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Abstract

Recent advancements in reinforcement learning
(RL) have enhanced the reasoning abilities of
large language models (LLMs), yet the impact
on multimodal LLMs (MLLMs) is limited. Par-
ticularly in vision-intensive tasks like geomet-
ric reasoning, MLLMs hallucinate frequently,
leading to inaccurate reasoning. We attribute
this to the perceptual bottleneck in MLLMs,
which caps the benefits of reasoning training.
To quantify this, we design a Geo-Perception
Question-Answering (GeoPQA) benchmark,
targeting basic geometric concepts and spatial
relationships. Experiments on GeoPQA reveal
significant shortcomings of MLLMs in visual
perception, constraining RL reward signals for
training. To address this bottleneck, we pro-
pose a two-stage RL training framework by
first enhancing the visual perception of geomet-
ric structures, then fostering reasoning capa-
bilities. Applied to Qwen2.5-VL-3B-Instruct,
our two-stage training improves geometric rea-
soning by 9.7% and problem-solving by 9.1%,
compared to the direct reasoning training ap-
proach. Our method also generalizes to other
vision-intensive domains like figure understand-
ing, highlighting the importance of perceptual
grounding in effective MLLM reasoning.1

1 Introduction

Recent advances in reasoning models such as
DeepSeek-R1 (DeepSeek-AI, 2025) have demon-
strated that reinforcement learning with verifiable
reward (RLVR) can markedly strengthen the rea-
soning abilities of large language models (LLMs;
Team (2025); OpenAI (2024b, 2025)). Motivated
by these successes, several studies have applied
similar RL training recipes to multimodal LLMs
(MLLMs; Guo et al. 2025; Yang et al. 2025; Shen
et al. 2025; Team et al. 2025b; Yuan et al. 2025; Xu

*Guizhen is under the Joint PhD Program between Alibaba
and NTU.

1https://github.com/DAMO-NLP-SG/GeoPQA

As shown in the figure, in △ABC, ∠C=36°, rotate 
△ABC counterclockwise 60° around point A to obtain 
△AED. AD and BC intersect at point F, then the degree 
of ∠AFC is () Choices: A. 84°  B. 80°  C. 60°  D. 90°

Since △AED is obtained by rotating △ABC counterclockwise 
around point A by 60°, we have ∠BAD = 60°. Therefore, ∠AFC = 
∠C + ∠BAD = 36° + 60° = 96°. Therefore, the correct answer is: 
B. 80°. The answer is: B.

Qwen-2.5-3B-Instruct

Figure 1: Illustration of an MLLM’s perceptual errors
leading to flawed reasoning. The model misidentifies
rotation angles and misinterprets angle composition.

et al. 2025; Leng et al. 2025). However, the perfor-
mance gains on vision-intensive reasoning bench-
marks, such as MathVerse (Zhang et al., 2024b)
and MathVista (Lu et al., 2024), remain relatively
limited. A closer examination suggests that these
limitations often originate from more foundational
issues in visual understanding, even before com-
plex reasoning is attempted. Figure 1 shows an
example of a model struggling with identifying
the rotation angle – a task that is easy for humans.
Such fundamental errors in vision understanding
affect subsequent logical deductions, preventing
the model from being rewarded.

We hypothesize that RL’s efficacy in MLLMs is
upper-bounded by their underlying visual percep-
tion ability. Inadequate perception restricts the at-
tainable reward signal and, consequently, the scope
of reasoning improvement in RL training. To quan-
tify this perception bottleneck, we curate visual
perception QAs to assess models’ understanding of
basic geometric concepts and relationships. Empir-
ical results indicate that MLLMs frequently fail to
perceive geometric information, in contrast to the
near-perfect human performance.

To overcome the perceptual bottleneck and pro-
mote effective reasoning training, we propose a
two-stage RL framework comprising a perception
stage followed by a reasoning stage, as shown in
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Stage 1: Perception Stage 2: Reasoning

Q1. Is shape ABCD a square?
Q2. Is angle ABC a right angle?
Q3. Is line CE tangent to the 
circle?
Q4. Is point E 
inside the 
rectangle?
…

As shown in the figure, line l1 is 
parallel to line l2, and triangle 
ABC is an equilateral triangle. If 
angle 1 = 40°, then the 
size of angle 2 is ()
A: 60°
B: 80°
C: 90°
D: 100°

• Focusing on visual perception
• Multi-QA training
• LLM as the judge for reward signal

• Focusing on complex reasoning
• Single-QA training
• Accuracy reward + format reward

Figure 2: Overview of our two-stage RL framework.

Figure 2. The first stage enhances models’ visual
understanding of basic geometric concepts and re-
lationships using our curated perception-oriented
QA dataset derived from both real and synthetic
geometric diagrams. Building on the improved per-
ceptual foundation, the second stage focuses on
reasoning-oriented training, enabling the model to
leverage its enhanced visual understanding and con-
centrate more effectively on the logical deduction
process. Experiments on MathVista show that our
two-stage framework is superior to the direct single-
stage reasoning training, with 9.7% and 9.1% ac-
curacy improvement in geometric reasoning and
problem-solving respectively. It also outperforms
larger open-source MLLMs and previous mathe-
matical visual specialist models. Beyond geometric
tasks, we further demonstrate that the perception-
first paradigm generalizes to other vision-intensive
tasks like figure and textbook understanding.

Our main contributions are threefold: (1) We re-
veal and quantify the perceptual limitations of cur-
rent MLLMs in geometric tasks through targeted
perception QAs, which are often overlooked by
approaches focused solely on reasoning. (2) We in-
troduce a two-stage reinforcement learning frame-
work that first enhances visual perception before
training for complex reasoning. (3) We validate
the effectiveness of our approach on challenging
geometric reasoning benchmarks, outperforming
direct reasoning training and demonstrating poten-
tial generalization to other vision-intensive tasks.

2 Methodology

In this section, we first systematically assess the
perceptual capabilities of MLLMs in the geomet-
ric domain. Next, we develop a two-stage RL
framework that first enhances perception and sub-
sequently boosts reasoning capabilities of MLLMs.

2.1 Preliminary Analysis
While existing research suggests that MLLMs
struggle with geometric images, few studies com-
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Figure 3: Perception capability of MLLMs against hu-
man on GeoPQA test set.

prehensively assess their perceptual abilities in
this domain. MathVerse (Zhang et al., 2024b)
infers perceptual ability based on models’ capa-
bilities to answer geometric questions with vary-
ing levels of visual descriptions in the text for-
mat. VisOnly (Kamoi et al., 2024) and Geoper-
ception (Zhang et al., 2024a) directly evaluate ge-
ometric perception, but uses a limited range of
templates, hindering the evaluation of diverse per-
ceptual skills.

To thoroughly evaluate models’ geometric per-
ception, we construct a test set from the image-
caption pairs in the Geo170K dataset (Gao et al.,
2025). Specifically, we prompt Gemini-2.0-Flash-
Thinking (Gemini-FT; DeepMind (2025)) to gener-
ate questions that require recognizing basic visual
elements and spatial relationships directly from
the image descriptions (see Appendix A.1). These
questions cover: (1) basic geometric elements
such as identifying shapes (e.g., triangles, circles),
comparing lengths, and recognizing angles (e.g.,
right, acute, obtuse); (2) geometric relationships
such as intersection, parallelism, perpendicularity,
and tangency. To facilitate automatic evaluation,
the answers are designed for easy verification, re-
stricting them to yes/no, numerical values, or sim-
ple strings (e.g., “ABC”).

We assess the performance of several representa-
tive MLLMs in Figure 3. The results reveal signifi-
cant deficiencies in models in answering these basic
visual questions, even for state-of-the-art models
like GPT4o, while humans easily attain over 90%
accuracy in these questions. This highlights a criti-
cal perceptual gap that limits the effectiveness of
subsequent reasoning training via RL.

2.2 Framework Overview

To overcome the perceptual bottleneck, we intro-
duce a two-stage RL framework: perception fol-
lowed by reasoning. Stage 1 focuses on improving
the model’s ability to accurately perceive and in-
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terpret geometric information, while stage 2 lever-
ages the enhanced perceptual foundation to develop
more complex, multi-step reasoning capabilities.

2.3 Stage 1: Perception-oriented Training
Training data. To enhance the geometric per-
ception of MLLMs, we curate a comprehensive
Geo-Perception Question-Answering (GeoPQA)
training dataset, comprised of both real-world and
synthetic figures. For real-world images, we em-
ployed the same methodology as described in our
preliminary study: leveraging Gemini-FT to gener-
ate perception-focused QAs. We further augment
this data with synthetically generated geometric
figures to cover a wider range of scenarios. Fol-
lowing methodologies in AlphaGeometry (Trinh
et al., 2024) and AutoGen (Wu et al., 2023), we
create basic shapes and composite shapes. Addi-
tionally, we use geometric annotations to visually
enrich the diagrams (see Appendix A.2). The per-
ception QAs for the synthetic figures are generated
similarly to those for real images, concentrating on
elements and relationships present in the generated
diagrams. Since each image contains rich visual
information, we generate a set of perception ques-
tions Q = (q1, . . . , qn) per image (n ≤ 7). Dataset
statistics are presented in Appendix A.3.

Quality control. To ensure quality, we use GPT-
4o (OpenAI, 2024a) to filter out questions where:
(1) the image does not explicitly contain the in-
formation required to answer the question, or (2)
the provided ground-truth answer contradicts the
information evident in the image description. To
validate the quality of the dataset after GPT-4o
filtering, we perform a human inspection on 100
random samples: 92% are valid and high-quality.
More details are shown in Appendix A.4.

RL training. The input to the model at this stage
is formulated as

x = (I, q1, . . . , qn)

where I is the instruction, and qi is a visual per-
ception question. Given an input x, the policy πθ
generates a free-form textual response y ∼ πθ(y|x).
This response y is expected to contain the answers
to all n questions. Let the ground-truth answers be

A = (a1, . . . , an)

where ai is the ground-truth answer to qi. To
evaluate the correctness of the generated response

y, we employ GPT-4o-mini (OpenAI, 2024a) as
the judge, denoted as J . The judge J parses
the response y to extract the model’s predicted
answers for each perception question, yielding
J(y) = Â = (â1, . . . , ân). The accuracy reward
R(x, y) for a given input x and generated response
y is defined as:

R(x, y) =

{
1, if âi = ai,∀i ∈ {1, . . . , n}
0, otherwise.

This strict reward function grants a positive reward
only if all perception questions are answered cor-
rectly. To mitigate reward hacking (e.g., the model
learning to always output “yes”), we downsample
training instances where all ground-truth answers
are “yes”. Other training details are kept the same
as in the original Group Relative Policy Optimiza-
tion (GRPO; DeepSeek-AI (2025)).

2.4 Stage 2: Reasoning-oriented Training
With the improved perceptual capabilities, the
MLLM proceeds to stage 2, where it is trained on
geometric reasoning tasks. We use the QA tuning
subset from Geo170K (Gao et al., 2025). We fol-
low the standard GRPO setup to apply RL training
at this stage.

2.5 Implementation
We train our models based on Qwen-2.5-VL-3B-
Instruct and Qwen-2.5-VL-7B-Instruct (Bai et al.,
2025). Besides the backbone models, we com-
pare against several baselines, including five pro-
prietary MLLMs (Bai et al., 2024; Team et al.,
2025a; OpenAI, 2023, 2024a) and six open-source
MLLMs (Liu et al., 2024; Gao et al., 2025; Shi
et al., 2024; Zhang et al., 2025; Dong et al., 2024;
Chen et al., 2025). We evaluate models on geome-
try reasoning (GR) and geometry problem-solving
(GPS) on MathVista (Lu et al., 2024). Training and
evaluation details are provided in Appendix B and
C respectively.

3 Results and Analyses

Main results. Table 1 shows that our two-stage
approach significantly outperforms the reasoning-
only training approach by a large margin of 9.7% in
GR and 9.1% in GPS. Notably, the reasoning-only
approach scores even slightly lower than the origi-
nal baseline. This suggests that directly applying
RL for reasoning without addressing underlying
perceptual limitations can be ineffective or even
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Model GR GPS

Proprietary MLLMs

Qwen-VL-Plus 39.3 38.5
GeminiPro – 40.4
GPT-4V 51.0 50.5
GeminiUltra – 56.3
GPT-4o 74.1 75.0

Open-source MLLMs

SPHINX-MoE (8 × 7B) 30.5 31.2
G-LLAVA* (13B) – 56.7
Math-LLAVA* (13B) 56.5 57.7
MAVIS* (7B) 63.2 64.1
InternLM-XC2 (7B) 62.3 63.0
InternVL2.5 (4B) 64.4 67.3

Qwen2.5-VL-3B-Instruct 63.2 63.9
w/ Reasoning 62.3 63.0
w/ Perception and Reasoning mixed 65.7 65.9
w/ Perception followed by Reasoning 72.0 72.1

Table 1: Results of MathVista-testmini (Lu et al., 2024)
on geometry reasoning (GR) and geometry problem
solving (GPS). * denotes visual specialists in mathemat-
ics. The highest scores for proprietary and open-source
MLLMs are bolded.

detrimental, and our perception training effectively
bridges the perception gap.

In addition, we observe that incorporating per-
ception data, whether mixed or sequential, boosts
reasoning performance over reasoning-only RL.
This validates the effectiveness of our perception
QA dataset. Moreover, a structured, sequential ap-
proach of perception followed by reasoning train-
ing yields greater benefits than simply mixing per-
ception and reasoning data, validating the effective-
ness of our two-stage framework.

Compared to other leading open-source MLLMs
and models specialized in mathematics, our method
establishes new state-of-the-art performance on ge-
ometric tasks, even with a much smaller model
size. While GPT-4o remains the top performer
among proprietary models with 74.1% on GR and
75.0% on GPS, our two-stage framework, applied
to the Qwen2.5-VL-3B-Instruct, considerably nar-
rows the performance gap to just around 2%.

Enhancement on visual perception. Table 2 di-
rectly quantifies the benefits of our approach on
models’ visual perception, measured by GeoPQA.
The results provide several key insights:

• Effectiveness of perception training: Per-
ception training significantly improves the per-

Model GeoPQA

Qwen2.5-VL-3B-Instruct 68.2
w/ Perception 89.8
w/ Reasoning 53.1
w/ Perception followed by Reasoning 83.2

Table 2: Performance of Qwen2.5-VL-3B-Instruct on
GeoPQA.

formance on GeoPQA by 21.6%, which val-
idates its effectiveness in directly enhancing
geometric visual perception.

• Necessity of a staged approach: Reasoning
training degrades performance on GeoPQA
by 15.1%, suggesting that training directly on
high-level reasoning can cause the model to
neglect or unlearn basic perceptual abilities,
which justifies our two-stage approach.

• Balanced two-stage approach: Our two-
stage approach maintains a high perception
score of 83.2%, with a 15% gain over the
baseline while also achieving the significant
reasoning gains reported in our main results.

Impact of training strategy on tasks of differ-
ent vision intensity. To further understand the
benefits of our training framework, we analyze its
performance on MathVerse (Zhang et al., 2024b)
Plane Geometry problems, which includes 5 vision
intensities: Text Dominant (TD), Text Lite (TL),
Vision Intensive (VI), Vision Dominant (VD), and
Vision Only (VO). As shown in Table 3, across all
categories, both perception-involved methods gen-
erally outperform the reasoning-only approach and
the base model. Notably, our two-stage approach
excels in the Vision Only scenario compared to the
single-stage mixed approach. The results suggest
that while mixing perception and reasoning data
can be beneficial, a dedicated initial stage focused
purely on perception, as in our two-stage frame-
work, is crucial for tasks where the model cannot
rely on textual cues to compensate for perceptual
weaknesses.

Model TD TL VI VD VO

Qwen2.5-VL-3B-Instruct 46.5 39.6 37.5 38.4 37.1
w/ Reasoning 49.8 44.3 38.0 41.8 43.9
w/ Perception and Reasoning mixed 56.1 51.6 48.6 48.2 39.8
w/ Perception followed by Reasoning 55.3 52.5 47.5 47.6 45.5

Table 3: Results of MathVerse-testmini (Lu et al., 2024)
on the plane geometry subset.
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Training GR GPS GeoPQA

Single QA 52.7 52.9 95.4
Multiple QAs 62.3 63.5 94.0

Table 4: Effects of perception training with single QA
per image vs. multiple QAs per image.

Impact of multiple perception QAs per image.
In stage 1, we formulate training samples by con-
catenating multiple perception questions for a sin-
gle image. To evaluate the effectiveness of this
setting, we conduct an ablation study comparing it
against the conventional method, where each per-
ception question is treated as an individual training
sample. The results in Table 4 show that train-
ing with multiple QAs per image demonstrates a
substantial advantage for downstream reasoning
tasks, with an improvement of 9.6% for GR and
10.6% for GPS. While the multi-QA setup exhibits
slightly lower performance on our perception task,
this is potentially attributable to the stricter reward
in the multi-QA training, in which the model only
receives a positive reward if all sub-questions asso-
ciated with an image are answered correctly. This
more demanding training setup, however, encour-
ages the model to learn more robustly on percep-
tion, ultimately leading to superior performance on
downstream reasoning tasks.

Results on a larger scale. To demonstrate that
our method remains effective at a larger scale, we
extend our experiments to a 7B model. The results
in Table 5 are consistent with our observations with
the 3B model, with 2.6% gain in GR and 4.8%
improvement in GPS. Notably, our 7B model sur-
passes all other models, including the strong pro-
prietary baseline GPT-4o (74.1% GR, 75.0% GPS).
These results reinforce our central claim: even for a
more capable base model, enhancing foundational
visual perception is a critical prerequisite for un-
locking further gains in high-level reasoning and
problem-solving.

Model GR GPS

Qwen2.5-VL-7B-Instruct 74.1 75.5
w/ Reasoning 73.6 75.0
w/ Perception followed by Reasoning 76.2 79.8

Table 5: Performance of Qwen2.5-VL-7B-Instruct on
geometry reasoning (GR) and geometry problem solv-
ing (GPS) from MathVista-testmini (Lu et al., 2024).

Generalization to other tasks. To assess the
broader impact of our two-stage training, we eval-
uate a diverse set of other tasks from MathVista,
comparing our perception-then-reasoning approach
against the reasoning-only baseline. The results
are presented in Appendix D. Performance gains
are observed in visually grounded tasks, including
figure question answering (+1.5%), textbook QA
(+2.6%), and scientific reasoning (+2.5%), indi-
cating that improved visual perception from stage
1 training facilitates more effective reasoning for
tasks that involve interpreting diagrams. The im-
pact of geometry-focused perception training is less
pronounced or slightly negative on tasks that are
more text-reliant or require different types of visual
understanding than geometry, such as numerical
commonsense (-2.8%) and math word problems
(-1.1%).

4 Conclusion

We investigate the fundamental challenge of
improving geometric reasoning capabilities in
MLLMs. Our analysis reveals that the effective-
ness of reinforcement learning for reasoning is
significantly constrained by MLLMs’ visual per-
ception, a critical bottleneck that is often not di-
rectly measured in previous work. By develop-
ing a targeted assessment of geometric perception
and introducing a two-stage RL framework that
explicitly enhances visual perception prior to rea-
soning training, we achieved substantial improve-
ments on challenging benchmarks. The success
of our perception-first training approach highlights
an important principle for future work in multi-
modal reasoning: strong perceptual foundations are
prerequisites for effective higher-level reasoning.
Future directions include exploring whether our
approach can enhance the performance of recent
thinking-with-images approaches (OpenAI, 2025;
Su et al., 2025; Ma et al., 2024) and generalizing
our framework to other vision-intensive tasks like
chart understanding (Huang et al., 2024).

Limitations

In our experiments, the accuracy of stage 1 training
relies on an LLM judge (GPT-4o-mini) to parse
free-form answers and determine the correctness
for the perception QAs. This introduces extra cost
and time calling the APIs.
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A Details of GeoPQA

A.1 Prompt to generate perception QAs
The following prompt is used with Gemini-2.0-
Flash-Thinking to generate the initial set of percep-
tion question-answer pairs.

Create perception questions based on the
provided image description. The questions
should be formulated such that:
1. They involve recognizing basic visual
elements and spatial relationships directly
from the image.
2. They are answerable from the image
description.
3. Answers must be "yes/no", a number, or a
simple string like "AB" (no spaces).
4. No reasoning should be provided with the
answer.
5. Avoid rephrasing the same question.
6. Output the results as a JSON array
of objects. Each object should have keys
"question" and "answer". If no meaningful
question can be generated, return an empty
array. If the image is too simple, for
example, only contains a single point or a
line segment, return an empty array.
7. No more than seven questions should be
generated.

Image Description: Triangle ABC is a
right angle isosceles triangle, with ̸ BAC
as the right angle. The circle that passes
through points A, C, and B has center D.
Questions: [{"question": "Is triangle
ABC a right triangle?", "answer": "Yes"},
{"question": "Which vertex has the right
angle in triangle ABC?", "answer": "A"},
{"question": "Does the circle pass through
point D?", "answer": "No"}, {"question":
"What is the measure of angle BAC?", "answer":
"90"}, {"question": "Are sides AB and AC
equal in length?", "answer": "Yes"}]

Image Description: <description>
Questions:

A.2 Synthetic geometric diagram generation
We create the following to generate the synthetic
geometric diagrams:

• Basic shapes: Line segments, circles, trian-
gles, quadrilaterals, and pentagons.

• Composite shapes: Combinations of 2-4 ran-
dom basic shapes with predefined spatial rela-
tionships (e.g., a circle tangent to a triangle).

• Annotations: Diagrams are explicitly anno-
tated with special geometric symbols, such as
right-angle symbols and markings for equal
sides/angles, which are commonly understood

by humans but potentially ambiguous for
MLLMs.

A.3 Dataset statistics
The dataset is split into 659 test samples and 5420
training samples. The training set contains a bal-
anced mix of real-world and synthetic images. The
distribution is shown in Table 6.

Image Type # Images # Questions

Real 2548 7038
Synthetic 2872 9303

Table 6: Distribution of real vs. synthetic images.

To provide an estimate of sample complexity, we
analyse the number of perception questions associ-
ated with each image, which serves as a proxy for
its visual complexity. The distribution is shown in
Table 7.

# Questions per Sample % Share

1 9.56
2 23.28
3 35.15
4 22.38

5+ 9.63

Table 7: Percentage share of the number of questions
per sample.

The created perception questions cover a range
of geometric concepts, including (1) basic geomet-
ric elements such as identifying shapes (e.g., trian-
gles, circles), comparing lengths and recognising
angles (e.g., right, acute, obtuse); (2) geometric
relationships such as intersection, parallelism, per-
pendicularity, and tangency. Table 8 shows the
distribution of question types in GeoPQA.

Category Sub-category Count

Geometric Elements

Shapes 4387
Angles 1737
Lengths 1405
Area/Perimeter 46
Others 243

Geometric Relationships

Relative Position 5662
Intersection 1108
Perpendicularity 500
Parallelism 234
Tangency 432
Congruence/Similarity 410
Transformation 177

Table 8: Distribution of question types.
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A.4 Quality control of generated perception
QAs

We prompt GPT-4o (OpenAI, 2024a) to filter out
low-quality questions. The following prompt is
used.

Your task is to evaluate the correctness
of a user’s answer based on an image, its
description, and a given question. The
user’s answer is considered incorrect if:
- The image does not explicitly contain the
information needed to answer the question.
- The answer contradicts the information
presented in the image description.

**Input**:
- Image Description: <description>
- Question: <question>
- User’s Answer: <response>

**Output Format**:
Provide your reasoning and judgment (0 =
correct, 1 = incorrect) in the following
format:
<think>{{Your concise reasoning, including
consideration of the image description and
question, and how it relates to the user’s
answer.}}</think> <judge>{{0 or 1, 0 if the
user’s answer is correct, 1 if the user’s
answer is incorrect.}}</judge>

To validate the quality of the dataset after GPT-
4o filtering, we perform a human inspection on 100
random samples: 92% are valid and high-quality.
The 8% invalid samples comprised 2% from the
synthetic subset and 6% from the real-world image
subset. While there is a slight error rate, our main
results show that perception training on this dataset
still yields a significant benefit over reasoning-only
training. This demonstrates the practical effective-
ness of our dataset. Furthermore, since most er-
rors are from the real-world subset, we can fur-
ther improve the dataset quality by increasing the
proportion of high-quality synthetic data in future
iterations.

B Training setup

Table 9 shows the hyperparameter configuration in
our training. We adopt the same settings across all
experiments to ensure a fair and direct comparison.

C Evaluation

All evaluation is conducted using the VLMEvalKit
toolkit2, ensuring standardized and reproducible
evaluation metrics.

2https://github.com/open-compass/VLMEvalKit

Hyperparameter Configuration

Max Prompt Length 2048
Max Response Length 2048
Max Image Pixels 1,048,576
Min Image Pixels 65,536
Global Batch Size 128
Rollout Batch Size 512
Learning Rate 1e-6
Optimizer AdamW
N Rollouts 5
Training Episodes 10

Table 9: Hyperparameters used in training.

D Performance on other tasks

Table 10 shows the performance of our method
vs. the reasoning-only method on other MathVista
tasks.

MathVista Task Category Reasoning-only Perception + Reasoning

Figure Question Answering 68.0 69.5
Textbook Question Answering 62.0 64.6
VisualQA 58.1 57.0
Scientific Reasoning 59.8 62.3
Numeric Commonsense 43.1 40.3
Arithmetic Reasoning 56.7 58.1
Algebraic Reasoning 62.6 69.4
Math word problem 62.9 61.8
Logical Reasoning 29.7 37.8

Table 10: Performance (%) on MathVista other tasks.
“Perception + Reasoning” refers to our two-stage ap-
proach.
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