview of our Cache Saver framework: (Top) Cold-start and (Bottom) Warm-start.

readily integrated into any LLM inference stack.

(§ 3).

• Powered by structured namespace-aware caching,
ours is the first work to enable response reuse in

LLMs without sacrificing the statistical integrity of

the generative LLM. Our new approach to caching

works on top of existing optimizations and allows

for a new level of sample-reuse. Based on the con-

cept of stochastic coupling, it is tailored specifically

for structured reasoning algorithms and agentic AI

deployments. (§ 3.1).

• We conduct extensive experiments on five rea-

soning strategies1 and benchmark tasks using three

LLMs as base models. On average across all meth-

ods, tasks, and LLMs, Cache Saver reduces cost
by ≃ 25% and CO2 by ≃ 35%. Notably, Cache
Saver excels in performing practical tasks such

as benchmarking or ablation analysis, obtaining

substantial cost and carbon footprint reduction of

≃ 60%.

2 Related Work

Backend optimizations. LLM serving engines

optimize inference on the server side, with many

optimizations focusing on efficient memory man-

agement and KV cache reuse (Kwon et al., 2023b;

Del Corro et al., 2023; Hooper et al., 2024; Chu

et al.; Ainslie et al., 2023; Zheng et al., 2024a;

Yao et al., 2025; Park et al., 2025). PagedAtten-

tion treats the attention key-value cache like a vir-

1Single-step reasoning methods such as IO, CoT, CoT-SC,
have no reuse potential as there are no repetitions, and as such,
they cannot benefit from a framework like Cache Saver.

tual memory system, reducing fragmentation and

allowing KV cache sharing within and across re-

quests (Kwon et al., 2023b). KVQuant reduces

memory usage by quantizing the KV cache (Hooper

et al., 2024). Grouped Query Attention improves

memory and computation efficiency by grouping

queries to reduce redundant attention computa-

tions (Ainslie et al., 2023). CaR introduces a

multi-tier caching system to facilitate the reuse

and sharing of attention KV caches across differ-

ent requests (Chu et al.). Additional optimiza-

tions target prompt batching and scheduling ef-

ficiency (Agrawal et al., 2023; Li et al., 2024;

Stojkovic et al., 2025; Zheng et al., 2024b; Yu

et al., 2022), as well as improvements in atten-

tion and decoding operations (Dao et al., 2022; Ye

et al., 2025; Leviathan et al., 2023). For exam-

ple, FlashAttention-2 enhances attention computa-

tion through improved parallelism and work parti-

tioning (Dao et al., 2022). Most production-grade

LLM serving systems, such as vLLM (Kwon et al.,

2023a), Hugging Face Transformers (Wolf et al.,

2020), and NVIDIA Triton Inference Server (Tri-

ton), incorporate several such optimizations. Other

engines, including DeepSpeed-FastGen (Holmes

et al., 2024), llama.cpp (ggml.ai, 2023), MLC

LLM (MLC-AI, 2023), SGLang (Zheng et al.,

2024a), and LightLLM (Lightllm Team, 2023),

further specialize for low-latency decoding, effi-

cient edge deployment, and server-side batching

and memory management. Overall, these optimiza-

tions remain largely invisible to the practitioners

and aim to reduce costs for the model providers.

However, they may increase opacity, potentially

25705

Table 1: Sample allocation: (Left) Independent vs. (Right) Cache Saver-coupled experiments.

Experiment Observed Samples (Independent) Observed Samples (Coupled)

𝐸1 (NS1) 𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛1
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛1

𝐸2 (NS2) 𝑍𝑛1+1, 𝑍𝑛1+2, … , 𝑍𝑛1+𝑛2
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛2

𝐸3 (NS3) 𝑍𝑛1+𝑛2+1, 𝑍𝑛1+𝑛2+2, … , 𝑍𝑛1+𝑛2+𝑛3
𝑍1, 𝑍2, 𝑍3, … , 𝑍𝑛3

⋮ ⋮ ⋮

diminish the quality of results, and the cost savings

are rarely passed on to the end user.

Client-side caching. Client-side caching addresses

the challenges of reducing redundant requests, min-

imizing latency, and lowering operational costs.

While Retrieval-Augmented Generation (RAG)

methods reduce the need for LLMs to generate an-

swers from scratch by retrieving relevant informa-

tion from external sources (Lewis et al., 2021), their

primary focus is not caching. Instead, we examine

various client-side caching systems that aim to op-

timize LLM performance. Helicone implements a

key-based caching mechanism by storing LLM re-

sponses at the edge using CloudflareWorkers (Heli-

cone). GPTCache is an open-source semantic cache

that transforms queries and LLM responses into em-

beddings, conducting similarity searches to retrieve

cached responses (Bang, 2023a). Developer frame-

works like LangChain offer a framework-specific

caching layer that supports both exact and semantic

matching (LangChain). GPT Semantic Cache uti-

lizes semantic embedding caching by storing query

embeddings in in-memory storage systems, such as

Redis (Regmi and Pun, 2024). MeanCache intro-

duces a user-centric semantic caching system that

preserves privacy through a learned federated simi-

larity model (Gill et al., 2024a). GenerativeCache

goes beyond traditional caching by synthesizing

new responses from multiple cached entries (Iyen-

gar et al., 2025). LLMProxy is a proxy service that

implements a single endpoint for applications, sup-

porting model selection, context management, and

caching (Martin et al., 2024). In summary, client-

side caching solutions for large language models

(LLMs) are commonly used, primarily addressing

generic workloads through semantic caching (Zhu

et al., 2024).

Key differences. Existing client-side solutions of-

ten lack guarantees for statistical integrity and re-

producibility. To the best of our knowledge, by

employing a namespace-aware list-valued cache,

Cache Saver is the only framework that enables

response reuse without sacrificing the statistical

integrity of the generative LLM.

3 Cache Saver

Overview. Cache Saver is a modular framework
composed of three key modules: (1) a Batcher

(§ 3.2), (2) a Deduplicator (§ 3.2), and (3) a

Cacher (§ 3.1). Fig. 3 presents an overview of

its inner workings using a toy example, where

three search strategies, independently exploring

a dynamic search tree in their own namespace

(NS1 through NS3), request responses for the same

prompt 𝑄. Fig. 3 (top) illustrates the cold-start sce-

nario, where the cache is empty. The asynchronous

batcher collates the five incoming requests into a

single batch and passes it to the deduplicator, which

groups identical prompts for each namespace and

emits two aggregate requests, requesting three and

two i.i.d. responses to 𝑄 for NS1 and NS2, re-

spectively. The cacher, which relies on a system

of asynchronous mutexes to avoid redundant or

overlapping requests, receives these two aggregate

requests and sends a single request to the LLM,

asking for three responses to 𝑄. Finally, the LLM

responses ([𝑅1, 𝑅2, 𝑅3]) are stored in the cache and
used to resolve the requests from NS1 and NS2. In

the warm-start scenario (Fig. 3 bottom), an aggre-

gate request asking for four i.i.d. responses to 𝑄 is

triggered from NS3, however, since three responses

are already cached, the cacher asks for one addi-

tional response from the LLM and stores it in the

cache. The four requests are then resolved by serv-

ing ([𝑅1, 𝑅2, 𝑅3]) from the cache along with the

newly generated response (𝑅4). For additional de-

tails (pseudocode, practical considerations: cache

eviction, consistency, etc.), please see Appx. A.

3.1 The Cacher

As motivated in Fig. 2 (§ 1), the prompts issued

by internal reasoning steps of multi-step reasoning

strategies are highly repetitive. Moreover, in many

practical application scenarios, such as stochastic

sampling, uncertainty estimation, or ensuring pol-

25706

Table 2: Comparison of Cache Saver alongside existing inference-time optimization methods across key attributes.

Legend: 3= Yes, 7= No, .= Partial

System Statistical Correctness Reproducibility Plug-and-play No GPU Cost Response Lvl. Client side Backward Comp.

CacheSaver (Ours) 3 3 3 3 3 3 3

Helicone (Helicone, 2024) 7 7 3 3 3 3 3

Langchain (LangChain, 2024) 7 3 3 3 . 3 7

GPT Semantic Cache (Regmi and Pun, 2024) 7 7 3 7 3 3 3

GPTCache (Bang, 2023b) 7 7 3 7 3 3 3

MeanCache (Gill et al., 2024b) 7 7 7 7 3 . 3

GenerativeCache (Iyengar et al., 2025) 7 7 . 7 3 3 3

LLMProxy (Martin et al., 2024) 7 7 3 7 3 3 .

SEED (Chen et al., 2023) 7 7 7 7 3 3 7

vCache (Schroeder et al., 2025) . 7 3 7 3 3 3

Dynamic Cheatsheet (Suzgun et al., 2025) 7 7 3 7 . 7 3

vLLM (Kwon et al., 2023c) 3 7 7 7 7 7 7

CacheBlend (Yao et al., 2025) 3 7 7 7 7 7 7

SGLang (Zheng et al., 2024a) 7 7 7 7 7 7 7

CacheGen (Liu et al., 2024) 7 3 3 7 7 7 3

MemServe (Hu et al., 2024) 3 3 7 7 7 7 7

QuickSilver (Khanna et al., 2025) 3 7 3 7 7 7 3

icy diversity, reasoning strategies require multiple

independent responses to the same prompt. A naïve

KV cache that maps each unique prompt to a single

LLM response is undesirable in such scenarios.

Our cacher circumvents the aforementioned con-

cerns by employing a list-valued cache (Appx. C.4

shows a snapshot of the cache on real-world tasks)

that maintains a sequence of responses for each

unique prompt. Additionally, to enable response

reuse without sacrificing the statistical integrity of

the generative model (in this case, an LLM), we

introduce the concept of namespaced caching. This

implies that all responses to a given prompt are in-

dependent within a namespace, whereas responses

may be reused across namespaces. In other words,

responses can never be reused within a namespace.

Revisiting the example presented in Fig. 3, let’s

say that the search strategy in NS1 now requires

two additional responses to 𝑄. The cache contains

four responses ([𝑅1, 𝑅2, 𝑅3, 𝑅4]) to 𝑄, of which

the first three have already been used once in NS1;

thus, they cannot be reused. Following namespaced

caching, one new response 𝑅5 will be obtained by

the LLM, and [𝑅4, 𝑅5] will be used to resolve the
request. Formally, namespaced caching is achieved

via a stochastic coupling of LLM responses.

Sample reuse through stochastic coupling. Con-

sider an LLM as a probabilistic oracle. Given a

prompt 𝑝 and a parameter set 𝜃 (e.g., sampling tem-
perature, top-𝑝 threshold, etc.), LLM responses fol-

low a probability distribution 𝜌𝑝,𝜃. We assume that

the pair (𝑝, 𝜃) fully parameterizes this distribution.
Initially, consider a scenario with a series of ex-

periments 𝐸𝑘 (corresponding to namespaces NS𝑘),

each independently requesting samples drawn i.i.d.

from 𝜌𝑝,𝜃. Formally, let (𝑍𝑖)∞
𝑖=1 denote an infi-

nite sequence of random variables with 𝑍𝑖
iid∼ 𝜌𝑝,𝜃.

Each experiment independently accesses distinct

samples leading to a non-overlapping partitioning

of the infinite sequence.

However, in practice, generating independent

samples for each experiment is inefficient. Cache
Saver explicitly couples these experiments by us-
ing a shared prefix of the same infinite sequence

(𝑍𝑖)∞
𝑖=1. Intuitively, this corresponds to using a

shared random seed across all experiments and

caching seeded random samples. Within each

experiment 𝐸𝑘, samples are i.i.d. by construc-

tion, directly inherited from the infinite sequence

(𝑍𝑖). For two experiments 𝐸𝑖 and 𝐸𝑗, let 𝑚 =
min(𝑛𝑖, 𝑛𝑗). Their first 𝑚 samples coincide almost

surely: 𝑓𝑖(𝑍)𝑘 = 𝑓𝑗(𝑍)𝑘 = 𝑍𝑘 ∀𝑘 ≤ 𝑚.

Table 1 shows a side-by-side comparison of the

two sampling strategies. The cacher (Alg. 1) en-

sures a shared seed for all coupled random variables.

The first evaluation of a random variable sets its

value across all experiments. Race conditions be-

tween experiments are resolved by the use of a

dynamically generated asynchronous mutex table.

3.2 Beyond Caching

Batcher. Cache Saver’s position between the rea-
soning strategy and the LLM allows for a range of

additional, transparent optimizations. As shown in

Fig. 3, we extend the caching layer into a pipeline

of modular and composable building blocks. The

first of these is a batching layer (Alg. 2), which

uses an asynchronous producer-consumer queue

to collect incoming requests and group them into

batches. The batching mechanism is governed by

two tunable parameters: a timeout and a batch size,

which together control the trade-off between respon-

siveness and throughput. Under light load, small

25707

FoA ToT
ReActRAP

MCTS

(a) GPT4.1-Nano

0.00

0.14

0.29

0.43
Q

ua
lit

y

FoA ToT
ReActRAP

MCTS

(b) Llama4-Scout

0.00

0.25

0.49

0.74

Q
ua

lit
y

FoA ToT
ReActRAP

MCTS

(c) GPT4.1-Nano

0.00

0.55

1.11

1.66

Co
st

 (
U

SD
)

FoA ToT
ReActRAP

MCTS

(d) Llama4-Scout

0

303

606

909

CO
2

(g
m

)

No Cache Saver Cache Saver

Figure 4: Comparing the (a)-(b) quality, (c) cost (US$), and (d) CO2 (gm) for each method with and without Cache
Saver, using GPT4.1-Nano (OpenAI API) and Llama4-Scout (deployed locally) as base LLMs, respectively.

batches pass through quickly with minimal delay;

under heavy load, larger batches form naturally, im-

proving efficiency. This batching is immediately

beneficial for local models, where it allows better

hardware utilization. In combination with other

Cache Saver building blocks, it also improves ef-

ficiency and reproducibility in online API settings.

Reordering Requests for Reproducible Results.

The order in which requests are resolved in asyn-

chronous computing is non-deterministic and can

therefore change results even across identical runs.

To ensure reproducibility, Cache Saver includes a
reordering module (Alg. 3) that ensures a determin-

istic order within each batch. Requests are sorted by

a stable identifier before being passed to the LLM

and reordered back to their original positions after

the LLM responds. The asynchronous reorderer

can guarantee reproducible request resolution in

scenarios where the asynchronous batcher is able

to group all in-flight requests into a single batch.

Deduplicator. Many LLM inference engines sup-

port efficient same-input, multiple-response use

cases, which are enabled by optimizations such

as paged attention, prefix prompt caching, input

sharing, etc.. Such optimizations are afforded by

most online platforms (e.g., OpenAI, Anthropic,

etc.), allowing users to request multiple i.i.d. sam-

ples for a given prompt, charging for input tokens

only once, and returning a list of completions; and

can be enabled for local deployments via infer-

ence engines such as vLLM (Kwon et al., 2023c).

Overall, these optimizations incentivize grouping

identical requests to reduce redundant input pro-

cessing. Cache Saver’s deduplication module

(Alg. 4) takes advantage of this by identifying re-

quests within a batch that share the same prompt,

parameters, and namespace. These requests are

merged into a single LLM call with an aggregated

sample count, reducing both cost and latency.

4 Experiments

We assess the effectiveness of Cache Saver
through extensive experiments and analyses com-

prising 6 reasoning strategies, 5 benchmark tasks,

and 3 LLMs. Additional details, e.g., implementa-

tion, hyperparameters, additional results, etc. are

presented in Appx. C. The resources for repro-

ducing our experiments are available at https://
github.com/au-clan/cachesaver.

4.1 Setup

Base model. We use GPT4.1-Nano as the base

model for the main results presented in this pa-

per. To showcase the generalizability of our find-

ings, we report results with other base models,

namely, Llama4-Scout and Claude3.5-Haiku in the

Appendix. While Llama4-Scout is run locally on a

machine with 8 H200 GPUs, an AMD EPYC 9555

64-Core Processor, and 2TB of RAM, experiments

with other LLMs were performed via API calls to

their respective online platforms.

Number of runs. For § 4.2, 4.3, and § 5.1, we run

each experiment 10 times and report both mean and

standard error of the evaluation metrics. For cost

reasons2, other experiments were only run once.

Prompts. To ensure a fair assessment of the bench-

marked reasoning strategies, we reuse the prompts

provided by the existing methods. For cases where

there are no existing prompts, e.g., novel tasks or

base LLMs, we adapt the original prompts provided

by the methods. For details, please see Appx. C.4.

Tasks and data. We conduct experiments on

a judicious mix of 5 benchmark tasks that re-

quire a variety of reasoning, planning, and gen-

eral problem-solving skills. Our tasks span diverse

2Since we report results for multiple reasoning strategies,
tasks, and base LLMs, costs blow up owing to a combinatorial
explosion; thus, experiments crucial for the main takeaways
were prioritized for multiple runs.

25708

https://github.com/au-clan/cachesaver
https://github.com/au-clan/cachesaver

A1 A2 A3
(a)

0.0
0.2
0.3
0.5
0.7

Co
st

 (
U

SD
)

A1 A2 A3
(b)

0.0
1.0
2.0
3.1
4.1

To
ke

ns
 (

M
)

A1 A2 A3
(c)

0.0
35.1
70.2

105.3
140.4

La
te

nc
y

A1 A2 A3
(d)

0.0
1.2
2.4
3.6
4.8

Th
ro

ug
hp

ut

Average Average (with CS) Marginal (with CS)

Figure 5: Comparing the performance of conducting 3 practical machine learning tasks: A1: hyperparameter tuning,

A2: ablation analysis, and A3: benchmarking, with and without Cache Saver using GPT4.1-Nano as base LLM.

application domains: (1) mathematical reasoning:

Game of 24 (Yao et al., 2024), (2) coding: Hu-

manEval (Chen et al., 2021), (3) question answer-

ing: HotpotQA (Zhilin et al., 2018), (4) scientific

reasoning: SciBench (Wang et al., 2024a), and

(5) creative writing: Shakespearean Sonnet Writ-

ing (Suzgun and Kalai, 2024). For evaluation, we

use the test sets as provided in the original bench-

marks. For additional details, please see Appx. C.1.

Reasoning strategies. We conduct experiments

with 5 representative SOTA reasoning strategies:

(1) React (Yao et al., 2023), (2) ToT (Yao et al.,

2024), (3) RAP (Hao et al., 2023), (4) ReST-

MCTS* (Zhang et al., 2024), and (5) FoA (Klein

et al., 2025). We only include methods that have

made their code available for at least one task bench-

marked in this study. Thus, we exclude GoT (Besta

et al., 2024), TouT (Mo and Xin, 2024), and Rec-

Mind (Wang et al., 2024b). Moreover, we exclude

BoT (Yang et al., 2024), where although the code is

available, an important resource (the meta-buffer)

to reproduce their results is unavailable. We ex-

clude LATS (Zhou et al., 2024) owing to its exor-

bitant cost footprint. Finally, owing to their lack of

reuse potential, we exclude all single-step reason-

ing strategies such as IO prompting, CoT (Wei et al.,

2022), CoT-SC (Wang et al., 2023), and AoT (Sel

et al., 2024). For details, please see Appx. C.2.

Evaluation metrics. We assess the efficacy: Qual-

ity, efficiency: Latency, Throughput, #Tokens, and

Running Time, and cost. For API-based LLMs,

we report the cost (in USD), whereas for locally

hosted LLMs, we report the energy consumption

(in kWh) and the carbon footprint (CO2 emissions

in grams) measured using Carbontracker (Anthony

et al., 2020). For details, please see Appx. C.3.

4.2 Basis for Cache Saver Effectiveness

Fig. 6 shows the reuse potential using GPT4.1-

Nano as the base LLM by analyzing the percent-

age of duplicate prompts across all tasks and rea-

soning strategies benchmarked in this study. Re-

sults with Llama4-Scout are similar and are there-

fore presented in the Appendix. It is evident that

overall ≃ 50% prompts are duplicates, which im-

plies that there exists a large overall reuse poten-

tial, which is not an artefact of a particular rea-

soning strategy or benchmark task or base LLM.

Moreover, Fig. 6(Left) further shows that while

all methods possess a similar number of duplicate

prompts, React reports a substantially low reuse

potential. This is largely expected as, despite being

an iterative strategy, React only performs 2 retrials,

which is consistent with conventions in the litera-

ture (Shinn et al., 2023). Thus, more retrials should

result in a larger reuse potential. On the other hand,

Fig. 6(Right) does not show any aberrations.

FoA ToT
ReActRAP

MCTS
0

25

50

75

100

Pr
om

pt
 P

er
ce

nt
.

75.4%

24.6%

75.1%

24.9%

25.6%

74.4%

90.9%

9.1%

60.8%

39.2%

Game 24
SciBench

HumanEval

HotpotQA

Sonnet W
ritin

g

75.1%

24.9%

63.8%

36.2%

65.9%

34.1%

60.1%

39.9%

55.4%

44.6%

Duplicate Unique

Figure 6: Reuse potential: Analyzing the prompt redun-

dancy for (Left) each method by averaging over all tasks

and (Right) each task by averaging over all methods.

4.3 Statistical integrity of Cache Saver
Figs. 4(a)-(b) shows the quality across all tasks and

reasoning strategies benchmarked in this study us-

ing GPT4.1-Nano and Llama4-Scout, respectively.

We report the average and standard error over 10

independent runs. It is clear that the quality values

with and without Cache Saver are statistically in-
distinguishable (overlapping intervals), which fur-

ther provides strong empirical validation to our

claim (by construction) regarding the statistical

integrity of Cache Saver (§ 3.1). At the same

time, Figs. 4(c)-(d) portray substantial cost (≃25%)

and carbon emission (≃35%) savings, respectively,

25709

Figure 7: Ablation analysis to study the impact of the deduplicator and cacher modules of Cache Saver on the
performance of FoA (Klein et al., 2025) in the Game of 24 task with GPT4.1-Nano as the base LLM.

with the biggest improvements achieved for RAP

while the least for React, which is consistent with

the findings from Fig. 6(Left). It is important to

note that while the absolute values (e.g., cost in

Fig. 4c) might appear small, which is just due to

the extremely low cost of GPT4.1-Nano, we report

relative percentage savings. In fact, we conducted

the same experiment with GPT4.1, and found that

RAP required 34.87 and 12.56 US$ with and with-

out Cache Saver, respectively, roughly portraying
a similar savings as for GPT4.1-Nano.

4.4 Cache Saver for practical applications

In this experiment, we evaluate Cache Saver’s
ability to support practical machine learning ap-

plications, namely, A1: tuning hyperparameters,

A2: performing ablation analysis of a reasoning

strategy, and A3: benchmarking multiple reason-

ing strategies to identify the best. In all cases, we

use GPT4.1-Nano as the base LLM, three bench-

mark tasks, namely “Game of 24”, “HumanEval”,

and “SciBench”, and report average cost (with and

without Cache Saver) and the marginal cost (with
Cache Saver), which represents the additional cost
of adding a new method (A3) or a new hyperparam-

eter configuration (A1). The results are presented

in Fig. 5.

A1: Hyperparameter tuning. For A1, we tune

the hyperparameters for ToT (Yao et al., 2024)

by conducting a grid-search over tree-width: [1,

3, 5], tree-depth: [2, 3, 4], and #evaluations of

the value prompt: [1, 2, 3]. We find that Cache
Saver reports substantial performance improve-

ments: 6x lower cost, tokens, and latency and 7x

higher throughput. While average (with CS, yel-

low bar) presents the realistic setting of executing

the full experiment, the marginal (with CS, green

bar) is also valuable as it presents the added cost of

incorporating a new variation in the experiment.

A2: Ablation analysis. For A2, we analyze the

threemajor variations of the FoA (Klein et al., 2025)

algorithm, in particular, by removing the (1) selec-

tion phase, backtracking mechanism, and resam-

pling strategy. Here, Cache Saver only obtains a
2.5x performance improvement. We hypothesize

that running the same method with a different hy-

perparameter configuration should result in a more

similar reasoning strategy when compared to run-

ning a different variation of a method, which offers

a plausible explanation for the differences in the

observed performance improvements.

A3: Benchmarking. For A3, we evaluate all the

structured reasoning strategies benchmarked in our

study, i.e., ToT (Yao et al., 2024), GoT (Besta et al.,

2024), and FoA (Klein et al., 2025). Here, Cache
Saver obtains a 2x (slightly lower than A2) perfor-

mance improvement. The hypothesis remains simi-

lar: the potential for reuse is even lower when con-

sidering entirely different reasoning strategies than

variations of a specific reasoning strategy. That

said, a cross-framework reuse potential is an inter-

esting and novel finding in its own right.

5 Analyses

5.1 Impact of Namespace Size

§ 3.1 formalized the relationship between the

namespace configuration and statistical integrity

of an experiment. Let 𝑛 and 𝑁 be the number of

datapoints in a namespace and a benchmark, re-

spectively. We define namespace fraction (NF) to

be 𝑛/𝑁, which naturally lies between [0, 1] as 𝑛
is upper-bounded by 𝑁. Here, we analyze the im-

pact of NF on the cost and carbon footprint (Fig. 15

presents the results). Recall that NF=1 corresponds

to the statistically correct configuration (§ 3.1),

whereas NF=0 corresponds to the maximum cost-

saving configuration. We find that the cost and

carbon footprint increase with increasing NF; how-

25710

ever, interestingly, we noticed that the quality still

remains statistically indistinguishable across all NF

values. While all the main results reported in the

paper correspond to NF=1, in practical settings, NF

could even be set to a lower value to increase cost

savings even further.

5.2 Cache Saver Ablation Analysis

Fig. 7 presents the impact of the deduplicator

and cacher of Cache Saver. We report perfor-

mance metrics: (1) without Cache Saver, (2) with
only deduplicator, (3) with only cacher, and (4)

with Cache Saver. We find that the cacher con-

tributes the most to the improvements seen by

Cache Saver, followed by the batcher. This result
shows the strength of our novel caching paradigm,

while also highlighting the practical improvements

obtained by other Cache Saver modules.

5.3 Existing optimizations vs. Cache Saver

Table 3: Analyzing the impact of existing optimizations

andCache Saver on the cost (in US$) of ToT (Yao et al.,
2024), FoA (Klein et al., 2025) and GoT (Besta et al.,

2024) across Game of 24, SciBench, and HotpotQA

using GPT-4.1-Nano as the base LLM. Values indicate

the percentage reduction in cost relative to the original.

Task Existing CacheSaver Both

Game 24 0.0% 29.7% 29.7%

SciBench 0.3% 47.8% 48.0%

HotopotQA 6.2% 33.2% 38.5%

Average 3.2% 36.9% 38.7%

Finally, we study how much Cache Saver saves
over and above existing platform-specific optimiza-

tions (such as KV caching, paged attention, etc.)

as already provided by OpenAI or vLLM. Table 3

presents the results. We find that while existing

optimizations lead to savings of ≃3.3% on aver-

age, Cache Saver alone obtains ≃36.9%. How-
ever, when both optimizations are switched on,

the overall improvement reported by Cache Saver
alongside existing optimizations is ≃38.7%. This
shows that these optimizations do not collide with

each other, but rather complement each other, with

Cache Saver providing orthogonal gains to those
from low-level platform-specific techniques.That

said, studying co-optimization strategies constitutes

as future work.

6 Discussion and Concluding Insights

6.1 Summary of Findings

Reasoning strategies portray ≃ 50% prompt re-

dundancy. We show, both intuitively (§ 1) and em-

pirically (§ 4.2), the existence of substantial prompt

reuse potential across five representative SOTA rea-

soning strategies and diverse benchmark tasks.

Namespaced caching preserves statistical in-

tegrity of LLM responses. We convincingly

present the statistical correctness of Cache Saver
by construction (§ 3.1) and experiments (§ 4.3).

Other advantages. Cache Saver saves up to 60%
cost and carbon emissions of LLM reasoning strate-

gies across a variety of reasoning strategies and

benchmarks. Moreover, Cache Saver does not

possess any memory overhead, is plug-and-play,

and easily extendible to new reasoning strategies

or benchmark tasks.

6.2 Implications and Broader Impact

Integrity in Experimentation. We have intro-

duced a principled approach to LLM evaluation

by enforcing consistent seeding and input order-

ing, enabling statistically sound and reproducible

experimentation.

Environmental Efficiency. We have demon-

strated that avoiding redundant computation leads

to substantial reductions in energy usage and carbon

emissions, contributing to more sustainable LLM

experimentation.

Accessibility, Reproducibility, and Collabora-

tion. We have designed the cache to be publicly

shareable with the broader ML community, par-

ticularly benefiting researchers conducting applied

work with LLMs. This facilitates low cost follow-

up studies, ensures reproducibility of benchmark re-

sults, and significantly accelerates new community-

driven research by making shared resources easily

accessible.

Limitations

Currently, we evaluate each method in a plug-and-

play fashion; however, the implementations could

be further optimized to fully leverage the capabili-

ties of the Cache Saver framework. Additionally,

we could extend our workflows to optimize multi-

step pipelines by optimizing and then leveraging

the parallelization between independent steps.

25711

While the Cache Saver framework is designed
to be modular and compatible with existing infer-

ence engines, optimizations within our system may

not always align with those in other frameworks.

For example, caching strategies or batching heuris-

tics used byCache Savermay conflict with the par-
allelism, memory management, or scheduling deci-

sions employed by underlying inference systems.

At present, we do not focus on co-optimization

across such system boundaries.

Our caching mechanism currently relies on ex-

act matches, which limits reuse when inputs vary

slightly. In future work, we aim to explore more

advanced strategies. Fuzzy caching could support

approximate or semantic matches to increase hit

rates. Cascading caches across memory tiers (e.g.,

RAM, SSD, distributed) could help balance latency

and cost. Sparsity-aware caching could store only

the most relevant context fragments, especially for

long prompts. Additionally, improving cache ob-

servability—through tools for hit/miss analysis, er-

ror tracing, and adaptive tuning—will be essential

for enhancing performance and debugging.

Because the framework operates at the user level,

our current focus is on high-level orchestration

rather than hardware- or system-level optimization.

Future work will explore low-level improvements

such as a hardware-optimized batcher that groups

requests by context length or cache affinity to im-

prove GPU utilization. We also plan to implement

prefetching strategies that proactively load or gen-

erate likely-needed cache entries, thereby reducing

latency and improving responsiveness.

Ethical considerations

In our opinion, this work has no major ethical con-

siderations. All the datasets and resources used in

this work are publicly available and do not contain

any private or sensitive information about human

subjects. Moreover, we use standard and vetted

benchmark datasets following the corresponding

licensing and fair use terms and conditions. Fi-

nally, the research presented in this paper does

not involve any interactions whatsoever with hu-

man subjects. That said, and similar to all other

LLM-based research, our work does have a neg-

ative impact on the environment, in particular by

contributing to the stark rise in greenhouse gas emis-

sions and electricity consumption on account of

generative AI models and tools. However, with

Cache Saver, our work provides an explicit solu-

tion to mitigate the negative impact of LLM-based

research on the environment by reducing the infer-

ence time, cost, and carbon footprint of LLM-based

reasoning frameworks. Furthermore, in the spirit

of complete transparency and for enabling external

scrutiny, all the resources required to reproduce the

experiments in this paper are publicly available in a

well-documented and organized GitHub repository.

We confirm that we have read and abide by the

EMNLP code of ethics.

Acknowledgements

We thank Oskar Røgild Vestergaard, André Slot

Kristensen, Ewa Alicja Roszczyk, and Tereza

Ehnova for early contributions, and Francisco

Guzmán, Vishrav Chaudhary, Valentin Hartmann,

Anil Murty, Damian K. Kowalczyk, Emre Kıcı-

man, and Kyle Cranmer for insightful discussions.

Arora’s lab is partly supported by grants from the

Novo Nordisk Foundation (NNF24OC0099109),

the Pioneer Centre for AI, and EU Horizon 2020

(101168951). We also gratefully acknowledge gen-

erous gifts from Microsoft and It-vest - networking

universities.

References

Amey Agrawal, Ashish Panwar, Jayashree Mohan,
Nipun Kwatra, Bhargav S Gulavani, and Ramachan-
dran Ramjee. 2023. Sarathi: Efficient llm infer-
ence by piggybacking decodes with chunked prefills.
arXiv preprint arXiv:2308.16369.

Joshua Ainslie, James Lee-Thorp, Michiel De Jong,
Yury Zemlyanskiy, Federico Lebrón, and Sumit Sang-
hai. 2023. Gqa: Training generalized multi-query
transformer models from multi-head checkpoints.
arXiv preprint arXiv:2305.13245.

Lasse F. Wolff Anthony, Benjamin Kanding, and
Raghavendra Selvan. 2020. Carbontracker: Tracking
and predicting the carbon footprint of training deep
learning models. ICML Workshop on Challenges in
Deploying and monitoring Machine Learning Sys-
tems. ArXiv:2007.03051.

Fu Bang. 2023a. Gptcache: An open-source semantic
cache for llm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for
Natural Language Processing Open Source Software
(NLP-OSS 2023), pages 212–218.

Fu Bang. 2023b. Gptcache: An open-source semantic
cache for llm applications enabling faster answers and
cost savings. In Proceedings of the 3rd Workshop for
Natural Language Processing Open Source Software
(NLP-OSS 2023), pages 212–218.

25712

https://github.com/au-clan/cachesaver

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-
berger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-
otr Nyczyk, et al. 2024. Graph of thoughts: Solving
elaborate problems with large language models. In
AAAI, volume 38, pages 17682–17690.

Chen et al. 2021. Evaluating large language models
trained on code. ArXiv eprint 2107.03374, cs.LG,
https://arxiv.org/abs/2107.03374.

Zui Chen, Lei Cao, Sam Madden, Tim Kraska, Zeyuan
Shang, Ju Fan, Nan Tang, Zihui Gu, Chunwei Liu,
and Michael Cafarella. 2023. Seed: Domain-specific
data curation with large language models. arXiv
preprint arXiv:2310.00749.

François Chollet et al. 2019. The arc agi benchmark.
https://arcprize.org/arc-agi.

Kexin Chu, Tzechinh Liu, Yunding Li, Pengchao Yuan,
and Wei Zhang. Car: An efficient kv cache reuse
system for large language model inference.

Kate Crawford. 2021. The Atlas of AI: Power, Poli-
tics, and the Planetary Costs of Artificial Intelligence.
Yale University Press.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
Advances in neural information processing systems,
35:16344–16359.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,
Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. 2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient llm inference.
arXiv preprint arXiv:2307.02628.

Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Man-
dlekar, Yuncong Yang, Haoyi Zhu, Andrew Tang,
De-An Huang, Yuke Zhu, and Anima Anandkumar.
2022. Minedojo: Building open-ended embodied
agents with internet-scale knowledge. In NeurIPS:
Datasets and Benchmarks Track.

Zhenxiao Fu, Fan Chen, Shan Zhou, Haitong Li, and
Lei Jiang. 2024. Llmco2: Advancing accurate carbon
footprint prediction for llm inferences. arXiv preprint
arXiv:2410.02950.

ggml.ai. 2023. llama.cpp.

Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Am-
mar Ahmed, Ali Anwar, and Muhammad Ali Gulzar.
2024a. Meancache: User-centric semantic cache
for large language model based web services. arXiv
preprint arXiv:2403.02694.

Waris Gill, Mohamed Elidrisi, Pallavi Kalapatapu, Am-
mar Ahmed, Ali Anwar, and Muhammad Ali Gulzar.
2024b. Meancache: User-centric semantic cache
for large language model based web services. arXiv
preprint arXiv:2403.02694.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen
Wang, Daisy Zhe Wang, and Zhiting Hu. 2023. Rea-
soning with language model is planning with world
model. In EMNLP.

Helicone. Helicone OS Caching. https://docs.
helicone.ai/features/advanced-usage/caching.

Helicone. 2024. LLM Caching - Helicone OSS LLM
Observability. https://docs.helicone.ai/features/
advanced-usage/caching. Accessed: August 2024.

Connor Holmes, Masahiro Tanaka, Michael Wyatt, Am-
mar Ahmad Awan, Jeff Rasley, Samyam Rajbhan-
dari, Reza Yazdani Aminabadi, Heyang Qin, Arash
Bakhtiari, Lev Kurilenko, et al. 2024. Deepspeed-
fastgen: High-throughput text generation for llms
via mii and deepspeed-inference. arXiv preprint
arXiv:2401.08671.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh,
Michael W Mahoney, Yakun S Shao, Kurt Keutzer,
and Amir Gholami. 2024. Kvquant: Towards 10
million context length llm inference with kv cache
quantization. Advances in Neural Information Pro-
cessing Systems, 37:1270–1303.

Cunchen Hu, Heyang Huang, Junhao Hu, Jiang Xu,
Xusheng Chen, Tao Xie, Chenxi Wang, Sa Wang,
Yungang Bao, Ninghui Sun, et al. 2024. Mem-
serve: Context caching for disaggregated llm serv-
ing with elastic memory pool. arXiv preprint
arXiv:2406.17565.

IEA. 2025. Ai is set to drive surging electricity de-
mand from data centres. https://tinyurl.com/
iea-energy-2030.

Arun Iyengar, Ashish Kundu, Ramana Kompella, and
Sai Nandan Mamidi. 2025. A generative caching
system for large language models. arXiv preprint
arXiv:2503.17603.

Danush Khanna, Aditya Kumar Guru, Srivarshinee Srid-
har, Zidan Ahmed, Rubhav Bahirwani, Meetu Malho-
tra, Vinija Jain, Aman Chadha, Amitava Das, and Kri-
pabandhu Ghosh. 2025. Quicksilver–speeding up llm
inference through dynamic token halting, kv skipping,
contextual token fusion, and adaptive matryoshka
quantization. arXiv preprint arXiv:2506.22396.

Lars Henning Klein, Nearchos Potamitis, Roland Aydin,
RobertWest, Caglar Gulcehre, andAkhil Arora. 2025.
Fleet of agents: Coordinated problem solving with
large languagemodels. InForty-second International
Conference on Machine Learning.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023a. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, SOSP
’23, page 611–626, New York, NY, USA. Associa-
tion for Computing Machinery.

25713

http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arcprize.org/arc-agi
http://www.jstor.org/stable/j.ctv1ghv45t
http://www.jstor.org/stable/j.ctv1ghv45t
http://arxiv.org/abs/2410.02950
http://arxiv.org/abs/2410.02950
https://github.com/ggml-org/llama.cpp
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://docs.helicone.ai/features/advanced-usage/caching
https://tinyurl.com/iea-energy-2030
https://tinyurl.com/iea-energy-2030
https://openreview.net/forum?id=yNpYb376zf
https://openreview.net/forum?id=yNpYb376zf
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023b. Efficient
memory management for large language model serv-
ing with pagedattention. In Proceedings of the 29th
Symposium on Operating Systems Principles, pages
611–626.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023c. Efficient
memory management for large language model serv-
ing with pagedattention. In SOSP, pages 611–626.

LangChain. LangChain Caching. https://python.
langchain.com/docs/integrations/llm_caching.

LangChain. 2024. LLM Caching. https:
//python.langchain.com/v0.1/docs/modules/
model_io/llms/llm_caching/. Accessed: August
2024.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, Sebastian Riedel, and Douwe Kiela. 2021.
Retrieval-augmented generation for knowledge-
intensive nlp tasks. CoRR.

Baolin Li, Yankai Jiang, Vijay Gadepally, and Devesh
Tiwari. 2024. Llm inference serving: Survey of
recent advances and opportunities. arXiv preprint
arXiv:2407.12391.

Lightllm Team. 2023. Lightllm: A light and fast infer-
ence service for llm.

Yuhan Liu, Hanchen Li, Yihua Cheng, Siddhant Ray,
Yuyang Huang, Qizheng Zhang, Kuntai Du, Jiayi
Yao, Shan Lu, Ganesh Ananthanarayanan, et al. 2024.
Cachegen: Kv cache compression and streaming for
fast large language model serving. In Proceedings of
the ACM SIGCOMM 2024 Conference, pages 38–56.

Noah Martin, Abdullah Bin Faisal, Hiba Eltigani,
Rukhshan Haroon, Swaminathan Lamelas, and Fa-
had Dogar. 2024. Llmproxy: Reducing cost to
access large language models. arXiv preprint
arXiv:2410.11857.

MLC-AI. 2023. Mlc llm: Universal llm deployment
engine with ml compilation.

Shentong Mo and Miao Xin. 2024. Tree of uncertain
thoughts reasoning for large language models. In
ICASSP, pages 12742–12746.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling.

OpenAI. 2024. Gpt-4o system card.

Sihyeong Park, Sungryeol Jeon, Chaelyn Lee, Seokhun
Jeon, Byung-Soo Kim, and Jemin Lee. 2025. A sur-
vey on inference engines for large language models:
Perspectives on optimization and efficiency.

Sajal Regmi and Chetan Phakami Pun. 2024. Gpt
semantic cache: Reducing llm costs and latency
via semantic embedding caching. arXiv preprint
arXiv:2411.05276.

Luis Gaspar Schroeder, Aditya Desai, Alejandro
Cuadron, Kyle Chu, Shu Liu, Mark Zhao, Stephan Kr-
usche, Alfons Kemper, Matei Zaharia, and Joseph E
Gonzalez. 2025. vcache: Verified semantic prompt
caching. arXiv preprint arXiv:2502.03771.

Bilgehan Sel, Ahmad Tawaha, Vanshaj Khattar, Ruoxi
Jia, and Ming Jin. 2024. Algorithm of thoughts: En-
hancing exploration of ideas in large languagemodels.
In ICML.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: language agents with verbal reinforcement
learning. In NeurIPS, pages 8634–8652.

Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Esha
Choukse, Haoran Qiu, Rodrigo Fonseca, Josep Tor-
rellas, and Ricardo Bianchini. 2025. Tapas: Thermal-
and power-aware scheduling for llm inference in
cloud platforms. In Proceedings of the 30th ACM
International Conference on Architectural Support
for Programming Languages and Operating Systems,
Volume 2, pages 1266–1281.

Mirac Suzgun and Adam Tauman Kalai. 2024.
Meta-prompting: Enhancing language models
with task-agnostic scaffolding. arXiv preprint
arXiv:2401.12954.

Mirac Suzgun, Mert Yuksekgonul, Federico Bianchi,
Dan Jurafsky, and James Zou. 2025. Dynamic cheat-
sheet: Test-time learning with adaptive memory.
arXiv preprint arXiv:2504.07952.

Triton. NVIDIA Triton Inference Server.
https://docs.nvidia.com/deeplearning/
triton-inference-server/.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu, Jieyu
Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang.
2024a. Scibench: evaluating college-level scientific
problem-solving abilities of large language models.
In ICML.

XuezhiWang, JasonWei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
ICLR.

25714

https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://python.langchain.com/docs/integrations/llm_caching
https://python.langchain.com/docs/integrations/llm_caching
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://python.langchain.com/v0.1/docs/modules/model_io/llms/llm_caching/
https://arxiv.org/abs/2005.11401
https://arxiv.org/abs/2005.11401
https://github.com/ModelTC/lightllm
https://github.com/ModelTC/lightllm
https://llm.mlc.ai/
https://llm.mlc.ai/
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2501.19393
http://arxiv.org/abs/2410.21276
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2505.01658
http://arxiv.org/abs/2401.12954
http://arxiv.org/abs/2401.12954
https://docs.nvidia.com/deeplearning/triton-inference-server/
https://docs.nvidia.com/deeplearning/triton-inference-server/

Yancheng Wang, Ziyan Jiang, Zheng Chen, Fan Yang,
Yingxue Zhou, Eunah Cho, Xing Fan, Yanbin Lu,
Xiaojiang Huang, and Yingzhen Yang. 2024b. Rec-
mind: Large language model powered agent for rec-
ommendation. In NAACL-HLT (Findings), pages
4351–4364.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurIPS, pages 24824–24837.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, AnthonyMoi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Ling Yang, Zhaochen Yu, Tianjun Zhang, Shiyi Cao,
Minkai Xu, Wentao Zhang, Joseph E. Gonzalez,
and Bin Cui. 2024. Buffer of thoughts: Thought-
augmented reasoning with large language models. In
NeurIPS.

Jiayi Yao, Hanchen Li, Yuhan Liu, Siddhant Ray, Yi-
hua Cheng, Qizheng Zhang, Kuntai Du, Shan Lu, and
Junchen Jiang. 2025. Cacheblend: Fast large lan-
guage model serving for rag with cached knowledge
fusion. EuroSys’25.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. NeurIPS, 36.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik R Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. In ICLR.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yi-
neng Zhang, Stephanie Wang, Tianqi Chen, Baris
Kasikci, Vinod Grover, Arvind Krishnamurthy, et al.
2025. Flashinfer: Efficient and customizable atten-
tion engine for llm inference serving. arXiv preprint
arXiv:2501.01005.

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. 2022. Orca: A
distributed serving system for {Transformer-Based}
generative models. In 16th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 22), pages 521–538.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. ReST-MCTS*:
LLM self-training via process reward guided tree
search. In NeurIPS.

Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie,
Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi

Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonza-
lez, et al. 2024a. Sglang: Efficient execution of struc-
tured language model programs. Advances in Neural
Information Processing Systems, 37:62557–62583.

Zhen Zheng, Xin Ji, Taosong Fang, Fanghao Zhou,
Chuanjie Liu, and Gang Peng. 2024b. Batchllm: Op-
timizing large batched llm inference with global pre-
fix sharing and throughput-oriented token batching.
arXiv preprint arXiv:2412.03594.

Yang Zhilin, Qi Peng, Zhang Saizheng, Bengio Yoshua,
Cohen William, Salakhutdinov Ruslan, and Christo-
pher D. Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2024. Lan-
guage agent tree search unifies reasoning, acting, and
planning in language models. In ICML.

Hanlin Zhu, Banghua Zhu, and Jiantao Jiao. 2024. Effi-
cient prompt caching via embedding similarity. arXiv
preprint arXiv:2402.01173.

25715

https://arxiv.org/abs/2405.16444
https://arxiv.org/abs/2405.16444
https://arxiv.org/abs/2405.16444
https://doi.org/10.18653/v1/d18-1259
https://doi.org/10.18653/v1/d18-1259

A Cache Saver: Additional Details

The pseudocode for different modules of the Cache Saver framework are presented in Algorithms 1–4.

Algorithm 1 Cacher
1: Global State:

2: Cache 𝒞 ∶ (𝑝, 𝜃) ↦ [𝑍1, 𝑍2, …], initially empty
3: Usage counters 𝒰 ∶ (𝐸𝑘, 𝑝, 𝜃) ↦ 𝑢 ∈ ℕ0, initially 0
4: Mutex table ℳ ∶ (𝑝, 𝜃) ↦ async lock

5:

6: Asynchronous Procedure RequestSamples(𝑟)
7: Input: Request 𝑟 = (𝐸𝑘, 𝑝, 𝜃, 𝑛, id)
8: Output: Future 𝑓 resolving to (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
9: 𝑓 ← new Future

10: key ← (𝑝, 𝜃)
11: if key ∉ ℳ then

12: ℳ[key] ← new async mutex

13: end if

14: async acquire ℳ[key]
15: if key ∉ 𝒞 then

16: 𝒞[key] ← []
17: end if

18: if (𝐸𝑘, 𝑝, 𝜃) ∉ 𝒰 then

19: 𝒰[(𝐸𝑘, 𝑝, 𝜃)] ← 0
20: end if

21: 𝑢 ← 𝒰[(𝐸𝑘, 𝑝, 𝜃)]
22: 𝑍 ← 𝒞[key]
23: 𝑛fresh ← max(0, 𝑢 + 𝑛 − |𝑍|)
24: if 𝑛fresh > 0 then
25: Draw fresh samples (𝑍|𝑍|+1, … , 𝑍|𝑍|+𝑛fresh

) iid∼ 𝜌𝑝,𝜃
26: Extend: 𝒞[key] ← 𝑍 + (𝑍|𝑍|+1, … , 𝑍|𝑍|+𝑛fresh

)
27: 𝑍 ← 𝒞[key]
28: end if

29: Extract samples: (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
30: Resolve 𝑓 with value (𝑍𝑢+1, … , 𝑍𝑢+𝑛)
31: Update usage: 𝒰[(𝐸𝑘, 𝑝, 𝜃)] ← 𝑢 + 𝑛
32: release ℳ[key]
33: return 𝑓

A.1 Cache management: storage and eviction

Since retrieving cached responses from the disk is many orders of magnitude faster than issuing a new LLM

query, especially for remote APIs, Cache Saver persists all cache entries to the disk by default. Unlike
typical in-memory caches, where storage is a limiting factor, here storage is cheap and recomputation

is costly, so no advanced eviction policy is necessary for most use cases. That said, should eviction be

required (e.g., due to storage constraints), the simplest approach is to evict all responses associated with a

given prompt and parameter set. When the evicted prompt is encountered again, the cache miss results in

requests to the underlying LLM, and the newly generated responses are stored in the cache. This preserves

the cache’s guarantee of i.i.d. samples within each namespace.

25716

Algorithm 2 Async Batcher
1: Global State: Queue 𝒬 ← []
2: Parameters: batch size 𝑁, timeout 𝛿, overflow flag overflow
3:

4: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
5: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
6: Output: List of futures [𝑓1, … , 𝑓𝑚], where each 𝑓𝑖 resolves to 𝑛𝑖 samples

7: for 𝑖 = 1 to 𝑚 do

8: 𝑡 ← current time

9: 𝑓𝑖 ← new Future

10: enqueue (𝑟𝑖, 𝑡, 𝑓𝑖) into 𝒬
11: end for

12: return [𝑓1, … , 𝑓𝑚]
13:

14: Asynchronous Background Task BatchWorker()
15: while true do

16: (𝑟1, 𝑡1, 𝑓1) ← async 𝒬.get()
17: Initialize: ℬ ← [𝑟1], ℱ ← [𝑓1]
18: 𝑡start ← 𝑡1
19: while true do

20: 𝜏 ← 𝛿 − (current time − 𝑡start)
21: if |ℬ| ≥ 𝑁 or 𝜏 ≤ 0 then break
22: try

23: (𝑟𝑖, 𝑡𝑖, 𝑓𝑖) ← async 𝒬.get() with timeout 𝜏
24: Append 𝑟𝑖 to ℬ, 𝑓𝑖 to ℱ
25: catch timeout: break

26: end while

27: if overflow then

28: while 𝒬 is not empty do

29: (𝑟𝑖, 𝑡𝑖, 𝑓𝑖) ← 𝒬.get_nowait()
30: Append 𝑟𝑖 to ℬ, 𝑓𝑖 to ℱ
31: end while

32: end if

33: responses ← model.batch_request(ℬ)
34: for 𝑖 = 1 to |ℬ| do
35: resolve 𝑓𝑖 ← responses[𝑖]
36: end for

37: end while

A.2 Cache consistency

To ensure cache consistency in concurrent asynchronous environments, Cache Saver utilizes per-key
mutex locks. When a request is received, a unique hash-based key is generated, and a corresponding

mutex is initialized if no other request holds the mutex. Alternatively, if a different request currently

holds the mutex, it is retrieved from that request once it is freed. This mutex guards access to the critical

section where the cache, potentially updated with fresh model responses, is read, and usage counters are

incremented. By serializing access to cache entries on a per-key basis, the implementation prevents race

conditions and ensures accurate tracking of response usage. At the same time, requests for different keys

proceed concurrently, maintaining overall efficiency.

25717

Algorithm 3 Async Reorderer
1: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
2: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
3: Output: List of futures [𝑓1, … , 𝑓𝑚], each resolving to 𝑛𝑖 samples

4: Create futures: 𝑓𝑖 ← new Future for 𝑖 = 1 to 𝑚
5: Let ℛ ← [𝑟1, … , 𝑟𝑚] and ℱ ← [𝑓1, … , 𝑓𝑚]
6: Compute sorted indices: ℐsorted ← sort indices of ℛ by id𝑖

7: Reorder requests and futures:

8: ℛsorted ← ℛ[ℐsorted]
9: ℱsorted ← ℱ[ℐsorted]
10: asynchronously:

11: responses ← await model.request(ℛsorted)
12: for 𝑖 = 1 to 𝑚: resolve ℱsorted[𝑖] ← responses[𝑖]
13: return [𝑓1, … , 𝑓𝑚]

Algorithm 4 Async Deduplicator
1: Asynchronous Procedure RequestSamples([𝑟1, … , 𝑟𝑚])
2: Input: List of 𝑚 requests 𝑟𝑖 = (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)
3: Output: List of futures [𝑓1, … , 𝑓𝑚], each resolving to 𝑛𝑖 samples

4: Initialize:

5: 𝒦 ← {} {Deduplication key ↦ (𝐸𝑘, 𝑝, 𝜃)}
6: 𝒩 ← {} {Key ↦ total requested samples}

7: ℳ ← {} {Key ↦ list of (future, count) pairs}

8: for 𝑖 = 1 to 𝑚 do

9: 𝑟𝑖 = (𝐸𝑖
𝑘, 𝑝𝑖, 𝜃𝑖, 𝑛𝑖, id𝑖)

10: 𝑘𝑖 ← Hash(𝐸𝑖
𝑘, 𝑝𝑖, 𝜃𝑖)

11: 𝑓𝑖 ← new Future

12: Append (𝑓𝑖, 𝑛𝑖) to ℳ[𝑘𝑖]
13: 𝒦[𝑘𝑖] ← (𝐸𝑖

𝑘, 𝑝𝑖, 𝜃𝑖)
14: 𝒩[𝑘𝑖] ← 𝒩[𝑘𝑖] + 𝑛𝑖

15: end for

16: for each key 𝑘 do

17: (𝐸𝑘, 𝑝, 𝜃) ← 𝒦[𝑘]
18: 𝑛total ← 𝒩[𝑘]
19: asynchronously:

20: responses ← await model.request(𝐸𝑘, 𝑝, 𝜃, 𝑛total)
21: resolve all futures in ℳ[𝑘] using responses, in order
22: end for

23: return [𝑓1, … , 𝑓𝑚]

A.3 Batcher: Handling batch overflows

To improve efficiency in scenarios where multiple clients issue identical requests concurrently, Cache
Saver includes an option that allows the batch to overflow. When enabled, this mechanism allows

additional requests to be added to a batch even after the specified batch size has been reached, but only if

they are duplicates, i.e., they share the same input (prompt and decoding parameters) as an existing request

in the batch. Overall, this enables the deduplicator module of Cache Saver to work at full efficiency,
improving the overall performance of the Cache Saver pipeline.

25718

A.4 Practical considerations

Cache Saver is built from modular building blocks, allowing users to flexibly compose different pipelines

that combine caching, batching, deduplication, and reordering in any order or subset, depending on their

application needs. In particular, the choice of namespace assignment gives precise control over the

trade-off between strict sample independence (one namespace per benchmark) for unbiased benchmarking

and maximal cost savings (one namespace per benchmark puzzle or 𝑁 namespaces per benchmark, where

𝑁 is the number of puzzles in the benchmark) for large-scale ablations or production deployments. For

example, users can construct pipelines with full independence across benchmarks or enable aggressive

reuse within a benchmark as appropriate.

B The Statistics Of Cachesaver

Cache Saver’s namespacing paradigm offers a way to cache randomness while preserving statistical

integrity. This is useful for experiments that study a random distribution with a high sample cost, e.g.

LLMs. For each experiment, it is important to obtain a number of independent samples sufficient for

statistical significance. At the same time, it is permissible, even desirable, to seed the randomness across

experiments, to make individual experiment outcomes more comparable. Cache Saver is based on

the concept of stochastic coupling and implements a transparent, man-in-the-middle caching layer that

associates samples with namespaces and ensures that within a namespace (e.g. an experiment) all samples

are i.i.d., while across namespaces the sample reuse is maximized. To illustrate this behaviour, consider a

simple toy example: Drawing samples from a normal distribution.

• First, draw 𝑁 samples without Cache Saver.

• Then draw 𝑁 samples with Cache Saver, in a namespace ”A”.

• Finally, draw 2𝑁 samples with Cache Saver, in a namespace ”B”.

We assert: All three sets of samples follow a normal distribution. For a statistical test, the three sets seem

to come from the same underlying distribution (which is indeed true). The direct samples, drawn in the

first step, are different from the samples in A and B. The first 𝑁 samples in A and B are identical. The

second 𝑁 samples in B are different. All 2 ∗ 𝑁 samples in B are i.i.d.

This behaviour is illustrated in Fig. 8. We draw 200 samples from a 2Dmultivariate Gaussian distribution

in namespace ”A”, then 400 samples in namespace ”B”. The 200 samples in ”A” and the first 200 samples

in ”B” are identical. All samples in ”A” and ”B” are jointly Gaussian and, within their namespace, i.i.d.

C Additional Experimental Details

C.1 Detailed Task Descriptions

C.1.1 Game of 24

The Game of 24 is a math puzzle where players are given four numbers and must use each of them exactly

once, along with the basic arithmetic operations (+, –, ×, ÷), to form an expression that evaluates to 24.

Our benchmark includes 1,362 such puzzles collected from 4nums.com, organized in ascending order

of difficulty. Each puzzle provides four input numbers, and the goal is to generate a valid equation that

results in 24. Following the approach of ToT (Yao et al., 2024), we designate puzzles numbered 901 to

1000 as our test set.

C.1.2 SciBench

SciBench (Wang et al., 2024a) is a scientific reasoning benchmark designed to evaluate college-level

problem-solving abilities across subjects such as mathematics, physics, and chemistry. Each task presents

an open-ended problem that requires multi-step reasoning, domain-specific knowledge, and advanced

computations, including calculus and differential equations. Problems are drawn from widely used

textbooks and university exams.

25719

Figure 8: Sample Reuse for a Multivariate Gaussian

Following the approach of ReST-MCTS (Zhang et al., 2024), we sampled 109 problems spanning

different subjects to form the test set. Quality is measured using an accuracy metric, defined as the

proportion of problems correctly solved according to the official solutions (exact matching).

C.1.3 HumanEval

HumanEval (Chen et al., 2021) is a code generation benchmark where participants are given natural

language docstrings and must generate Python functions that correctly implement the described behavior.

Each problem includes a hidden test suite used to verify functional correctness.

Following the setup from Reflexion (Shinn et al., 2023), the benchmark consists of 100 programming

tasks in the test set. We evaluate performance using the pass@1 metric, which measures the proportion of

problems solved correctly on the first attempt.

C.1.4 HotpotQA

HotpotQA (Zhilin et al., 2018) is a large-scale question answering benchmark that tests an agent’s ability

to perform multi-hop reasoning across multiple documents. Multi-step approaches, such as ToT, are

permitted to interact with an API that enables document retrieval and targeted information lookup.

Following prior work (Zhou et al., 2024; Shinn et al., 2023), we evaluate on a set of 100 randomly

selected questions. The quality of a response is judged based on exact match (EM) with the oracle answer.

C.1.5 Shakespearean Sonnet Writting

Shakespearean Sonnet Writing (Suzgun and Kalai, 2024) is a creative generation task where the goal is to

compose a 14-line sonnet adhering to the classic rhyme scheme “ABAB CDCD EFEF GG”. Each sonnet

must include three provided words verbatim.

Following Suzgun et al. (Suzgun and Kalai, 2024), we randomly sampled 50 datapoints to form the

test set. Quality is measured using an accuracy metric, which reflects the proportion of sonnets that both

satisfy the rhyme scheme and include all three required words exactly as given.

25720

C.2 Detailed Descriptions of Reasoning Strategies

Multi-step reasoning strategies can be broadly grouped into two high-level categories: (1) structured

reasoning and (2) iterative reasoning, which capture the major design paradigms in the space of LLM

reasoning. To systematically assess the effectiveness ofCache Saver in contemporary multistep reasoning
settings, we pick three and two representative state-of-the-art (SOTA) methods from the two categories,

respectively, that incorporate distinct algorithmic choices and reasoning dynamics. Specifically, we pick

ToT and FoA from structured reasoning, and React, RAP, and ReST-MCTS from iterative reasoning. The

five representatives are described below.

C.2.1 Tree of Thoughts (ToT)

Decomposes the problem into multiple chains of thoughts, organized in a tree structure. Thought evaluation

and search traversal algorithms are utilized to solve the problem (Yao et al., 2024).

C.2.2 Fleet of Agents (FoA)

Decomposes the problem into multiple chains of thoughts. Employs a genetic-type particle filtering

approach to navigate through dynamic tree searches to solve the problem (Klein et al., 2025).

C.2.3 Graph of Thoughts (GoT)

Allows the organization of thoughts in a graph structure (Besta et al., 2024). It introduces arbitrary

graph-based thought transformations such as thought aggregation and thought refinement.

C.2.4 ReAct

A reasoning method that interleaves reasoning (thought generation) and acting (taking environment-

interacting actions) to solve problems interactively. Each action’s output informs subsequent reasoning,

enabling adaptive and dynamic problem-solving (Yao et al., 2023).

C.2.5 Reasoning via Planning (RAP)

is a reasoning framework that equips Large Language Models (LLMs) with an internal world model and

employs Monte Carlo Tree Search (MCTS) for strategic exploration of reasoning paths. RAP repurposes

the LLM to simulate future states and evaluate potential actions, enabling deliberate planning and improved

problem-solving performance (Hao et al., 2023)

C.2.6 ReST-MCTS*

A reasoning method that employs a modified Monte Carlo Tree Search (MCTS) algorithm, guided by a

process reward model (PRM), to explore and evaluate reasoning paths. In this work, we only evaluate

in-context reasoning strategies; thus, we utilize only the MCTS* component of ReST-MCTS*, excluding

the self-training aspects involving policy and reward model updates (Zhang et al., 2024).

C.3 Detailed Descriptions of Evaluation Metrics

• Quality indicates how well a reasoning strategy performs on a benchmark task. It depends on the

task type and can be measured by accuracy, score, or success rate. The exact definition of the quality

metric is provided with the description of each benchmark task in Appx. C.1.

• Latency measures how long it takes for an LLM to respond to a request. For each reasoning strategy

and benchmark task, we report the average latency, i.e., the average time required per call.

• Throughput. Let each datapoint in a benchmark task be referred to as a puzzle. For each reasoning

strategy, we report the number of puzzles solved per second. Overall, throughput reflects a system’s

ability to process multiple tasks concurrently.

• #Tokens denote the total number of tokens used by a reasoning strategy to solve a benchmark task.

We report the total, including both the input tokens sent to the model and the output tokens in the

response generated by an LLM.

25721

• Time refers to the wall clock time, i.e., the total time taken by a reasoning strategy to solve a

benchmark task from start to finish, including all processing and waiting times.

• Cost (API-based LLMs only) denotes the total monetary cost (in USD) of executing a reasoning

strategy on a benchmark task when using an LLM via an API call to an online platform. We compute

the cost based on the number of tokens processed and the platform provider’s pricing.

• Energy consumption and Carbon footprint (Local LLMs only) measures the total energy con-

sumption (in kWh) and the estimated CO2 emissions (in grams) to run a reasoning strategy for a

benchmark task. We measure these quantities using Carbontracker (Anthony et al., 2020).

C.4 Implementation Details

C.4.1 Platforms, Model checkpoints, and Prices

The GPT models were accessed through the OpenAI API while Claude models were accessed through

the Anthropic API. For our local experiments, our models were deployed using the vLLM (Kwon et al.,

2023a) inference engine.

To compute the costs of the online experiments, we used the current model prices indicated by the

corresponding platform. The specific models snapshot used in this work, along with their respective prices,

are presented in 4. Note that Llama4-Scout was run locally, and thus, the cost is listed as N/A.

Table 4: Base LLM snapshot prices. OpenAI and Anthropic prices for each model used during the implementation

of the project.

US$ per 1M prompt tokens US$ Per 1M completion tokens

GPT4.1-Nano-2025-04-14 0.10 0.40

Claude3.5-Haiku 0.8 4

Llama4-Scout-17B-16E-Instruct N/A N/A

C.4.2 Model configurations

Generation parameters specified when making calls to any of the models used throughout this project.

These parameters were not defined by us, but by the implementation where the respective prompts were

introduced. However, as newer models were used for this study, we only adjusted the maximum allowed

completion tokens as needed to ensure compatibility and successful completion of responses.

C.4.3 Cache Saver Hyperparameters

The Cache Saver framework itself has two hyperparameters: (1) batch size and (2) timeout of the

asynchronous batcher. The batch size should be chosen large enough to allow the deduplicator to identify

and group duplicate prompts efficiently. At the same time, too large a batch size can trigger timeouts.

We use Cache Saver in a setup where many tasks, frameworks, configurations, etc. are evaluated

asynchronously and choose a batch size of 300 and a timeout of 2 seconds.

Importantly, when running a set of experiments at the same time, tuning the batch size carefully can

lead to further cost savings. The batch size for the asynchronous batcher may be larger than batch sizes

that can be processed within the memory constraints of a local model or the rate limits of a third-party

Table 5: Generation parameters specified when making requests to a base LLM.

max_tokens temperature top_p stop

Game of 24 200 0.7 1 Null

SciBench 300 0.7 1 Null

HumanEval 200 0.7 1 Null

HotpotQA 300 0.7 1 Null

Sonnet Writing 800 1.0 1 Null

25722

https://platform.openai.com/docs/overview
https://docs.anthropic.com/en/api/overview

API to a model hosted at an online platform. Slicing a batch into optimal chunks is a downstream task and

should be implemented in a model-specific wrapper.

C.4.4 Prompts

Due to the large number of methods and tasks presented in this paper, including all corresponding prompts

would be impractical within the main text. Therefore, we provide a comprehensive collection of all

prompts used in our experiments on our GitHub repository: https://github.com/au-clan/cachesaver/
prompts.md.

C.5 Additional Results

C.5.1 Hyperparameter tuning

Game 24
SciBench

0.0

0.2

0.3

0.5

0.6

Co
st

 (
U

SD
)

Game 24
SciBench

0.0

0.9

1.8

2.7

3.6

To
ke

ns
 (

M
)

Game 24
SciBench

0.0

24.4

48.8

73.2

97.6
La

te
nc

y

Game 24
SciBench

0.0

0.1

0.2

0.3

0.4

Q
ua

lit
y

Game 24
SciBench

0.0

0.9

1.8

2.7

3.6

Th
ro

ug
hp

ut

Cache Saver No Cache Saver

Figure 9: OpenAI: Hyperparameter tuning for Tree of Thoughts across tasks

Game 24
SciBench

0.0

0.1

0.3

0.4

0.5

Co
st

 (
U

SD
)

Game 24
SciBench

0.0

0.9

1.8

2.6

3.5

To
ke

ns
 (

M
)

Game 24
SciBench

0.0

16.0

32.1

48.1

64.2

La
te

nc
y

Game 24
SciBench

0.0

0.2

0.3

0.5

0.6

Q
ua

lit
y

Game 24
SciBench

0.0

1.0

2.1

3.1

4.1

Th
ro

ug
hp

ut

Cache Saver No Cache Saver

Figure 10: Llama: Hyperparameter tuning for Tree of Thoughts across tasks

C.5.2 Ablation Analysis

Game 24
HumanEval

SciBench
0.0

0.2

0.4

0.6

0.8

Co
st

 (
U

SD
)

Game 24
HumanEval

SciBench
0.0

1.3

2.6

3.9

5.1

To
ke

ns
 (

M
)

Game 24
HumanEval

SciBench
0.0

14.0

28.0

42.0

56.0

La
te

nc
y

Game 24
HumanEval

SciBench
0.0

0.1

0.2

0.3

0.4

Q
ua

lit
y

Game 24
HumanEval

SciBench
0.0

0.2

0.5

0.7

0.9

Th
ro

ug
hp

ut

No Cache Saver CacheSaver

Figure 11: OpenAI: Ablation analysis for Fleet of Agents across tasks

C.5.3 Benchmarking

C.5.4 Impact of Namespace size

C.5.5 Optimization interference

3The best performing implementation of Mini Crosswords for ToT is using its Depth-First Search variation. As a result, by
definition all the states that the algorithm traverses through are unique, and because of this, most prompts are as well. Since the
prompts are unique, minimal reuse is possible and by extension the percentage of cache retrievals is nominal in this experiment.

25723

https://github.com/au-clan/cachesaver/prompts.md
https://github.com/au-clan/cachesaver/prompts.md

Game 24
HumanEval

SciBench
0.0

0.2

0.4

0.6

0.7

Co
st

 (
U

SD
)

Game 24
HumanEval

SciBench
0.0

1.2

2.5

3.7

5.0

To
ke

ns
 (

M
)

Game 24
HumanEval

SciBench
0.0

19.8

39.6

59.3

79.1

La
te

nc
y

Game 24
HumanEval

SciBench
0.0

0.1

0.2

0.4

0.5

Q
ua

lit
y

Game 24
HumanEval

SciBench
0.0

0.2

0.3

0.5

0.6

Th
ro

ug
hp

ut

No Cache Saver CacheSaver

Figure 12: Llama: Ablation analysis for Fleet of Agents across tasks

0.0 0.2 0.4 0.6 0.8 1
0.28
0.31
0.35
0.38
0.42

Co
st

 (
U

SD
)

0.0 0.2 0.4 0.6 0.8 1
1.61
1.83
2.05
2.27
2.49

To
ke

ns
 (

M
)

0.0 0.2 0.4 0.6 0.8 1
32
37
42
47
53

La
te

nc
y

0.0 0.2 0.4 0.6 0.8 1
0.37
0.38
0.39
0.40
0.41

Q
ua

lit
y

0.0 0.2 0.4 0.6 0.8 1
0.42
0.48
0.54
0.60
0.66

Th
ro

ug
hp

ut

No Cache Saver Cache Saver

Figure 13: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on

the Game of 24 task, for the Tree of Thoughts method.

0.0 0.2 0.4 0.6 0.8 1
0.29
0.32
0.34
0.37
0.39

Co
st

 (
U

SD
)

0.0 0.2 0.4 0.6 0.8 1

1.36
1.57
1.78
1.98
2.19

To
ke

ns
 (

M
)

0.0 0.2 0.4 0.6 0.8 1

13
20
26
33
40

La
te

nc
y

0.0 0.2 0.4 0.6 0.8 1
0.38
0.39
0.40
0.41
0.42

Q
ua

lit
y

0.0 0.2 0.4 0.6 0.8 1
0.27
0.38
0.49
0.60
0.71

Th
ro

ug
hp

ut

No Cache Saver Cache Saver

Figure 14: Namespace impact: Analyzing the effect of the percentage of puzzles sharing the same namespace on

the Game of 24 task, for the Fleet of Agents method.

0 0.2 0.4 0.6 0.8 1

0.290

0.315

0.341

0.366

0.391

Co
st

 (
U

SD
)

0 0.2 0.4 0.6 0.8 1

20.000

36.250

52.500

68.750

85.000

CO
2

(g
m

)

No Cache Saver Cache Saver

Figure 15: Namespace impact: Analyzing the impact on cost as a function of the percentage of puzzles sharing

the same namespace for GPT-4.1-Nano (Left, cost in USD) and LLaMA4-Scout (Right, cost in estimated CO2
emissions)

Cache retrievals (%) ToT FoA Average

Game of 24 50.39 43.04 46.71

Mini Crosswords 1.98 3 52.78 27.38

Average 26.19 47.91 37.04

Table 6: Percentage of prompt responses retrieved from the cache instead of being generated by the LLM during the

intra-framework namespace sharing experiment. By allowing each puzzle instance to reuse responses produced by

others (with one-time usage constraints), CacheSaver significantly reduces redundant generation, highlighting its

effectiveness in promoting efficiency through controlled response sharing.

25724

