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Abstract

Multi-intent utterances processing remains a
persistent challenge due to intricate intent-slot
dependencies and semantic ambiguities. Tradi-
tional methods struggle to model these complex
interactions, particularly when handling over-
lapping slot structures across multiple intents.
This paper introduces a label-aware contrastive
attention network (LCAN), a joint modeling ap-
proach for multi-intent recognition and slot fill-
ing in task-oriented dialogue systems. LCAN
addresses this issue by integrating label-aware
attention and contrastive learning strategies, im-
proving semantic understanding and generaliza-
tion in multi-intent scenarios. Extensive experi-
ments on the MixATIS and MixSNIPS datasets
demonstrate LCAN’s superiority over existing
models, achieving improved intent recognition
and slot filling performance, particularly in han-
dling overlapping or complex semantic struc-
tures in multi-intent settings.

1 Introduction

Task-oriented dialogue (TOD) systems are critical
for applications like virtual assistants and customer
service automation. A key challenge lies in multi-
intent scenarios where single utterances express
multiple intents and slots, requiring precise identi-
fication for optimal user experience (Wang et al.,
2021).

Traditional methods (Xu and Sarikaya, 2013;
Zhang and Wang, 2016) treated intent recognition
and slot filling as separate tasks. Recent studies
reveal their intrinsic connections, driving adoption
of joint modeling to enable information sharing,
reduce error propagation, and improve efficiency.

Early joint models combined CRFs with
CNNs (Xu and Sarikaya, 2013) or GRUs (Zhang
and Wang, 2016), later enhanced by attention mech-
anisms (Liu and Lane, 2016). Pre-trained models
revolutionized the field, with Joint BERT (Chen
et al., 2019) leveraging BERT embeddings. Subse-

quent innovations include syntax-enhanced Trans-
formers (Wang et al., 2021) and bilinear atten-
tion for parallel intent-slot extraction (Chen et al.,
2022a).

Despite advances, multi-intent handling remains
challenging. As shown in Figure 1, utterances like
"What does ewr stand for, what airlines fly from
burbank to denver and airports in New York?" con-
tain multiple intents with distinct slot types. Cur-
rent models often fail to accurately disentangle and
align these overlapping semantic components.

Figure 1: An example of utterance with multiple intents
and slots.

As dialogue systems increasingly handle multi-
intent scenarios in practical applications, re-
searchers have focused on effective identification
and alignment of multiple intents and slots in com-
plex interactions. Kim et al. (2017b) first explored
multi-intent recognition in spoken language under-
standing and introduced joint multi-intent model-
ing. Gangadharaiah (2019) proposed a joint frame-
work with slot-gating mechanisms, though seman-
tic ambiguity persisted due to single-vector guid-
ance for multiple slot fillings.

To address this limitation, Qin et al. (2020) de-
veloped a Graph Attention Network (GAT)-based
interaction model establishing fine-grained intent-
slot mappings. However, its autoregressive struc-
ture constrained bidirectional information capture.
Subsequently, Qin et al. (2021a) introduced a
global-local graph framework to model complex
intent-slot and slot-slot relations, enhancing joint
modeling performance.

Xing and Tsang (2022) proposed a hetero-
geneous graph with mutual "slot-to-intent" and
"intent-to-slot" guidance, coupled with label-aware
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decoding for enhanced interaction. Cheng et al.
(2023a) designed the SSRN model with explicit in-
tent scope identification and auxiliary tasks to miti-
gate error propagation.Tu et al. (2023) introduced
BiSLU, combining supervised contrastive learn-
ing with self-distillation for bidirectional multi-
task guidance. Cheng et al. (2023b) further en-
hanced intent-slot synergy through multi-granular
contrastive learning.

Recent advances include Chen et al. (2024)’s
two-stage contrastive learning with data augmen-
tation for shared intent relations, and Ma et al.
(2024)’s generative task unification using prompt-
enhanced fusion. Zhuang et al. (2024) proposed
interpretable joint modeling via cross-task informa-
tion maximization.

Despite progress, significant challenges remain
in multi-intent scenarios: (1) Complex intent-slot
interactions hinder accurate detection and filling,
and (2) Semantic ambiguity persists when intents
share slots or exhibit unclear boundaries.

We propose LCAN (Label-Aware Contrastive
Attention Network), a novel joint model integrat-
ing label-aware attention with contrastive learning
to address these issues. LCAN enhances seman-
tic understanding through contrastive intent-slot
alignment while employing label-aware attention
to reduce input ambiguity. Our framework enables
effective information sharing between tasks while
minimizing semantic interference.

Experiments on MixATIS and MixSNIPS
datasets demonstrate LCAN’s superiority over
state-of-the-art baselines, particularly in complex
multi-intent scenarios. Ablation studies con-
firm the critical role of contrastive learning, with
component-wise analysis revealing performance
contributions.

In this paper, we make the following contribu-
tions:(1)We propose LCAN, a joint model that com-
bines label-aware attention and contrastive learning
to improve multi-intent recognition and slot filling
in task-oriented dialogue systems.(2)We demon-
strate the effectiveness of LCAN through experi-
ments on two standard benchmark datasets, Mix-
ATIS and MixSNIPS, and compare its performance
with existing state-of-the-art models.(3)We conduct
ablation studies to analyze the contribution of each
component of LCAN and show that the contrastive
learning modules play a key role in enhancing the
model’s performance.

2 Related work

2.1 Multi-Intent NLU

In comparison to single-intent detection (Wu et al.,
2020), multi-intent detection is more common in
real-world scenarios, especially in real-time dia-
logue systems. Early research on multi-intent de-
tection (Kim et al., 2017a; Gangadharaiah, 2019)
attempted to apply traditional methods based on
Convolutional Neural Networks or Recurrent Neu-
ral Networks , which were effective for capturing
sequential patterns in input data. However, these
models struggled with the complexity and ambigu-
ity inherent in handling multiple intents simultane-
ously.

To address these challenges, Qin et al. (2020)
proposed the Adaptive Graph-Interactive Frame-
work, which incorporates graph-based interactions
to model relationships between intents and slots
more effectively. This approach was further ex-
tended to a non-autoregressive model by Qin et al.
(2021a), improving the efficiency of multi-intent
detection while reducing the limitations imposed by
autoregressive structures. The non-autoregressive
model offers a significant advantage in terms of
computational efficiency, enabling real-time pro-
cessing for multi-intent tasks.

In another approach, Cai et al. (2022) extends
the JointBERT framework, which was initially de-
signed for single-intent tasks, to handle multi-intent
scenarios. It effectively addresses the shared-intent
problem, where multiple intents may share com-
mon slot labels, by explicitly mapping the relation-
ship between slots and their corresponding intents.

Recognizing the importance of accurately pre-
dicting the number of intents in a given utterance,
Chen et al. (2022c) developed a novel threshold-
free framework. This framework first predicts the
number of intents present in the input before pro-
ceeding to predict the specific intents. This ap-
proach provides a more efficient and reliable way to
handle multi-intent tasks, as it eliminates the need
for predefined thresholds, which can vary across
different datasets or domains.

2.2 Contrastive Learning

Contrastive Learning has gained widespread appli-
cation in Natural Language Understanding tasks
due to the challenges of data scarcity and the diver-
sity of expressions in real-world language. Recent
studies have demonstrated the effectiveness of CL
in enhancing NLU performance (Gunel et al., 2020;
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Hou et al., 2021; Yehudai et al., 2023) Specifically,
for multi-intent NLU tasks, Vulić et al. (2022) pro-
posed a strategy that adapts a general sentence en-
coder into a task-specific one for multi-intent data
by leveraging contrastive learning. This approach
improves the encoder’s ability to distinguish be-
tween multiple intents in a single input.

In a similar vein, Tu et al. (2023) introduced a
novel bidirectional joint model trained using su-
pervised contrastive learning and self-distillation.
This model effectively utilizes both intent and slot
features, allowing them to complement each other,
and improving the overall performance of multi-
intent NLU tasks. The integration of supervised
CL with self-distillation enables the model to learn
richer representations, enhancing its ability to han-
dle complex multi-intent scenarios.

3 Model Design

The LCAN model is designed around a label-aware
attention mechanism, which enhances semantic dis-
crimination through contrastive supervision. It fur-
ther introduces a collaborative attention module
to enable bidirectional interaction between intents
and slots for efficient joint modeling. As illustrated
in Figure 2, the overall architecture consists of four
main components: a text encoder, a label-aware at-
tention mechanism, a contrastive learning module,
and intent-slot decoders.

Figure 2: Illustration of the architecture of our joint
model LCAN.

3.1 Text Encoder

Following previous work (Qin et al., 2020; Song
et al., 2022),we employ a shared encoder and task-
specific encoders.

3.1.1 Shared Encoder
We first use a shared encoder to extract general
features. The shared encoder is based on RoBERTa
to obtain contextual representations for each word.
For an input sentence x = {x1, x2, . . . , xn}, where
n is the number of words, the shared encoder pro-
duces the following context-aware word embed-
dings H = {h1,h2, . . . ,hn}, where each hi is the
contextualized embedding of word xi:

H = RoBERTa(x) (1)

3.1.2 Task-Specific Encoders
To refine the representations for intent recognition
and slot filling, we introduce two independent task-
specific BiLSTM encoders. The intent-specific
encoder captures global semantic features, while
the slot-specific encoder focuses on fine-grained
word-level features.

The input sequence H is passed through the In-
tent BiLSTM to get the refined representation for
intent recognition, denoted as Hintent, and through
the Slot BiLSTM to get the refined representation
for slot filling, denoted as Hslot:

Hintent = BiLSTMintent(H) (2)

Hslot = BiLSTMslot(H) (3)

3.2 Label-Aware Attention

To extract label-specific contextual representations
from the input sequence, LCAN introduces a multi-
level label attention mechanism for both intent and
slot labels. This module learns individual attention
distributions for each label, generating semantic
vectors that serve as prior knowledge for joint mod-
eling.

3.2.1 Intent Label Attention
The goal of intent label attention is to obtain the
semantic representation of each token in the input
sentence for every potential intent label. Initially,
the model uses a specialized encoder to extract
token-level representations Hintent ∈ Rde×n, where
n is the number of tokens, and de is the embedding
dimension. A query matrix QI ∈ R|LI|×da , where
|LI| is the number of intent labels, is initialized with
label embeddings. This query matrix is projected
into the attention space, and attention weights are
computed as:

AI = softmax
(
QI × tanh

(
DI ×Hintent) ∈ R|LI|×n (4)
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where, the softmax function normalizes across the
row dimension, ensuring that each label’s weights
sum to one, and DI ∈ Rda×de . The sentence-level
representation for each intent label is calculated via
a weighted sum of token embeddings:

VI = HIntent ×
(
AI

)T

∈ Rde×|LI| (5)

3.2.2 Slot Label Attention
In contrast to intent labels, slot labels usually have
more complex hierarchical structures, we introduce
a multi-layer slot label attention mechanism. At
each layer Hslot ∈ Rde×n, the model extracts token-
level representations QS,k ∈ R|LS,k|×da from a slot-
specific encoder. A query matrix DS,k ∈ Rda×de

is used to calculate attention weights, which are
projected into the attention space as follows:

AS,k = softmax
(
QS,k × tanh

(
DS,k ×Hslot) (6)

After calculating the attention for each slot la-
bel at level k, the model computes the sentence
representation for all slot labels at that level as:

VS,k = HSlot ×
(
AS,k

)T

∈ Rde×|LS,k| (7)

3.2.3 Fine-Grained Semantic Enhancement
To fully leverage the semantic information from
slot labels at higher layers, the model enhances the
fine-grained slot label representations by incorpo-
rating semantic information from coarser labels.
Specifically, the model applies a feed-forward net-
work followed by a sigmoid activation function to
estimate the prediction probability for each coarse-
level slot label:

pS,k−1
j = σ(wS,k−1

j · vS,k−1
j ) (8)

where wS,k−1
j represents the weight for each coarse-

level slot label class. These probabilities are con-
catenated and projected into a unified semantic
vector:

ZS,k−1 = ZS,k−1 · pS,k−1 ∈ Rdp (9)

This vector is then concatenated with each fine-
grained slot label vector to form an enhanced fine-
grained label vector:

vS,k
j ←− vS,k

j ⊕ zS,k−1 (10)

Finally, the updated slot label representation at
the k − th layer is:

VS,k =
[
vS,k
1 , vS,k

2 , ... , vS,k

|LS,k|

]
∈ R(de+dp)×|LS,k|

(11)

Through this hierarchical enhancement mech-
anism, the model refines the fine-grained slot la-
bel representations by integrating information from
coarser slot labels, which improves the overall per-
formance of slot filling tasks.

3.2.4 Intent-Slot Co-attention

We propose an intent-slot co-attention mechanism
that enables fine-grained bidirectional interaction
via label-specific representations.

The module takes as input a set of label-specific
representations generated by the label attention
layer, including the semantic representation matrix
of intent labels Q1 = VI ∈ Rde×|LI| , each layer of
slot labels is represented by semantic embeddings
Q2 = VS,1,Q3 = VS,2, . . . , Ql+1 = VS,l ,

along with a soft slot embedding matrix for
each token Ql+2 = S ∈ Rds×n. These inputs
collectively form a semantic hierarchical sequence
for modeling label-level interactions via the
co-attention mechanism.

Since the input embeddings may differ in dimen-
sionality, all representations are first projected into
a unified semantic space to enable cross-layer in-
teraction. To achieve this, we introduce separate
forward and backward projection matrices for each
input Qt ∈ Rdt×mt , mapping them into a shared
representation space of dimension d:

−→
Qt =

−→
WtQt,

←−
Qt =

←−
WtQt (12)

where
−→
Qt and

←−
Qt serve as the basis for semantic

propagation: the former supports forward propa-
gation (slot-to-intent), while the latter is used for
backward propagation (intent-to-slot). At each step,
a bilinear attention module computes a correlation
matrix between adjacent layers:

Ct = Qt
t−1XtQt ∈ Rmt−1×mt (13)

where Xt ∈ Rdt−1×dt is a learnable attention
weight matrix capturing inter-label similarity. Se-
mantic propagation is then performed in both direc-
tions. For forward propagation (slot-to-intent), the
update is:

−→
Ht =

{
tanh (

−→
Qt−1 Ct +

−→
Qt), t = 2

tanh (
−→
Ht−1 Ct +

−→
Qt), t > 2

(14)

Conversely, backward propagation (intent-to-
slot) is defined as:

←−
Ht =

{
tanh (

←−
Qt+1 C

T
t+1 +

←−
Qt), t = l + 1

tanh (
←−
Ht+1 C

T
t+1 +

←−
Qt), t < l + 1

(15)
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This enables intent-level semantic cues to flow
back to the slot layer, supporting more accurate slot
predictions through joint label awareness. The dual-
path propagation forms a closed loop of semantic
communication, improving contextual understand-
ing across labels.

After propagation, the model extracts final label
representations for decoding. Specifically, the first-
layer output from backward propagation is used as
the intent representation, while the final output of
the forward path is used for slot decoding:

Rfinal
I = H1 ∈ Rd×|LI| (16)

Rfinal
S = Hl+2 ∈ Rd×n (17)

3.3 Contrastive Learning
While label-aware attention captures sentence-level
semantics, semantic overlap persists among sim-
ilar labels in multi-intent/slot scenarios. LCAN
addresses this through a label-aware contrastive
learning module (Figure 3), structuring the embed-
ding space via contrastive supervision. Following
supervised contrastive principles, it creates posi-
tive pairs and negative pairs, enforcing intra-class
compactness and inter-class separation. The frame-
work extends to three semantic levels: intent labels,
slot labels, and cross-task intent-slot pairs, estab-
lishing multi-granular contrastive supervision that
enhances discriminative power while mitigating
feature confusion.

Figure 3: Diagram of the Contrastive Learning Module.

3.3.1 Intent Label Contrastive Learning
Intent detection is a multi-label classification task
at the sentence level. Semantic similarity between
intent labels is common—especially when multiple
intents co-occur within a user query. LCAN first
extracts per-label semantic vectors via label-aware
attention:

VI = [vI
1,v

I
2, ... , v

I
|LI|] ∈ Rde×|LI| (18)

Positive pairs are sampled from embeddings of
the same intent label across different sentences,
while negative pairs are drawn from different labels.
The model is trained using the InfoNCE loss:

Li−cl = − log
exp (sim(v, v+)/τ)

Σv−∈N exp (sim(v, v−)/τ))
(19)

where sim() denotes cosine similarity, τ is a tem-
perature parameter, and N is the set of negatives.
This loss pulls together embeddings of the same in-
tent and pushes apart others, enhancing robustness
in multi-label scenarios.

3.3.2 Slot Label Contrastive Learning
Slot filling involves a larger label space and finer se-
mantic granularity. Overlapping meanings among
hierarchical slot labels further complicate repre-
sentation learning. LCAN generates multi-layer
slot label embeddings VS,k ∈ Rdk×|LS,k| via hi-
erarchical attention computed following Equation
11.

For each layer k, contrastive learning is applied
similarly:

ℓi = log
exp

(
sim(vi, v

+
i )/τ

)
∑

v−
j ∈N exp

(
sim(vi, v

−
j )/τ

) (20)

Ls,k = − 1

|LS,k|

|LS,k|∑

i=1

ℓi (21)

This contrastive loss encourages the model to
differentiate between semantically similar slot la-
bels.

Ls−cl = ΣK
k=1 Ls,k (22)

3.3.3 Cross-Task Contrastive Learning
Intent and slot labels are closely correlated. To
align semantic spaces across tasks, LCAN incor-
porates cross-task contrastive learning, enforcing
similarity between semantically aligned intent-slot
label pairs. Given an intent embedding vI

i and a
related slot embedding vS,k

j , a contrastive loss is
defined as:

Lcross = −
∑

i,j∈P
log

exp
(
sim(vI

i,v
S,k
j )/τ

)

∑
i,j−∈N exp

(
sim(vI

i,v
S,k

j− )/τ
)

(23)

3.4 Intent and Slot Decoders

The final stage of the model involves decoding
the intent and slot labels. Both the intent and slot
decoders are based on a multi-label classification
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approach for intent recognition and a sequence la-
beling approach for slot filling.

3.4.1 Intent Decoder
Intent detection is modeled as a multi-label clas-
sification task, where a single utterance may cor-
respond to multiple semantic intents. To handle
this, LCAN employs a sigmoid-based multi-label
classifier.To train the model, a binary cross-entropy
loss is computed independently for each label and
summed across all labels:

Li = −
⌊LI⌋∑

j=1

[
yI
j log (ŷ

I
j) + (1− yI

j) log ( 1− ŷI
j)
]

(24)

where yIj denotes the ground-truth label for the i−
th intent. This objective supports robust learning
for multi-intent utterances.

3.4.2 Slot Decoder
Slot filling is framed as a sequence labeling task,
where each token in the utterance is assigned a
corresponding slot label. To account for contex-
tual dependencies among slot tags, LCAN adopts a
hybrid decoding approach using a linear classifier
followed by a Conditional Random Field .

To model label transitions and enforce sequen-
tial consistency, a CRF layer is applied over the
emission scores. Given a sequence of slot labels
yS = yS1 , y

S
2 , ..., y

S
n, the sequence-level score is de-

fined as:

score(x, yS) = Σn
i=1

(
emissioni,yS

i
+ TyS

i−1,y
S
i

)
(25)

where emissioni,ySi
denotes the transition score

from the previous label to the current label.
The CRF is trained by maximizing the log-

likelihood of the correct label sequence, which
is equivalent to minimizing the negative log-
likelihood:

Ls = −score(x, yS) + logΣŷ∈Y exp ( score(x, ŷ)) (26)

The denominator sums over all possible label se-
quences and is computed efficiently via the forward
algorithm. During inference, the Viterbi algorithm
is used to find the most probable label sequence.

3.5 Overall Training Objective

The LCAN model is trained using a joint objec-
tive function that combines two major components:
1)Task-specific supervised losses, including a multi-
label classification loss for intent detection and a se-
quence labeling loss for slot filling; 2)Label-aware

contrastive losses, designed to enhance semantic
separability among intent and slot representations.

The overall loss function is defined as:

Ltotal = Li + λ0Ls + λ1Li−cl + λ2Ls−cl + λ3Lcross

(27)

This flexible multi-objective formulation enables
the model to balance structural supervision and
semantic discriminability, improving performance
and generalization across both tasks.

4 Experiments Setup

4.1 Datasets
The experiments are conducted on two standard
benchmark datasets: MixATIS (Qin et al., 2020)
and MixSNIPS (Qin et al., 2020). MixATIS is a
dataset primarily focusing on the airline travel do-
main, containing multiple intents like flight book-
ing, flight inquiry, and time-based queries. The
MixSNIPS dataset, on the other hand, covers mul-
tiple domains such as weather, music, restaurants,
and movies, with a more conversational and infor-
mal style of language.

4.2 Implementation Details
We use RoBERTa-base as the shared encoder to
extract general semantic features from input se-
quences. Two task-specific encoders based on BiL-
STM are employed: one for intent recognition
and one for slot filling. The label-aware atten-
tion mechanism is introduced to refine the inter-
action between intent and slot labels. Additionally,
the model incorporates a contrastive learning strat-
egy to enhance semantic differentiation between
similar or overlapping labels. The AdamW opti-
mizer (Loshchilov and Hutter, 2017) is used for
model training with an initial learning rate of 0.001.
The batch size is set to 32, and the maximum num-
ber of training epochs is 50. Early stopping is
applied to prevent overfitting. We perform hyper-
parameter tuning using random search on the vali-
dation set.

4.3 Baselines
To comprehensively evaluate the effectiveness of
the proposed LCAN model on multi-intent detec-
tion and slot filling tasks, we conducted system-
atic comparative experiments on MixATIS and
MixSNIPS. The evaluation includes several rep-
resentative baseline models, ranging from tradi-
tional joint modeling approaches to recent frame-
works enhanced by graph structures and atten-
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tion mechanisms:(1)GL-GIN (Qin et al., 2021b):
A non-autoregressive model with global-local
graph interaction for efficient intent-slot coordi-
nation.(2)SDJN (Chen et al., 2022b): Integrates
self-distillation and multi-instance learning to
enhance word-level intent-slot alignment.(3)Co-
guiding Net (Xing and Tsang, 2022): Employs het-
erogeneous graph attention and contrastive learning
for bidirectional task interaction.(4)TFMN (Chen
et al., 2022c): Multi-task framework with auxil-
iary intent count prediction, eliminating thresh-
old dependencies.(5)BiSLU (Tu et al., 2023):
Combines supervised contrastive learning with
self-distillation for explicit intent-slot collabora-
tion.(6)MISCA (Pham et al., 2023): Joint attention
architecture enabling implicit intent-slot informa-
tion exchange without graph construction.(7)Uni-
MIS (Yin et al., 2024): Models the multi-intent
SLU as a multi-view intent-slot interaction.

5 Results and Analysis

5.1 Main Results

Experimental results are presented in Table 1. On
both the MixATIS and MixSNIPS datasets, the pro-
posed LCAN model demonstrates a clear overall
performance advantage in joint multi-intent model-
ing tasks.

On the MixATIS dataset, LCAN achieves a joint
accuracy of 59.5%, outperforming MISCA and
BiSLU by 1.4% and 8.0%, respectively. This con-
firms its effectiveness in handling complex hierar-
chical slot labels and diverse intents in the airline
domain. Notably, LCAN achieves an F1-score of
92.4% on slot filling, 3.0% higher than BiSLU, in-
dicating that its label-aware attention mechanism
effectively captures fine-grained slot dependencies.
Although its intent accuracy is slightly lower than
BiSLU, the incorporation of cross-task contrastive
learning strengthens semantic alignment between
intents and slots, leading to an improvement in
overall joint accuracy.

On the open-domain MixSNIPS dataset, LCAN
achieves strong intent detection performance, ben-
efiting from contrastive learning to alleviate se-
mantic overlap among multiple intents and to en-
hance global consistency across tasks. While its
slot F1-score is slightly lower than BiSLU, LCAN
still achieves superior joint accuracy, highlighting
its advantage in optimizing intent-slot interactions.
Compared to earlier models, LCAN improves joint
accuracy by 7.8% over Co-guiding Net, further val-

idating its robustness in multi-domain, multi-intent
scenarios.

Table 1: Obtained results

Model MixATIS MixSNIPS

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

GL-GIN 76.3 88.3 43.5 95.6 94.9 75.4
SDJN 77.1 88.2 44.6 96.5 94.4 75.7
Co-guiding 79.1 89.8 51.3 97.7 95.1 77.5
TFMN 79.8 88.0 50.2 97.7 96.4 84.7
BiSLU 81.5 89.4 51.5 97.8 97.2 85.4
MISCA 80.6 90.0 58.1 97.6 96.1 83.1
Uni-MIS 78.5 88.3 52.5 97.2 96.4 83.4
LCAN (Ours) 81.3 92.4 59.5 98.7 96.9 85.3

5.2 Ablation Results
To evaluate the contribution of different contrastive
learning modules, we conduct an ablation study
by removing various contrastive learning modules.
The results are shown in Table 2, and the ablated
variants include: w/o Intent CL, w/o Slot CL, w/o
Cross CL, and w/o CL.

Table 2: Ablation Study on Contrastive Learning Mod-
ule

Variant MixATIS MixSNIPS

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

w/o CL 80.6 90.0 58.3 97.6 96.1 83.1

w/o Intent CL 79.9 91.8 58.9 97.7 96.5 84.8

w/o Slot CL 80.5 89.6 58.7 98.5 94.9 84.3

w/o Cross CL 81.6 91.7 58.8 98.8 95.9 84.8

LCAN 81.3 92.4 59.5 98.7 96.9 85.3

Removing all contrastive learning modules leads
to a decrease of 1.2% and 2.2% in joint accuracy on
MixATIS and MixSNIPS, respectively. This con-
firms the effectiveness of contrastive learning in en-
hancing semantic consistency between intents and
slots, thereby improving overall performance.On
MixATIS, intent accuracy drops 1.4%, indicating
its primary focus on intent representation. For
MixSNIPS , it proves vital in open-domain intent-
dominant scenarios.Causes significant slot F1 de-
clines, highlighting its importance for fine-grained
slot recognition. The 0.8% intent accuracy drop on
MixATIS suggests improved slot distinction indi-
rectly benefits intent inference.Removal increases
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MixATIS intent accuracy due to reduced overfitting
but lowers slot F1 and joint accuracy, demonstrat-
ing its balance between task interaction and seman-
tic alignment. On MixSNIPS, joint accuracy drops
0.5% despite minor intent gains. In summary, the
intent, slot, and cross contrastive learning modules
contribute to the LCAN model from global intent
optimization, local slot representation, and seman-
tic coordination, respectively, leading to improved
multi-intent joint modeling.

To evaluate the contributions of label-aware at-
tention structure, we design three simplified model
variants by removing specific components of the
label-aware attention structure. The ablated vari-
ants include: w/o Co-attention, w/o Slot Label At-
tention, and w/o Intent Label Attention.

Table 3: Ablation Study on Label Attention Mechanism

Variant MixATIS MixSNIPS

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

Intent
(Acc.)

Slot
(F1)

Overall
(Acc.)

w/o Co-Attn 79.9 89.2 50.5 96.9 95.9 80.1

w/o SL Attn 79.6 91.2 56.1 98.7 96.1 81.4

w/o IL Attn 78.7 91.6 55.3 97.2 96.2 82.0

LCAN 81.3 92.4 59.5 98.7 96.9 85.3

As shown in Table 3, removing the co-attention
mechanism leads to decrease of 9.0% and 5.2%
in joint accuracy on MixATIS and MixSNIPS, re-
spectively. This confirms the effectiveness of co-
attention mechanism in modeling semantic coor-
dination and promoting collaborative decoding be-
tween the intents and entities. The absence of SL
Attn prevents the model from establishing fine-
grained semantic alignments between slot labels
and the input context. This leads to a clear accu-
racy drop, especially on MixSNIPS (nearly 4%).
Furthermore, the removal of the IL Attn leads to
a substantial drop in intent classification accuracy,
this suggests that relying solely on task-specific en-
coder outputs is insufficient to capture the semantic
diversity of multiple intents.

5.3 Case Study

To further illustrate the effectiveness of LCAN, we
conduct a case study using a representative multi-
intent example from the MixATIS dataset: "Check
flights from Beijing to Shanghai and book a ticket"
. Traditional models exhibit blurred intent bound-
aries at conjunctions, while RoBERTa-base fails

to disambiguate slots near "and". As shown in Ta-
ble 4, BiSLU improves intent separation but retains
coarse slot granularity.This demonstrates LCAN’s
superiority in disentangling interconnected intents
and maintaining slot-label consistency.

Table 4: Recognition Results for a Multi-Intent Example

Model Recognized In-
tents

Slot Filling Results

RoBERTa-base CheckFlight,
BookTicket

from: Beijing; to:
Shanghai and book;
ticket: [Unrecognized]

BiSLU CheckFlight,
BookTicket

from: Beijing; to:
Shanghai; ticket: ticket

LCAN CheckFlight,
BookTicket

from: Beijing; to:
Shanghai; ticket: book
a ticket

Table 4 shows the recognition results of three
models under this input. While all models success-
fully detect the two intents, there are clear differ-
ences in slot filling accuracy and boundary clar-
ity. RoBERTa-base fails to distinguish between
the intents around the conjunction, leading to in-
complete slot extraction. BiSLU improves intent
separation through bidirectional learning and con-
trastive strategies but still shows coarse-grained slot
interpretation. LCAN, with its label-aware mecha-
nism, accurately aligns slot information with each
intent, demonstrating superior semantic parsing in
multi-intent scenarios.

6 Conclusion

We propose LCAN, a novel joint model address-
ing multi-intent recognition and slot filling chal-
lenges in task-oriented dialogue systems. LCAN
integrates label-aware attention for precise input-
label alignment and contrastive learning to miti-
gate semantic ambiguity among overlapping labels.
Evaluations on MixATIS and MixSNIPS datasets
demonstrate LCAN’s superiority over state-of-the-
art models, particularly in complex multi-intent
scenarios requiring nuanced intent-slot interactions.
Ablation studies confirm the critical roles of con-
trastive learning and label-aware attention. While
LCAN achieves robust performance, future work
could explore hierarchical attention mechanisms
and optimized contrastive strategies for improved
generalization to unseen, highly diverse dialogues.
The framework establishes a scalable foundation
for advancing joint modeling in multi-intent dia-
logue systems.
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Limitations

It should also be emphasized that LCAN inte-
gration of label-aware attention mechanisms and
contrastive learning modules may substantially in-
crease both parameter count and computational
complexity. More critically, the efficacy of con-
trastive learning is contingent upon the design of
positive/negative sample pairs—where semantic
overlaps between intents and slots in multi-intent
scenarios can induce sample selection bias. Further-
more, the label-level focus of contrastive learning
might neglect finer-grained semantic distinctions
at the word or phrase level. Despite LCAN consis-
tent outperformance of existing models, we posit
that incorporating fine-grained semantic similarity
computation could yield additional performance
gains.
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