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Abstract

Knowledge editing has emerged as an ef-
fective approach for updating large language
models (LLMs) by modifying their internal
knowledge. However, their application to the
biomedical domain faces unique challenges
due to the long-tailed distribution of biomed-
ical knowledge, where rare and infrequent in-
formation is prevalent. In this paper, we
conduct the first comprehensive study to in-
vestigate the effectiveness of knowledge edit-
ing methods for editing long-tail biomedi-
cal knowledge. Our results indicate that,
while existing editing methods can enhance
LLMs’ performance on long-tail biomedical
knowledge, their performance on long-tail
knowledge remains inferior to that on high-
frequency popular knowledge, even after edit-
ing. Our further analysis reveals that long-tail
biomedical knowledge contains a significant
amount of one-to-many knowledge, where
one subject and relation link to multiple ob-
jects. This high prevalence of one-to-many
knowledge limits the effectiveness of knowl-
edge editing in improving LLMs’ understand-
ing of long-tail biomedical knowledge, high-
lighting the need for tailored strategies to
bridge this performance gap'.

1 Introduction

Recently, knowledge editing (Meng et al., 2022a;
Yao et al., 2023) has emerged as a promising ap-
proach to efficiently update large language models
(LLMs) by injecting new knowledge into their in-
ternal knowledge (Touvron et al., 2023; Achiam
et al., 2023). These methods have shown remark-
able performance in enhancing LLMs’ perfor-
mance across several general-domain tasks, such
as question answering (QA) (Huang et al., 2023;
Fang et al., 2024a), knowledge injection (Li et al.,
2024), and reasoning (Wang et al., 2024a).
* Corresponding author.

'Code and datasets can be found in: https://github.
com/xinhaoyi/edit_bio_long_tail.
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Figure 1: LLMs often struggle with long-tail biomed-
ical knowledge, where entities co-occur in a few doc-
uments. Knowledge editing offers a potential solution
by injecting this rare information into LLMs, improv-
ing their ability to handle such long-tail knowledge.

While knowledge editing methods have proven
effective in general-domain tasks, their applica-
tion to the biomedical domain presents unique
challenges (Wu et al., 2024b). Specifically, real-
world biomedical data often exhibit a long-tailed
distribution, with a small amount of popular
knowledge and a large amount of long-tail knowl-
edge that appears rarely or only once (Wu et al.,
2024b; Delile et al., 2024). For example, the com-
mon disease “Type 1 Diabetes” is mentioned in
over 106,138 papers in PubMed (Roberts, 2001),
while a rare disease like “Evans Syndrome” ap-
pears in only about 23 papers (Wei et al., 2013).
Recent studies indicate that the low frequency of
knowledge in the pre-training corpus can hinder
LLMs’ understanding of this knowledge (Kand-
pal et al., 2023; Wu et al., 2024b). Figure 1 illus-
trates an example where LLMs struggle with low-
frequency biomedical knowledge. This is particu-
larly problematic as LLMs are increasingly being
used by healthcare professionals, including doc-
tors, to assist in diagnosis and treatment recom-
mendations (Tian et al., 2024). As LLMs become
more integrated into clinical practice, their ability
to accurately handle rare but critical biomedical
knowledge becomes essential. This raises a criti-
cal question for knowledge editing in the biomed-
ical domain:
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Can knowledge editing methods effectively edit
large language models to incorporate long-tail
biomedical knowledge?

In this work, we present the first comprehensive
study to investigate the effectiveness of knowl-
edge editing for long-tail biomedical knowledge.
We focus on biomedical knowledge represented as
knowledge triples and leverage knowledge prob-
ing (Alghanmi et al., 2021) to evaluate whether
LLMs have effectively acquired this knowledge.
Specifically, knowledge probing is a technique
that queries LLMs to assess their internal factual
knowledge (Meng et al., 2022b). As illustrated in
Figure 1, we probe LLMs with questions gener-
ated from biomedical knowledge triples to deter-
mine whether they can correctly recall the target
knowledge. By comparing the knowledge probing
results of LLMs before and after editing, we can
evaluate how effectively knowledge editing en-
hances LLMs’ ability to handle long-tail biomedi-
cal knowledge. Our key findings are:

* LLMs struggle to capture long-tail biomedi-
cal knowledge through pre-training.

* Knowledge editing can enhance LLMs per-
formance on long-tail biomedical knowledge,
but it remains less effective compared to
more common knowledge.

» Edited LLMs can memorise the form of long-
tail knowledge, but their ability to generalise
such knowledge is limited.

* We define one-to-many knowledge as triples
where a single subject-relation pair is linked
to multiple valid objects. This pattern is
prevalent in long-tail biomedical knowledge
and is a key factor leading to LLMs’ poor per-
formance in capturing long-tail knowledge.

* Effectively handling one-to-many knowl-
edge is critical for improving LLMs’ per-
formance on long-tail biomedical knowledge
through knowledge editing.

2 Background and Definitions

This section defines long-tail biomedical knowl-
edge and briefly introduces the knowledge prob-
ing and editing techniques used in our experi-
ments.

2.1 Long-Tail Biomedical Knowledge

We denote biomedical knowledge using knowl-
edge triple (s, r, 0), where s is the subject, r is the
relation, and o is the object. Let D be the set of

documents in the pre-training corpus, and D(s, o)
be the subset of documents where both s and o
co-occur. We define the co-occurrence number
of the knowledge triple as |D(s, 0)|, which repre-
sents the frequency of knowledge (s,r,0) within
the document set D (Kandpal et al., 2023). In this
paper, following Mallen et al. (2023) and Kandpal
et al. (2023), we define long-tail knowledge as:

Ki=A{(s;r,0) | [D(s,0)| <a}, (1)

where K denotes the set of long-tail knowledge
and « represents a predefined threshold.

2.2 Knowledge Probing

Knowledge probing aims to evaluate LLMs’ abil-
ity to capture factual knowledge (Meng et al.,
2022b), and can serve as an evaluation method
to assess the effectiveness of knowledge edit-
ing (Hernandez et al., 2023). Specifically, given
a subject s and a relation 7 in a triple (s, r, 0), we
use a manually designed template 7 (s, ) to gen-
erate a natural language question, which is then
fed into an LLM fy to generate the object o as
the answer. Following prior works Meng et al.
(2022a) and Kassner et al. (2021), accuracy (ACC)
is commonly used to evaluate the performance of
LLM in recalling the correct target entity o, which
is formulated as:

E(S,’I’,O>NPH {arg m;mx fG(y | T(Sa T)) = O} 5
(2)

where E(, ;. ,)~p denotes the expectation over a
set of knowledge triples P, y indicates the pre-
dicted answer and I{ -} is the indicator function. In
this paper, we compare the knowledge probing re-
sults of LLMs before and after knowledge editing
to investigate the effectiveness of editing methods
in handling long-tail biomedical knowledge.

2.3 Knowledge Editing

Knowledge editing (Yao et al., 2023) aims to
inject a new knowledge (s,r,o0) into an LLM
through a specific edit descriptor (z¢, ) (Yao
et al., 2023). Given a knowledge (s, r, o) for edit-
ing, =, can be formulated as (s,r), and y. = o.
The ultimate target of knowledge editing is to ob-
tain an edited model fp, , which effectively inte-
grates the intended modifications within the edit-
ing scope, while preserving the model’s perfor-
mance for out-of-scope unrelated facts:
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Figure 2: An overview of probing and editing for biomedical knowledge. These knowledge triples are classi-
fied into different groups based on co-occurrence number and further divided into one-to-one and one-to-many
categories based on the number of correct answers (see § 4.4). The increasing performance with the number of
co-occurrence number indicates that LLMs struggle to effectively capture long-tail biomedical knowledge before

and after editing.
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Here, the in-scope set I (., y.) includes x. and
its equivalence neighborhood N (¢, y. ), which in-
cludes related input/output pairs. In contrast, the
out-of-scope O(x., y.) contains inputs that are un-
related to the edit descriptor (ze, Ye ).

3 Identifying Long-Tail Biomedical
Knowledge

Due to the lack of biomedical datasets specifically
designed to evaluate long-tail knowledge, we de-
velop a pipeline to extract such knowledge. In this
section, we outline the procedures for extracting
long-tail biomedical knowledge, with further de-
tails provided in Appendix A and Figure 7.

We focus on biomedical knowledge represented
as knowledge triples and extract these triples from
SNOMED CT (Donnelly et al., 2006), which
is a comprehensive biomedical knowledge graph
comprising over 1.4 million clinical triples (Ben-
son and Grieve, 2021), and widely used to eval-
uate LLMs’ understanding of biomedical knowl-
edge (Meng et al., 2022b). Following previous
work (Kandpal et al., 2023), we adopt the co-
occurrence numberi.e., how often a triple’s sub-
ject and object appear in the same documentas

a proxy for knowledge popularity. To identify
the long-tail knowledge within these triples, we
use an entity linking pipeline to compute the co-
occurrence number of each triple in the PubMed
corpus?, which is a widely used biomedical cor-
pus for pre-training. In the entity linking pipeline,
we use PubTator (Wei et al., 2013) to annotate
entities in the PubMed corpus and then use Sap-
BERT (Liu et al., 2021) to link knowledge triple
entities to PubMed entities. Subsequently, we
compute the co-occurrence number for each triple.
Long-tail knowledge is defined as triples with a
co-occurrence number less than 10 (Kandpal et al.,
2023). As a result, we obtained 59,705, 14,087,
and 28,375 triples for the training, validation, and
test sets, respectively, stratified by varying levels
of co-occurrence. The statistics of the dataset are
presented in Table 1. We refer to our dataset as
CIiKT (Clinical Knowledge Triples).

To evaluate LLMs ability to understand these
triples, we generate question-answer pairs follow-
ing Meng et al. (2022a). For each triple, we con-
struct a question using the subject and relation,
with the object serving as the answer. For exam-
ple, for the triple (Diabetes, treated_by, Insulin),
the corresponding QA pair is: What is Diabetes
treated by? Answer: Insulin. The template for
constructing questions is provided in Table 3.

2https: //pubmed.ncbi.nlm.nih.gov/
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Item Train  Valid Test
# Triples 59,705 14,087 28,375
|D(s,0)| < 10} 52,297 11,476 22,952
|D(s,0)| € [101,10%) 5,363 2,055 4,110
[D(s,0)| € [102,10%) 1,659 551 1,103
|D(s,0)| > 103 386 105 210
# Relations 21 21 21
# Subjects 39,654 12,267 21,872
# Objects 7,867 3,526 4,706

Table 1: The statistics of CliKT dataset. |D(s, 0)]| rep-
resents the oc-occurrence number of knowledge triple.

4 Knowledge Editing for Long-Tail
Biomedical Knowledge

In this section, we investigate the effective-
ness of knowledge editing methods in enhanc-
ing LLMs’ ability to handle long-tail biomedical
knowledge. Since some editing methods, e.g.,
MEND (Mitchell et al., 2022) and IKE (Zheng
et al., 2023a), require training data, we follow the
data splitting strategy proposed by Meng et al.
(2022a) to divide our CLiKT dataset into training,
validation, and test sets (see Table 1)°. We report
all results on the test set.

4.1 Experimental Setup

LLMs. To investigate whether LLMs can be
edited for long-tail biomedical knowledge, we fo-
cus on LLMs that are specifically pre-trained on
biomedical data. We employ two models pri-
marily trained on PubMed: BioGPT-Large (Luo
et al., 2022) and BioMedLM (Bolton et al.,
2024). Furthermore, we include four general-
domain LLMs: Llama2 (Touvron et al., 2023),
Llama3 (Grattafiori et al., 2024), GPT-J (Wang
and Komatsuzaki, 2021) and Qwen2.5 (Yang
et al,, 2024) to evaluate whether our findings
generalise to models not specifically trained on
biomedical data*.

Knowledge Editing Methods. For knowledge
editing, we employ the following methods, which
have demonstrated strong effectiveness in knowl-
edge injection tasks (Wang et al., 2025):

* ROME (Meng et al., 2022a): ROME up-
dates an MLP layer to encode new informa-
tion by treating the MLP module as a key-
value memory. It relies on causal mediation
analysis to precisely identify the location for
editing.

3Details of dataset splitting method are in Appendix A.3.

“Details of these LLM:s are provided in Appendix B.1.
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Figure 3: The overall performance of pre-edit prob-
ing on Llama2, GPT-J, BioMedLM and BioGPT-Large.
The shaded areas indicate the standard deviation and
Count denotes the number of triples within each group.

* MEMIT (Meng et al., 2023): it employs the
localisation strategies from ROME and ap-
plies explicit parameter adjustments to inject
new knowledge across multiple layers.

« MEND (Mitchell et al., 2022): MEND en-
ables efficient, targeted updates to LLMs
by leveraging low-rank gradient transforma-
tions. It enables quick, localised modifica-
tions in model behaviour using only a single
input-output example, while preventing over-
fitting.

* IKE (Zheng et al., 2023a): IKE modifies fac-
tual knowledge in LLMs through in-context
learning without updating parameters. It cor-
rects specific knowledge using demonstra-
tion contexts, reducing over-editing and pre-
serving previously stored knowledge.

* FT (Yao et al., 2023): FT updates model pa-
rameters using gradient descent on a single
MLP layer identified by ROME. We employ
the FT implementation within the EasyEdit
framework (Wang et al., 2023b).

We follow the official implementations for each
method and perform hyperparameter tuning on
our CliKT dataset to ensure a fair comparison®.
Evaluation Metrics. We use knowledge prob-
ing to assess whether LLMs have successfully ac-
quired biomedical knowledge within the CliKT
dataset. Specifically, we assess their zero-shot QA
performance on the test-set questions, using accu-
racy (ACC) as the evaluation metric, as detailed
in § 2.2.

’Details about the training and hyperparameter tuning
process can be found in Appendix B.4.
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Figure 4: The performance of knowledge probing after
editing with different editing methods on BioMedLM,
where “Base” denotes LLM without editing.

In addition, we adopt standard knowledge edit-
ing metrics (Meng et al., 2022a; Yao et al., 2023)
to assess the effectiveness of editing: (1) Relia-
bility measures whether the model correctly in-
corporates the target knowledge after editingi.e.,
whether it outputs the correct answer for the edited
input; (2) Generalisation evaluates whether the
model can apply the updated knowledge to se-
mantically similar variations (e.g., paraphrased
queries), reflecting the robustness of the edit; (3)
Locality assesses whether unrelated predictions
remain unaffected after editing, ensuring that ed-
its are localized and do not introduce unintended
side effects.

Evaluation examples for these three metrics are
derived from the test set of CliKT. Due to space
limit, more details about metric definitions, eval-
uation example construction procedures and illus-
trative examples are provided in Appendix B.2.

4.2 Pre-Edit Results on Long-Tail
Biomedical Knowledge

Finding 1: LLMs struggle to capture long-tail
biomedical knowledge through pre-training.

To investigate whether LLMs face challenges in
capturing long-tail biomedical knowledge during
pre-training, we categorise biomedical knowledge
triples in CliKT into different groups based on
their co-occurrence number |D(s, 0)| and evaluate
the probing results of LLMs across these groups.

The bottom portion of Figure 3 shows the dis-
tribution of triples across the different groups,
which highlights the long-tail nature of biomed-
ical knowledge, where long-tail knowledge ac-
counts for the majority of the data. The re-
sults for biomedical LLMs and general-domain
LLMs are illustrated in the top portion of Figure 3.
Specifically, Figure 3 shows that the performance
of LLMs declines as the co-occurrence number

Group Edit Reliability? Gen.T Locality?
ROME 98.02 68.42 83.70
MEMIT 86.21 47.36 98.10
<10! MEND 91.32 46.75 89.60
IKE 83.87 43.70 97.81
FT 32.52 40.36 96.80
ROME 98.11 70.10 84.60
MEMIT 89.21 48.21  97.30
[10!,10%) MEND 88.90 47.80 89.83
IKE 84.52 45.12 96.80
FT 33.35 40.78 97.90
ROME 98.63 72.50 84.62
MEMIT 89.01 5147  97.90
[102, 103) MEND 88.94 48.83  91.40
IKE 85.89 46.74 96.85
FT 33.89 44.62 96.66
ROME 98.66 72.54 84.45
MEMIT 89.87 50.00  97.43
> 103 MEND 90.96 4986  90.92
IKE 85.91 48.76 96.87
FT 34.84 44.62 97.57

Table 2: Performance of knowledge editing methods
on the ClLiKT dataset across different co-occurrence
number groups. The best performance per group
is marked in boldface, while the second-best perfor-
mance is underlined. 1 indicates that higher values re-
flect better performance, and “Gen.” stands for Gener-
alisation.

decreases. In particular, the performance of
BioMedLM on long-tail knowledge (|D(s,0)| <
10) is 22.86% lower relative to its performance
on popular knowledge (|D(s,0)| > 10%). This
trend is also evident in general-domain LLMs.
For example, Llama2 experiences an accuracy
drop of 16.86% when handling long-tail biomedi-
cal knowledge compared with popular knowledge.
These results indicate that LLMs struggle with
long-tail biomedical knowledge, highlighting the
challenge of accurately capturing long-tail knowl-
edge during pre-training. Furthermore, Figure 3
shows that as the co-occurrence number decreases,
the standard deviation of ACC increases. This ob-
servation implies that LLMs exhibit greater confi-
dence when processing popular biomedical knowl-
edge than long-tail biomedical knowledge.

Based on the above analysis, we conclude that
LLMs indeed struggle to capture long-tail biomed-
ical knowledge. As long-tail knowledge consti-
tutes the majority of biomedical data, it is cru-
cial to explore methods that can effectively im-
prove LLMs’ performance on long-tail biomedi-
cal knowledge.

4.3 Post-Edit Results for Long-Tail
Biomedical Knowledge

Finding 2: Knowledge editing can enhance LLMs
performance on long-tail biomedical knowledge,
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Figure 5: The comparison of knowledge probing performance between one-to-one and one-to-many settings across
different co-occurrence numbers, with the pie chart on the far right illustrating the data distribution.

but it remains less effective compared to more
common knowledge.

Subsequently, we investigate the effectiveness
of knowledge editing for long-tail biomedical
knowledge. We apply existing knowledge editing
methods to inject biomedical knowledge from the
CIiKT dataset into LLMs and then follow the pro-
cedures in the pre-edit experiments for evaluation.

The post-edit probing results for BioMedLM®
are presented in Figure 4. These results yield the
following findings: (1) Knowledge editing meth-
ods, especially ROME, can enhance LLM’s ability
in handling long-tail biomedical knowledge. For
example, Figure 4 shows that BioMedLM edited
with ROME achieves an improvement of approx-
imately 52.08% in ACC on long-tail knowledge
(|D(s,0)| < 10) compared to the base model be-
fore editing; (2) Despite the improvements from
knowledge editing, Figure 4 also reveals that ACC
of post-edit LLMs consistently drops as the co-
occurrence number decreases across all the edit-
ing methods. Specifically, for ROME, the ACC
on long-tail knowledge is still 16.15% relatively
lower than on popular knowledge (|D(s,o0)| >
10%). This indicates that even after editing, the
edited LLMs still struggle with long-tail knowl-
edge.

Finding 3: Edited LLMs can memorise the form
of long-tail knowledge, but their ability to gener-
alise such knowledge is limited.

In addition to the post-edit probing results, we
also calculate the other editing metrics outlined
in §4.1 to comprehensively evaluate the effective-
ness of the editing methods. Specifically, we cal-
culate the Reliability, Generalisation and Locality
metrics of edited models across different groups

Results for BioGPT, Llama2, Llama3, and Qwen2.5 are
shown in Figure 8 of the Appendix and exhibit similar trends
to BioMedLM. A further comparison with GPT-40-mini is
also provided in Appendix C.

of biomedical knowledge. From the results in
Table 2, we observe that ROMEs Reliability re-
mains above 98% across all groups, with no sig-
nificant variation. Similarly, the Reliability of
MEMIT, MEND, and IKE is largely unaffected
by the co-occurrence number, indicating that the
edited LLMs ability to memorise the form of in-
serted knowledge is not influenced by long-tail
knowledge. However, the generalisation perfor-
mance declines as the co-occurrence number de-
creases, which aligns with the observed reduc-
tion in post-edit ACC for edited-LLMs as the co-
occurrence number decreases. This observation
suggests that, although edited LLMs can mem-
orize the form of long-tail knowledge itself af-
ter knowledge editing, their ability to generalise
this long-tail knowledge, especially in reasoning
and responding to related questions, remains in-
fluenced by low co-occurrence numbers.

Furthermore, we observe that, though all the
editing methods exhibit relatively strong perfor-
mance in terms of locality across groups, ROME
is affected more than the other methods. This indi-
cates that while ROME achieves the best reliabil-
ity and generalisation, it may slightly affect unre-
lated knowledge, consistent with the observations
of Wang et al. (Wang et al., 2024b).

ROME MEMIT

70 70
<60 601 22
950 50
<40 40

30 30

< 10" 10%-10? 10%-10° = 103 <10' 10%-10? 10%-10° = 103
IKE MEND
70 70

1 e B L e i

<10* 10%-102 10>-10° = 10° <10* 10%-102 10>-10° = 10°
Co-occurrence Number

[ one-to-one 3 one-to-many Editing

Figure 6: The knowledge probing performance of
BioMedLM on both one-to-one knowledge and one-to-
many knowledge before and after editing.
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4.4 Knowledge Type Analysis in Editing

In this section, to further investigate the cause of
the performance gap between long-tail and pop-
ular biomedical knowledge before and after edit-
ing, we further subdivide both long-tail and popu-
lar knowledge into two categories: one-to-one and
one-to-many. The one-to-one knowledge refers to
triples where a subject is linked to a single ob-
ject via a given relation, while one-to-many knowl-
edge represents triples where the same subject-
relation pair is linked to multiple objects (Naga-
sawa et al., 2023). For example, the triple (Type 1
diabetes, therapeutic procedure, insulin therapy)
represents a one-to-one knowledge, where “Type
1 diabetes” is associated with a single object, “in-
sulin therapy”. In contrast, (hypertension, asso-
ciated with, heart disease) exemplifies a one-to-
many knowledge, where “hypertension” can be
linked to multiple objects, such as “stroke” or

“kidney disease””.

4.4.1 Pre-Edit Probing of Different Types of
Knowledge

Finding 4: The prevalence of one-to-many knowl-
edge in long-tail biomedical knowledge is a key
factor contributing to LLMs’ poor performance in
capturing such long-tail knowledge.

Figure 5 shows the pre-edit probing results of
one-to-one and one-to-many knowledge across
different co-occurrence number groups. We found
that one-to-one knowledge is almost unaffected by
co-occurrence numbers and consistently outper-
forms one-to-many knowledge in all groups. For
instance, BioGPT achieves an ACC that is approx-
imately 115.56% higher on one-to-one knowledge
compared to one-to-many knowledge. In contrast,
for one-to-many knowledge, results from BioGPT,
BioMedLLM, and Llama2 all show a steady in-
crease in ACC as the co-occurrence number in-
creases. This suggests that co-occurrence num-
ber, or knowledge frequency, has a significant
impact on LLMs’ ability to accurately compre-
hend one-to-many knowledge. We further anal-
ysed the distribution of one-to-one and one-to-
many knowledge. Figure 5 shows that as the co-
occurrence number increases, the proportion of
one-to-many knowledge decreases while one-to-
one knowledge increases. In the long-tail knowl-

"The detailed evaluation process of one-to-one and one-
to-many knowledge, following the same procedure described
in Section 4.1, can be found in Appendix B.3.

edge group (|D(s,0)| < 10), 90.4% of the knowl-
edge is one-to-many. This analysis reveals that
LLMs’ difficulty with long-tail biomedical knowl-
edge before editing is primarily due to the large
proportion of one-to-many knowledge, which is
challenging for LLMs to comprehend, as it in-
creases the probability that the correct answers
will not align with the model’s output.

4.4.2 Knowledge Editing for Different Types
of Knowledge

Finding 5: Effectively handling one-to-many

knowledge is critical for improving LLMs’ perfor-

mance on long-tail biomedical knowledge through

knowledge editing.

Next, we apply editing methods to both one-to-
one and one-to-many knowledge. The results for
BioMedLM? are provided in Figure 6, which in-
dicate that while editing methods enhance perfor-
mance on one-to-many knowledge, the improve-
ment remains limited. For instance, in the ROME-
edited BioMedLM for the long-tail knowledge
(ID(s,0)| < 10), the ACC for one-to-one knowl-
edge was initially 42.19% higher than that for one-
to-many knowledge. After applying the editing,
this gap decreased to 16.43%. However, the per-
sistent gap also highlights that even after editing,
the model’s performance on one-to-many knowl-
edge, which constitutes the majority of long-tail
knowledge, remains constrained. This finding sug-
gests that despite knowledge editing can enhance
LLMs’ capability in handling one-to-many knowl-
edge, there remains a challenge in bridging the
performance gap between one-to-one and one-to-
many knowledge. This limitation is critical given
that one-to-many knowledge constitutes the major-
ity of long-tail knowledge.

5 Related Work
5.1 LLMs for the Biomedical Domain

LLMs have achieved remarkable progress in the
biomedical domain (Tian et al., 2024). Early ad-
vance were led by BERT (Vaswani et al., 2017)
and its variants, such as BioBERT (Lee et al.,
2020) and ClinicalBERT (Huang et al., 2019),
which showed significant improvements in named
entity recognition and relation extraction when ap-
plied to large datasets such as PubMed and clin-

8The results for other LLMs, i.e., BioGPT, Llama?,
Llama3, Qwen2.5, are provided in Figure 9 and Figure 10,
which demonstrate similar results as BioMedLM.
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ical notes (Perera et al., 2020; Sun et al., 2021).
GPT-based models, including GPT-J (Wang and
Komatsuzaki, 2021), BioGPT (Luo et al., 2022)
and BioMedLM (Bolton et al., 2024), further en-
hanced biomedical text generation and question
answering (Tian et al., 2024). Recent LLMs
like Llama (Touvron et al., 2023), Falcon (Al-
mazrouei et al., 2023), and Palm (Chowdhery
et al., 2023) have scaled transformer architectures
to address more complex tasks, such as biomedi-
cal knowledge reasoning (Wu et al., 2024a; Watan-
abe et al., 2024) and assisting in clinical decision-
making (Sandmann et al., 2024). This work ex-
plores LLMs’ performance on long-tail biomedi-
cal knowledge. We present the first study to in-
vestigate how long-tail knowledge impacts LL.Ms
in knowledge editing, offering new insights into
improving LLMs’ handling of rare biomedical in-
formation through knowledge editing techniques.

5.2 Knowledge Editing

Existing knowledge editing methods can be clas-
sified into three categories (Yao et al., 2023):
memory-based (Zheng et al., 2023b), meta learn-
ing (Mitchell et al., 2022), and locate-then-
edit (Meng et al., 2022a). Memory-based meth-
ods, like IKE (Zheng et al., 2023b), lever-
age external memory to update knowledge with-
out changing model parameters. Meta-learning
methods, such as KE (Cao et al., 2021), train
a hyper-network to generate updated weights.
MEND (Mitchell et al., 2022) improves on this by
using low-rank gradient updates for more efficient
model edits.

Locate-then-edit approaches aim for more tar-
geted knowledge editing. Methods like KN (Dai
et al., 2022) use knowledge attribution to locate
relevant neurons but struggle with precise weight
updates. ROME (Meng et al., 2022a) advances
this by using causal tracing to locate and edit the
Feed Forward Network (FFN) layers, which act
as key-value memories (Geva et al., 2021, 2023).
MEMIT (Meng et al., 2023) further expands this
technique for batch editing. To the best of our
knowledge, this work is the first to investigate
the effectiveness of knowledge editing on long-tail
biomedical knowledge.

5.3 Long-Tail Knowledge within LLMs

Existing studies have explored how long-tail
knowledge, affects LLMs’ performance (Shin
et al., 2022; Han and Tsvetkov, 2022; Elazar et al.,

2022; Mallen et al., 2023; Kandpal et al., 2023).
Mallen et al. (2023) find that commonsense QA
accuracy is strongly correlated with the frequency
of entity popularity in the pre-training data from
Wikipedia (Milne and Witten, 2008). Similarly,
Elazar et al. (2022) employ causal inference to
investigate how pre-training data statistics affect
commonsense QA, highlighting how models rely
on co-occurrence patterns between subjects, ob-
jects, and text to answer questions. More recently,
Kandpal et al. (2023) explore the connection be-
tween the knowledge LLMs acquire for general-
domain QA tasks and its frequency in the pre-
training corpus, introducing comparative experi-
ments involving model retraining and scaling.

Despite these findings, most prior works have
focused on general-domain QA, leaving the long-
tail biomedical domain remaining largely unex-
plored (Wu et al., 2024b). This gap is especially
concerning as LL.Ms are increasingly being used
by healthcare professionals, including doctors, to
assist in diagnosis and treatment recommenda-
tions. Our research fills this gap by investigating
the influence of long-tail biomedical knowledge
on LLMs through knowledge probing and exam-
ining its impact on the effectiveness of knowledge
editing.

6 Discussion

While our work highlights the challenges LLMs
face in capturing and editing biomedical one-to-
many knowledge, we acknowledge that address-
ing these limitations requires further exploration.
We outline several promising directions that may
improve performance: (1) Retrieval-augmented
generation: incorporating external biomedical
knowledge by retrieving relevant documents or
triples could help LLMs better handle long-tail
biomedical knowledge. This approach has shown
promise in open-domain QA (Gao et al., 2023;
Fang et al., 2024b, 2025) and may be adapted for
biomedical editing with domain-specific retrieval
modules; (2) Structure-aware finetuning: instead
of treating each triple independently, future work
could explore fine-tuning strategies that explicitly
model the structure of one-to-many knowledge.
For example, training objectives can be designed
to encourage the model to recognise that multiple
objects may be valid for a given subject-relation
pair.
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7 Conclusion

In this paper, we investigate the effectiveness of
knowledge editing methods for addressing the
challenges of long-tail biomedical knowledge in
LLMs. Our results show that while existing tech-
niques enhance performance on long-tail knowl-
edge, they still fall short compared to their per-
formance on high-frequency knowledge. This dis-
parity is largely due to the prevalence of one-to-
many knowledge structures in the biomedical do-
main, which complicate models ability to accu-
rately represent and edit such information. Our re-
sults highlight the need for advanced editing tech-
niques specifically designed for long-tail knowl-
edge. These techniques should prioritise strategies
for effectively handling the intricacies of one-to-
many knowledge scenarios, which are particularly
common in the biomedical domain and remain a
significant obstacle for current methods.

Limitations

We identify the following limitations of our
work: (1) First, our approach to extracting
long-tail knowledge is based on document-level
co-occurrence frequency (Kandpal et al., 2023),
which captures general patterns of occurrence but
lacks refinement at the sentence level. This lim-
itation may cause our analysis to miss finer pat-
terns in knowledge distribution, especially in in-
stances where sentence-level context provides es-
sential nuances. Future work could enhance the
long-tail knowledge extraction pipeline by investi-
gating co-occurrence on the sentence-level to im-
prove the granularity of knowledge editing. (2)
Second, our experimental framework is limited to
the collection of over 100,000 biomedical knowl-
edge extracted from PubMed, an extensive repos-
itory of biomedical literature. While we believe
the scale of this collection offers a robust foun-
dation for evaluating our methods, our future re-
search should focus on extracting long-tail knowl-
edge from a broader range of domains to further
validate the generalisability of our findings. (3)
Finally, we concentrate on analysing limitations
without proposing specific solutions, prioritising
the establishment of a comprehensive understand-
ing. Future work will focus on developing meth-
ods to improve knowledge editing performance on
long-tail knowledge.
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Appendix

In the Appendix, we introduce more details regard-
ing dataset construction, experimental details, and
additional experimental results:

* Appendix A: CliKT Construction (§ 3).
» Appendix B: Experimental Details (§ 2, 3).

» Appendix C: Additional Results (§ 3).

A CIliKT Construction

Due to the lack of datasets dedicated to evaluat-
ing long-tail biomedical knowledge, we propose
CIiKT, a new benchmark specifically designed to
evaluate LLMs’ performance on long-tail biomed-
ical knowledge. Notably, given that PubMed is
a widely used biomedical corpus for pre-training
LLMs (Wang et al., 2023a), which contains over
37 million abstracts of biomedical papers (Wei
et al., 2013), we mainly focus on PubMed data
to extract long-tail biomedical knowledge. Specif-
ically, we first extract knowledge triples from
SNOMED CT (Donnelly et al., 2006) (§A.1) to
obtain a comprehensive set of biomedical con-
cepts and their relationships. Next, we employ
an entity linking pipeline to map these triples
back to their corresponding documents in the
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PubMed (Roberts, 2001) corpus (§A.2), enabling
us to identify whether a triple represents long-
tail knowledge based its occurrence in the corpus.
Finally, we generate question-answer (QA) pairs
based on the knowledge triples to evaluate the abil-
ity of LLMs to capture the factual knowledge, and
conduct a human evaluation to show that our en-
tity linking pipeline accurately identifies relevant
documents for the majority of the QA pairs.

A.1 Extracting Biomedical Knowledge
Triples

We focus on the long-tail biomedical knowledge
from the PubMed corpus. However, directly ex-
tracting such knowledge from the entire corpus is
a challenging task (Shetty and Ramprasad, 2021;
Nguyen et al., 2021; Abdullah et al., 2023; Cao
et al., 2024; Yi et al., 2024; Deng et al., 2025).
Therefore, following previous work (Alghanmi
etal., 2021; Fei et al., 2021), we leverage informa-
tion from existing biomedical knowledge graphs
to facilitate more efficient extraction. Specifi-
cally, we extract all the knowledge triples from
SNOMED CT (Donnelly et al., 2006), which
is a comprehensive biomedical knowledge graph
comprising over 200K triples and widely used
for assessing LLMs understanding of biomedical
knowledge (Meng et al., 2022b). Each triple is de-
noted as (head entity, relation, tail entity), repre-
senting the relationship between two entities, e.g.,
(Type 1 Diabetes, Therapeutic Procedure, Insulin
therapy).

A.2 Mapping Knowledge Triples to PubMed
Documents

We then develop an entity linking pipeline to map
the extracted knowledge triples back to documents
in Pubmed (Roberts, 2001) to identify long-tail
knowledge. The detailed procedure is as follows:

Entity Annotation. To facilitate the mapping
of knowledge triples to specific PubMed docu-
ments, we first need to annotate the entities within
the PubMed corpus. To this end, we use PubTa-
tor (Wei et al., 2013), a robust web-based text-
mining tool that provides automatic annotations
of biomedical concepts in PubMed. Following the
work of Wei et al. (2019), we obtain entity annota-
tions within 37 million PubMed abstracts®.

Entity Linking. After obtaining annotated enti-

°The annotated data is available at https://ftp.ncbi.
nlm.nih.gov/pub/lu/PubTatorCentral/

ties, the next step is to map the knowledge triples
to their corresponding PubMed documents. Pre-
vious studies (Elsahar et al., 2018; Kandpal et al.,
2023; Soudani et al., 2024) suggest that when the
head entity and the tail entity of a knowledge triple
co-occur within a document, it is likely that the
knowledge represented by the triple is expressed
in that document. Based on this observation, we
define documents where both the head and tail en-
tities of a knowledge triple co-occur as its related
documents, and the count of such documents as
the co-occurrence number.

To determine whether both the head and tail en-
tities of a triple co-occur in a document, we use
SapBERT (Liu et al., 2021), an effective biomedi-
cal entity linking model, to match these entities to
those present in the document. For instance, given
the triple (Hypertension, causes, heart disease)
from SNOMED CT, SapBERT can link “Hyper-
tension” to its equivalent term “high blood pres-
sure” in PubMed, ensuring an accurate match with
related documents. We iterate through the en-
tire corpus to calculate the co-occurrence number
for each triple. We define triples with a low co-
occurrence number as long-tail biomedical knowl-
edge.

Question Generation. Finally, we generate QA
pairs based on the resulting triples to assess the
LLMs’ ability to capture these knowledge triples.
Following Meng et al. (2022a), we manually de-
sign templates to generate questions using the
head entity and the relation, while considering
the tail entity as the answer. For example, given
a triple (Diabetes, treated_by, Insulin), the corre-
sponding QA pair would be: Question: What is
Diabetes treated by? Answer: Insulin. We pro-
vide some example templates in Table 3, where
“Question” is the template used for constructing
questions.

A.3 Dataset Splitting

After generating the question-answer pairs, we
randomly split them into training, validation and
test sets using an 7:1:2 ratio. Following the initial
split, we applied additional filtering to the training
set by discarding knowledge triples with zero co-
occurrence number, resulting in a slightly smaller
effective training set. The detailed statistics of
each split are provided in Table 1. To preserve
the natural distribution and diversity of relational
patterns, we did not explicitly constrain the over-
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lap of subjects or objects across splits. As a result,
some entities may appear in multiple sets. This de-
sign choice ensures a realistic and challenging set-
ting for evaluating editing methods that may rely
on generalisation across related facts.

B Experimental Details

B.1 Details of Large Language Models

We employ two biomedical LLMs and two
general-domain LLMs in our experiments:

* BioGPT-Large (Luo et al., 2022): A 1.5
billion parameter model from Microsoft, pri-
marily pre-trained on PubMed, excelling in
drug discovery and medical record analysis.

e BioMedLM (Bolton et al., 2024): A
Stanford-developed model optimised for
biomedical tasks, pretrained on PubMed with
2.7 billion parameters, ideal for literature re-
trieval and information extraction.

e Llama2 (Touvron et al., 2023): A Meta-
developed model with 7 billion parameters,
designed for general-purpose language tasks.
It has been leveraging large-scale pretraining
on diverse datasets, including biomedical cor-
pora.

¢ GPT-J (Wang and Komatsuzaki, 2021): A
6 billion parameter open-source model by
EleutherAl, trained on the Pile dataset, which
includes a significant portion of biomedical
texts from PubMed.

In addition to the models listed above, we
also include results for two recently released
models, Llama3 (Grattafiori et al., 2024) and
Qwen2.5 (Yang et al., 2024), to provide a broader
view of knowledge editing performance across
both biomedical-specific and general-purpose
LLMs.

B.2 Details of Knowledge Editing Evaluation
Metrics

To evaluate the effectiveness of knowledge edit-
ing, we adopt three standard metrics: Reliability,
Generalisation, and Locality. All evaluation in-
stances are derived from the test split of the CliKT
dataset. Below, we define each metric, describe
how its evaluation data is constructed, and provide
illustrative examples.

(1) Reliability: This metric evaluates whether
the model has correctly incorporated target knowl-
edge after editing (Yao et al., 2023; Weir et al.,

2025). Specifically, it measures the model’s accu-
racy on a set of test instances (., y. ) that directly
correspond to the target edits.

Eay i n{(@eye)t 1 {argmax fo.(y | x7) = yé} :
Yy
)

Construction Procedure. For each knowledge
triple we aim to edit, e.g., (Type I Diabetes, Ther-
apeutic Procedure, Corticosteroids), we first use
an Edit Prompt, such as “The therapeutic proce-
dure of Type 1 Diabetes is Corticosteroids.” to in-
ject the knowledge into the model. We then use a
corresponding evaluation question, such as “What
is the therapeutic procedure of Type 1 Diabetes?”,
paired with its correct answer “Corticosteroids”,
to assess whether the edit was successful. These
input-output pairs form the test set used to com-
pute the reliability score.

(2) Generalisation: Considering that para-
phrased sentences are modified accordingly
through editing, this metric measures the aver-
age accuracy on equivalent neighbours R(z., y.),
where equivalent neighbours are rephrased ques-
tions based on the edited knowledge. This met-
ric evaluates the models ability to apply the edited
knowledge to semantically equivalent but surface-
form-different inputs. It reflects whether the edit
generalises beyond the exact phrasing used during
editing. Formally, it measures the accuracy on a
set of paraphrased input-output pairs R(Zc, y.):

Eor ot ~R(ze,ye) 1 {argmax fo.(y | zl) = yé} )
y
@)

Construction Procedure. Given a factual triple
targeted for editing, e.g., (Type I Diabetes, Thera-
peutic Procedure, Corticosteroids), we first con-
struct an evaluation question in canonical form,
such as What is the therapeutic procedure of Type
1 Diabetes?. To assess generalisation, we gener-
ate another semantically equivalent paraphrases of
this question, e.g., Which treatment is used for
Type 1 Diabetes? or How is Type I Diabetes
typically treated?. These paraphrases are created
using a predefined Rephrase template. The ex-
pected answer Corticosteroids remains unchanged
across all variants, and the models ability to pro-
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Type 1 Diabetes is a chronic condition in which the pancreas
produces little or no insulin, leading to elevated blood sugar
levels... The only effective treatment for managing this condition is
Insulin therapy, making it the standard and essential approach for
maintaining blood sugar levels in patients.

The common treatment of Fabry disease is Enzyme therapy, which
replaces the missing enzyme... Gene therapy, offers a newer
approach, targeting the genetic mutation directly, with the
potential for longer-term benefits in addressing...These options
provide different ways to manage the condition.

Entities Document Indices Entities Document Indices
Type 1 Diabetes —_— 3 22 47 Fabry disease 8 54 67
Insulin therapy e 3 17 22 Enzyme therapy — 8 32 54
KG Knowledge Triples Questions
What is the therapeutic procedure of Type 1 Diabetes Insulin thera
Type 1 Diabetes Insulin therapy P B P N— S o
: 1024 Docs \=—="co-occur
Fabry disease Enzyme therapy -
What is the therapeutic procedure of  Fabry disease £nzyme therapy
~— S
KG | Knowledge Graph TP |therapeutic procedure 6 Docs \———" co-occur

Figure 7: The pipeline for identifying long-tail biomedical knowledge consists of a systematic process encompass-
ing document collection, entity linking, knowledge graph traversal, and question generation.

duce the correct answer across paraphrases indi-
cates the strength of generalisation.

(3) Locality: This metric assesses whether the
knowledge edit remains localizedthat is, whether
the models behavior on unrelated inputs remains
unchanged after editing. It reflects the extent to
which the edit introduces undesired side effects on
out-of-scope content. Formally, locality measures
the consistency between the models pre-edit and
post-edit predictions over a set of unrelated input
examples O(ze, Ye).

Bt im0 {fo. (W | 2) = foly | 2.)} (6)

Construction Procedure. To evaluate locality,
for each triple we aim to edit, we randomly sample
one triple from the test set that is not semantically
related to it. We ensure that the sampled triple
involves a different subject and relation to ensure
that it lies outside the semantic scope of the edit.
For this unrelated triple, e.g., (Aspirin, Side Effect,
Nausea), we then construct a natural language
question with its “Rephrase Prompt”, such as
What side effect is associated with Aspirin?, to
test whether the model’s prediction remains un-
changed after the edit. High locality indicates
that the edit does not inadvertently affect unrelated
knowledge stored in the model. Please refer to Ta-
ble 3 for examples of relation-specific templates
used to generate the edit prompts, canonical ques-
tions and their paraphrased forms.

B.3 Evaluation for One-to-One and
One-to-Many Knowledge

In our evaluation, both one-to-one and one-to-
many knowledge triples are evaluated under a uni-
fied framework that assesses each triple individ-
ually. For one-to-one knowledge, each test in-
stance corresponds to a unique subject-relation-
object triple, and the model is evaluated on its
ability to produce the correct object given a natu-
ral language question constructed from the subject
and relation.

For one-to-many knowledge, we follow the def-
inition where a single subject-relation pair is asso-
ciated with multiple valid objects (Nagasawa et al.,
2023). Importantly, we do not expect the model
to generate all corresponding objects simultane-
ously. Instead, each (s,r,o;) triple is treated as
a separate test case, with its own query and ex-
pected answer. This allows for consistent eval-
uation using the same protocol as in the one-to-
one setting. For example, if a subject-relation pair
(s, r) is associated with objects 0; and o2, we con-
struct two separate questions based on (s, ), and
evaluate whether the model can correctly return
o1 and o3 in their respective instances. This en-
sures that each fact is evaluated separately, while
preserving the structural diversity inherent in one-
to-many knowledge.

We adopt the same accuracy-based probing
method described in Section 2.2, and apply it uni-
formly across all triple types.
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Relation Template

Finding site

Edit Prompt: “The finding site of [SUBJECT] is.”

Question: “What is the finding site of [SUBJECT]?”
Rephrase: “Where is [SUBJECT] typically found?”

Associated morphology

Edit Prompt: “The associated morphology of [SUBJECT] is.”

Question: “What is the associated morphology of SUBJECT?”
Rephrase: “Can you describe the morphology associated with [SUBJECT]”

Causative agent

Edit Prompt: “The causative agent of [SUBJECT] is”

Question: “What is the causative agent of [SUBJECT]?”
Rephrase: “Which pathogen causes [SUBJECT]?”

Interprets

Edit Prompt: “[SUBJECT] interprets.”

Question: “What does [SUBJECT] interprets?”’
Rephrase: “What is interpreted by [SUBJECT]?”

Procedure site

Edit Prompt: “The procedure site of [SUBJECT] is”

Question: “What is the indirect procedure site of [SUBJECT]?”
Rephrase: “Where is the procedure site for [SUBJECT]?”

Pathological process

Edit Prompt: “The pathological process of [SUBJECT] involves.”

Question: “What is the pathological process of [SUBJECT]?”
Rephrase: “Which pathological process does [SUBJECT] involve?”

Due to

Edit Prompt: “[SUBJECT] is due to.”

Question: “What is the [SUBJECT] due to?”
Rephrase: “What is the cause of [SUBJECT]?”

Has active ingredient

Edit Prompt: “The active ingredient of [SUBJECT] is.”

Question: “What is the active ingredient of [SUBJECT]?”
Rephrase: “What active ingredient does [SUBJECT] have?”

Part of

Edit Prompt: “[SUBJECT] is a part of.”

Question: “What is the [SUBJECT] a part of?”
Rephrase: “To what is [SUBJECT] a part?”

Has definitional manifestation

Edit Prompt: “The definitional manifestation of [SUBJECT] is.”

Question: “What is the definitional manifestation of [SUBJECT]?”
Rephrase: “How is [SUBJECT] manifested definitionally?”

Component

Edit Prompt: “The component of [SUBJECT] is.”

Question: “What is the component of [SUBJECT]?”
Rephrase: “What components does [SUBJECT] consist of?”

Table 3: Examples of relation templates demonstrate how each relation is transformed into input prompts, which
can categorized into three parts: Edit Prompt, Question, and Rephrase. The “Edit Prompt” is used for knowledge
editing and reliability evaluation, the “Question” is designed for knowledge probing, and the “Rephrase” is used
to assess generalisation metrics. The complete template for all the relations can be found in our github repository.

B.4 Details of Training and Hyperparameter
Tuning of Baselines

To ensure fair and rigorous comparison, we
closely followed the official implementations of
each baseline method and adapted them to our
biomedical knowledge editing setting using the
CIliKT dataset. Tuning was informed by em-
pirical performance and grounded in established
practices from prior works (Meng et al., 2022a;
Mitchell et al., 2022; Zheng et al., 2023a). In what
follows, we detail the training and hyperparameter
tuning procedures for each method:

ROME (Meng et al., 2022a): We used the causal
trace method from ROME to determine the op-
timal editing layer for BioMedLM, identifying
Layer 5 as the most effective. Other fixed param-
eters include the learning rate and number of edit-
ing steps, aligned with the original ROME imple-
mentation. The main tuned hyperparameter was
the weight applied to the MLP component in the
editing layer. Edits were applied directly to test
set instances using these optimised settings.

MEMIT (Meng et al., 2022a): Similar to ROME,
we fixed the learning rate and number of editing
steps. MEMIT modifies a range of layers simul-
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Figure 8: The performance of knowledge probing after editing with different editing methods on BioGPT and

Llama2, where “Base” denotes LLM without editing.

Group GPT-40-mini BioMedLM BioMedLM (ROME)
< 10 48.02 38.23 51.07
[101,10?) 51.89 41.75 57.21
[10%,10%) 61.63 43.81 62.36
> 103 62.82 43.93 66.09

Table 4: Accuracy (%) of GPT-40-mini, BioMedLM,
co-occurrence number groups.

taneously; using causal trace results, we selected
Layers 3 through 8 as the editing layers. We tuned
the weights assigned to each editing layer to maxi-
mize editing accuracy while preserving model sta-
bility.

MEND (Mitchell et al., 2022): The learning rate,
batch size, and training epochs were set accord-
ing to configurations from original work. We
tuned the weights within the auxiliary editing net-
works, which are responsible for transforming
standard fine-tuning gradients into localized, high-
precision updates. These adjustments enable fast,
targeted edits without degrading overall model be-
haviour.

and BioMedLLM after editing by ROME across different

IKE (Zheng et al., 2023a): IKE relies on in-
context learning and prompt engineering. We
fixed the number of demonstrations k=16 as used
in the original paper. Minimal tuning was re-
quired, as the method is prompt-based. We
adapted the prompt templates to fit biomedical
terminology and relation patterns in the CliKT
dataset.

Fine-Tuning (FT): We adopted standard fine-
tuning settings, including a learning rate of Se-5
and 3 training epochs, consistent across all exper-
iments. No major tuning was performed, as FT
serves primarily as a baseline reference for full-
model retraining.
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Figure 9: Knowledge probing performance before and after editing for one-to-one and one-to-many knowledge
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Figure 10: Knowledge probing performance before and after editing on one-to-one and one-to-many knowledge

for Llama3 and Qwen?2.5.

C Additional Results

We present the performance of knowledge editing
on additional base LL.Ms in this section. In partic-
ular, we evaluate the post-edit probing accuracy
of BioGPT(Luo et al., 2022), Llama2(Touvron
et al., 2023), Llama3 (Grattafiori et al., 2024), and
Qwen2.5 (Yang et al., 2024) using a range of edit-
ing methods. The results are shown in Figure 8(a),
Figure 8(b), Figure 8(c), and Figure 8(d), respec-
tively. To further investigate the impact of editing
across different types of biomedical knowledge,
we also conduct a relation-level analysis for each
model. These results are presented in Figure 9 and
Figure 10.

In addition, we extend our study to include
state-of-the-art closed-source models.  Specifi-
cally, we evaluate GPT-40-mini (Hurst et al.,
2024) to examine whether such models also ex-
hibit weaker performance on long-tail knowledge
compared to popular knowledge, and to assess
whether their performance is comparable to that of
smaller open-source models after knowledge edit-

ing. Specifically, we adopt the same experimen-
tal protocol as in our main setup, using the CliKT
dataset with knowledge grouped by co-occurrence
number and accuracy (ACC) as the evaluation met-
ric (see Section 4.1 for details). The results are
summarized in Table 4.

The results show that even a state-of-the-art
closed-source model such as GPT-40-mini ex-
hibits noticeably lower performance on long-tail
knowledge (|D(s,0)] < 10') with an accu-
racy of 48.02, compared to popular knowledge
(|D(s,0)] > 10%) with an accuracy of 62.82,
indicating that the long-tail challenge persists.
Moreover, knowledge editing can substantially en-
hance the performance of smaller open-source
models. For instance, BioMedLLM (2.7B), after be-
ing edited via ROME, outperforms GPT-40-mini
across all groups, demonstrating the competitive-
ness of knowledge-edited open-source models in
handling long-tail biomedical knowledge.
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