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Abstract

Large language models (LLMs) typically un-
dergo instruction tuning to enhance alignment.
Recent studies emphasize that quality and di-
versity of instruction data are more crucial than
quantity, highlighting the need to select diverse,
high-quality subsets to reduce training costs.
However, how to evolve these selected sub-
sets alongside the development of new instruc-
tion data remains insufficiently explored. To
achieve LLMs’ ongoing alignment, we intro-
duce Instruction Bank (InsBank), a continu-
ously updated repository that integrates the lat-
est valuable instruction data. We further pro-
pose Progressive Instruction Bank Evolution
(PIBE), a novel framework designed to evolve
InsBank effectively and efficiently over time.
PIBE employs a gradual data selection strategy
to maintain long-term efficiency, leveraging a
representation-based diversity score to capture
relationships between data points and retain his-
torical information for comprehensive diversity
evaluation. This also allows for flexible com-
bination of diversity and quality scores during
data selection and ranking. Extensive experi-
ments demonstrate that PIBE significantly out-
performs baselines in InsBank evolution and is
able to extract budget-specific subsets, demon-
strating its effectiveness and adaptability.1

1 Introduction

Instruction fine-tuning is widely adopted to re-
fine pre-trained LLMs to accurately understand hu-
man instructions and provide precise, pertinent and
harmless responses (Longpre et al., 2023; Qin et al.,
2024a). LIMA (Zhou et al., 2023a) has proved that
the quality and diversity of instruction data are sig-
nificantly more critical than its sheer quantity for
training, motivating recent efforts in instruction

†Equal contributions.
‡Corresponding authors.
1Our code has been released on https://github.com/

jiayinlp/InsBank

Individual Score

HighLow

Available Instruction Pool InsBank Pre-Evolution Candidate Data

Candidate Data in EvolutionInsBank Post-EvolutionCustomized InsBank Subset 

S1. 
Initialization

S2. 
Integration

S3. 
Scoring

S4. 
Replacement

S5.
Customization 

Figure 1: Illustration of InsBank evolution. It is initial-
ized by data selection on all current available instruction
data, and it will evolve itself as long as new instruction
data are proposed. A smaller training subset can be ob-
tained from InsBank according to user training budget.

data selection to reduce unnecessary training costs
by eliminating low-quality and redundant data (Qin
et al., 2024a). However, how to evolve the selected
instruction subset in parallel with the development
of the instruction data remains underexplored.

Specifically, with the continuous emergence of
instruction datasets (The timeline of part instruc-
tion datasets is shown in Appendix A), it becomes
necessary to regularly update the instruction sub-
set to incorporate the latest advanced instruction
data in order to ensure ongoing improvements in
the alignment capabilities of LLMs. Simultane-
ously, the subset size must be controlled to avoid
excessive growth that could lead to increased train-
ing costs. To address these practical challenges,
we propose a novel concept termed InsBank (In-
struction Bank). InsBank is designed to support
instruction subset evolution with two key proper-
ties: (1) To prevent unbounded growth, InsBank
maintains a constant size by replacing low-quality
old samples with an equal number of high-scoring
new ones during evolution. (2) Samples in Ins-
Bank are ranked according to their overall scores
to enable users to extract subsets that are tailored
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to specific training budgets, simply by selecting
the top-ranked samples. The evolution process of
InsBank is illustrated in Figure 1.

As the scale of existing instruction sets contin-
ues to grow(Qin et al., 2024a; Longpre et al., 2023;
Wang et al., 2023; Xu et al., 2023)—reaching mil-
lions or even billions of instances—the cost of ex-
haustively traversing all candidate data during each
InsBank evolution becomes prohibitively high. To
address this challenge, we propose Progressive In-
struction Bank Evolution (PIBE), a method de-
signed for continuous and efficient selection of
the optimal instruction subset. PIBE evolves Ins-
Bank in a gradual manner, ensuring long-term effi-
ciency. Unlike the naive approach, it significantly
reduces the cost of evolution by excluding previ-
ously filtered-out data and focusing solely on newly
proposed samples and the current InsBank.

Additionally, the orderliness of InsBank calls for
an overall score that integrates both individual qual-
ity and diversity signals. While quality scores can
be readily obtained through manual or model-based
annotation, measuring individual diversity requires
global comparisons among candidates. Unfortu-
nately, existing instruction data selection methods
struggle to effectively represent and combine qual-
ity and diversity for ranking purposes. This chal-
lenge is further exacerbated by the absence of his-
torical data, which alters the distribution of candi-
dates and underscores the need to retain historical
data distributional information during evolution.
Existing diversity-driven data selection methods
(Liu et al., 2024; Wu et al., 2023) typically fall
into two categories: k-nearest neighbor (k-NN) ap-
proaches (Dong et al., 2011) and geometry-based
coreset sampling methods (Guo et al., 2022). Both
of them rely exclusively on local information from
a limited number of neighboring points, which lim-
its their ability to capture global relationships and
provide reliable individual diversity scores for rank-
ing. Furthermore, they lack mechanisms to pre-
serve information about previously discarded data,
making them ill-suited for progressive selection.
Inspired by Affinity Propagation (Frey and Dueck,
2007), we frame InsBank data selection as an exem-
plar election process, where the representativeness
of each data point is quantified through an iter-
ative voting mechanism. The representativeness
further serves as the individual diversity score, and
the voting results are passed to the next iteration
as historical information to preserve the distribu-
tion of absent data. Moreover, existing data selec-

tion methods either prioritize quality or diversity
(Chen et al., 2024), or address them sequentially
(Liu et al., 2024), failing to consider both aspects
equally. Conversely, our diversity score integrates
seamlessly with the quality score, enabling com-
prehensive and flexible instruction selection and
InsBank ranking.

We simulate the instruction set development with
five datasets and perform InsBank evolution on
them with PIBE and we elaborate on the ratio-
nale for selecting these datasets in Appendix J.1.
We evaluate the general instruction following ca-
pability of fine-tuned models on AlpacaEval (Li
et al., 2023b), MT-Bench (Zheng et al., 2023), IFE-
val (Zhou et al., 2023b), OpenLLM Leaderboard
(Beeching et al., 2023) and FollowBench (Jiang
et al., 2024). Experimental results show that PIBE
outperforms the baselines and successfully evolves
the instruction bank in parallel with the develop-
ment of instruction sets. Besides, analysis on order-
liness of InsBank indicates that users can flexibly
select a smaller subset based on their budget. Ours
contributions can be summarized as follows:

• We propose InsBank, a dynamic framework
for evolving instruction subsets alongside the
development of instruction data, enabling con-
tinuous alignment improvements.

• We develop Progressive Instruction Bank Evo-
lution (PIBE), an efficient approach that lever-
ages a memory-enhanced diversity score and
seamlessly integrates it with quality scores for
optimal subset selection.

• We introduce a unified scoring system for
individual samples, ensuring an ordered Ins-
Bank and enabling flexible extraction of high-
quality subsets tailored to user budgets.

• Extensive experiments demonstrate that PIBE
not only outperforms baseline methods in
evolving InsBank but also provides flexible,
budget-aware data selection, highlighting its
effectiveness and adaptability.

2 Preliminaries

2.1 Instruction Data Selection Problem

Following Liu et al. (2024), given a collection of in-
struction data X = {x1, x2, ..., xn} where xi is an
individual instruction-response pair, data selection
selects an instruction subset Pm

π of size m from X ,
where π is the data selection strategy. Denote the
performance evaluation function for π as Q, the
optimal data selection strategy π∗ with subset size
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m satisfies:

π∗ = argmax
π

Q(Pm
π ) (1)

2.2 Selection Metrics
Previous research (Liu et al., 2024; Qin et al.,
2024a) highlight that the effectiveness of instruc-
tion set selection depends on both quality and diver-
sity. In line with this, we focus on the two aspects
in this paper:

Quality of instruction data primarily refers to
the accuracy and rationality which estimate the con-
sistency and coherence of the instruction context,
as well as whether the response accurately corre-
sponds to the instructions (Qin et al., 2024a). In
this work, we adopt the quality evaluation model
of DEITA (Liu et al., 2024) for quality annotation.

Diversity of instruction data is critical to the gen-
eralization ability of the trained model (Qin et al.,
2024a). There are currently two major approaches
to measure diversity: k-nearest neighbor (k-NN)
(Dong et al., 2011) and geometry-based coreset
sampling (Guo et al., 2022). The kNN approach
measures sample’s diversity by its distance to its
j-th k-nearest neighbor (k-NN) with the help of
text embeddings as shown in Eq. 2:

kNN j
i = d(e(xi), e(Nj(xi))) (2)

where Nj(xi) denotes the j-th closest neighbor
of xi in the embedding space projected by e(·),
and d(·, ·) calculates the distance between xi and
Nj(xi). The geometry-based coreset sampling ap-
proach is to find the most informative-and-diverse
subset that represents the entire dataset the most
through controlling the minimum distance between
any two samples for subset selection (Guo et al.,
2022; Sener and Savarese, 2018). However, both
methods rely solely on local information from
nearby points, making it difficult to capture the
global distribution relationships or utilize histor-
ically eliminated points, resulting in inadequate
individual diversity scores for subset evaluation.

2.3 Affinity Propagation
Affinity Propagation (AP) (Frey and Dueck, 2007)
is a clustering algorithm that leverages message-
passing to uncover the global distribution of data.
It identifies exemplars by iteratively transmitting
two kinds of messages between data points:

• Responsibility (R[i, k]) This message sent
from point i to point k represents how suitable
point k is to serve as the exemplar for point i.

• Availability (A[i, k]) This message sent from
point k to point i represents how appropriate
it would be for point i to choose point k as
its exemplar, taking into account the current
responsibilities sent from other points to k.

The messages are updated iteratively based on
the rules as shown in Eq. 3. Here, S[i, k] represents
the similarity between point i and point k where
i ̸= k. And S[k, k] is filled by the predefined
preference value which represents the preference
for sample i as an exemplar.

R[i, k]← S[i, k]−max
k′ ̸=k

{
A[i, k′] + S[i, k′]

}
,

A[i, k]← min



0, R[k, k] +

∑

i′ /∈{i,k}
max

{
0, R[i′, k]

}


 ,

A[k, k]←
∑

i′ ̸=k

max{0, R[i′, k]},

(3)

At any given moment, the clustering result can
be determined by summing R and A. For xi, let k′

be the index that maximizes A[i, k] + R[i, k], the
conclusion are as follows: (1) if i = k′, then xi is a
cluster center, (2) if i ̸= k′, then xi belongs to the
cluster center xk′ . That is, for R+A, the i-th row
represents the votes cast by xi for different points
to represent itself, while the j-th column represents
the votes received by xj . Based on this, we obtain
the representativeness of xi according to the voting
results by subtracting the votes cast by xi for other
samples from the votes received by xi. This result
serves as individual diversity score.

3 Progressive Instruction Bank Evolution

In this section, we provide a detailed explanation
of PIBE, whose pipeline is depicted in Figure 2.

3.1 Gradual Evolution Formulation

In this work, we propose the instruction subset
evolution task to build the InsBank. Denoting cur-
rent available instruction data as X0, the instruc-
tion bank B0,m

π of size m is initialized through
data selection which can be presented as B0,m

π =
π(X0). Then, when new instruction dataset X1

is proposed, B0,m
π should evolve itself to adapt

to changes in data distribution. The naive man-
ner of InsBank evolution can be represented as
B1,m
π = π(X0,X1) which can be extended to

Bt+1,m
π = π(X0, ...,Xt,Xt+1) for future evolu-

tion. However, this manner requires substantial
storage and computational resources to calculate
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Figure 2: The framework of PIBE begins by integrating newly proposed candidates with the existing InsBank
data and initializing momentum information based on historical records. Then, affinity propagation incorporating
the momentum is applied to compute diversity scores. Subsequently, the quality scores obtained via model-based
annotation are combined with the diversity scores to produce an individual overall score. Finally, the top-k samples
with the highest overall scores are selected to form the evolved InsBank where k is the budget.

diversity scores as t continues to increase. To im-
prove the long-term evolution efficiency, we pro-
pose a gradual manner where only the newly pro-
posed instruction data Xt+1 along with the data
participated in last round of evolution Xt +Bt−1,m

π

are involved into the current round of evolution,
and the evolution can be represented as Bt+1,m

π =
π(Xt+1,Xt + Bt−1,m

π ).
In addition to the update of InsBank, we evaluate

the diversity and quality of each sample xi and
provide an overall individual score for data ranking.
Users can quickly select a smaller subset according
to the data ranking to suit their own training budget.

3.2 Historical Information Flowing

Although a large amount of data is eliminated dur-
ing InsBank evolution for efficiency, preserving
their distribution information is crucial for main-
taining InsBank’s global representativeness. To ad-
dress this, we introduce a momentum matrix based
on historical voting results to retain the distribution
information of excluded data, which flows across
iterations, allowing filtered-out data to re-engage
in future exemplar selection and preventing subop-
timal global representativeness.

As described in Section 2.3, we evaluate indi-
vidual diversity through AP. By analyzing the simi-
larity between previously selected data and newly

proposed candidates, we estimate the suitability of
new data as exemplars for the existing data and vice
versa, represented by the responsibility matrix.

Formally, let X ′
t = Xt ∪ Bt−1,m

π denote the full
candidate data set from the previous round of Ins-
Bank evolution, and X ′

t+1 = Xt+1 ∪ Bt,m
π denote

the full candidate data set of the (t + 1)-th evo-
lution round. Then, the matrix Simt+1 of size
|X ′

t | × |Xt+1| represents the cosine similarity be-
tween X ′

t and Xt+1. Given the historical informa-
tion matrix Ht of size |X ′

t | × |X ′
t |, representing

the responsibility matrix stored from the t-th round
of InsBank evolution, we derive the momentum
responsibility matrix Mt using Ht and Simt+1:

wjk =
Sim[j, k]

∑|X′
t|

l=1 Sim[l, k]
,

Mt[i, k] =

|X′
t|∑

j=1

wjk ∗Rt[i, j]

(4)

Mt[i, k] =

|X′
t|∑

j=1

wij ∗Rt[j, k] (5)

This allows the filtered-out data to participate in
exemplar election during future history-aware AP
processes.

The structure of Mt is depicted in Appendix B.
The top-left part of Mt contains responsibility val-
ues between data in Bt,m

π , taken directly from
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Ht. The top-right part represents the suitability
of newly proposed candidate data as exemplars
for previously selected data, estimated using Eq. 4.
Similarly, the bottom-left part represents the suit-
ability of previously selected data as exemplars for
newly proposed candidate data, estimated using
Eq. 5. The bottom-right section is filled with the
median values of the other three sections.

We regard Mt as a continuously decaying mo-
mentum term for historical information preserving.
Specifically, we first calculate Ri

t+1 by Eq. 3. Then,
we apply a weighted sum of Mt and Ri

t+1 to recall
the historical information as shown in Eq. 6,

Ri
t+1 = αi ·Mt+(1−αi) ·(β ·Ri

t+1+(1−β) ·Ri−1
t+1) (6)

where αi = λ · αi−1 is the momentum coefficient
with a decay rate of λ, and β is the official AP
damping rate (Frey and Dueck, 2007). Finally,
Ai

t+1 is calculated by Eq. 3. All α, λ and β are
predefined hyperparameters.

3.3 Representativeness Scoring
The individual representativeness score encapsu-
lates the results of the exemplar election, reflecting
both how willing other samples are to be repre-
sented by a specific sample and how unwilling the
specific sample is to be represented by others. As
explained earlier, the responsibility value R[i, k]
indicates the suitability of xk to serve as the ex-
emplar for xi, while the availability value A[i, k]
reflects the appropriateness of xi selecting xk as
its exemplar. The combined value (A + R)[i, k]
represents the total evidence supporting xi’s selec-
tion of xk as its exemplar (Frey and Dueck, 2007).
Thus, the sum of the k-th column of A+R can be
interpreted as the total votes received by xk, and
the sum of the i-th row of A+R represents the to-
tal votes cast by xi for different samples. Defining
Z = A+R, the representativeness score of xk is
then computed using Eq. 7.

skrep =

|X′
t+1|∑

i=1

Z[i, k]−
|X′

t+1|∑

i=1

Z[k, i] + Z[k, k] (7)

3.4 Integration of Diversity and Quality
Both data quality and data diversity are crucial for
instruction tuning, yet existing methods often focus
on one or address them sequentially. We combine
quality and diversity scores in three ways, both pre-
ceded by min-max normalization (Eq. 8) to ensure
scale consistency, where skq refers to the quality

score of xk, and skrep refers to the corresponding
diversity score.

s′
k
rep =

skrep − min
xi∈Bm

t

sirep

max
xi∈X′

t+1

sirep − min
xi∈Bm

t

sirep
,

s′
k
q =

skq − min
xi∈X′

t+1

siq

max
xi∈X′

t+1

siq − min
xi∈X′

t+1

siq

(8)

sk = s′
k
rep + γ · s′kq . (9)

sk = (1 + s′
k
rep) ∗ (1 + s′

k
q )

γ (10)

Eq. 9 and Eq. 10 illustrate the calculation of
the individual overall score using the additive and
multiplicative approaches, respectively, where γ
is the weighting coefficient that controls the focus
between diversity and quality.

In practice, we observe that further improving
quality beyond a certain level can reduce the fine-
tuned model’s performance. Additionally, when
combining quality and diversity using linear meth-
ods, diversity scores often dominate the selection
process. This occurs because quality, as a linear
score, increases at a constant rate, even when ex-
cessively large values provide diminishing benefits.
More details can be found in our experimental anal-
ysis of score combination (Section 4.4).

To address this, we design a nonlinear mapping
function for quality scores, shown in Eq. 11. Here,
Qp denotes the p-th percentile, rl and rh represent
the lower and upper percentiles, S′

q refers to the
scaled quality scores, and σ(·) is the sigmoid func-
tion. The function, illustrated in Figure 7, leverages
the sigmoid’s steepness in (−2, 2) to enhance the
distinguishability of scores within [τl, τh], while
flattening growth for scores above τh. Data below
τl are less considered, as such low-quality data are
rarely selected into InsBank. Finally, we combine
diversity with the nonlinear-mapped quality scores.

τl = Qrl(S
′
q)

τh = Qrh(S
′
q)

cmul = 4/(τh − τl)

csub = τl + 2/cmul

s′′
k
q = σ((s′

k
q − csub) ∗ cmul)

(11)

After getting the overall scores, in addition to
serving as the criterion for InsBank data selection,
users can quickly select a smaller subset accord-
ing to the data ranking to suit their own training
budget.
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Method Llama3-8B Qwen2.5-7B Mistral-7B

AlpacaEval MT-Bench IFEval AlpacaEval MT-Bench IFEval AlpacaEval MT-Bench IFEval

Full 19.07 5.88 40.29 20.37 6.11 41.37 13.12 4.98 35.25
Random 17.93 5.13 38.13 22.80 6.00 43.53 11.93 4.39 9.95
kCenter 15.28 4.99 37.29 27.39 6.12 46.40 9.20 3.97 1.92
DEITA 43.60 6.03 38.25 50.43 6.86 45.44 28.82 4.93 33.57
kNN1 40.62 6.04 38.49 46.96 6.62 45.56 26.62 4.91 33.81
PIBE (ours) 44.84 6.23 40.89 51.55 6.88 46.76 29.48 5.03 29.38

Table 1: Comparison between different methods. For AlpacaEval and MT-Bench, we employ gpt-4o as annotator.
The bold text indicates the best results, and the underlined text represents the second-best results. The results of
more base models can be found in Appendix J.5.

4 Experiment

4.1 Experimental Setup

Candidate Instruction Data We aggregate five in-
struction datasets for general instruction following
capability: Self-Instruct (Wang et al., 2023), Al-
paca (GPT-4) (Peng et al., 2023), Dolly (Conover
et al., 2023), ShareGPT2 (Chiang et al., 2023) and
WilzardLM (alpaca) (Xu et al., 2023), resulting in
a mixed dataset of 278k samples. The statistics of
each dataset is presented in Table 6.

Training and Evaluation In this work, we
fine-tune Llama3.2-1B, Llama3.2-3B, Llama3-8B
(AI@Meta, 2024), Qwen2.5-7B, Qwen2.5-14B
(Qwen Team, 2024) and Mistral-7B (Jiang et al.,
2023) on the selected InsBank. Following DEITA
(Liu et al., 2024), we set the size of InsBank to
6k for the convenience of subset evolution. We
also experiment with InsBank size of 1k and 3k,
and the results can be found in Appendix J.4. Dur-
ing training, we further restrict the trainable tokens
and the number of conversation turns. We adopt
AlpacaEval (Li et al., 2023b), MT-Bench (Zheng
et al., 2023) and IFEval (Zhou et al., 2023b) for au-
tomatic model alignment performance evaluation.
More details about training and evaluation can be
found in Appendix C.

Baselines We compare proposed PIBE with the
following baselines:

• Full Train model on all candidate data.
• Random Randomly select m samples from

all candidate data.
• kNN1 Measure the diversity of one sample by

its euclidean distance to the nearest neighbor
(Eq. 2). The diversity score is first normalized
and then combine with the normalized quality
score by si = (1 + kNN i

1) ∗ (1 + s′iq)
γ for

data selection.

2We filter out incomplete conversations.

• kCenter Greedy (Sener and Savarese,
2018) The original kCenter Greedy algo-
rithm is shown in Alg. 1. We take
minxj∈Sb

d(e(xi), e(xj)) as the individual di-
versity score and combine it with quality score
in the same manner of kNN1.

• DEITA Traverse the instruction pool in de-
scending order of quality scores and add a
sample to the selected subset if its maximum
cosine similarity with existing selected sam-
ples is below a threshold (Liu et al., 2024).

4.2 Performance of SFT with InsBank
Table 1 compares the performance of LLM trained
on subsets selected by different approaches. PIBE
consistently outperforms the baselines on such
benchmarks, showing the superiority of our data
selection method. We further fine-tune Qwen2.5
7B (Qwen Team, 2024) and Mistral 7B (Jiang
et al., 2023) for robustness analysis, and the re-
sults exhibit the same trends, demonstrating that
our method is effective across different models. We
also report the quality and diversity of subsets se-
lected by different methods in Table 2. From the
results of data selection, PIBE and DEITA demon-
strate higher quality and diversity compared to
kCenter and kNN. DEITA produces subsets with
the highest quality, primarily because it prioritizes
quality during the data selection process by travers-
ing candidates in descending order of quality. In
contrast, PIBE treats quality and diversity equally,
enabling the subset to achieve the highest diversity
while maintaining decent quality. From the perspec-
tive of downstream task performance, models fine-
tuned with high-quality data (DEITA, PIBE) gen-
erally outperform those fine-tuned on low-quality
data (kCenter, kNN). However, despite achieving
the highest quality, DEITA’s downstream perfor-
mance falls short of the more diverse PIBE, vali-
dating the importance of data diversity when the
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quality level is acceptable.

4.3 Orderliness of InsBank
Each sample in the InsBank selected by PIBE is
provided with an overall individual score reflects
both the diversity and quality which shows the pri-
ority of each sample to be used to fine-tune models.
We sort the InsBank in descending order based
on the overall individual score, and compare the
performance of models fine-tuned with the “top2k,
mid2k, bottom2k” samples in InsBank. Here, we
use the instruction subset obtained from the final
evolution round, and restrict the trainable tokens
to 0.9M and turns to 2.3k. The results are illus-
trated in Fig 3, showing that the top-ranked data
generally achieved better performance, proving the
orderliness of InsBank.

Metric kCenter DEITA kNN1 PIBE

Quality 4.37 5.19 4.82 5.13
Diversity 62.26 86.94 77.24 91.84

Table 2: The quality and diversity of subsets selected
by different methods. The diversity here is measured by
euclidean distance between data.
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Figure 3: Results of orderliness experiment.

4.4 Analysis
In this section, we analyze the effectiveness of di-
versity and quality. We also experiment PIBE with
different score combination methods. More analy-
sis about overlap between progressive evolving and
full data selection, InsBank evolution, PIBE hyper-
parameters, time costs and selected data quality
distribution can be found in Appendix J.

Effectiveness of Diversity and Quality To vali-
date the role of diversity in instruction data selec-
tion, we first construct a quality-controlled subset
where all data have quality scores within the range
of 4.5 to 5.0 (details in Appendix E). Using PIBE,
we compute individual diversity scores for the sub-
set, sort the data in descending order, and select the

top 6k samples as the most diverse subset and the
bottom 6k as the least diverse subset. The distribu-
tions of the two subsets are shown in Fig. 6. Before
fine-tuning, we restrict the total trainable tokens to
2M. Results in Table 3 indicate that, with compa-
rable quality, models trained on more diverse data
achieve better performance.

Method Qua Div AlpacaEval MT-Bench

Top 4.84 81.14 27.70 5.52
Bottom 4.86 68.55 27.33 5.43

Table 3: The results of quality-controlled diversity effec-
tiveness experiment. Qua refers to the average quality
score, and Div refers to the average diversity score.

When it comes to quality, the improvement from
extremely low to high quality is clearly benefi-
cial, as extremely low-quality subsets often con-
tain noisy data, such as irrelevant or incomplete
responses. However, is continuously improving
quality always effective in the data selection pro-
cess? To address this, we compare model perfor-
mance fine-tuned on data selected by the following
strategies in the final evolution iteration: (1) Di-
versity Greedy: selecting data with the highest
diversity scores; (2) Quality Greedy: selecting
data with the highest quality scores; and (3) PIBE.
The results shown in Table 4 reveal a clear trade-
off between diversity and quality. A purely greedy
approach focusing on either aspect leads to sub-
optimal outcomes, while a balanced consideration
of both proves more effective. This finding aligns
with the main experiment results and suggests the
existence of a balance point between diversity and
quality, which we further investigate through the
analysis of score combination.

Method Qua Div AlpacaEval MT-Bench

DG 5.02 93.06 41.93 6.09
QG 5.20 83.70 40.86 5.86
PIBE 5.13 91.84 44.84 6.23

Table 4: Analysis of diversity and quality contribution.
Here, DG refers to diversity greedy, and QG refers to
quality greedy

Analysis of Score Combination We experiment
with the different combination methods to explore
the contribution of quality and diversity in PIBE.

We first explore the multiplication manner and
the addition manner, and the results are reported in
Table 5. Overall, regardless of whether addition or
multiplication is used as the combination method,
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Param AlpacaEval MT-Bench SP-Qua SP-Div Diff

Multiplication

γ = 1 44.84 6.23 0.36 0.74 0.38
γ = 2 46.77 6.15 0.51 0.70 0.19
γ = 3 42.98 6.17 0.54 0.67 0.13

Addition

γ = 1 44.84 6.13 0.44 0.72 0.28
γ = 2 47.08 6.10 0.54 0.68 0.14
γ = 3 44.53 6.09 0.56 0.64 0.08

Nonlinear

rh = 0.80 44.41 5.98 0.58 0.72 0.14
rh = 0.90 44.84 6.19 0.62 0.70 0.08
rh = 0.95 47.58 6.36 0.63 0.69 0.06

Table 5: The results of different combination methods.
SP- refers to Spearman value, Diff refers to the differ-
ence value between SP-Qua and SP-Div.

the results exhibit a distinct trend of initially in-
creasing and then decreasing as the influence of
quality grows (i.e., with the increase of the γ value).
This finding supports the hypothesis that a balance
point exists between diversity and quality.

We analyze the correlation between quality and
selection flags, as well as diversity and selection
flags, for the top 12k data sorted by overall score
(details in Appendix D). As shown in Table 5,
Spearman for diversity consistently surpass those
for quality, indicating diversity’s priority during
selection. While increasing γ reduces the gap, this
approach presents limitations: (1) Even at γ = 3,
a notable gap remains between SP-Qua and SP-
Div, particularly with the multiplication method;
(2) Increasing γ further improves downstream per-
formance initially but leads to declines afterward.

Examining the quality distribution of selected
data (Figure 10), we observe that γ = 1 includes
some low-quality data, while γ = 3 selects exces-
sive high-quality data. As discussed in Section 3.4,
this stems from quality’s linear nature. To address
this, we use a nonlinear quality mapping function.
Fixing rl = 0.3, we compare different rh values,
with results shown in Table 5. Nonlinear map-
ping significantly mitigates diversity’s dominance
and improves fine-tuned model performance, par-
ticularly at rh = 0.95. Unlike linear methods,
which improve subset quality by selecting extreme
high-quality values, the nonlinear approach raises
overall quality by incorporating more moderately
high-quality data, aligning with its design goals.

5 Related Work

Instruction fine-tuning is widely used to refine
LLMs. Early methods focused on fine-tuning with
large-scale instruction datasets (Wei et al., 2022;
Wang et al., 2022) manually aggregated from ex-
tensive NLP task collections (Longpre et al., 2023).
With advancements in generative models, Wang
et al. (2023) has led the trend of synthetic data gen-
eration (Taori et al., 2023; Ding et al., 2023; Xu
et al., 2023). As Zhou et al. (2023a) found, quality
and diversity are more important than quantity, driv-
ing recent efforts to cut training costs by removing
low-quality and redundant data. Existing selection
methods can be broadly categorized into three types
(Qin et al., 2024a): quality-based, diversity-based,
and model-specific importance-based selection.

Quality-based Selection Humpback (Li et al.,
2023a) selects high-quality samples through an it-
erative self-curation process where quality predic-
tions are produced by the fine-tuned model of each
turn. Recent works typically employ a GPT-model
to annotate the data quality. For example, ALPA-
GASUS (Chen et al., 2024) employs ChatGPT to
score the accuracy of instruction data and select
data according to a threshold.

Diversity-based Selection The diversity-based
selection aims to deduplicate the instruction data
and maximize the coverage of selected data. Re-
cent methods typically achieve this purpose by
control the nearest neighbor distance (Liu et al.,
2024) or maximize the average distance between
the selected data through text embedding (Wu et al.,
2023). INSTAG (Lu et al., 2024) identifies seman-
tics and intentions of instructions by tags and it
assumes that a dataset is considered more diverse
if it covers more individual tags.

Model-specific Importance-based Selection
Importance refers to the necessity of adding one
sample into training set (Qin et al., 2024a) whose
indicator are typically model-specific (Xia et al.,
2024; Li et al., 2024a; Hui et al., 2024; Du et al.,
2023). However, this work focuses on the gen-
eral data selection and emphasizes the quality and
diversity of selected data.

InfoGrowth (Qin et al., 2024b) also aims to ad-
dress the continuous expansion of datasets, but it
primarily focuses on image data and relabeling
noisy samples, making it less relevant to this pa-
per. While InfoGrowth and DEITA consider both
quality and diversity, they handle them sequentially,
without combining them into a unified score. Be-
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sides, previous efforts primarily aggregate all can-
didate data before data selection and are not ex-
perimented under the progressive instruction bank
evolution task. In this paper, we propose PIBE to
efficiently obtain the optimal current instruction
subset with comprehensive characterization and
integration of diversity and quality scores.

6 Conclusion

In this paper, we propose InsBank to address the
challenge of evolving instruction subset. PIBE in-
tegrates high-quality and representative data into
InsBank, striking a balance between data diversity
and quality, while maintaining long-term scalabil-
ity and efficiency. By leveraging a representation-
based diversity score with historical information,
PIBE flexibly combines diversity and quality for
data selection and ranking. Experimental results
show PIBE outperforms baselines, providing more
optimal and adaptable instruction subsets. The or-
derliness of InsBank also allows users to extract tai-
lored subsets within budget constraints, supporting
cost-effective training and the ongoing refinement
of LLMs. This work paves the way for more dy-
namic and adaptable instruction tuning strategies,
enhancing both the efficiency and effectiveness of
LLM development over time.

Limitations

In this work, we focus on evaluating the diversity of
individual instruction data and exploring the com-
bination of diversity and quality scores. However,
achieving a more precise assessment of data quality
remains a valuable direction for future research.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for our
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.
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A Timeline of Instruction Datasets

Release Dataset Scale
2021.04 CrossFit 71M
2021.04 Natural Inst v1.0 620k
2021.09 Flan 2021 4.4M
2021.10 P3 12M
2022.04 Super-Natural Inst 5M
2022.10 FLAN 2022 15M
2022.10 MetaICL 3.5M
2022.11 xP3 81M
2022.12 Unnatural Inst 64K
2022.12 OPT-IML Bench 18M
2022.12 Self-Instruct 82K
2023.03 Alpaca 52K
2023.04 Dolly 15K
2023.04 ShareGPT 94K
2023.05 UltraChat 1.47M
2023.06 WizardLM (alpaca) 70K
2023.07 WizardLM (sharegpt) 143K

…… …

Figure 4: Timeline of instruction datasets (part) since
2021.04 to 2023.07.

B Momentum Responsibility Matrix

Responsibility 
values between 
previous 
selected data

Suitability of candidate data to serve 
as the exemplars for previous selected data

Suitability of 
previous selected 
data to serve 
as the exemplars 
for candidate data

Figure 5: The structure of momentum responsibility
matrix.

C Details of Implementation

Fine-grained Quality Scoring We adopt the qual-
ity annotator 3 provided by Liu et al. (2024) to
score the instructions.

Representation-based Progressive Data Selec-
tion: During the PIBE data selection process, we
set the momentum coefficient α = 0.3, the mo-
mentum decaying rate λ = 0.9, the damping rate

3https://huggingface.co/hkust-nlp/
deita-quality-scorer
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β = 0.5 and the weighting coefficient γ = 1. Be-
sides, we adopt instruction embedding (Li et al.,
2024b) to encode the instructions. As for affinity
propagation, we use negative euclidean distance to
initialize the similarity matrix and fill the diago-
nal of similarity matrix with 0. Moreover, due to
the high memory overhead of Affinity Propagation
(O(n3)), we further divided the complete set of
candidates in each evolution iteration into smaller
evolution batches with a batch size of 27,000 to
perform PIBE. For data selection, all baselines em-
ploy the full-scale selection manner rather than the
gradual selection manner to get their global optimal
performance. For PIBE, we perform progressive
InsBank evolution following the temporal order of
dataset appearance (i.e. Self-Instruct → Alpaca →
Dolly → ShareGPT → WizardLM), and take the
final selected subset for model fine-tuning.

Instruction Fine-Tuning: We utilize 8 NVIDIA
A100 SXM4 40GB GPUs to fine-tune LLMs. We
employ LlamaFactory (Zheng et al., 2024), Deep-
Speed Zero-Stage 3 (Ren et al., 2021) and fp16 pre-
cision to facilitate the training process. We adopt
the Llama3-style template for Llama3-8B, Qwen-
style template for Qwen2.5-7B and Mistral-style
template for Mistral-7B, corresponding to "llama3"
"qwen," and "mistral" template in LlamaFactory
respectively. We set the effective batch size to 128
(per device train batch size=1 and gradient accumu-
lation steps=16), training epochs to 6, learning rate
to 1e-5, warmup ratio to 0.1 and maximum input
length to 2048.

For trainable tokens and turns restriction, we set
max tokens to 3M and max turns to 7k unless other-
wise specified. For quality-controlled experiments,
since all data are single-turn conversations, we set
max tokens to 2M and max turns to 6k. For orderli-
ness analysis, we set max tokens to 0.9M and max
turns to 2.3k.

For AlpacaEval inference, we set tempera-
ture=0.7, top_p=0.9, top_k=40, num beams=1 and
max length=512. For MT-Bench inference, we fol-
low the default setting of FastChat4 except for that
max length is set to 512. All models adopt tem-
plates consistent with those in the training process
during evaluation.

For AlpacaEval evaluation, we compare each
model output with GPT-3.5 Turbo (gpt-3.5-turbo-
1106) (OpenAI, 2022), because we find that when
compared to text-davinci-003 (Brown et al., 2020)

4https://github.com/lm-sys/FastChat/tree/main

or GPT-4 Turbo (OpenAI, 2023), the benchmark
was either too simple or too challenging, making it
difficult to differentiate between models. For both
AlpacaEval and MT-Bench, we employ GPT-4o
(OpenAI, 2024) as annotator.

D Correlation Analysis

We first sort the data in descending order based on
the overall score and select the top 12k samples.
For each sample, we assign a flag: if the sample
is selected into InsBank, the flag is set to 1; other-
wise, it is set to 0. We then calculate the Spearman
correlation coefficients between diversity and flags,
as well as between quality and flags, to investigate
the contributions of diversity and quality to data
selection. We restrict our analysis to the top 12k
data sorted in descending order by the overall score,
as we aim to focus on high-quality candidates with
relatively high quality and diversity. Lower-quality
candidates are excluded from the analysis since
their likelihood of being selected into InsBank is
inherently low.

E Quality-Controlled Subset
Construction

To avoid mixing single-turn and multi-turn conver-
sations data, as well as biases introduced by dif-
ferent data distributions across dataset, we sample
data with quality ranging from 4.5 to 5.0 from Wiz-
ardLM (alpaca), resulting in a quality-controlled
subset with 19805 samples.

F Selected Data Visualization from
QC-Subset

Top 6k
Bottom 6k

Figure 6: Selected data visualization based on quality
controlled subset. The blue stars represent the most
diverse data, while the orange triangles represent the
least diverse data.
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G Statics of Candidate Instruction
Datasets

Dataset Scale Quality

Self-Instruct 82k 2.29
Alpaca 52k 3.59
Dolly 15k 2.76
ShareGPT (cleaned) 58k 4.03
WizardLM 70k 4.16

Table 6: Statistics of instruction datasets.

H Nonlinear Quality Mapping Function
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Figure 7: Visualization of nonlinear quality mapping
function.

I K-Center Greedy Algorithm

Algorithm 1 K-Center Greedy

Require: data xi ∈ S and a budget m
1: Initialize Sm = x0
2: repeat
3: u = argmaxxi∈S\Sm

minxj∈Sm d(g(xi), g(xj))
4: Sm = Sm ∪ {u}
5: until |Sm| = m
6: return Sm

J Additional Analysis

J.1 Justification of Data Composition

The data composition in this work simulates the
development of instruction sets. Although Self-
Instruct, Alpaca, and WizardLM are related to each
other, their instruction data are actually different
from each other. In addition, the balance between
quality and diversity during data selection is also
one of the key focus of this work. By utilizing

candidate instruction sets with varying quality dis-
tributions, we demonstrate that PIBE is capable of
jointly considering both quality and diversity.

In this work, we focus on the efficient instruc-
tion subset evolution during the development of
instruction data, thus we select Self-Instruct, Al-
paca (GPT-4), Dolly, ShareGPT, and WizardLM
as candidate instruction sets based on their chrono-
logical release order. These datasets collectively
exhibit a trend of increasing data quality which
aligns well with our scenario of data evolution.

Additionally, both quality and diversity are es-
sential to data selection, and we have demonstrated
in this paper that solely focus on one underperforms
comprehensively consider both (Table 4). There-
fore, high quality data alone are far from enough
and including data of moderate quality to enhance
data diversity is of great value. We report the qual-
ity and diversity of subsets selected by different
methods in Table 2 and Table 10, showing that
PIBE is able to maintain decent data quality while
achieve the highest level of diversity against MoDS
and DEITA. Moreover, the InsBank data distribu-
tion of each evolution step is also shown in Ta-
ble 7. The final InsBank mainly consists of data
from high quality datasets (ShareGPT, WizardLM),
while some data from medium quality dataset (Al-
paca) are also included to further enhance the diver-
sity of InsBank. Only a limited number of samples
from low-quality datasets (Self-Instruct, Dolly) are
present in InsBank, showing that PIBE is able to
effectively ignore low-quality samples during evo-
lution.

Self-Instruct Alpaca Dolly ShareGPT Wizard

6000 - - - -
144 5856 - - -
114 5695 192 - -

9 1832 17 4142 -
3 632 17 2177 3181

Table 7: InsBank composition in different stage of Ins-
Bank evolution.

J.2 Effectiveness of Data Selection

To better demonstrate the effectiveness of data se-
lection with high quality data, we first randomly
sampled 50k data from the high quality dataset -
UltraChat(Ding et al., 2023). Then, we perform
DEITA and PIBE to select a 6k subset from it sepa-
rately. We compare the performance of model fine-
tuned with Full, DEITA and PIBE, and the results
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are shown in Table 8. Both DEITA and PIBE out-
perform the full-data baseline, further confirming
the benefits of appropriate data selection for model
instruction fine-tuning. Notably, PIBE achieves the
best performance, which further demonstrates its
superiority.

Method AlpacaEval MT-Bench IFEval

Full 20.27 5.12 32.01
DEITA 24.75 5.64 30.82
PIBE 27.86 5.73 29.26

Table 8: Data selection performance with UltraChat.

J.3 More Baselines for Comparison

In this section, we further compare PIBE with three
model-specific baselines: IFD(Li et al., 2024a), IC-
IFD(Hui et al., 2024) and MoDS(Du et al., 2023).
As shown in Table 9 and Table 10, PIBE consis-
tently outperforms these baselines attributing to
its better balance between data quality and data
diversity. For the underperformance of IFD and
IC-IFD, it may due to the fact that the IFD-style
metric does not guarantee the high quality of the
selected data. We further check the average qual-
ity scores of subsets selected by IFD and IC-IFD,
and they are significantly lower than DEITA and
PIBE. For MoDS, it greatly outperforms IFD, IC-
IFD due to its quality filtering strategy. However,
it also handles data quality and data diversity sepa-
rately, making them less balanced during the data
selection process. Moreover, the augmented data
selection process of MoDS is also time-consuming,
making it less efficient than other data selection
methods.

Method AlpacaEval MT-Bench IFEval

IFD 24.50 5.01 36.57
IC-IFD 30.04 5.57 36.45
MoDS 42.83 5.83 38.01
PIBE 44.84 6.23 40.89

Table 9: Results of comparison between PIBE and
model-specific baselines.

Metric IFD IC-IFD MoDS PIBE

Quality 3.44 3.54 5.20 5.13
Diversity 111.82 117.38 82.51 91.84

Table 10: The quality and diversity of subsets selected
by different methods.

J.4 More InsBank Budgets

Method AlpacaEval MT-Bench IFEval

Budget=1k

DEITA 13.06 4.53 37.17
PIBE 20.77 4.69 34.05

Budget=3k

DEITA 43.15 5.71 38.97
PIBE 42.79 5.90 39.33

Budget=6k

DEITA 40.62 6.23 38.49
PIBE 44.84 6.23 40.89

Table 11: Results of InsBank budget of 1k and 3k.

We further conduct experiments with InsBank
budget of 1k and 3k. The results in Table 11 show
that increasing the data size from 1k to 3k leads to
a significant improvement in model performance.
However, when the data size is further increased
from 3k to 6k, the performance gain becomes rel-
atively marginal. This reflects a trend in which
the model’s general instruction-following ability
improves rapidly with more training data but also
converges quickly, which is consistent with the ob-
servations reported in (Dong et al., 2024).

J.5 More Base Models
We further conduct experiments on Llama3.2-1B,
Llama3.2-3B (AI@Meta, 2024), Qwen2.5-14B
(Qwen Team, 2024), the results shown in Table 12
indicate that models of sizes 1B, 3B, and 14B all
greatly benefit from the instruction data and our ex-
perimental findings can further generalize to mod-
els of sizes 1B, 3B, and 14B.

J.6 Further Evaluation with More
Benchmarks

We further extend the main experiments with
Llama3-8B to more benchmarks (MMLU
(Hendrycks et al., 2021), HellaSwag (Zellers et al.,
2019), ARC (Clark et al., 2018), TruthfulQA (Lin
et al., 2022), Winogrande (Sakaguchi et al., 2020)
and FollowBench (Jiang et al., 2024)), and the
results are shown in Table 13 and Table 14. PIBE
consistently outperforms all baselines in the further
evaluations, demonstrating its overall superiority.

J.7 Overlap Between Progressive Evolving
and Full Data Selection

In this section, we aim to compare the overlap rates
between the subsets selected by different methods
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Method AlpacaEval MT-Bench IFEval

Qwen2.5-14B

base 12.19 6.89 41.01
DEITA 58.40 7.34 45.32
PIBE 58.58 7.46 46.52

Qwen2.5-7B

base 14.68 6.61 40.05
DEITA 50.43 6.86 45.44
PIBE 51.55 6.88 46.76

Llama3-8B

base 0.75 2.03 20.14
DEITA 43.60 6.03 38.25
PIBE 44.84 6.23 40.89

Llama3.2-3B

base 0.49 1.56 17.99
DEITA 29.73 4.71 36.33
PIBE 29.98 4.96 38.85

Llama3.2-1B

base 0.00 1.10 17.99
DEITA 8.96 3.28 31.65
PIBE 8.21 3.39 31.77

Table 12: Results of further experiment with different
base models.

from the gradual manner and those from the full-
scale selection manner 5.

We randomly select 40k data from the full data
to obtain a subset that closely resembles the distri-
bution of real data. We set the InsBank size here to
1k, and divided the data into four candidate subsets
of 10k each to simulate the gradual manner. We
compared PIBE with kNN1 and k-Center Greedy,
and perform an ablation analysis on the historical
information used in PIBE. We set γ = 1, and for
PIBE, we set α = 0.3 and λ = 0.9 which aligns
with the main experiment. The results are reported
in Table 15. It shows that the overlap rate of PIBE
exceeds that of the kNN1 and kCenter Greedy, and
the historical information also helps improve the
overlap rate.

J.8 Instruction Bank Evolution

In this experiment, we investigate the performance
of subsets selected by different data selection meth-
ods for model training. Following the temporal
order of dataset appearance (i.e. Self-Instruct →
Alpaca → Dolly → ShareGPT → WizardLM), we
performed progressive InsBank evolution using
PIBE and take the selected subset for model fine-

5Aggregate all available candidates first and perform data
selection on the full data directly.

Self-Instruct Alpaca Dolly ShareGPT WizardLM

10

20

30

40

AlpacaEval

mul, =1
mul, =2
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add, =2

Self-Instruct Alpaca Dolly ShareGPT WizardLM
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6

MT-Bench

mul, =1
mul, =2
add, =1
add, =2

Figure 8: Model performance of different stages during
InsBank evolution.

tuning. The performance of the fine-tuned model
across different benchmarks is shown in Figure 8.

J.9 PIBE Hyper-Parameter Analysis

The damping rate β is a hyperparameter inher-
ent to Affinity Propagation, typically set to 0.5,
and we have adhered to this default setting. For
the analysis of hyperparameters, we focus on ex-
amining the quality and diversity of the selected
data. We compared different combinations of
λ = [0.9, 0.93, 0.95], α = [0.3, 0.5, 0.8], and
γ = [1, 2] in selecting InsBank. The results are
shown in Figure 9. Overall, γ determines the influ-
ence of quality on data selection. As γ increases,
the average quality of the selected data improves,
but diversity decreases. Both λ and α determine
the impact of historical information on the com-
position of selected data. We find that higher λ
and α values generally result in lower quality but
higher diversity in InsBank. This is because, ac-
cording to the evolution sequence of InsBank, the
quality of the data improves progressively. When
the influence of historical information increases,
more older data is retained in InsBank, leading to
relatively lower quality and higher diversity.
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Figure 9: InsBank statistics of different hyper-
parameters.

We further compare the overlap between the final
InsBanks obtained with different hyperparameter.
From 0 to 17, the corresponding [α, λ, γ] combi-
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Method MMLU HellaSwag ARC TruthfulQA Winogrande Avg

Full 58.47 79.20 55.03 50.06 73.32 63.21
Random 60.34 83.39 57.88 44.69 71.88 63.63
kCenter 62.00 80.97 58.79 44.97 72.77 63.89
kNN 64.29 82.41 59.04 52.74 74.03 66.50
DEITA 64.15 82.95 59.90 51.81 74.43 66.64
PIBE 63.76 82.38 61.18 53.55 75.37 67.24

Table 13: Results of OpenLLM evaluation

Method HSR SSR CSL

L1 L2 L3 L4 L5 L1 L2 L3 L4 L5 CSL

DEITA 43.26 47.18 36.97 22.41 26.46 43.26 59.96 51.37 46.03 48.99 1.12
PIBE 59.00 53.86 42.79 30.36 31.93 59.00 63.12 57.26 48.98 56.73 1.62

Table 14: Results of FollowBench evaluation

Method k-NN kCenter PIBE w/o hst PIBE

Num 131 747 390 864

Table 15: The overlap sample number between subset
selected in full-scale manner and in gradual manner.
Here, PIBE w/o hst is the ablation on history informa-
tion of PIBE.

nations are as follows: [0.3, 0.90, 1], [0.3, 0.93,
1], [0.3, 0.95, 1], [0.5, 0.90, 1], [0.5, 0.93, 1], [0.5,
0.95, 1], [0.8, 0.90, 1], [0.8, 0.93, 1], [0.8, 0.95,
1], [0.3, 0.90, 2], [0.3, 0.93, 2], [0.3, 0.95, 2], [0.5,
0.90, 2], [0.5, 0.93, 2], [0.5, 0.95, 2], [0.8, 0.90,
2], [0.8, 0.93, 2], [0.8, 0.95, 2]. We observe that
when γ = 2, the overlap between InsBanks is gen-
erally higher compared to when γ = 1, due to the
increased influence of quality. This observation is
reasonable, particularly as γ continues to grows,
the results increasingly resemble those of a quality-
greedy data selection strategy, where the selection
outcomes become fixed regardless of whether his-
torical information is considered. When γ = 1,
the influence of historical information is relatively
more pronounced, resulting in significantly lower
overlap rates between different InsBanks compared
to when γ = 2. Additionally, we observed that
when γ and λ are equal, the overlap rates of Ins-
Banks obtained with different α values are signifi-
cantly higher than those obtained when γ and α are
equal but with different λ values. This indicates
that λ has a greater impact on altering the influence
of historical information.

J.10 Time Costs Analysis

We adhered to the data selection settings of the
main experiment to compare the actual time costs
of data selection between DEITA and PIBE. In
this experiment, we ensure that both methods are
tested under identical hardware environments. The
results are shown in Table 16. It is worth noting
that DEITA (full) refers to full-scale data selection,
while DEITA (progressive) represents the progres-
sive InsBank Evolution process. Additionally, the
time spent loading data is also included in the total
time consumption. PIBE achieves higher efficiency
compared to DEITA because PIBE’s data selection
process is parallelized, whereas DEITA requires a
sequential traversal of data to perform selection.

In practice, DEITA’s data selection efficiency is
primarily influenced by the number of evolution
iterations and the size of InsBank. The selection
time for DEITA (progressive) grows almost linearly
with the number of iterations, while the total data
volume has minimal impact. Additionally, as more
data is selected into InsBank, the time required to
select a new sample increases, as it becomes harder
to find a candidate that meets the nearest neighbor
similarity constraint. This implies that as the size
of InsBank grows, DEITA’s efficiency will further
decline.

In contrast, PIBE’s efficiency is unaffected by
the size of InsBank due to its parallelized oper-
ations. Instead, the primary factor influencing
PIBE’s time consumption is the total data volume.
An increase in the total data volume leads to a
higher number of evolution batches, with each
batch requiring approximately 1 minute to process.
As a result, PIBE’s total data selection time scales
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linearly with the number of evolution batches.

Method Time (hrs)

DEITA (full) 0.68
DEITA (progressive) 2.28
PIBE 0.21

Table 16: Time costs of DEITA and PIBE.
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K Selected Data Quality Distribution

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000

1093

Multiplication, Gamma=1

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000

1635

Multiplication, Gamma=2

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000 1909

Multiplication, Gamma=3

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000

1404

Addition, Gamma=1

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000 1881

Addition, Gamma=2

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000

2175
Addition, Gamma=3

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000

1551

Nonlinear, Upper Quantile=0.80

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000
1713

Nonlinear, Upper Quantile=0.90

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0

500

1000

1500

2000
1740

Nonlinear, Upper Quantile=0.95

Figure 10: Selected data quality distribution of different combination approaches.
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