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Abstract

Instruction-fine-tuned large language models
(LLMs) under 14B parameters continue to un-
derperform on natural language understanding
(NLU) tasks, often trailing smaller models like
BERT-base on benchmarks such as GLUE and
SuperGLUE. Motivated by the success of re-
inforcement learning in reasoning tasks (e.g.,
DeepSeek), we explore Proximal Policy Opti-
mization (PPO) as a framework to improve the
NLU capabilities of LLMs. We frame NLU
as a reinforcement learning environment, treat-
ing token generation as a sequence of actions
and optimizing for reward signals based on
alignment with ground-truth labels. PPO con-
sistently outperforms supervised fine-tuning,
yielding an average improvement of 6.3 points
on GLUE, and surpasses zero-shot and few-
shot prompting by 38.7 and 26.1 points, respec-
tively. Notably, PPO-tuned models outperform
GPT-4o by over 4% on average across senti-
ment and natural language inference tasks, in-
cluding gains of 7.3% on the Mental Health
dataset and 10.9% on SIGA-nli. This work
highlights a promising direction for adapting
LLMs to new tasks by reframing them as rein-
forcement learning problems, enabling learning
through simple end-task rewards rather than ex-
tensive data curation. Our code is available at
https://github.com/coder-qicao/RL4GLUE.

1 Introduction

Large language models (LLMs) (Radford et al.,
2019; Brown, 2020; Touvron et al., 2023b)
have revolutionized natural language processing
(NLP) with their powerful text generation capabil-
ities (Radford, 2018). Pretrained on large-scale
unlabeled corpora, LLMs can generate coherent
and contextually relevant content. Using prompt-
based strategies like zero-shot and few-shot prompt-
ing (Brown, 2020), these models can address a
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wide range of downstream tasks without task-
specific fine-tuning. However, when applied to
instruction-fine-tuned LLMs under 14B parame-
ters 1—such as LLAMA2-7B-chat-hf—these meth-
ods often underperform on natural language under-
standing (NLU) tasks compared to encoder-only
models like BERT (Devlin, 2018), which consis-
tently excel on benchmarks such as GLUE (Wang
et al., 2019) and SuperGLUE (Wang et al., 2020).
For instance, our evaluation of LLAMA2-7B-
chat-hf shows that zero-shot prompting with task-
specific prompts yields an average performance
of 46.1 across all GLUE datasets, while few-shot
prompting improves performance to 58.7—both
significantly trailing BERT-base’s 79.6, as shown
in Table 1.

To enhance NLU capabilities of LLMs, we in-
vestigate reinforcement learning (RL)-based fine-
tuning approaches. Motivated by recent work such
as DeepSeek (Liu et al., 2024), which demonstrates
the utility of reward-driven optimization for im-
proving reasoning abilities, we explore the use of
Proximal Policy Optimization (PPO) (Schulman
et al., 2017a) to align model outputs with task-
specific objectives.

While standard fine-tuning (SFT) is commonly
used to adapt LLMs to downstream tasks, we find it
insufficient for NLU—often underperforming even
smaller encoder-only models like BERT-base. In
contrast, we use PPO to enhance LLM performance
by framing NLU as a reinforcement learning prob-
lem, as shown in Fig 1. The sequence of input to-
kens up to timestep t−1 represents the state st, and
the token generated at timestep t is treated as the ac-
tion at. After generating the full response, a heuris-
tic extracts the predicted answer, which is com-
pared to the ground-truth label to assign a scalar re-
ward R. PPO then updates the model to maximize

1The 14B cutoff reflects our computational constraints;
LLAMA-2-13B-chat-hf is the largest model we were able to
evaluate.
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LLAMA2-7B
Premise:

The man broke his toe.

Question:

What was the cause?

Options:

(A) He dropped a hammer on 

his foot.  

(B) He got a new pair of shoes.

Instruction:

Choose the most plausible 

option (A or B) based on the 

premise.

Input query

LLAMA2-7B
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PPO-based optimization
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LLAMA2-7B

Improved 
performance

Reward Generation

Frozen components 

PPO fine-tuned model

Trainable components 
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Figure 1: Despite extensive pre-training and instruction tuning, zero-shot and few-shot prompting of models like
LLAMA2-7B-chat-hf and LLAMA2-13B-chat-hf continues to underperform on NLU tasks, often falling short of
smaller encoder-based models like BERT. To address this performance gap, we recast the task of NLU adaptation as
an RL problem, fine-tuning the model using PPO. The input consists of a prompt and a query. In the standard setting
(top path), the base model, with zero-shot/few-shot prompting, struggles to generate correct answers. Our approach
selectively updates lightweight LoRA layers, using PPO to optimize a reward signal based on task correctness. This
optimization encourages performance gains while constraining deviation from the base policy. We find that PPO
fine-tuning substantially outperforms standard SFT.

this reward, enabling direct optimization for task-
specific objectives. Empirically, PPO-based fine-
tuning of LLAMA2-7B-chat-hf improves GLUE
performance by 6.3 points over SFT, surpasses zero
and few-shot prompting by 38.7 and 26.1 points,
respectively, and even outperforms GPT-4o by over
4% on sentiment and inference tasks—achieving
gains of 7.3% on the Mental Health dataset and
10.8% on SIGA-nli. These results demonstrate the
effectiveness of reinforcement learning in aligning
LLMs under 14B parameters with NLU objectives.

Pre-trained LLMs possess broad linguistic
knowledge, spanning syntactic and semantic struc-
tures, acquired from large-scale text corpora. We
show that reinforcement learning, specifically PPO,
can refine this general understanding to better align
with task-specific NLU objectives. Similar patterns
are observed in DeepSeek, where chain-of-thought
pre-training enhances reasoning capabilities, and
subsequent RL-based fine-tuning further improves
performance. Building on this insight, our findings
suggest a promising direction: adapting LLMs to
new tasks by formulating them as reinforcement
learning problems. When models are sufficiently
pre-trained, task alignment may be achieved with-
out additional labeled data—requiring only a well-

defined reward function over the outputs. PPO can
then optimize the model toward high-reward behav-
iors. This approach offers a scalable, label-efficient
alternative to conventional supervised fine-tuning
through reward-driven adaptation.

2 Method

To enhance the performance of LLMs on NLU
tasks, we adopt two distinct fine-tuning methods.
The first approach involves supervised fine-tuning,
where the input consists of a concatenation of the
task-specific prompt, query and the ground truth
answer, with the model optimized using the next-
token prediction objective. The second approach
utilizes PPO, framing response generation as a re-
inforcement learning problem. In this setup, the
sequence of input tokens until timestep t− 1 rep-
resents the state st, and each token generated at
timestep t is treated as an action at. After generat-
ing the entire sequence, a heuristic-based process
extracts the final answer from this generated se-
quence, and is compared to the ground truth. PPO
is then employed to optimize the model by max-
imizing the cumulative reward derived from this
comparison. To reduce computational complex-
ity, we fine-tune LoRA layers instead of the full
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model. We refer the readers to Appendix A and B
for preliminaries on PPO.

2.1 Task-Specific Prompt Design

We detail the construction of task-specific prompts
used to query the LLM for NLU tasks. Each
prompt begins with a clear task description, outlin-
ing the necessary background information to guide
the model in solving the task. Following this, we
specify strict requirements for the output format,
ensuring that the response is encapsulated within a
predefined structure, specifically between ‘<Judge-
ment></Judgement>’ tags. This structure ensures
consistency in the model’s responses, facilitating
easier extraction and evaluation of the results.

For example, in the CoLA task, which assesses
grammatical acceptability, the prompt is structured
as follows:

System_prompt:
You are an assistant to analyze the
linguistic properties
of a sentence. The task is to decide
the linguistic acceptability
of a sentence. If the sentence is
linguistically correct then it
is acceptable , else it is not.

The result you give should have the
following form:
<Judgement > {Insert only "Yes" or "
No" here} </Judgement >

Prompt:
Now judge if the sentence "{ sentence
}" is linguistically acceptable.

Assistant:
<Judgement >

The prompt starts with background information
about CoLA, specifies restrictions on the output
(such as labeling a sentence as acceptable or unac-
ceptable), and concludes with a special start token,
<Judgement>, to initiate the model’s response gen-
eration.

2.2 Supervised Fine-tuning of LLM on NLU
Tasks

Given an NLU training dataset, D(tr) =
{(xi, yi)}Ni=1, where xi represents the input text
and yi the ground truth label, we fine-tune the
LLM on a sequence consisting of the task-specific
prompt p (described in section 2.1) concatenated
with the input xi and the ground truth answer yi.
The model is trained using the next-token predic-
tion objective, where it predicts the next token in
the sequence by conditioning on all preceding to-
kens. This objective trains the model to learn to

predict the correct answer for the NLU task condi-
tioned on the task-specific prompt and input.

2.3 Proximal Policy Optimization for LLM
Fine-tuning on NLU Tasks

We utilize PPO to fine-tune the LLM on NLU
tasks, following the training protocol outlined in
Appendix B. The reward function is specifically
designed for each NLU task. In this work, we use a
simple reward function, where a reward is assigned
at the end of the generation based on alignment
with the ground truth labels. We use regular expres-
sion matching to extract answers from the LLMs
outputs by first locating the text within the ‘<Judge-
ment></Judgement>’ tags. Depending on the task,
we then search for task-specific keywords (such as
“yes”, “no”, “acceptable”, or “not acceptable”) to
identify the answer. These extracted answers are
compared with the ground truth to determine the
appropriate rewards.

For instance, CoLA, a classification task, an-
swers are categorized as acceptable, unaccept-
able, or exceptional (incorrect format). For STS-
B, a regression task, the extracted answer is a
floating-point number between 0 and 5. Reward
per generation for classification tasks is given by
R = 1(ŷ == yi), where ŷ is model’s prediction
and y is ground truth. For STS-B, a regression
task, the reward for each generation is defined as
R = 2.5−|ŷi−yi|, where ŷi is the predicted score
and yi is the ground truth. Since both scores lie
in [0, 5], their absolute difference ranges from 0
to 5. Subtracting this from 2.5 centers the reward
around zero and bounds it within [−2.5, 2.5], with
the maximum reward achieved when ŷi = yi. In-
correctly formatted responses are penalized with
a value of -1 for classification tasks and -2.5 for
regression tasks, representing the largest penalties
applied in each case.

2.4 Low-Rank Adaptation

To mitigate the computational cost of full-model
fine-tuning, we employ LoRA (Hu et al., 2021)
during both the supervised fine-tuning and PPO
stages. Instead of updating the entire model, we
restrict the updates to LoRA layers, which signifi-
cantly reduces the number of trainable parameters
by decomposing the weight matrices into low-rank
matrices.
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3 Experiments

3.1 Experimental Setup
We trained and evaluated our models on the
GLUE (Wang et al., 2019) and SuperGLUE (Wang
et al., 2020) benchmarks. All experiments were
conducted using instruction-tuned LLAMA2-7B
models (Touvron et al., 2023a)2. We perform both
single task and multi-task fine-tuning: 1) Single-
task fine-tuning: For each subtask within GLUE
and SuperGLUE, a separate task-specific LoRA
module was trained independently. 2) Multi-task
fine-tuning: In the multi-task setting, datasets from
different subtasks within each benchmark were
combined, and a single LoRA module was trained
to handle all tasks simultaneously. Please refer to
Appendix C for detailed hyperparameter settings.

3.2 Baselines
We evaluated the performance of our approach
against three baselines:

• Encoder-only models: We compare our re-
sults with encoder-only transformer models,
specifically BERT-base (110M parameters)
and BERT-large (340M parameters) (Devlin
et al., 2019).

• Zero-shot prompting: The model is pro-
vided with task-specific prompts, as outlined
in section 2.1, along with the input query.
The model is required to generate predictions
solely based on these prompts and the input
query, without any additional task-specific
fine-tuning.

• Few-shot prompting: In this setting, the
model is provided with both the task-specific
prompt and one to five labeled examples
(which ever gave the best performance) from
the training dataset as demonstrations. These
examples are provided as reference to guide
the model in generating more accurate re-
sponses for the input query. Similarly, no
task-specific fine-tuning is performed.

After generating a response, we applied regular
expression matching to extract the relevant answer
from the model’s output. We directly matched task-
specific keywords (like “yes” or “no”) in the gen-
erated text to identify the answer. This extracted

2https://huggingface.co/daryl149/
llama-2-7b-chat-hf

answer was then compared to the ground truth label
to evaluate the model’s performance.

3.3 Results on GLUE Benchmark
In this section, we present our experiments on
the GLUE benchmark, comparing the results with
encoder-only models such as BERT (Devlin et al.,
2019). We use the LLAMA2-7B-chat-hf model
as the LLM for our evaluations. The baselines in-
clude zero-shot prompting and few-shot prompting.
For fine-tuning methods, we compare both super-
vised fine-tuning and PPO across single-task and
multi-task settings. The results are summarized in
Table 1. From the results, we make the following
observations.

First, we observed that zero-shot prompting of
the LLAMA2-7B-chat-hf model with task-specific
prompts consistently underperformed compared to
the smaller BERT-base model. LLAMA2-7B-chat-
hf struggled notably on simpler tasks like SST-2,
which only required classifying sentiment as posi-
tive or negative. This underscores the model’s weak
language understanding capabilities, with zero-shot
prompting proving inadequate compared to BERT-
base. Second, few-shot prompting showed im-
provements over the zero-shot baseline, achiev-
ing an average score of 58.7 compared to 46.1,
but it still lagged significantly behind the BERT-
base model’s score of 79.6. Third, supervised fine-
tuning (SFT) using LoRA modules for each task
further boosted performance, bringing it closer to
BERT’s level with an average score of 78.5, though
still slightly behind BERT-base’s 79.6. Fourth,
fine-tuning with PPO delivered the best results,
achieving an average score of 84.6, surpassing even
BERT-large’s 82.1. Moreover, zero-shot and few-
shot prompting of LLAMA2-7B-chat-hf displayed
a noticeable output imbalance, with a tendency to
favor certain classes or values. In contrast, models
fine-tuned with PPO showed no significant bias.
Fifth, the total computational time for PPO is ap-
proximately 1.32 times that of SFT, indicating only
a marginal increase in computational costs.

Additionally, we compared the results with
multi-task training, where a single LoRA module
was trained across all datasets using both SFT and
PPO to reduce time complexity. We found that
SFT on individual tasks outperformed its multi-task
fine-tuning counterpart. However, while PPO on
multi-task training did not perform as well as PPO
on single-task training, it still outperformed BERT-
large in average performance, achieving a score
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Models MNLI-m MNLI-mm QQP QNLI SST-2 CoLA

BERT-base 84.6 83.4 71.2 90.5 93.5 52.1
BERT-large 86.7 85.9 72.1 92.7 94.9 60.5
LLAMA2-7B-chat-hf
Zero-shot prompting 38.3 39.7 31.3 58.5 75.7 18.6
Few-shot prompting 62.4 61.7 30.9 60.7 84.2 29.0
PPO-ST 88.8 88.2 70.5 93.2 96.4 59.9
SFT-ST 87.0 86.5 63.8 93.6 73.8 50.7
PPO-MT 88.7 88.3 67.3 90.2 94.6 47.7
SFT-MT 84.9 84.5 62.9 86.0 72.0 41.4

Models STS-B MRPC RTE WNLI AX Average

BERT-base 85.8 88.9 66.4 / / 79.6
BERT-large 86.5 89.3 70.1 / / 82.1
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 66.3 59.3 44.5 9.2 46.1
Few-shot prompting 45.5 80.8 72.9 51.4 9.2 58.7
PPO-ST 92.6 89.4 84.3 74.7 52.7 84.8
SFT-ST 84.7 85.8 80.4 63.7 45.1 78.5
PPO-MT 94.7 86.7 86.9 66.4 43.4 82.9
SFT-MT 85.5 82.6 86.2 76.0 41.2 76.22

Table 1: GLUE test results are scored by the evaluation server (GLUE benchmark). Average column indicates
the averaged performance across all the datasets excluding the WNLI and AX datasets. F1 scores are reported
for QQP and MRPC, Spearman correlations for STS-B, Matthew’s correlations for CoLA, and accuracy scores
for the other tasks. Zero-shot prompting refers to prompting with task-specific prompts and an input query, while
Few-shot prompting refers to prompting with task-specific prompts, 1-5 demonstrations (chosen based on the best
performance), and an input query. PPO stands for proximal policy optimization, and SFT refers to Supervised
Fine-tuning. “ST” represents Single-task, while “MT” represents Multi-task. The bolded results indicate the best
results, and the underlined results indicate the second-best results.

of 82.9 compared to BERT-large’s 82.1. These re-
sults demonstrate that while single-task fine-tuning
yields the best performance, multi-task training
with PPO can still achieve competitive results, even
surpassing state-of-the-art models like BERT-large.

To assess the consistency of our findings
across different models, we evaluated Qwen2.5-
7B-Instruct and MPT-7B-chat alongside LLAMA2-
7B-chat-hf on the STS-B dataset from the GLUE
benchmark and the COPA dataset from the Super-
GLUE benchmark. The results are summarized
in Table 2. The results confirm that PPO-based
fine-tuning consistently outperforms the BERT-
large model, as well as the zero-shot and few-shot
prompting baselines for all LLMs, highlighting its
effectiveness across different LLMs.

3.4 Comparison of RL Algorithms: PPO vs.
GRPO

Our objective is to improve the natural language un-
derstanding capabilities of the base (policy) model
through RL fine-tuning. In this context, we com-
pare two RL approaches: PPO and Group Rela-

tive Policy Optimization (GRPO) (Shao et al.,
2024). PPO requires updating a separate critic
model to compute value functions, which intro-
duces (modest) additional memory constraints. On
the other hand, GRPO was designed to bypass the
critic model entirely. Instead, GRPO samples mul-
tiple trajectories per prompt and computes each
trajectory’s advantage by comparing its reward to
the batch’s average (and standard deviation). This
method not only simplifies the architecture but also
reduces memory usage.

For our experiments, we utilized the TRL library
(von Werra et al., 2020) on a single Nvidia A100
GPU, with a batch size of 16 and gradient check-
pointing enabled. While SFT involves a simple
forward pass, loss computation, and backward pass
per step, both PPO and GRPO add extra steps such
as LLM sampling, reward calculation, and advan-
tage estimation.

As detailed in Table 3, both PPO and GRPO
deliver notable performance improvements over
SFT. Notably, PPO only incurs about a 4% increase
in per-step runtime compared to SFT. However,
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Models STS-B COPA

BERT-large 86.5 70.6
LLAMA2-7B-chat-hf
Zero-shot prompting 27.5 57.0
Few-shot prompting 45.5 73.4
PPO-ST 92.6 88.6
Qwen2.5-7B-Instruct
Zero-shot prompting 83.7 96.6
Few-shot prompting 87.0 96.0
PPO-ST 92.2 97.0
MPT-7B-chat
Zero-shot prompting 19.7 57.4
Few-shot prompting 21.7 57.2
PPO-ST 89.3 84.0

Table 2: Performance comparison of LLAMA2-7B-chat-
hf, Qwen2.5-7B-Instruct (Hui et al., 2024), and MPT-
7B-chat (MosaicML, 2023) models on the GLUE STS-
B and SuperGLUE COPA tasks under zero-shot prompt-
ing, few-shot prompting, and PPO based fine-tuning.
Results are sourced from the official GLUE benchmark
and SuperGLUE benchmark evaluation servers. For
STS-B, we report Spearman correlation, and for COPA,
accuracy is used as the evaluation metric.

GRPO’s need to generate multiple responses per
sample results in a higher runtime, despite its mem-
ory efficiency. Overall, our analysis highlights the
trade-offs between these RL algorithms: PPO of-
fers efficient runtime with the cost of additional
overhead from the critic model, while GRPO re-
duces memory usage at the expense of increased
sampling time.

3.5 Evaluating Zero-Shot Generalization of
PPO Fine-Tuned Models and Comparison
with GPT-4o

We evaluate the zero-shot generalization capabili-
ties of LLAMA2 7B and 13B models fine-tuned us-
ing PPO on a single dataset and subsequently tested
across multiple other datasets (Table 4). For senti-
ment analysis tasks, the models were fine-tuned on
SST-2 and evaluated on diverse datasets, including
Financial PhraseBank (Malo et al., 2014), Labelled
Financial News (Sood, 2024), Mental Health (Gaes,
2023), and Emotion (Saravia et al., 2018). Simi-
larly, for natural language inference (NLI) tasks,
the models were fine-tuned on MNLI and evalu-
ated on Babi-nli (Weston et al., 2015) and SIGA-
nli (Nizamani et al., 2024).

Our results demonstrate that PPO fine-tuning
improves the zero-shot performance of LLAMA2-
chat-hf models compared to GPT-4o, a strong base-

line. For sentiment analysis, LLAMA2-13B-chat-
hf achieves 97.7% accuracy on Financial Phrase-
Bank, slightly outperforming GPT-4o (97.5%). On
Labelled Financial News, LLAMA2-13B-chat-hf
records 72.3%, exceeding GPT-4o by 4.5%. Sim-
ilarly, on the Mental Health dataset, LLAMA2-
7B-chat-hf achieves 67.2%, marking a notable
gain of 7.3% over GPT-4o. For the Emotion
dataset, LLAMA2-7B-chat-hf achieves 78.0%,
with a smaller gain of 0.4%. For NLI tasks,
LLAMA2-13B-chat-hf achieves 69.4% accuracy
on Babi-nli, surpassing GPT-4o by 6.2%. Addi-
tionally, LLAMA2-13B-chat-hf achieves 46.3%
accuracy on SIGA-nli, outperforming GPT-4o by
more than 10%. On average, both 7B and 13B ver-
sions of PPO fine-tuned LLAMA2-chat-hf models
demonstrate a performance gain of over 4% com-
pared to GPT-4o, which is significantly larger in
size and highly optimized.

To ensure robust comparisons, we quantify un-
certainty in our evaluations by generating 100 pre-
dictions for each example in the dataset. The
evaluation metric is then computed over the en-
tire dataset for each set, yielding a distribution of
values. The 95% confidence interval is defined by
the 2.5th and 97.5th percentiles of this distribution.
Results are presented in Table 8.

These results demonstrate the effectiveness of
simple PPO fine-tuning on a single task-specific
dataset in significantly enhancing model perfor-
mance on similar tasks. LLAMA2-chat-hf models
fine-tuned with PPO consistently outperform GPT-
4o across diverse downstream tasks, reinforcing
PPO fine-tuning as a robust approach for improv-
ing the NLU capabilities of LLMs.

We measured inference time on the Financial
PhraseBank dataset with a batch size of 4. The
BERT-base model, with 110M parameters, required
0.035s per step, while the LLAMA2-7B model,
with 7B parameters and multi-token generation,
took 0.997s per step. This difference is expected
given the larger model size and the need for multi-
ple forward passes in LLAMA2-7B. While LLM in-
ference is slower, our focus is on improving natural
language understanding with PPO, which achieves
strong performance gains on both in-distribution
and out-of-distribution NLU and NLI tasks.

3.6 Evaluation of Instruction-Following in
Out-of-Distribution Tasks

To assess the instruction-following capabilities of
LLMs in tasks differing from their fine-tuned for-
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Algorithm SST-2 MRPC RTE CoLA QNLI Avg. Per-Step Runtime (s)

SFT 73.8 85.8 80.4 50.7 93.6 76.9 4.124
PPO 96.4 89.4 84.3 59.9 93.2 84.6 4.299
GRPO 96.7 91.2 88.5 55.2 93.1 84.9 5.155

Table 3: Comparison of SFT, PPO, and GRPO fine-tuning methods on the LLAMA2-7B-chat-hf model across five
GLUE benchmark tasks (SST-2, MRPC, RTE, CoLA, QNLI), along with per-step runtime.

Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank 97.2 97.7 97.5
Labelled Financial News 70.2 72.3 67.8
Mental Health 67.2 66.6 59.9
Emotion 78.0 76.4 77.6

Natural Language Inference
Babi-nli 68.3 69.4 63.2
SIGA-nli 46.2 46.3 35.4
Average 71.2 (4.3↑) 71.5 (4.6↑) 66.9

Table 4: Accuracy of different models across downstream tasks. For sentiment analysis tasks, models are fine-tuned
on SST-2 and zero-shot evaluated on Financial PhraseBank (Malo et al., 2014), Labelled Financial News (Sood,
2024), Mental Health (Gaes, 2023), and Emotion (Saravia et al., 2018). Similarly, for natural language inference
tasks, models are fine-tuned on MNLI and zero-shot evaluated on Babi-nli (Weston et al., 2015) and SIGA-
nli (Nizamani et al., 2024). PPO-ST represents fine-tuning using Proximal Policy Optimization. Gains over GPT-4o
model in the average row is indicated with green arrows.

mat, we conduct evaluations using the LLAMA2-
7B-chat-hf model fine-tuned on the SST-2 dataset.
Specifically, we evaluate the performance of this
model on the Amazon review task, which requires
generating an integer rating between 1 and 5 based
on the provided textual review. Although SST-2
and Amazon reviews both involve sentiment anal-
ysis, the two tasks differ distinctly in their input-
output formatting, providing a clear measure of
instruction-following adaptability.

We compare zero-shot prompting of three ver-
sions of the LLAMA2-7B-chat-hf model: the orig-
inal non-fine-tuned model, a version fine-tuned us-
ing SFT, and another fine-tuned with PPO. The
95% confidence intervals (CI) reported here are
defined by the 2.5th and 97.5th percentiles of the
bootstrap distribution. Using a consistent prompt
template across models, we find that the PPO-fine-
tuned model achieves an accuracy of 39.35% (95%
CI: 38.39, 40.29), significantly outperforming the
original model, which achieves 27% accuracy (95%
CI: 19.00, 36.03). Conversely, the SFT-fine-tuned
model demonstrates extremely poor performance,
achieving less than 1% accuracy.

Qualitative analysis of sampled outputs reveals
that the PPO-fine-tuned model reliably adheres to

Method Accuracy 95% CI

Non-fine-tuned 27.00 (19.00, 36.03)
SFT 0.00961 (0.00, 0.03)
PPO 39.35 (38.39, 40.29)

Table 5: Performance of LLAMA2-7B-chat-hf on the
Amazon Review dataset. Best results are highlighted in
bold.

the instruction format and generates detailed rea-
soning to support its predictions. In contrast, the
SFT-fine-tuned model often fails to adapt its re-
sponses to the required format, demonstrating lim-
ited generalization capabilities. PPO fine-tuning
maintains proximity to the original model distribu-
tion through its clipping mechanism and the KL-
divergence minimization term in the objective func-
tion (part of the TRL library), thereby preserving
and enhancing the model’s intrinsic instruction-
following capabilities. In contrast, SFT fine-tuning
appears to narrow the model’s learned distribution
to task-specific training data, negatively impacting
its original instruction-following proficiency.

3.7 Impact of Fine-Tuning on Language
Modeling Ability
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We experiment with SFT and PPO to improve
NLU capabilities of LLMs and observe improved
performance using PPO. However, it is crucial
to ensure that fine-tuning methods do not signifi-
cantly degrade the models’ general language gen-
eration abilities. To assess this, we directly evalu-
ate the PPL (jel, 1977; Chelba and Jelinek, 2000)
of LLAMA2-7B-chat-hf models fine-tuned on the
SST-2 dataset using the WikiText-2 test set (Mer-
ity et al., 2016), which follows a natural human-
written text distribution. We compare these fine-
tuned models against the original, non-fine-tuned
baseline model, with the expectation that the PPL
of the fine-tuned models should closely match
the baseline. Our results reveal that the origi-
nal LLAMA2-7B-chat-hf achieves a perplexity of
6.939. The PPO-fine-tuned model closely main-
tains this baseline performance with a perplexity
of 6.966, indicating minimal impact on its general
language modeling capabilities.

In contrast, the SFT-fine-tuned model displays a
higher perplexity of 7.384, suggesting a significant
reduction in generation capabilities due to conver-
gence toward task-specific training distributions.
We conjecture that PPO’s clipping mechanism and
the KL-divergence minimization term in the ob-
jective function (part of the TRL library), effec-
tively constrains policy updates, preventing large
deviations from the reference model and thereby
preserving the original language modeling capabil-
ities of LLMs. These findings underscore PPO’s
effectiveness in maintaining the general language
abilities of LLMs during fine-tuning.

Method perplexity

Non-fine-tuned 6.939
SFT 7.384
PPO 6.966

Table 6: Perplexity of LLAMA2-7B-chat-hf on the
WikiText-2 test set. Lower perplexity indicates better
language modeling ability.

3.8 Integrating a Reward Model

While our primary reward function is based on
matching generated outputs to true labels, we rec-
ognize that more sophisticated reward designs may
be necessary for complex NLU tasks. To address
this, we investigate the effect of integrating a re-
ward model into our PPO training, with the aim of
enhancing not only classification performance on

SST-2 but also the quality of generated analyses.
Reward Modeling Setup. For the first 5,000

training samples of the SST-2 dataset, LLAMA2-
7B-chat-hf generates four responses per data point.
Each response includes a sentiment judgment (Pos-
itive/Negative) and a supporting analysis. To ro-
bustly rank these responses, we use GPT-4o as an
evaluator. GPT-4o ranks the responses based on:
(i) the correctness of the sentiment judgment (i.e.,
matching the ground truth), (ii) the consistency be-
tween the judgment and its accompanying analysis,
and (iii) the overall factual correctness and helpful-
ness of the analysis. To ensure clear differentiation,
we include two reference responses—one with only
the correct answer and one with only the incorrect
answer—and define the ranking order as: correct
answer with analysis > only correct answer > incor-
rect answer with analysis > only incorrect answer.

Training the Reward Model. A reward model
is then trained on this ranked dataset using a BERT-
based architecture (bert-base-cased). For each in-
put x, we consider pairs of responses (yw, yl),
where yw denotes a response ranked higher by our
evaluator (GPT-4o) due to its correct sentiment and
coherent analysis, and yl denotes a lower-ranked
response. The model learns to assign higher scores
to better responses via a pairwise ranking loss:

L(θ) = −E(x,yw,yl)∼D[
log σ

(
rθ(x, yw)− rθ(x, yl)

)]
,

(1)

where rθ(x, y) is the score assigned to response
y given x, and σ is the sigmoid function convert-
ing the score difference into a probability. This
loss encourages the reward model to output higher
scores for responses with superior judgments and
analyses.

Incorporating the Reward Model into PPO
Training. During PPO training on SST-2, LLM
is tasked with generating both a sentiment judg-
ment and an analysis. The trained reward model
provides the reward signal by scoring these out-
puts. As shown in Table 7a, while the PPO model
trained with reward signals from the reward model
(PPO-RM) produces analyses of higher quality, it
suffers from a significant reduction in classifica-
tion performance, dropping from 96.4% to 89.7%.
We believe this discrepancy might be due to the
limited sample size used for reward model training
and potential reward hacking (Amodei et al., 2016)
during optimization. However, we will explore this
further in our future works.
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Method Accuracy (%)

PPO 96.4
PPO-RM 89.7

(a) SST-2 performance on GLUE.

Method GPT Eval. Score

PPO 3.479
PPO-RM 4.104

(b) Quality of generated analyses.

Table 7: Comparison of reward function designs for LLAMA2-7B-chat-hf. The model trained with a rule based
reward (PPO) achieves a high SST-2 classification accuracy of 96.4%, while incorporating a sophisticated reward
model (PPO-RM) significantly reduces accuracy (89.7%) but yields substantially improved analysis quality, with a
GPT evaluation score of 4.104 compared to 3.479 for the simple reward. Best results are highlighted in bold.

Evaluation of Generated Analyses. To further
assess the impact of our reward design, we evalu-
ated the quality of generated analyses. We sampled
100 data points from three models: the original
LLAMA2-7B-chat-hf, the PPO model trained us-
ing only correct-answer rewards (PPO), and the
PPO model trained with the reward model (PPO-
RM). GPT-4o then scored each analysis on a scale
from 1 to 5 based on answer correctness and logi-
cal coherence. As indicated in Table 7b, the PPO
model using reward model signals achieved the
highest average score, suggesting that a more com-
plex reward function can enhance the quality of
generated outputs.

In summary, while the integration of a reward
model in PPO training significantly reduces classifi-
cation performance compared to using only correct-
answer rewards, it considerably improves the GPT
evaluation scores of the analyses produced by the
LLM.

4 Conclusion

Prompting-based approaches, including zero-shot
and few-shot prompting, are commonly used to
adapt LLMs to downstream tasks. However, our
experiments show that when applied to LLAMA2-
7B-chat-hf, these methods underperform on NLU
benchmarks such as GLUE and SuperGLUE (ta-
ble 10), often trailing smaller encoder-only models
like BERT-base. To address this, we investigate two
fine-tuning strategies that update only LoRA layers
for computational efficiency: SFT and PPO. While
SFT yields modest improvements, PPO provides
substantial gains by framing NLU tasks as rein-
forcement learning problems. PPO-tuned models
not only outperform strong baselines like BERT-
large but also generalize well across model fami-
lies and tasks. Notably, PPO-trained LLAMA2-7B-
chat-hf outperforms GPT-4o by 10.8% on SIGA-nli
and 7.3% on the Mental Health dataset, demonstrat-
ing strong zero-shot generalization from single-task

fine-tuning. More broadly, we highlight a promis-
ing direction: adapting LLMs to new tasks with-
out labeled data by using reward-driven learning.
With a well-defined reward function, PPO can steer
models toward high-reward behaviors—offering a
scalable, label-efficient alternative to SFT.

Limitations

This work takes an initial step toward framing NLU
as a reinforcement learning problem for LLMs un-
der 14B parameters. While our long-term goal is to
reduce reliance on curated datasets by leveraging
richer, task-specific reward models, we currently
adopt a simple binary reward signal based on exact
label matching. This design enables a controlled
evaluation of PPO as an effective adaptation strat-
egy, showing consistent gains over prompting and
supervised fine-tuning. Although we present a pre-
liminary exploration of model-driven reward func-
tions in Section 3.8, further research is needed to
develop robust and generalizable reward signals
that can support more complex or weakly super-
vised tasks without requiring extensive manual an-
notation. Overall, our findings suggest that casting
nuanced tasks as reinforcement learning problems,
through the design of appropriate environments
and reward functions, offers a scalable and flexi-
ble alternative to standard fine-tuning, particularly
when the model is already well-initialized through
pretraining.
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A Related Works

Policy-based reinforcement learning (RL) directly
optimizes an agent’s policy by learning its parame-
ters to maximize long-term rewards. Unlike value-
based methods like Q-learning (Watkins and Dayan,
1992) and DQN (Hester et al., 2018), which in-
directly derive policies through value functions,
policy-based methods represent the policy as a
parameterized function. This function, pθ(a|s),
defines the probability of taking action a in state
s, where θ represents the policy parameters. The
goal is to learn optimal parameters θ∗ that max-
imize the expected cumulative reward, typically
through policy gradient methods (Sutton et al.,
1999). These methods excel in high-dimensional
or continuous action spaces, where value-based
methods can struggle (Deisenroth et al., 2013).

Policy-based methods in reinforcement learning
(RL) have evolved significantly over time, starting
with REINFORCE (Williams, 1992), which opti-
mizes policies using the policy gradient theorem
but suffers from high variance due to its reliance on
Monte Carlo estimates of the reward. Monte Carlo
estimates refer to calculating the total reward based
on full episodes of interaction, meaning updates are
made only after an entire sequence of actions and
rewards is observed, which can lead to noisy and
slow learning. To address this, actor-critic methods
like A2C and A3C (Mnih, 2016) introduced a critic
that estimates the value of the current state, allow-
ing for smoother updates by reducing the variabil-
ity in policy updates and speeding up convergence.
However, these methods still faced instability when
large updates caused the new policy to diverge too
far from the previous one. Trust Region Policy Op-
timization (TRPO) (Schulman, 2015) tackled this
by limiting the size of policy updates using a KL
divergence constraint, but its implementation was
complex and computationally expensive. Proximal
policy optimization (PPO) (Schulman et al., 2017a)
simplified this process by introducing a clipped ob-
jective function that keeps policy updates within
a stable range while being easier to implement.
PPO’s balance between simplicity and stability has
made it a widely adopted method in modern RL
research.

In NLP, PPO has been effectively used in rein-
forcement learning from human feedback (RLHF)
to align LLM outputs with human preferences, as
seen in works like InstructGPT (Ouyang et al.,
2022) and Constitutional AI (Bai et al., 2022).

These approaches treat the LLM as a policy, where
model responses are actions, and human feedback
serves as rewards. PPO updates the policy based
on the reward model trained on human prefer-
ences. Additionally, policy-based RL methods have
been applied to enhance LLM reasoning capabili-
ties (Ziegler et al., 2019; Havrilla et al., 2024; Hu
and Shu, 2023). In this work, we apply PPO to
fine-tune LLMs on NLU tasks.

B Preliminaries on Application of PPO
for Fine-tuning LLMs

Proximal policy optimization (PPO) (Schulman
et al., 2017b) is an online reinforcement learning
algorithm. In this section, we describe the process
to fine-tune an LLM using PPO. During training,
at each timestep t, the LLM (policy) generates a
token prediction at (action) based on the state st,
which consists of the sequence of generated tokens
up to timestep t − 1. The final generated output
is evaluated in the context of the downstream task,
where the environment provides feedback in the
form of rewards. The model updates its parameters
based on these rewards to improve its ability to
generate accurate predictions over time.

Actor Model PPO uses gradient ascent to opti-
mize the following objective, aiming to maximize
cumulative rewards:

J(θ) = E(st,at)∼πθ′

[
min

( pθ(at | st)
pθ′(at | st)

Ât,

clip
( pθ(at|st)
pθ′ (at|st) , 1− ϵ, 1 + ϵ

)
Ât

)]

(2)

Here, pθ(at|st) is the probability of taking action at
in state st under the current policy, while pθ′(at|st)
represents this probability under the old policy.
In PPO, the training data—specifically, the state-
action pairs (st, at)—are sampled using the old pol-
icy πθ′ (the LLM before it is updated), rather than
the new policy currently being optimized. Thus,
the ratio pθ(at|st)

pθ′ (at|st) accounts for how much the new
policy has changed relative to the old policy and ad-
justs the likelihood of an action accordingly. This
ratio is multiplied by Ât, the Generalized Advan-
tage Estimation (GAE) (Schulman et al., 2018),
which measures how much better or worse an ac-
tion at is compared to the expected outcome under
the current policy.

Ât = Rt + γVt+1 − Vt + γλÂt+1,
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Here, Rt + γVt+1 − Vt represents the temporal
difference (TD) error (Sutton, 1988). In this ex-
pression, Rt is the immediate reward received after
taking action at, Vt is the expected reward before
the action, and γVt+1 is the discounted estimate
of the future reward after the action. This term re-
flects how the action at performed when compared
to the expected return at state st. The second term,
γλÂt+1, is the smoothing factor in GAE, where λ
is the trade-off parameter. This recursive estimate
allows the model to incorporate future informa-
tion, making the advantage estimate more stable.
Smaller values of λ emphasize on immediate re-
wards, while larger values capture longer-term de-
pendencies. The discount factor γ controls how
much emphasis is placed on future rewards com-
pared to immediate ones, with higher values of γ
giving more weight to future rewards. Vt, which
represents the expected future reward from state st,
is estimated by a critic model.

The clipping function clip(ratio, 1−ϵ, 1+ϵ) lim-
its the change between the current and old policy,
ensuring stable updates by preventing large devi-
ations. This helps avoid too-large policy changes
that could destabilize training. In summary, PPO
optimizes the policy using gradient ascent to max-
imize cumulative rewards while ensuring stable
updates through clipping, with the GAE providing
a more stable and accurate advantage estimate by
incorporating future information recursively.

Critic Model The critic model consists of a value
head, which is a multi-layer perceptron attached
to the final layer of the LLM. It takes the LLMs
representation of the generated token sequence up
to timestep t (i.e., the state st) and predicts a scalar
value representing the value function Vt for that
state. The critic model is updated using the square
of TD error, which is computed as:

δt = (Rt + γVt+1 − Vt)
2, (3)

where δt represents the L-2 loss between the actual
reward Rt, combined with the discounted estimate
of future rewards γVt+1, and the current predicted
value Vt for state st. By minimizing this TD error
via gradient descent, the critic model updates its
value function predictions, improving alignment
with the actual rewards and future outcomes. In
summary, LLM uses the PPO objective to update
its policy based on feedback from the critic model,
while the critic model is updated to better predict
the value function for future states.

We implement PPO using TRL library (Face)
that includes a KL divergence term in the PPO
objective 2.

C Hyperparameter Settings

For PPO-based fine-tuning, grid search is per-
formed to select the batch size in 4, 8, 12, and 16
for each task. A batch size of 24 was used across
all tasks during supervised fine-tuning (SFT). The
PPO epoch is set to 4, meaning that each sampled
batch is used for updating the model four times.
The initial learning rate for all tasks was set to
9 × 10−6. We utilized the Adafactor optimizer
for PPO training and AdamW for SFT. A cosine
annealing learning rate scheduler with a warmup
phase was employed, where the learning rate was
gradually increased during the first 10% of training
steps and then reduced to one-tenth of the initial
value by the end of training. We use a rank r = 16
for the LoRA layers. We trained both PPO and
SFT models until convergence on the validation
set. The best hyperparameters were selected based
on performance on the validation set. The final
reported results for the GLUE and SuperGLUE are
from their corresponding evaluation server. For
evaluation, multinomial sampling with a tempera-
ture of 1 was used to generate a single response per
data sample. The model generated responses with
lengths between 12 and 32 tokens, with the gener-
ation process concluding using a special identifier
“</Judgement>”.

For few-shot evaluations, we conducted a sweep
over 1–5 shots on the validation set and reported
results using the best-performing configuration for
each experiment. We ensured that the total in-
put length, including few-shot demonstrations, re-
mained within the model’s context window (e.g.,
in MultiRC, where input lengths can be long). For
our experiments, we utilized the TRL library (von
Werra et al., 2020) on a single Nvidia A100 GPU.

D Reward Curve for PPO Fine-Tuning

We present the reward curve from fine-tuning
LLAMA2-7B-chat-hf using PPO in a multitask set-
ting on the GLUE dataset. Figure 2 illustrates the
reward values over training iterations, offering in-
sights into the training dynamics of the model. The
curve serves as a key performance metric, tracking
the model’s learning progress across multiple tasks.
The consistent upward trend demonstrates that
PPO fine-tuning effectively improves LLAMA2-
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Tasks LLAMA2-7B PPO-ST LLAMA2-13B PPO-ST GPT-4o

Sentiment Analysis
Financial PhraseBank (96.2, 98.1) (96.9, 98.5) (96.6, 98.4)
Labelled Financial News (66.1, 74.6) (69.0, 76.6) (63.2, 72.2)
Mental Health (66.6, 67.7) (66.0, 67.1) (59.3, 60.5)
Emotion (77.4, 78.6) (75.8, 77.0) (77.0, 78.2)

Natural Language Inference
Babi-nli (64.3, 71.5) (65.1, 73.0) (58.8, 67.6)
SIGA-nli (39.0, 53.9) (40.6, 53.7) (28.5, 42.2)

Table 8: To quantify uncertainty in our evaluations, we generate 100 predictions for each example in the dataset.
The evaluation metric is then computed for each set over the entire dataset, forming a distribution of values. The
95% confidence interval is defined by the 2.5th and 97.5th percentiles of this distribution. For sentiment analysis,
models fine-tuned on SST-2 are evaluated in a zero-shot setting on Financial PhraseBank, Labelled Financial News,
Mental Health, and Emotion datasets. For natural language inference, models fine-tuned on MNLI are zero-shot
evaluated on Babi-NLI and SIGA-NLI.

Figure 2: Reward curve for multitask PPO fine-tuning of LLAMA2-7B-chat-hf on the GLUE dataset. The plot
illustrates the relationship between training iterations (x-axis) and reward values (y-axis), demonstrating the
effectiveness of the PPO optimization approach in improving model performance over time.

7B-chat-hf’s ability to generate task-relevant out-
puts.

E Confidence Intervals on Validation Set
of GLUE Benchmark

Our GLUE results are obtained from the official
online evaluation servers, which impose a submis-
sion limit and keep test-set labels hidden, so ap-
plying a bootstrapping procedure directly is not
feasible. We compute 95% confidence intervals
on the validation sets of the GLUE benchmark
(available offline) using the following procedure
(used in the paper). For each example in a given
dataset, we generate 100 independent predictions.
We then compute the evaluation metric over the
entire dataset for each set of predictions, yielding a
distribution of metric values. The 2.5th and 97.5th
percentiles of this distribution define the bounds of

our 95% confidence interval. The resulting inter-
vals are reported in the table 9.

F Results on SuperGLUE Benchmark

We fine-tuned the LLAMA2-7B-chat-hf model us-
ing PPO on the SuperGLUE dataset and compared
its performance against several baselines, including
BERT-large, BERT-large++, and zero-shot and few-
shot prompting of LLAMA2-7B-chat-hf. The term
“BERT++” refers to a BERT model fine-tuned using
the supplementary training on intermediate labeled-
data tasks (STILTs) approach (Phang et al., 2018),
where the model is first fine-tuned on related trans-
fer tasks before being fine-tuned on SuperGLUE
tasks. For example, MNLI from the GLUE bench-
mark (Wang et al., 2019) is used as an intermediate
task for CB, RTE, and BoolQ (Wang et al., 2020).
In contrast, our experiments with LLM did not use
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Dataset PPO (Eval Metric) PPO (95% CI) SFT (Eval Metric) SFT (95% CI)

CoLA 64.54 (59.24, 70.08) 60.10 (54.79, 65.13)
MRPC 88.41 (86.92, 91.00) 85.28 (84.24, 87.19)
STS-B 88.57 (87.07, 89.98) 85.68 (83.85, 86.72)
QQP 83.34 (82.83, 83.73) 79.76 (79.22, 80.17)
QNLI 93.17 (92.50, 93.88) 93.67 (92.90, 94.35)
MNLI-matched 88.63 (88.05, 89.30) 87.02 (86.32, 87.64)
MNLI-unmatched 88.95 (88.28, 89.53) 87.27 (86.54, 87.89)
RTE 84.90 (80.26, 89.64) 81.95 (77.56, 86.95)
SST-2 96.10 (94.56, 97.54) 96.44 (94.95, 97.37)
WNLI 74.65 (63.30, 85.87) 66.20 (49.30, 71.83)

Table 9: Validation set results on GLUE benchmark. Metrics: CoLA (Matthews corr.), MRPC & QQP (F1), STS-B
(Spearman corr.), all others (accuracy). 95% confidence intervals are shown in parentheses.

Models BoolQ CB COPA MultiRC ReCoRD RTE

BERT-large 77.4 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6
BERT-large++ 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0
LLAMA2-7B-chat-hf
Zero-shot prompting 75.8 26.4/43.6 57.0 51.9/20.3 27.0/26.2 59.2
Few-shot prompting 80.2 49.8/66.0 73.4 46.6/15.4 36.3/35.3 72.9
PPO-ST 85.9 74.7/88.0 88.6 82.5/50.0 70.6/69.9 84.3

Models WiC WSC AXb AXg Average

BERT-large 69.5 64.3 23.0 97.8/51.7 69.0
BERT-large++ 69.5 64.3 38.0 99.4/51.4 71.5
LLAMA2-7B-chat-hf
Zero-shot prompting 54.4 52.1 9.1 64.0/55.1 49.5
Few-shot prompting 54.4 62.3 9.1 64.0/55.1 54.9
PPO-ST 72.1 78.1 52.7 91.0/79.8 78.3

Table 10: SuperGLUE test results are scored by the evaluation server (SuperGLUE benchmark). The experimental
data for BERT-large and BERT-large++ are taken from the original SuperGLUE paper (Wang et al., 2020). The
metrics used in the experiments are as follows: CB: F1 / Acc; MultiRC: F1 / Exact Match; ReCoRD: F1 / Exact
Match; AXb: MCC; AXg: Gender parity score / Acc. For the remaining tasks not mentioned, accuracy (Acc) is
reported. Average column corresponds to the averaged performance across all the datasets. For tasks with multiple
evaluation metrics, we first compute the average of those metrics to obtain a single task score, which is then used in
the overall average calculation. The bolded results indicate the best results, and the underlined results indicate the
second-best results.

this method. Our models were only fine-tuned on
the datasets in the SuperGLUE benchmark.

As shown in Table 10, the PPO-tuned LLAMA2-
7B-chat-hf achieved the highest average perfor-
mance, surpassing all baselines. PPO demonstrated
particularly strong improvements on reasoning-
intensive tasks like COPA and MultiRC, where
it significantly outperformed both prompting meth-
ods and encoder-only models. These results high-
light the effectiveness of PPO in improving the
model’s capabilities, particularly for tasks requir-
ing reasoning and contextual understanding.

It is worth noting that on MultiRC, few-shot
prompting performs slightly worse than zero-shot

prompting. This may be because MultiRC involves
long input contexts, and incorporating examples in
a few-shot prompt can cause the total input length
to approach or exceed the LLMs maximum context
window.

G Evaluation on Reading Comprehension
Tasks

We evaluate LLAMA2-7B-chat-hf on the SQuAD
reading comprehension task, where the objective is
to select a passage from a given context that best
answers a question. Two fine-tuning strategies are
compared: SFT, which directly uses the ground-
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truth answer as the training label, and PPO, which
leverages reward functions based on Exact Match
(EM) and F1 Score. EM metric is computed by
comparing a normalized prediction against the nor-
malized ground truth (with normalization involving
lowercasing and punctuation removal); a perfect
match yields an EM score of 1, otherwise 0. F1
score measures word-level overlap, balancing how
many predicted words are correct (precision) and
how many ground-truth words are included (recall).

Models were fine-tuned for one epoch on the
SQuAD training set and evaluated on the develop-
ment set. In our evaluation, zero-shot prompting
yields an EM of 7.66 and an F1 score of 32.27. SFT
significantly improves these metrics (EM: 59.17,
F1: 76.48), while PPO further enhances perfor-
mance, achieving an EM of 65.74 and an F1 score
of 81.82—corresponding to improvements of 6.57
and 5.34 points over SFT, respectively.

These results indicate that optimizing with re-
ward functions based on EM and F1 via PPO leads
to further improvements in reading comprehension
performance, thereby validating our approach rela-
tive to both zero-shot prompting and standard SFT.

Method EM F1

Non-fine-tuned 7.66 32.27
SFT 59.17 76.48
PPO 65.74 81.82

Table 11: Performance of LLAMA2-7B-chat-hf on the
SQuAD dataset. PPO uses Exact Match and F1 as re-
ward signals. Best results are highlighted in bold.

H Comparison of LLaMA2-7B-base and
LLaMA2-7B-chat-hf on GLUE Tasks

We fine-tuned LLaMA2-7B-base with PPO and
compared it to PPO-tuned LLaMA2-7B-chat-hf on
GLUE tasks. The instruction-tuned chat model,
with enhanced prompt-following capabilities, out-
performs the base model on most tasks, averaging
85.13 vs. 82.51. This highlights the benefit of
starting from an instruction-tuned checkpoint for
task-specific RL.

Dataset LLaMA2-7B-
chat-hf

LLaMA2-7B-
base

CoLA 64.54 57.29
MRPC 88.41 80.35
STS-B 88.57 86.81
QQP 83.34 84.39
QNLI 93.17 92.95
MNLI-matched 88.63 87.15
MNLI-unmatched 88.95 88.22
RTE 84.90 83.75
SST-2 96.10 96.56
WNLI 74.65 67.61

Average 85.13 82.51

Table 12: Performance comparison of PPO fine-tuning
on LLaMA2-7B-chat-hf and LLaMA2-7B-base across
GLUE tasks. Best results for each dataset are high-
lighted in bold.
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