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Abstract

Recent advancements in speech-language mod-
els have yielded significant improvements in
speech tokenization and synthesis. However,
effectively mapping the complex, multidimen-
sional attributes of speech into discrete tokens
remains challenging. This process demands
acoustic, semantic, and contextual informa-
tion for precise speech representations. Ex-
isting speech representations generally fall into
two categories: acoustic tokens from audio
codecs and semantic tokens from speech self-
supervised learning models. Although recent
efforts have unified acoustic and semantic to-
kens for improved performance, they overlook
the crucial role of contextual representation in
comprehensive speech modeling. Our empir-
ical investigations reveal that the absence of
contextual representations results in elevated
Word Error Rate (WER) and Word Informa-
tion Lost (WIL) scores in speech transcriptions.
To address these limitations, we propose two
novel distillation approaches: (1) a language
model (LM)-guided distillation method that
incorporates contextual information, and (2)
a combined LM and self-supervised speech
model (SM)-guided distillation technique that
effectively distills multimodal representations
(acoustic, semantic, and contextual) into a
comprehensive speech tokenizer, termed DM-
Codec. The DM-Codec architecture adopts a
streamlined encoder-decoder framework with
a Residual Vector Quantizer (RVQ) and incor-
porates the LM and SM during the training
process. Experiments show DM-Codec sig-
nificantly outperforms state-of-the-art speech
tokenization models, reducing WER by up
to 13.46%, WIL by 9.82%, and improving
speech quality by 5.84% and intelligibility by
1.85% on the LibriSpeech benchmark dataset.
Code, samples, and checkpoints are available
at github.com/mubtasimahasan/DM-Codec

*Corresponding author: mubtasimahasan@gmail.com
†Work does not relate to position at Amazon.
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1 Introduction

In recent years, the advent of Large Language Mod-
els (LLMs) has revolutionized various domains, of-
fering unprecedented advancements across a wide
array of tasks (OpenAI, 2024). A critical compo-
nent of this success has been the tokenization of
input data, enabling vast amounts of information
processing (Du et al., 2024a; Rust et al., 2021). In-
spired by these breakthroughs, significant attention
has shifted towards replicating similar successes in
the realm of speech understanding and generation
(Défossez et al., 2022; Hsu et al., 2021). How-
ever, tokenizing speech into discrete units presents
unique challenges compared to text, as speech is
inherently continuous and multidimensional, re-
quiring various speech attributes such as acous-
tic properties, semantic meaning, and contextual
clues (Ju et al., 2024). Traditional approaches using
feature representations such as Mel-Spectrograms
(Sheng et al., 2019), Mel-frequency cepstral coef-
ficients (MFCCs) (Juvela et al., 2018), and Wave-
forms (Kim et al., 2021) have proven inadequate
in capturing this full spectrum of information, re-
sulting in suboptimal performance in downstream
tasks such as speech synthesis (Ju et al., 2024).

These limitations led researchers to explore vari-
ous approaches, and one prominent direction lead-
ing to audio codecs (Borsos et al., 2023). Notable
examples include SoundStream (Zeghidour et al.,
2021) and EnCodec (Défossez et al., 2022), which
utilize Residual Vector Quantizers (RVQ) within a
neural codec framework, iteratively refining quan-
tized vectors to discretize speech into acoustic to-
kens. Concurrently, self-supervised speech repre-
sentation learning models such as HuBERT (Hsu
et al., 2021) and wav2vec 2.0 (Baevski et al., 2020)
facilitated extracting speech representations as se-
mantic tokens (Borsos et al., 2023). Efforts to
unify acoustic and semantic representations have
led to two notable approaches: SpeechTokenizer
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Figure 1: Overview of speech tokenization using discrete acoustic, semantic, and contextual tokens. DM-Codec
integrates these features for robust and comprehensive speech representation.

(Zhang et al., 2024a), which utilizes semantic dis-
tillation from HuBERT, and FACodec (Ju et al.,
2024), which proposes a factorized vector quantizer
to disentangle speech representation into different
subspaces using separate RVQs with supervision.

However, these approaches often overlook a key
aspect: the integration of contextual information.
Language models (LMs) have demonstrated an abil-
ity to learn contextual representations that capture
the meaning of tokens from broader context (De-
vlin et al., 2019). These contextual representations
can provide essential insights into speech represen-
tation, allowing for a more nuanced understanding
of words in varying linguistic contexts. Our empir-
ical investigations also reveal that existing discrete
speech representation models struggle to align re-
constructed speech with accurate textual form, re-
sulting in elevated Word Error Rates (WER) and
Word Information Lost (WIL) scores in speech tran-
scription. This observation underscores the need
for a more comprehensive approach to speech tok-
enization that incorporates contextual information.

To address these challenges, we propose DM-
Codec, a novel speech tokenizer that unifies multi-
modal language and speech representations. Cen-
tral to our innovation is the introduction of an LM-
guided distillation method that incorporates con-
textual representations into the speech tokenization
process. This allows DM-Codec capturing the nu-
ances of linguistic context often missed by existing
models. Building upon the LM-guided approach,
we propose a distillation method combining both
LM and speech model (SM)-guided techniques.
Moreover, we introduce a [CLS]-token-based distil-
lation strategy that leverages sequence-level holis-
tic representations from the LM, effectively cap-

turing global contextual information. Our distilla-
tion method only utilizes the LM and SM during
training, without increasing model complexity and
parameters, and are not required during inference.

To the best of our knowledge, we are the first
to attempt to integrate all three essential aspects
of speech representation—acoustic, semantic, and
contextual—within a single codec. See Figure 1 for
a depiction. In addition, to demonstrate the impact
of multimodal representation and generalizability
of DM-Codec in downstream tasks, we introduce
DM-Codec-TTS, a novel multimodal representa-
tion distilled neural codec language model.

Through extensive experiments on LibriSpeech
(Panayotov et al., 2015), we show DM-Codec’s
superiority. DM-Codec achieves a WER of 4.05
and WIL of 6.61, outperforming SpeechTokenizer
(4.49, 7.10), FACodec (4.68, 7.33), and EnCodec
(4.53, 7.17). It also improves speech quality, with
a ViSQOL score of 3.26 and MOS of 3.72, surpass-
ing EnCodec (3.08, 3.09), SpeechTokenizer (3.09,
3.67), and FACodec (3.13, 3.70). DM-Codec-TTS
excels on LibriSpeech and VCTK, outperforming
USLM and Vall-E. On LibriSpeech, it achieves
a WER of 5.08, WIL of 7.32, MOS of 3.70, and
SMOS of 3.89, while on VCTK, it achieves a WER
of 3.58, WIL of 5.65, MOS of 3.78, and SMOS of
3.85. Notably, DM-Codec-TTS-small achieves a
WER of 10.26, WIL of 13.79, MOS of 3.24, and
SMOS of 3.20, outperforming USLM (libri) across
all metrics despite using a smaller dataset.

We summarize our contributions below:

• We introduce DM-Codec, a novel speech tok-
enizer that incorporates contextual representa-
tions via the LM-guided distillation method.
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• We present a novel combined LM and SM-
guided distillation method, unifying acoustic,
semantic, and contextual representations.

• We propose a [CLS]-token-based distillation
strategy that captures global contextual infor-
mation from the LM, facilitating better align-
ment and transfer of contextual features.

• We introduce DM-Codec-TTS, a neural codec
language model, demonstrating the generaliz-
ability of the DM-Codec framework in down-
stream tasks.

2 Related Work

Tokenization Techniques in Speech. Tokeniza-
tion in speech processing can be broadly catego-
rized into two main approaches: (i) speech encoder-
based and (ii) language-based. In the speech
encoder-based tokenization approach, a pretrained
speech encoder serves as a teacher model, provid-
ing semantically rich audio representations. These
representations are then used to guide the training
model, either through an alignment network (Mes-
sica and Adi, 2024) or by optimizing specific losses
(Zhang et al., 2024a; Liu et al., 2024). Language-
based tokenization approach involves processing
audio through a speech encoder to obtain discrete
representations or using the corresponding text to
feed into a language model. The representations
from the language model are then utilized either to
learn a tokenizer for speech or to reconstruct speech
(Turetzky and Adi, 2024; Hassid et al., 2024; Zhang
et al., 2024b; Wang et al., 2024). Besides, (Zhang
et al., 2024b) proposed SpeechLM where two dis-
crete tokenizers were introduced and learned in an
unsupervised way and converted the speech and
text in a shared discrete space.

Discrete Speech Representation. There are two
well-known methods for discrete speech representa-
tion: semantic tokens and acoustic tokens. Seman-
tic tokens are derived through self-supervised learn-
ing (SSL) techniques for speech (Baevski et al.,
2019; Hsu et al., 2021; Chung et al., 2021) and
capture abstract, high-level features that relate to
general, symbolic aspects of speech, while omitting
details related to speaker identity and acoustic char-
acteristics. In contrast, acoustic tokens are obtained
using neural audio codecs (Zeghidour et al., 2021;
Défossez et al., 2022; Yang et al., 2023) and focus
on delivering precise reconstructions of acoustic
features. However, recent models (Turetzky and

Adi, 2024; Liu et al., 2024; Shi et al., 2024) have
shown that speech models based on self-supervised
learning (SSL) are effective at extracting acoustic
representations where LMs be employed to refine
these models further, enhancing their ability to ex-
tract more nuanced semantic representations. Re-
cent works (Huang et al., 2024; Du et al., 2024b;
Ahasan et al., 2025) focused on improving the qual-
ity of discrete speech representation by retaining
semantic information for both speech understand-
ing and generation.

Textual Language Models in Speech. Research
on speech models, including works by (Nguyen
et al., 2023), (Borsos et al., 2023), and (Kharitonov
et al., 2022), has focused on utilizing raw audio
to extract prosodic features, identify speaker char-
acteristics, and generate audio without depend-
ing on textual features or supervision from tex-
tual LMs. In contrast, many newer methods have
started using audio encoders to transform audio sig-
nals into discrete tokens, which can be processed
by textual LMs. TWIST method introduced by
(Hassid et al., 2024) initializes the weights of the
SpeechLM using a pre-trained text LM, showing
that this combination significantly improves perfor-
mance. Similarly, the SELM model developed by
(Wang et al., 2024) leverages GPT (Radford, 2018;
Radford et al., 2019) as its foundation due to its
enhanced parallel processing capabilities and ca-
pacity. However, text-based LLMs such as GPT-3
(Brown, 2020) and Llama (Touvron et al., 2023)
are essential for speech modeling. Once discrete
audio representations are obtained, these large text
models are trained to enhance the original text em-
bedding space, as explored in studies by (Zhang
et al., 2023), (Fathullah et al., 2023), (Shu et al.,
2023), and (Rubenstein et al., 2023). This trend of
integrating textual LMs into speech modeling has
become increasingly popular in recent research.

3 Proposed Method

This section introduces DM-Codec, a novel speech
tokenizer that distills multimodal (acoustic, seman-
tic, and contextual) representations. As shown in
Figure 2, we propose two training approaches: (i)
LM-guided distillation, integrating contextual and
acoustic representations, and (ii) combined LM
and SM-guided distillation, incorporating semantic,
contextual, and acoustic representations. Addition-
ally, a [CLS] token-guided distillation leverages
sequence-level holistic contextual representations.
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Figure 2: DM-Codec framework consists of an encoder that extracts latent speech representations, and quantized
using a Residual Vector Quantizer (RVQ). We propose two distillation approaches: (i) from a language model
(LM), and (ii) from both an LM and a speech model (SM), integrating acoustic, semantic, and contextual features to
enhance speech representations for downstream tasks.

We also present DM-Codec-TTS, integrating DM-
Codec into a neural codec language model. The fol-
lowing subsections detail the distillation methods
(§3.1), DM-Codec model and training objectives
(§3.2, §3.3), and DM-Codec-TTS (§3.4).

3.1 Multimodal Representation Distillation

We first transcribe the raw speech x into its cor-
responding text x′ using an Automatic Speech
Recognition (ASR) model MASR, such that x′ =
MASR(x). MASR serves as an tool for converting
speech to text, and provides no supervision or in-
fluence on model training. For simplicity, we omit
any post-processing techniques on the x′. Subse-
quently, we pass the text x′ through a pretrained
language model MLM to obtain contextual rep-
resentations of x′, tokenized into a set of tokens,
T = {ti}ni=1. For each token ti, we extract its
corresponding layer-wise hidden representations
{hl

i}Ll=1, where L denotes the total number of lay-
ers in MLM . We utilize all layer representations to
derive the representations for each token, as each
layer of a pre-trained language model captures hier-
archical and contextually distinct information (Niu
et al., 2022; Kovaleva et al., 2019; Hao et al., 2019).
To obtain the contextual representation Si for token
ti, we average the hidden representations across all
layers, yielding Si =

1
L

∑L
l=1 h

l
i, where Si ∈ RD

where D is the hidden dimension. Consequently,
we obtain the contextual representations S =
{Si}ni=1 for the speech input x, which captures
the contextually diverse information from MLM .

Simultaneously, we process the raw speech
x through an Encoder E(x) to obtain the latent
features v, with sequence length T ′. We then pass
v through a Residual Vector Quantizer (RVQ) to
obtain quantized features Q = {Qk}Kk=1, where
K represents the number of quantization layers
in the RVQ, and Qk ∈ RD′

where D′ is the
hidden dimension of kth RVQ layer. Qk capture
comprehensive speech information across the
entire utterance and are subsequently used to
reconstruct the audio x̂ via the decoder. The
holistic information of the entire speech segment,
represented in discrete form within Qk, allows
us to directly match it with S by padding the
tokens n to the quantized sequence length T ′.
The padded tokens serve only to measure feature
dimension similarity rather than impose temporal
alignment. To distill contextual information from
S into Qk, we apply a linear transformation
Q′

k = WQk, where W ∈ RD′×D, ensuring the
dimensional consistency for alignment and updates
to occur within each feature dimension without
necessitating strict temporal correspondence.

LM Guided Distillation: In this approach, we
distil the LM representations S. To calculate the
distillation loss, we adopt continuous represen-
tation distillation (Zhang et al., 2024a), which
maximizes the cosine similarity at the feature
dimension axis D with the motivation to focus on
similarity within each feature dimension D rather
than solely focusing on the overall output similarity.
We calculate the continuous representation distil-
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lation of the transformed quantized features Q′
k

and the LM representation features S as follows:

LL = − 1

D

D∑

d=1

log

(
σ

(
Q

′(:,d)
k · S(:,d)

∥Q′(:,d)
k ∥∥S(:,d)∥

))

(1)
Here, the notation (:, d) indicates a vector that

includes values from all time steps at the dth

dimension, where d ∈ [1, D] in the D-dimensional
feature space. The function σ(·) represents the
sigmoid activation function.

∑D
d=1 computes the

loss by aggregating over all feature dimensions,
ensuring that updates occur at the feature level
rather than at specific time steps.

Combined LM and SM Guided Distillation:
We enhance DM-Codec with a hybrid approach
using both audio and text modalities. To derive
semantic representations from the speech model
(SM), we adopt a similar distillation strategy as
we used for the LM. We first pass the raw speech
x through the pretrained speech model MSM ,
generating layer-wise hidden representations
{hl

j}Ll=1. The semantic features are derived by
averaging the hidden states across all layers,
yielding Aj =

1
L

∑L
l=1 h

l
j , where Aj ∈ RD. This

yields semantic representations A = {Aj}nj=1 for
speech input x. The distillation loss in this case
considers both the LM and SM representations,
jointly optimizing the quantized features Q′

k with
the representations A and S derived from MSM

and MLM , respectively. We first calculate the
distillation loss for the SM, LS , followed by aver-
aging with the LM distillation loss, LL, to ensure a
balanced contribution from both losses, as follows:

LS = − 1

D

D∑

d=1

log

(
σ

(
Q

′(:,d)
k ·A(:,d)

∥Q′(:,d)
k ∥∥A(:,d)∥

))

(2)

LLS =
1

2
(LL + LS) (3)

This formulation ensures that DM-Codec inte-
grates acoustic representation learned by the codec
architecture with semantic knowledge from SM
and contextual knowledge from LM.

[CLS] Token Guided Distillation: We intro-
duce a [CLS] token-guided distillation strategy,
leveraging the [CLS] token’s sequence-level holis-
tic representation to capture global contextual in-
formation from LM. This approach eliminates the

need for fine-grained temporal alignment while
preserving essential linguistic features. More-
over, CLS-guided distillation employs sentence-
level knowledge transfer, which has been shown
to be more robust in noisy settings (Wei et al.,
2024). For this method, we use the layer-wise
hidden representations of the [CLS] token alone.
These representations, averaged across all layers,
are denoted as S[CLS] = 1

L

∑L
l=1 h

l
[CLS], where

S[CLS] ∈ RD. To match the sequence length
T ′ of the quantized features Q′

k, the [CLS] to-
ken representation is repeated T ′ times, yielding
S′ = {S[CLS],S[CLS], . . . ,S[CLS]}.

The distillation loss follows the same formula-
tion as the LM-guided distillation loss (Eqn. 1),
replacing S with S′. This enables the distillation
process to leverage the global contextual informa-
tion encoded in the [CLS] token while ensuring
greater alignment with the sequence length T ′.

3.2 DM-Codec: Model Details
Our framework builds on the Residual Vector Quan-
tizer with Generative Adversarial Networks (RVQ-
GAN) architecture. The core model comprises an
Encoder E and Decoder D with an RVQ struc-
ture, inspired by Encodec (Défossez et al., 2022)
and SpeechTokenizer (Zhang et al., 2024a). We
utilize a codebook size of 1024 and 8 quantiza-
tion levels at a 50Hz frame rate. We employ a
multi-discriminator setup, including Multi-Scale
Discriminator (MSD), Multi-Period Discrimina-
tor (MPD), and Multi-Scale Short-Time Fourier
Transform (MS-STFT) Discriminator, drawn from
HiFi-Codec (Yang et al., 2023) and HiFi-GAN
(Kong et al., 2020). Detailed architectural spec-
ifications are in Appendix E. To enhance the quan-
tizer with distilled multimodal representations, we
use wav2vec 2.0 (wav2vec2-base-960h) as MASR

(Baevski et al., 2020), BERT (bert-base-uncased) as
MLM (Devlin et al., 2019), and HuBERT (hubert-
base-ls960) as MSM (Hsu et al., 2021). Quantized
outputs from the first RVQ layer (RVQ-1) are used
for LM-guided distillation, and the average of quan-
tized outputs across all eight layers (RVQ-1:8) is
used for SM-guided distillation. An ablation study
of RVQ layers selection is in Appendix D.2.

3.3 DM-Codec: Training Objective
In addition to the distillation losses in Section
3.1, our training strategy builds on methodologies
(Zhang et al., 2024a; Yang et al., 2023), employ-
ing the RVQ-GAN framework. For the original
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speech x and the reconstructed speech x̂, we use
reconstruction, adversarial, feature matching, and
commitment losses to guide learning as follows:

Reconstruction Loss. To ensure that the model
preserves the key attributes of speech, we employ
both time-domain and frequency-domain recon-
struction losses. The time-domain loss Lt is com-
puted as the L1 distance between x and x̂. For the
frequency-domain loss Lf , we combine L1 and L2
losses over 64-bin Mel-spectrograms Meli, with
varying window sizes of 2i, hop lengths of 2i/4,
and scales e = {5, . . . , 11}.

Lt = ∥x− x̂∥1 (4)

Lf =
∑

i∈e

(
∥Meli(x)− Meli(x̂)∥1

+ ∥Meli(x)− Meli(x̂)∥2
) (5)

Adversarial Loss. The adversarial loss encour-
ages the generator to produce realistic, indistin-
guishable speech. We apply a hinge loss formula-
tion to compute the adversarial loss for the genera-
tor Lg and the discriminator Ld. These losses are
computed across all three discriminators: the multi-
scale discriminator (MSD), multi-period discrim-
inator (MPD), and the multi-scale STFT guided
(MS-STFT) discriminator (see Appendix E).

Lg =
1

N

N∑

n=1

max(1−Rn(x̂), 0) (6)

Ld =
1

N

N∑

n=1

(
max(1−Rn(x), 0)

+ max(1 +Rn(x̂), 0)
) (7)

where N is the number of discriminators and Rn

represents the nth discriminator.
Feature Matching Loss. To prevent the genera-

tor from overfitting to the discriminator’s decisions,
we apply a feature matching loss Lfm. This loss
compares features from each discriminator Rn’s
internal layers M across all dimensions, promoting
stability and better generalization.

Lfm =
1

NM

N∑

n=1

M∑

m=1

∥Rm
n (x)−Rm

n (x̂)∥1
mean(∥Rm

n (x)∥1)
(8)

RVQ Commitment Loss. To guide the encoder
to produce outputs that closely match their corre-
sponding quantized values in the residual vector
quantization (RVQ) process, we introduce a com-
mitment loss Lw. For Nq quantization vectors,
where qi represents the current residual and qci is
the closest entry in the corresponding codebook for
the ith entry, the Lw is computed as:

Lw =

Nq∑

i=1

∥qi − qci∥22 (9)

Overall Generator Loss. The total generator
loss LG is a weighted sum of the individual loss
components, including the distillation loss LL/LS

(which is either LL or LLS depending on the cho-
sen distillation method). We use the corresponding
weighting factors λL/LS , λt, λf , λg, λfm, and λw

to control the influence of each loss component on
the overall training objective as:

LG = λL/LSLL/LS + λtLt + λfLf

+ λgLg + λfmLfm + λwLw

(10)

This comprehensive training objective ensures
DM-Codec learns acoustic speech representations
while incorporating semantic and contextual repre-
sentation through novel distillation approaches.

3.4 DM-Codec-TTS: Model Details and
Training Objective

Following SpeechTokenizer (Zhang et al., 2024a)
and VALL-E (Wang et al., 2023), we propose
DM-Codec-TTS, a novel multimodal representa-
tion distilled neural codec-based Text-To-Speech
(TTS) model. Extending upon general neural codec
language models, DM-Codec-TTS, leverages the
strength of contextual and semantic representation
distilled on our neural codec, DM-Codec.

Problem Formulation. For zero-shot TTS, the
task is to synthesize speech for a given speaker. We
frame it as a conditional codec language modeling
problem, where the objective of DM-Codec-TTS
is to predict the quantized acoustic features Q =
{Qk}Kk=1, conditioned on a phoneme sequence u
and an acoustic prompt P̃ ∈ RT ′×K extracted from
the input enrolled recording.

Training Objective. The model integrates au-
toregressive (AR) and non-autoregressive (NAR)
components to hierarchically encode speech infor-
mation. The AR component models content and
speaker identity by predicting tokens Qt

1 from the
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first RVQ layer using a transformer decoder-only
architecture ϕAR. The AR training objective is:

JAR = −
T∑

t=0

log p
(
Qt

1 | Q<t
1 ,u;ϕAR

)
(11)

The NAR component focuses on acoustic details
by predicting tokens Qk (k = 2, . . . , 8) from subse-
quent RVQ layers. The NAR training objective is:

JNAR = −
8∑

k=2

log p
(
Qk | Q<k, P̃,u;ϕNAR

)

(12)
During inference, the AR model predicts tokens

Q1 based on speech phonemes u, while the NAR
model iteratively generates Q2:8 using the AR out-
put and the acoustic prompt P̃. The combined
tokens Q = {Q1,Q2:8} are decoded into a speech
waveform via the neural codec.

Model Details. The AR and NAR models share
an identical transformer structure, comprising 12
layers, 16 attention heads, a 1024-dimensional em-
bedding space, 4096-dimensional feed-forward lay-
ers, and a dropout rate of 0.1.

4 Experimental Setup

Dataset. We trained DM-Codec using the Lib-
riSpeech 100-hour clean speech training set (Panay-
otov et al., 2015), widely used for speech tokenizer
and modeling (Zhang et al., 2024a; Ju et al., 2024;
Hsu et al., 2021). Data were standardized by crop-
ping samples to three seconds and ensuring a 16 Hz
sample rate. For DM-Codec-TTS, we used Libri-
Heavy (Kang et al., 2024), a 50k-hour read English
speech dataset derived from LibriVox, selecting
samples between 0.5 and 15 seconds at 16 kHz. Ad-
ditionally, a smaller DM-Codec-TTS version was
trained on LibriTTS (Zen et al., 2019), a 585-hour
dataset with 2,456 speakers sampled at 24 kHz.

For evaluation, we tested DM-Codec on 300
randomly selected audio samples from the Lib-
riSpeech test-clean subset, aligning with baseline
Speechtokenizer’s (Zhang et al., 2024a) setup. A
random seed of 42 ensured consistent sampling,
and baseline models were evaluated on the same
setup. Additionally, we tested DM-Codec-TTS
on LibriSpeech test-clean and VCTK (Yamagishi
et al., 2019). For LibriSpeech, we followed VALL-
E’s (Wang et al., 2023) setup by constructing a 2.2-
hour subset from the test-clean data, selecting sam-

ples of 4–10 seconds. For each synthesis, a differ-
ent utterance from the same speaker was randomly
selected as input text, and a 3-second segment was
cropped as the enrollment speech prompts. Each
experiment was repeated three times, and the aver-
age score was reported. For VCTK, we followed
SpeechTokenizer’s (Zhang et al., 2024a) setup, us-
ing a 3s utterance as the prompts, while the input
text was derived from a different utterance.

Training. We trained DM-Codec utilizing two
A100 GPUs for 100 epochs with batch size of 6.
We applied a learning rate of 1 × 10−4 using the
Adam optimizer with a 0.98 learning rate decay.
The embedding size was set to 1024 for RVQ and
768 for the LM and SM. For all experiments, we
used a random seed of 42 to ensure reproducibility.
For the overall generator loss, we select the weight
coefficients proportionally as follows: λL/LS =
X , λf = 0.375X , λt = 4.15X , λw = 0.085X ,
and set λg = 1 and λfm = 1. For DM-Codec-
TTS, we trained the autoregressive (AR) and non-
autoregressive (NAR) models separately, each for
4 epochs, while DM-Codec-TTS-small was trained
with 100 epochs for the AR model and 196 epochs
for the NAR model. The batch size was determined
dynamically based on the maximum number of
audio seconds, set to 280 for AR and 200 for NAR.
We employed a base learning rate of 0.05 using the
ScaledAdam optimizer with warmup steps of 200.

Baselines. We compared DM-Codec with base-
lines: EnCodec (24 kHz) (Défossez et al., 2022),
SpeechTokenizer (Zhang et al., 2024a), FACodec
(NaturalSpeech3) (Ju et al., 2024), DAC (16 kHz)
(Kumar et al., 2023), BigCodec (Xin et al., 2024),
and Moshi (Défossez et al., 2024). We reproduced
SpeechTokenizer using its official training code
and used official model checkpoints for the rest.
Additionally, we compared DM-Codec-TTS with
neural codec language models: USLM (from
SpeechTokenizer (Zhang et al., 2024a)) and VALL-
E (Wang et al., 2023). Since VALL-E and USLM’s
training codes and models are not open-source,
we relied on reported results. We also used USLM
(libri), an official model checkpoint trained on Lib-
riTTS and shared on GitHub. All baseline model
artifacts are open source and were used according
to their licenses and intended research use.

Evaluation Metrics. To measure context preser-
vation, we used Word Error Rate (WER) and Word
Information Lost (WIL), with Whisper (whisper-
medium) (Radford et al., 2023) generating the tran-
scriptions. WER quantifies transcription errors,
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Table 1: Evaluation of DM-Codec’s speech reconstruction quality against baselines. DM-Codec (LM+SM) achieves
the best performance, highlighting the impact of contextual and semantic representation distillation.♡ means the
results were reproduced using the official training code. ♢ means the results were obtained using official model
checkpoints. (LM) indicates LM-guided distillation. (LM+SM) indicates combined LM and SM-guided distillation.
(CLS) indicates [CLS]-token based distillation. Baseline indicates DM-Codec without any distillation. (SM
Baseline) indicates the SM only distillation baseline. Bold highlights the best and underline the second-best result.

Model WER ↓ WIL ↓ ViSQOL ↑ STOI ↑ Similarity ↑ MOS ↑ UTMOS ↑ PESQ ↑
Groundtruth 3.78 6.03 - - - - - -
EnCodec♢ 4.53 7.17 3.08 0.920 0.980 3.09 2.48 2.34
SpeechTokenizer♡ 4.49 7.10 3.09 0.923 0.993 3.67 3.49 2.63
FACodec♢ 4.68 7.33 3.13 0.949 0.996 3.70 3.52 2.86
DAC♢ 4.15 6.61 3.20 0.941 0.996 - 3.40 2.76
BigCodec♢ 4.54 7.43 3.02 0.937 0.996 - 3.51 2.71
Mimi♢ 11.78 18.34 2.49 0.853 0.936 - 2.35 1.70

DM-Codec (Baseline) 4.97 8.02 2.95 0.935 0.991 3.13 3.25 2.58
DM-Codec (SM Baseline) 4.49 7.25 3.12 0.933 0.994 - 3.43 2.86
DM-Codec (CLS) 4.47 7.08 3.12 0.926 0.993 3.65 3.39 2.65
DM-Codec (LM) 4.36 7.06 3.18 0.935 0.994 3.69 3.48 2.86
DM-Codec (LM+SM) 4.05 6.61 3.26 0.937 0.994 3.72 3.52 2.81

while WIL measures the loss of key information:

WER =
S +D + I

N
, WIL = 1− N − S −D

N

where N is the total number of words in the ref-
erence, S is the number of correctly recognized
words, D is the number of deletions, and I is the
number of insertions. Groundtruth WER and WIL
scores were included to account for Whisper’s tran-
scription errors. We assess the acoustic and seman-
tic preservation using ViSQOL (Virtual Speech
Quality Objective Listener) (Hines et al., 2012)
measuring spectro-temporal similarity, Short-Time
Objective Intelligibility (STOI) measuring short-
time correlations, and and Perceptual Evaluation of
Speech Quality (PESQ) measuring speech quality
based on perceptual auditory models. We mea-
sured the Mean Opinion Score (MOS) and Simi-
larity Mean Opinion Score (SMOS) through hu-
man evaluations with 50 English-proficient par-
ticipants. Evaluators rated anonymized samples
on a 1-to-5 scale. MOS is used to evaluate the
naturalness, intelligibility, and clarity of speech,
while SMOS is used to measure the similarity to
the prompt speaker’s voice.We calculated UTMOS
(Saeki et al., 2022), a neural network-based auto-
matic MOS predictor to further complement sub-
jective MOS. Additionally, speaker similarity (Sim-
ilarity) was quantified using cosine similarity be-
tween normalized speaker embeddings extracted
with WavLM-TDNN (Chen et al., 2022). Further
details on human evaluations are in Appendix F.

5 Experimental Results and Discussion

In this section, we present experimental results
evaluating speech reconstruction with DM-Codec
variants: DM-Codec (LM) with LM-guided distil-
lation, DM-Codec (LM+SM) with combined LM
and SM distillation, and DM-Codec (CLS) with
[CLS] token guided distillation against baseline
speech tokenizers (§5.1). We then assess zero-shot
speech synthesis with DM-Codec-TTS against
neural codec language models (§5.2). Furthermore,
we conducted rigorous significance analysis
(Appendix C) and comprehensive ablation studies
of DM-Codec design choices (Appendix D).

5.1 Speech Reconstruction Evaluation

We compared the quality of DM-Codec’s discrete
speech representations by reconstructing speech
from quantized features. For this evaluation, we
selected DM-Codec variants with the first Residual
Vector Quantizer layer (RVQ-1) for LM distillation
and all RVQ layers (RVQ-1:8) for SM distillation.
We analyze the results of DM-Codec in effectively
incorporating semantic and contextual information.

Results: Table 1 shows that all DM-Codec vari-
ants surpass or closely compete with the baselines.
DM-Codec (LM+SM) outperforms all models in
reducing transcription error (WER 4.05, WIL 6.61)
and speech quality (ViSQOL 3.26, MOS 3.72, UT-
MOS 3.52). DM-Codec (LM) surpasses SpeechTo-
kenizer, EnCodec, BigCodec, FACodec, and Mimi
in reducing transcription error (WER 4.36, WIL
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Table 2: Evaluation of DM-Codec-TTS on LibriSpeech and VCTK datasets. Results show DM-Codec-TTS
outperforms baselines in WER, WIL, Similarity, MOS, and SMOS. ♢ denotes results from official model checkpoints,
† indicates results from the paper, and ♣ indicates models trained with LibriTTS dataset. Bold highlights best result.

LibriSpeech Benchmark Evaluation VCTK Benchmark Evaluation

Model WER ↓ WIL ↓ Similarity ↑ MOS ↑ SMOS ↑ WER ↓ WIL ↓ Similarity ↑ MOS ↑ SMOS ↑
DM-Codec-TTS 5.08 7.32 0.82 3.70 3.89 3.58 5.65 0.82 3.78 3.85
Vall-E † 5.90 - 0.58 - 4.38 - - 0.38 - 3.81
USLM † - - - - 6.50 - 0.84 3.63 3.45

DM-Codec-TTS♣ 10.26 13.79 0.82 3.24 3.20 5.02 8.21 0.79 3.39 3.28
DM-Codec(SM)-TTS♣ 15.34 21.37 0.82 3.13 2.89 8.28 13.21 0.78 3.22 2.97
USLM (libri) ♢ ♣ 16.72 25.65 0.80 3.11 2.83 14.79 23.24 0.78 2.94 2.63

7.06) and speech quality (ViSQOL 3.18, PESQ
2.86), while achieving a higher UTMOS (3.69)
than DAC, EnCodec, and Mimi. Additionaly, DM-
Codec (CLS) demonstrates commendable results,
either outperforming or competing with the base-
lines, particularly outscoring SpeechTokenizer, En-
Codec, BigCodec, FACodec, and Mimi in reduc-
ing transcription error (WER 4.47, WIL 7.08) and
SpeechTokenizer, EnCodec, and Mimi in speech
quality (ViSQOL 3.12, PESQ 2.65), while achiev-
ing a strong MOS of 3.65.

Discussion: The superior performance of DM-
Codec (LM+SM) is attributed to the novel Com-
bined LM and SM-guided distillation. This dual
representation, contextual knowledge from LM and
semantic understanding from SM enables more
coherent and natural speech, yielding superior re-
sults across most evaluation metrics. DM-Codec
(LM) also performs well by incorporating contex-
tual representations, improving speech quality and
reducing transcription errors. Additionally, [CLS]
token-guided distillation provides a holistic view
of the entire contextual input, enhancing contextual
cue alignment and reducing transcription errors.
The impact of these distillation techniques is clear
when compared to DM-Codec (Baseline), which
lacks distillation and falls short in speech quality
with higher transcription errors. Moreover, the im-
portance of contextual information is reinforced
by the comparison with DM-Codec (SM Baseline),
which only includes semantic knowledge and un-
derperforms with more transcription errors.

5.2 Speech Synthesis Evaluation

To demonstrate DM-Codec’s ability to capture se-
mantic and contextual features and their impact
on downstream task, we compare the zero-shot
TTS evaluation of DM-Codec-TTS with baseline
USLM and VALL-E. We use DM-Codec (LM+SM)
to quantize speech prompt features as input and

decode quantized features predicted by DM-Codec-
TTS. DM-Codec(SM)-TTS serves as a baseline.

Results: The results in Table 2 show that DM-
Codec-TTS outperforms USLM and VALL-E base-
lines. In both benchmark evaluations, DM-Codec
achieves the lowest WER (5.08, 3.58), WIL (7.32,
5.65), and highest MOS (3.70, 3.78), while achiev-
ing closely aligned Similarity to USLM in VCTK,
and superior SMOS 3.85 compared to VALL-E and
USLM in VCTK. DM-Codec-TTS trained with
smaller LibriTTS dataset also significantly outper-
forms USLM (libri) in both benchmarks.

Discussion: The improved performance indi-
cates that hierarchical modeling in DM-Codec-TTS
effectively utilizes the contextual and semantic
knowledge distilled in DM-Codec. Unlike VALL-
E, which relies on EnCodec for speech tokeniza-
tion, DM-Codec-TTS leverages multimodal rep-
resentation cues. This highlights the strength of
contextual and semantic-aware hierarchical mod-
eling in bridging linguistic content with acoustic
fidelity, resulting in more natural and intelligible
speech synthesis. The improvement over the DM-
Codec(SM)-TTS baseline also demonstrates the
importance of contextual distillation from LM.

6 Conclusion

We introduced DM-Codec, a speech tokenizer with
novel distillation methods that leverage multimodal
(acoustic, semantic, and contextual) representations
from language and speech self-supervised mod-
els. Experimental results demonstrate that distill-
ing multimodal representations enables DM-Codec
to encode salient speech information in discrete
tokens. This approach showcases the potential of
multimodal representations to improve speech to-
kenization across domains, including multilingual
and code-switched speech processing.
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Limitations

In this work, we present the effectiveness of our
proposed method, DM-Codec, based on the Lib-
riSpeech dataset. Future research could investigate
its performance across a variety of datasets and
domains. Additionally, exploring the capabilities
of DM-Codec in multilingual contexts would be
valuable. Another limitation of our work is the
absence of experiments with emerging LLMs. Cur-
rently, we focus solely on masked language models
to derive representations. Further investigation into
decoder-based LLMs’ impact on DM-Codec can
be studied and addressed.
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Technical Appendix

A Resources

We release all resources to facilitate reproducibil-
ity and future research. We provide the code for
training DM-Codec, trained model checkpoints for
inference, and a Dockerfile for a reproducible en-
vironment. All resources are publicly available at
https://github.com/mubtasimahasan/DM-Codec.

B Representation Alignment in LM
Distillation

A core principle of our approach is that strict tem-
poral alignment between text and acoustic repre-
sentations is not necessary for effective contextual
knowledge distillation. The discrete representa-
tions produced by the Residual Vector Quantizer
(RVQ) inherently encode holistic information about
the speech segment rather than temporally local-
ized features. This characteristic enables the dis-
tillation of contextual representations into discrete
tokens without reliance on strict temporal corre-
spondence.

As illustrated in Figure 2, the RVQ outputs
{Q1, . . . , QT ′} capture comprehensive speech in-
formation across the entire utterance. Temporal
alignment between these discrete representations
and contextual representations (e.g., from BERT)
or semantic representations (e.g., from HuBERT)
is therefore not essential. The effectiveness of
dimension-level semantic representation distilla-
tion without temporal alignment has been previ-
ously demonstrated in SpeechTokenizer (Zhang
et al., 2024a), providing a robust theoretical foun-
dation for this approach.

Moreover, vector quantizer output representa-
tions are not inherently aligned with time steps, but
instead encode holistic speech information. This ca-
pability has been established in prior work (Zhang
et al., 2024a; Huijben et al., 2024; Islam et al., 2024,
2023), which demonstrates the potential of vector
quantization to discretize input data into intermedi-
ate representations that capture essential features
across the feature dimension. Consequently, impos-
ing a temporal alignment between vector quantizer
outputs and hidden layer representations from lan-
guage or semantic models would neither align with
the methodological objectives nor enhance the effi-
cacy of the proposed distillation approach.

To achieve effective contextual and semantic
knowledge transfer, we employ a continuous dis-

tillation loss that maximizes cosine similarity
at the feature dimension level between the se-
lected RVQ layer outputs and the teacher represen-
tations across all time steps. Unlike conventional
methods that rely on time-step-wise loss calcula-
tions (Zhang et al., 2024a; Chang et al., 2022),
this dimension-level cosine similarity loss ensures
that DM-Codec captures contextual and semantic
knowledge through LM-Guided Distillation and
Combined LM and SM-Guided Distillation mecha-
nisms, without requiring strict temporal alignment.

In addition, we propose a [CLS]-token-based
distillation strategy to address alignment. The
[CLS] token encodes sequence-level holistic rep-
resentations, capturing global contextual informa-
tion from language models. Using these token rep-
resentations, our method eliminates the need for
fine-grained temporal alignment while preserving
essential linguistic features. This complements the
dimension-level distillation strategy by focusing on
global sequence features, enabling the adaptability
of our approach to scenarios where fine-grained
alignment is infeasible or unnecessary.

As shown in Table 1, all DM-Codec variants,
including DM-Codec (CLS), DM-Codec (LM),
and DM-Codec (LM+SM) consistently outperform
baseline models (EnCodec, SpeechTokenizer, and
FACodec) in content preservation metrics (WER
and WIL) while maintaining competitive perfor-
mance in speech quality metrics (ViSQOL and
STOI). These results corroborate the robustness of
the proposed approach. By prioritizing the holistic
integration of multimodal knowledge into discrete
speech representations, DM-Codec achieves signif-
icant advancements in both content preservation
and speech quality.

C Significance Analysis of Speech
Tokenizer performance

We conducted a significance analysis at α = 0.05
on the LibriSpeech test-clean subset containing
2,620 samples. We follow the approach of Dror
et al. (2019), to measure the stochastic domi-
nance of DM-Codec over the baselines: EnCodec,
SpeechTokenizer, and FACodec. Specifically, we
computed inverse cumulative distribution functions
(CDFs) for all reconstructed speech samples’ in-
dividual WER, WIL, ViSQOL, and STOI scores.
Significance was evaluated using the ϵ value and
categorized as: significantly better when 0.0 < ϵ ≤
0.5, significantly dominant when ϵ = 0.0, and not
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Table 3: Significance Analysis on LibriSpeech Test Set. Significance analysis is conducted at α = 0.05 between
LM and SM-guided DM-Codec (D), EnCodec (E), SpeechTokenizer (S), and FACodec (F). Comparisons are
performed row vs. column (e.g., D vs. E, E vs. S). Results reveal DM-Codec consistently achieves significantly
better scores in key metrics across all individual samples. A ✓ indicates significance, a ★ denotes dominance, and a
✗ means no significance. Avg and Std mean the average and standard deviation of each score.

WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
Avg Std D E S F Avg Std D E S F Avg Std D E S F Avg Std D E S F

D 4.774 0.100 - ✓ ✓ ✓ 7.510 0.139 - ✓ ✓ ✓ 3.197 0.184 - ★ ✓ ✓ 0.937 0.021 - ✓ ✓ ✗

E 4.828 0.100 ✗ - ✓ ✓ 7.593 0.137 ✗ - ✓ ✓ 3.064 0.201 ✗ - ✗ ✗ 0.917 0.021 ✗ - ✗ ✗

S 4.942 0.101 ✗ ✗ - ✗ 7.725 0.138 ✗ ✗ - ✗ 3.080 0.190 ✗ ✓ - ✗ 0.920 0.025 ✗ ✓ - ✗

F 4.914 0.103 ✗ ✗ ✓ - 7.643 0.141 ✗ ✗ ✓ - 3.113 0.250 ✗ ✓ ✓ - 0.946 0.023 ✓ ✓ ✓ -

significantly better when ϵ > 0.5. For this anal-
ysis, we selected DM-Codec (LM+SM), trained
with combined LM and SM-guided distillation. To
the best of our knowledge, we are the first to
conduct significance analysis to measure the ef-
fectiveness of different speech tokenizers.

Results and Discussion: The results in Ta-
ble 3 show that DM-Codec significantly outper-
forms the baselines in WER, WIL, ViSQOL, and
STOI scores. The improved average values (4.774
WER, 7.510 WIL, 3.197 ViSQOL, 0.937 STOI)
and consistent standard deviations (0.100 WER,
0.139 WIL, 0.184 ViSQOL, 0.021 STOI) further
demonstrate the statistical significance. Notably,
DM-Codec’s performance in WER and WIL un-
derscores the importance of contextual representa-
tion distillation for enhanced speech reconstruction.
Additionally, its strong performance in ViSQOL
and STOI, especially over EnCodec, highlights the
benefits of combining LM and SM distillation for
retaining semantic-acoustic fidelity. While DM-
Codec does not achieve significance over FACodec
in terms of STOI, it significantly outperforms the
baselines across all other metrics. Among the base-
line, FACodec achieves significance over Speech-
Tokenizer, whereas EnCodec outperforms Speech-
Tokenizer in WER and WIL, SpeechTokenizer ex-
cels in ViSQOL and STOI over EnCodec.

D Ablation Studies

We conducted a comprehensive analysis of DM-
Codec’s performance and the impact of each
methodological choice in retaining contextual and
semantic information through distillation. Unless
otherwise stated, we use distillation for both LM
and SM to the first Residual Vector Quantizer layer
(RVQ-1) for comparison consistency and simplicity.
The following ablation studies were conducted con-

currently with a similar configuration and model
design except for the explicitly noted changes.

D.1 Ablation Study: Impact of Combined
Semantic Distillation

We conducted experiments with different weighted
combinations of LM and SM distillation loss to
evaluate their impact on reducing WER. The com-
bined distillation loss from Equation 2 was updated
using SM and LM weights (λSM and λLM ), rang-
ing from 0.0 to 1.0, with the constraint λSM +
λLM = 1.

LLS =
1

2
(λLM · LL + λSM · LS) (13)

Results and Discussion: The experimental re-
sults are presented in Figure 3, showing the speech
reconstruction results with WER scores for differ-
ent weighted combinations. From the values, we
notice a trend showing that incorporating LM rep-
resentations generally improves WER, especially
when LM distillation is dominant. The lowest
WER score of 4.07 occurs with a weight of λLM =
0.8 for LM, while λSM = 0.2 for SM, highlighting
the strong influence of LM distillation on captur-
ing contextual information. A balanced weighting
of λSM = 0.5 and λLM = 0.5 produces a WER
of 4.18, confirming that distillation from both LM
and SM is beneficial. However, as the weighting
shifts more in favor of SM (λSM > 0.7), WER
deteriorates, reaching 4.83 when relying entirely
on SM. This underscores that over-reliance on SM
distillation compromises contextual accuracy in fa-
vor of raw speech features. Notably, the interaction
between LM and SM weights plays a crucial role,
as the combined distillation influences the overall
WER beyond individual distillation contributions.
For instance, the higher WER observed at λLM =

25593



λSM λLM WER ↓
1.0 0.0 4.83
0.9 0.1 4.63
0.8 0.2 4.44
0.7 0.3 4.23
0.6 0.4 4.76
0.5 0.5 4.18
0.4 0.6 4.54
0.3 0.7 4.34
0.2 0.8 4.07
0.1 0.9 4.33
0.0 1.0 4.36

Figure 3: Effects of weights on combined distillation from Speech Model (SM) and Language Model (LM). Higher
LM weight generally results in improved WER, suggesting its stronger contribution to content preservation. Here,
λSM is the weight added to SM and λLM is the weight added to LM, where (λSM + λLM = 1).

0.9 compared to λLM = 0.3 or λLM = 0.5 high-
lights the importance of tuning both weights syn-
ergistically, rather than favoring one in isolation.

D.2 Ablation Study: Impact of Distillation on
Different RVQ Layers

We evaluated the effect of applying distillation at
various Residual Vector Quantizer (RVQ) layers,
including the first layer (RVQ-1), the average of
eight layers (RVQ-1:8), and the last layer (RVQ-8).
Table 4 shows the full results.

Results and Discussion: In LM-guided distil-
lation, RVQ-1:8 achieves the best WER and WIL
scores (4.23 and 6.94), though with lower ViSQOL
and STOI scores (3.12 and 0.929) compared to
RVQ-8 (3.28 and 0.935). The RVQ-1 layer pro-
vides the best overall balance between content
preservation and perceptual quality, with WER,
WIL, ViSQOL, and STOI scores of 4.36, 7.06, 3.18,
and 0.935. This demonstrates RVQ-1:8 prioritizes
contextual integrity, while RVQ-8 favors percep-
tual quality. Thus, we select RVQ-1 for LM-guided
distillation due to its balanced performance.

For LM and SM-based distillation, the RVQ-1
and RVQ-1:8 combination achieves the best WER
and WIL scores (4.05 and 6.61), with RVQ-1 and
RVQ-1 as the second-best (4.18 and 6.84). In con-
trast, the RVQ-1 and RVQ-8 combination yields the
highest ViSQOL and STOI scores (3.33 and 0.939),
followed by RVQ-8 and RVQ-1 (3.30 and 0.938).
RVQ-1 captures contextual representation more ef-
fectively due to its simpler quantized vector, while
RVQ-1:8 incorporates more nuanced semantic and
acoustic aspects. Overall, this ablation shows that
selecting RVQ layers for LM and SM-based distilla-

tion greatly affects the balance between contextual
accuracy and semantic-acoustic fidelity, allowing
layer combinations to be tailored to task require-
ments.

D.3 Ablation Study: Impact of Different
Models on Distillation

We experimented with different LM and SM dis-
tillations to analyze performance variations based
on different model selections. In addition to our
selected BERT (Devlin et al., 2019) and HuBERT
(Hsu et al., 2021), we experiment with ELECTRA
(electra-base-discriminator) (Clark et al., 2020) as
the LM and wav2vec 2.0 (wav2vec2-base-960h)
(Baevski et al., 2020) as the SM. Table 5 shows the
full results.

Results and Discussion: In LM-guided distilla-
tion, the ELECTRA model significantly enhances
performance, achieving WER and WIL scores of
4.12 and 6.63, respectively, compared to BERT’s
scores of 4.36 and 7.06. This indicates the architec-
ture of ELECTRA’s effectiveness for the proposed
LM-guided distillation, demonstrating its superior
contextual representation. These results are consis-
tent with ELECTRA’s better performance in gen-
eral natural language processing tasks. However,
we select BERT for its simplicity and established
performance.

In LM and SM-guided distillation, the combi-
nation of BERT and wav2vec 2.0 achieves the
highest overall performance, with scores of WER
4.13, WIL 6.77, ViSQOL 3.15, and STOI 0.942.
However, the combination of BERT and HuBERT
closely follows with second-best scores of WER
4.18, WIL 6.84, and ViSQOL 0.933. These find-
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Table 4: Analysis of different RVQ layers effect on speech reconstruction. LM-guided distillation on RVQ-1 layer
ensures greater content preservation, while SM-guided distillation on RVQ-1:8 layer is more effective at preserving
semantic representation. LM-layer and SM-layer indicate the RVQ layer used for respective distillation. (LM)
indicates LM-guided Distillation. (LM+SM) indicates combined LM and SM-guided Distillation. Bold highlights
the best result and underline the second-best result.

Tokenizer LM-Layer SM-Layer WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (LM) RVQ-1 - 4.36 7.06 3.18 0.935
DM-Codec (LM) RVQ-1:8 - 4.23 6.94 3.12 0.929
DM-Codec (LM) RVQ-8 - 4.44 7.22 3.28 0.935

DM-Codec (LM+SM) RVQ-1 RVQ-1 4.18 6.84 3.13 0.933
DM-Codec (LM+SM) RVQ-1:8 RVQ-1 4.59 7.34 3.21 0.937
DM-Codec (LM+SM) RVQ-8 RVQ-1 4.49 7.24 3.30 0.938
DM-Codec (LM+SM) RVQ-1 RVQ-1:8 4.05 6.61 3.26 0.937
DM-Codec (LM+SM) RVQ-1 RVQ-8 4.39 7.08 3.33 0.939

Table 5: Analysis of representation distillation from different models. BERT can be effectively combined with
HuBERT or wav2vec 2.0, however, ELECTRA in LM-guided distillation outperforms BERT. (LM) indicates
LM-guided Distillation. (LM+SM) indicates combined LM and SM-guided Distillation. Bold highlights the best
result and underline the second-best result.

Tokenizer LM SM WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (LM) BERT - 4.36 7.06 3.18 0.935
DM-Codec (LM) ELECTRA - 4.12 6.63 3.10 0.936

DM-Codec (LM+SM) BERT HuBERT 4.18 6.84 3.13 0.933
DM-Codec (LM+SM) BERT wav2vec 2.0 4.13 6.77 3.15 0.942
DM-Codec (LM+SM) ELECTRA wav2vec 2.0 4.70 7.51 3.14 0.933
DM-Codec (LM+SM) ELECTRA HuBERT 4.67 7.58 2.94 0.932

ings demonstrate that different speech models can
be effectively integrated with the BERT model.

D.4 Ablation Study: Impact of Different
Distillation Layer(s)

We evaluated speech reconstruction using different
distillation layers of the LM and SM, examining
which combination of layers yields the most rel-
evant representations of semantic and contextual
information. For this ablation, we considered the
average of all layer representations, the 9th layer
representations, and the last layer representations.
Table 6 shows the full results.

Results and Discussion: In LM-guided distilla-
tion, the use of the average layer achieves superior
overall performance, with a WER of 4.36, WIL of
7.06, ViSQOL of 3.18, and STOI of 0.935, com-
pared to the variants utilizing the last and 9th layers.
Similarly, in LM and SM-guided distillation, the
average layer yields superior results compared to
the last and 9th layer variants.

The results indicate that averaging all layers
leads to more comprehensive representations of
semantic or contextual information. In the case of

LM, the averaging process provides greater con-
textual representation and synergizes syntactic in-
formation from earlier layers and abstract word
relations from higher layers. In combined LM and
SM-guided distillation, averaging all SM layers
provides a more nuanced understanding of the ear-
lier layer’s phonetic information and the higher
layers’ richer semantic information. Conversely,
relying solely on the last layer or the 9th layer fails
to capture the overall context and semantic infor-
mation, yielding less relevant representation distil-
lation.

D.5 Ablation Study: Impact of Low Bit Rate

We evaluated zero-shot speech reconstruction at
reduced bitrates of 3kbps, 1.5kbps, and 0.75kbps.
DM-Codec and the baseline SpeechTokenizer were
trained on 16kHz sample rates, whereas the En-
Codec baseline was trained on 24kHz sample rates.
To achieve lower bitrates in DM-Codec and Speech-
Tokenizer, we limited RVQ levels: the first 6 RVQ
layers for 3kbps, 3 RVQ layers for 1.5kbps, and 1
RVQ layer for 0.75kbps. For EnCodec, we kept
the first 4 VQ layers for 3kbps and 2 VQ layers
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Table 6: Analysis of different distillation layers representation on speech reconstruction. Average layer provides
more comprehensive representations. (LM) indicates LM-guided Distillation. (LM+SM) indicates combined LM
and SM-guided Distillation. Bold highlights the best result and underline the second-best result.

Tokenizer Distillation Layer(s) WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (LM) Average 4.36 7.06 3.18 0.935
DM-Codec (LM) Last 4.62 7.56 2.95 0.926
DM-Codec (LM) 9th 4.75 7.80 2.88 0.925

DM-Codec (LM+SM) Average 4.18 6.84 3.13 0.933
DM-Codec (LM+SM) Last 4.68 7.55 3.03 0.933
DM-Codec (LM+SM) 9th 4.52 7.43 3.00 0.933

Table 7: Analysis of different bit rates for speech reconstruction. DM-Codec (LM+SM) showcases its robustness at
reduced bitrates, outperforming baselines at 3 kbps and maintaining competitive content preservation scores (WER,
WIL) and superior speech quality (ViSQOL, STOI) at 1.5 kbps. fs represents the audio sample rate, and fr the
codec frame rate. ♡ means the results were reproduced using the official training code. ♢ means the results were
obtained using official model checkpoints. (LM) indicates LM-guided Distillation method. (LM+SM) indicates
combined LM and SM-guided Distillation method.

Model fs fr Bitrate WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (LM+SM) 16 kHz 50 Hz 3 kbps 4.29 7.04 3.070 0.928
DM-Codec (LM) 16 kHz 50 Hz 3 kbps 4.38 7.09 3.042 0.924
SpeechTokenizer♡ 16 kHz 50 Hz 3 kbps 4.70 7.43 2.905 0.911
EnCodec♢ 24 kHz 50 Hz 3 kbps 4.80 7.80 2.550 0.872

DM-Codec (LM) 16 kHz 50 Hz 1.5 kbps 6.14 10.13 2.644 0.880
DM-Codec (LM+SM) 16 kHz 50 Hz 1.5 kbps 6.19 10.16 2.662 0.894
SpeechTokenizer♡ 16 kHz 50 Hz 1.5 kbps 5.61 9.02 2.500 0.846
EnCodec♢ 24 kHz 50 Hz 1.5 kbps 10.53 16.63 2.443 0.809

DM-Codec (LM) 16 kHz 50 Hz 0.75 kbps 7.96 12.65 2.18 0.583
DM-Codec (LM+SM) 16 kHz 50 Hz 0.75 kbps 7.81 12.42 2.20 0.675
SpeechTokenizer♡ 16 kHz 50 Hz 0.75 kbps 7.08 11.67 2.07 0.556

for 1.5kbps, and it does not support a 0.75kbps
bitrate. In this ablation, DM-Codec variants used
the first RVQ layer (RVQ-1) for LM distillation,
while all RVQ layers (RVQ-1:8) were used for SM
distillation. Table 7 presents the full results.

Results and Discussion: At a 3kbps bitrate,
LM-guided DM-Codec (LM) maintains its per-
formance and consistency, surpassing the base-
line with scores of 4.38 WER, 7.09 WIL, 3.042
ViSQOL, and 0.924 STOI. Combined LM and
SM-guided DM-Codec (LM+SM) further improves
these scores to 4.29 WER, 7.04 WIL, 3.070
ViSQOL, and 0.928 STOI, outperforming all base-
lines.

At 1.5kbps and 0.75kbps, DM-Codec (LM) and
DM-Codec (LM+SM) achieve scores comparable
to SpeechTokenizer in WER and WIL but main-
tain superior speaker quality, achieving the best
ViSQOL and STOI scores of 2.662 and 0.894 at
1.5kbps, and 2.20 and 0.675 at 0.75kbps, respec-
tively. We hypothesize that the slight performance

degradation in WER and WIL at lower bitrates
is due to the loss of contextual representation, as
the reduced bandwidth limits the model’s ability
to fully utilize nuanced contextual details incorpo-
rated into DM-Codec through distillation.

D.6 Ablation Study: Impact of Distillation
Axis

We experiment with different axes for feature dis-
tillation. In Eqn. 1 and 2, we calculate the distil-
lation loss by maximizing cosine similarity along
the feature dimension axis (D-axis). To evaluate
the impact of an alternative approach, we conduct
this ablation study by maximizing cosine similar-
ity along the time dimension axis (T-axis). For
this ablation, we modify Eqn. 1 and 2 by comput-
ing cosine similarity across each time step instead
of each feature dimension. Table 8 presents the
complete results. We select D-axis DM-Codec vari-
ants where the first Residual Vector Quantizer layer
(RVQ-1) was used for LM distillation and all RVQ
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Table 8: Analysis of different distillation axes for speech reconstruction. Distillation at the feature dimension is more
robust and enhances reconstruction. D-axis indicates the proposed distillation along the feature dimension. T-axis
indicates distillation along the time axis. (LM) indicates LM-guided Distillation. (LM+SM) indicates combined LM
and SM-guided Distillation. Bold highlights the best result and underline the second-best result.

Model Axis WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (LM) D-axis 4.36 7.06 3.18 0.935
DM-Codec (LM) T-axis 4.76 7.82 2.92 0.925

DM-Codec (LM+SM) D-axis 4.05 6.61 3.26 0.937
DM-Codec (LM+SM) T-axis 4.76 7.76 2.86 0.926

Table 9: Analysis of different distillation targets for speech reconstruction. (LM) indicates LM-guided distillation
with averaged token representations, (CLS) indicates [CLS]-token-based distillation, (Baseline) refers to DM-
Codec without any distillation, and (Word Embedding) indicates static BERT word embeddings. Contextual LM
representations (LM, CLS) consistently outperform both the Baseline and static Word Embeddings. Bold highlights
the best result and underline the second-best result.

Model WER ↓ WIL ↓ ViSQOL ↑ STOI ↑
DM-Codec (Baseline) 4.97 8.02 2.95 0.935
DM-Codec (LM) 4.36 7.06 3.18 0.935
DM-Codec (CLS) 4.47 7.08 3.12 0.926
DM-Codec (Word Embedding) 5.27 8.58 2.89 0.931

layers (RVQ-1:8) for SM distillation and retrain
with the T-axis formulation.

Results and Discussion: In LM-guided distilla-
tion, the D-axis consistently achieves better perfor-
mance across all metrics, with scores of 4.36 WER,
7.06 WIL, 3.18 ViSQOL, and 0.935 STOI, outper-
forming the relatively lower scores of the T-axis.
Similarly, for combined LM and SM-guided dis-
tillation, the D-axis achieves superior results with
4.05 WER, 6.61 WIL, 3.26 ViSQOL, and 0.937
STOI compared to the T-axis. These results demon-
strate that calculating cosine similarity along the
feature dimension axis (D-axis) is empirically more
robust and effective. In contrast, cosine similarity
along the time axis (T-axis) fails to capture contex-
tual and semantic information. The identical WER
of 4.76 for both LM and LM+SM distillation on
the T-axis further highlights its limitations. How-
ever, our D-axis approach effectively incorporates
richer information within each feature dimension,
enhancing the model’s capacity to capture nuanced
patterns. This leads to improved speech reconstruc-
tion, validating our proposed method’s robustness.

D.7 Ablation Study: Impact of Word
Embedding Distillation Targets

We conducted an experiment using static BERT
word embeddings as the distillation target LLM ,
referred to as DM-Codec (Word Embedding). Ta-

ble 9 compares different distillation targets.
Results and Discussion: Both DM-Codec (LM)

and DM-Codec (CLS), which distill contextual
token representations from the LM, clearly out-
perform DM-Codec (Baseline) and DM-Codec
(Word Embedding). In particular, DM-Codec (LM)
achieves the best overall balance, with strong WER
(4.36), WIL (7.06), ViSQOL (3.18), and STOI
(0.935).

By contrast, DM-Codec (Word Embedding),
which relies on static embeddings, performs the
worst across intelligibility metrics (WER 5.27, WIL
8.58) and shows limited improvement in percep-
tual quality (ViSQOL 2.89, STOI 0.931). This
suggests that static word embeddings, lacking con-
textual representation, are insufficient as distilla-
tion targets for high-quality speech reconstruction.
Overall, these results underscore the importance
of contextualized LM representations in guiding
effective distillation.

E DM-Codec Model Components

Encoder Decoder. The encoder-decoder architec-
ture in DM-Codec is based on SEANet (Tagliasac-
chi et al., 2020), leveraging the successful design
employed in recent speech tokenization models
(Zhang et al., 2024a; Défossez et al., 2022; Zeghi-
dour et al., 2021). The architecture is designed to
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efficiently process and reconstruct speech signals
while maintaining high fidelity. The Encoder E
consists of a 1D convolution layer with C channels
and a kernel size of 7, followed by B residual con-
volutional blocks. Each block contains a strided
convolutional downsampling layer with kernel size
K (where K = 2S , and S represents the stride),
paired with a residual unit. The residual unit com-
prises two convolutional layers with a kernel size
of 3 and a skip connection, while the number of
channels is doubled at each downsampling stage.
This is followed by a two-layer BiLSTM and a final
1D convolutional layer with D output channels and
a kernel size of 7. The Decoder D mirrors the en-
coder’s structure but replaces BiLSTM with LSTM,
strided convolutions with transposed convolutions,
and employs reversed strides for up-sampling. The
final audio output is reconstructed from D. For the
experiments, we use the following configuration:
C = 32, B = 4, and S = (2, 4, 5, 8).

Residual Vector Quantizers. The Residual Vec-
tor Quantizer (RVQ) plays a central role in our
tokenization process, quantizing the encoder’s out-
puts. Our implementation is inspired by the train-
ing procedures described in Encodec (Défossez
et al., 2022) and SpeechTokenizer (Zhang et al.,
2024a). The RVQ projects input vectors to the
most similar entry in a codebook, and the residual
is calculated and processed in subsequent quantiza-
tion steps, each utilizing a different codebook. The
codebook entries are updated using an exponential
moving average (EMA) with a decay rate of 0.99
for the matched item, while unmatched entries are
replaced by candidates from the current batch. To
ensure proper gradient flow during training, we em-
ploy a straight-through estimator. A commitment
loss is also computed and added to the total training
loss to promote stability.

Discriminators. We incorporate a trio of dis-
criminators to enhance the quality and realism of
the generated speech: the Multi-Scale Discrimina-
tor (MSD), the Multi-Period Discriminator (MPD),
and the Multi-Scale Short-Time Fourier Transform
(MS-STFT) discriminator. The MS-STFT discrim-
inator follows the implementation outlined in (Dé-
fossez et al., 2022), operating on the real and imag-
inary components of multi-scale complex-valued
STFTs. It begins with a 2D convolutional layer,
followed by 2D convolutions with increasing di-
lation rates in the time dimension (1, 2, and 4)
and a stride of 2 across the frequency axis in each
sub-network. A final 2D convolution with a kernel

size of 3 × 3 and a stride of (1, 1) is applied to
produce the prediction. The MSD and MPD dis-
criminators follow the architectures introduced in
(Kong et al., 2020), with adjustments to the channel
numbers to align the parameter count more closely
with the MS-STFT discriminator. This ensemble
of discriminators works in concert to provide com-
prehensive feedback on various aspects of the gen-
erated speech, contributing to the overall quality
and naturalness of the output.

F Human Evaluation Methodology

To evaluate the quality and effectiveness of our
approach, we conducted human evaluations using
Mean Opinion Score (MOS) and Similarity Mean
Opinion Score (SMOS) metrics, following method-
ologies established in prior works such as Speech-
Tokenizer and Vall-E. The study was conducted un-
der an approved Institutional Review Board (IRB)
protocol to ensure ethical compliance and partici-
pant safety. A total of 50 proficient English speak-
ers, comprising graduate and undergraduate stu-
dents, were selected as evaluators based on their
high language comprehensibility. These partici-
pants volunteered for the evaluation, were briefed
on the study’s purpose, and were provided no infor-
mation that could bias their judgments.

The evaluation process involved each participant
rating batches of fully anonymized and randomized
speech samples via a web-based survey interface,
with clear and standardized guidelines to ensure
consistent and unbiased scoring. Each batch con-
tained 16 samples, including outputs from both our
proposed models and baseline systems. For the
speech reconstruction task, participants rated the
perceptual quality of the speech samples using the
MOS, based on criteria such as naturalness, intel-
ligibility, and clarity, employing a 5-point Likert
scale, where higher scores indicated superior qual-
ity. For the text-to-speech evaluation, participants
provided two distinct ratings: MOS, to measure the
overall naturalness of the generated speech, and
SMOS, to evaluate the similarity of the generated
speech to the original speaker’s voice, both rated on
a 1-to-5 scale with 1-point increments. To enhance
reliability and mitigate individual evaluator bias,
each sample was rated by multiple participants.
Figure 4 shows the interface view and instructions
given to participants.
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G Broader Impact and Potential Risks

The integration of language models in speech pro-
cessing has traditionally focused on model-specific
implementations or specific training objectives. In
this work, we propose a novel approach by leverag-
ing language models during the tokenization phase
through our model, DM-Codec. By incorporat-
ing language-specific representations from the cor-
responding text, DM-Codec enhances the quality
of discrete speech representations. This method
bridges the gap between language and speech mod-
els, offering a more unified approach to multimodal
representation learning. DM-Codec provides a ro-
bust framework for generating high-quality audio
representations, with potential applications in var-
ious domains, including multilingual speech pro-
cessing, low-resource languages, and other audio-
related tasks. Our findings pave the way for more
effective and contextually aware speech process-
ing models, contributing to advancements in the
broader field of speech and language technologies.
Despite its advancements, DM-Codec-TTS poses
risks of misuse, such as voice spoofing or imperson-
ation, due to its ability to synthesize speech while
preserving speaker identity. Our future work will
prioritize robust detection mechanisms and ethical
safeguards to ensure responsible use.

H Reconstructed Speech Comparison

Figure 5 compares the Mel-Spectrograms of the
original speech with reconstructed speech from
DM-Codec, EnCodec, SpeechTokenizer, and FA-
Codec.
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Interface View 1

Interface View 2
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Interface View 3 Interface View 4

Interface View 5

Figure 4: Web-based survey interface and questionnaire used for human evaluation of samples.
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(a) Original Speech 1 (b) Original Speech 2

(c) DM-Codec Speech 1 (d) DM-Codec Speech 2

(e) EnCodec Speech 1 (f) EnCodec Speech 2

(g) SpeechTokenizer Speech 1 (h) SpeechTokenizer Speech 2

(i) FACodec Speech 1 (j) FACodec Speech 2

Figure 5: Reconstructed speech examples with clickable play buttons above each Mel-spectrogram.
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