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Abstract

Negations are key to determining sentence
meaning, making them essential for logical rea-
soning. Despite their importance, negations
pose a substantial challenge for large language
models (LLMs) and remain underexplored.

We constructed and published two new tex-
tual entailment datasets NoFEVER-ML and
NoSNLI-ML in four languages (English,
Czech, German, and Ukrainian) with paired
examples differing in negation. It allows in-
vestigation of the root causes of the negation
problem and its exemplification: how popular
LLM model properties and language impact
their inability to handle negation correctly.

Contrary to previous work, we show that in-
creasing the model size may improve the mod-
els’ ability to handle negations. Furthermore,
we find that both the models’ reasoning accu-
racy and robustness to negation are language-
dependent and that the length and explicit-
ness of the premise have an impact on robust-
ness. We observe higher accuracy in languages
with relatively fixed word order like English,
compared to those with greater flexibility like
Czech and German. Our entailment datasets
pave the way to further research for explanation
and exemplification of the negation problem,
minimization of LLM hallucinations, and im-
provement of LLM reasoning in multilingual
settings.

1 Introduction

Understanding negation is a cornerstone of senti-
ment analysis (Pang et al., 2002), logical reason-
ing and nuanced communication. Still, it often
remains a ‘pink elephant in the room’ for Large
Language Models (LLMs). Despite their impres-
sive advancements, effectively understanding and
processing negation poses a fundamental, and often
underestimated, challenge to their reliability and
logical reasoning capabilities. Processing negation
is critical for reliable performance, and leads to

PREMISE:
"Quay premiered at the Film
Forum theatre in New York City

on August 19."
HYPOTHESIS WITHOUT NEGATION:

"Quay premiered in LA." X
HYPOTHESIS WITH NEGATION:
"Quay didn't premiere in LA."

Figure 1: We extend existing entailment datasets
FEVER and SNLI with negated hypotheses in four lan-
guages (ENG, UKR, CZE, GER) and measure how nega-
tions degrade the accuracy of model reasoning.

hallucinations as Varshney et al. (2025) showed
on four tasks with negation: ‘false premise com-
pletion’, ‘constrained fact generation’, ‘multiple
choice question answering’, and ‘fact generation’.
Vision-language models do not understand nega-
tion either (Alhamoud et al., 2025): when asked to
provide a picture with no elephant in the room, they
put an elephant there anyway. It appears that nega-
tion tokens (e.g., “not”) have a limited effect on
the representations learned distributionally (Singh
et al., 2024).

This difficulty, sometimes termed negation
blindness or NO syndrome, is well-documented.
Studies show LLMs may struggle to distinguish
between facts and their negations, misunderstand
the semantic impact of negative particles, and fail
to generalize negation handling robustly, even with
instruction tuning.

Prior Work on Negation in LLMs

The challenge of negation for LLMs has been ap-
proached from several angles, as in the parable
about the elephant met by blind monks (Ireland,
1997). We categorize prior work into the following
areas:

1. Foundational Issues & Early Observations
Early research highlighted fundamental difficulties
for language models in capturing logical operations
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such as negation within continuous vector space
representations (Hermann et al., 2013). Subsequent
work observed that LLMs can be equally prone to
generating factual statements and their incorrect
negations (Kassner and Schiitze, 2020), and spe-
cific assessments were made on models like BERT
regarding their sensitivity to the meaning conveyed
by negation (Ettinger, 2020).

2. Datasets & Benchmarks for Negation Sev-
eral benchmarks have been developed to probe
negation understanding. For instance, the NeQA
dataset was introduced to test question answer-
ing with negation, where models did not ex-
hibit straightforward positive scaling (Zhang et al.,
2023). Another large-scale benchmark was cre-
ated to challenge LLMs with a wide array of nega-
tive sentences, finding that while fine-tuning helps,
generalization in handling negation remains elu-
sive (Garcia-Ferrero et al., 2023). The NaN-NLI
test suite specifically focuses on sub-clausal nega-
tion (Truong et al., 2023). Mondorf and Plank
(2024) introduced a benchmark for suppositional
reasoning that convincingly shows that “proficient
models struggle with inferring the logical implica-
tions of potentially false statements”. Srikanth and
Rudinger (2025); Srikanth et al. (2024) measure
the inferential consistency of a model, the degree to
which a model makes consistently correct or incor-
rect predictions about the same fact under different
contexts.

3. Analysis of LLLM Failures & Characteristics
of Negation Handling Researchers have inves-
tigated whether the semantic constraints of func-
tion words like negation are adequately learned and
how context impacts their embeddings (Kalouli
et al., 2022). It has been shown that LLMs tend
to underestimate the significant impact of nega-
tion on sentence meaning (Anschiitz et al., 2023).
A broad analysis across various LLMs, including
instruction-tuned models, confirmed their inability
to capture the lexical semantics of negation and
to reason effectively under negation, with model
size not initially appearing as a clear mitigating
factor (Truong et al., 2023) (this paper re-evaluates
the model size aspect). Furthermore, negation to-
kens like “not” appear to have a limited effect on
the distributional representations learned by mod-
els (Singh et al., 2024). The phenomenon often
leads to hallucinations in tasks involving negation,
such as false premise completion and constrained
fact generation (Varshney et al., 2025). Other stud-

ies have also investigated the limits of LLMs on
general compositional tasks, which implicitly in-
clude negation (Dziri et al., 2023).

4. Negation in Multimodal & Vision-Language
Models (VLMs) The challenge of negation ex-
tends beyond text-only models. On NegBench, a
comprehensive benchmark for VLMs covering re-
trieval and multiple-choice questions with negated
captions across images, videos, and medical data,
Alhamoud et al. (2025) find that models often col-
lapse affirmative and negated statements into sim-
ilar embeddings, which is a powerful technical
insight. Efforts are being made to address this,
such as proposing negation context-aware rein-
forcement learning feedback loops to ensure gen-
erated text and images correctly reflect negated
queries (Nadeem et al., 2024). Zhang et al. (2025)
find that even state-of-the-art VLMs struggle sig-
nificantly with negation. They also uncover an
interesting “U-shaped” scaling trend, where perfor-
mance first drops with model size before improving
again, which adds nuance to the scaling debate.

5. Mitigation Strategies & Improving Nega-
tion Handling Various strategies have been pro-
posed to improve negation handling. These include
augmenting training data with more negative ex-
amples (Helwe et al., 2022), paraphrasing input
text into affirmative terms to remove explicit nega-
tion while preserving meaning (Rezaei and Blanco,
2024), and exploring fine-tuning processes, includ-
ing instruction prompt adjustments, to explicitly
account for negation (Anschiitz et al., 2023; Truong
et al., 2023). Rezaei and Blanco (2025) proposes
a self-supervised method to improve negation han-
dling by pre-training models on a novel task called
Next Sentence Polarity Prediction (NSPP). They
show that further pre-training on this task improves
performance on downstream negation benchmarks.
Castricato et al. (2024) study controllable genera-
tion of LLM through the lens of the “Pink elephant
paradox” (Spiers, 2002; Wegner, 1994). They think
that form of Reinforcement Learning from Al Feed-
back (RLAIF, that they term Direct Principle Feed-
back) assesses the problem.

6. Cross-lingual & Multilingual Negation Stud-
ies The study of negation awareness has also been
extended to multilingual contexts. For example,
Hartmann et al. (2021) developed a multilingual
benchmark to probe negation-awareness across
languages including English, Bulgarian, German,
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French, and Chinese, setting a precedent for cross-
lingual investigations in this domain. Vrabcova
and Sojka (2024) developed CsFEVER dataset and
confirmed that negation causes problems in Czech
as well.

In this paper, we focus on the effects of moderat-
ing variables on robustness to negation, posed by
the following research questions:

RQ1: Can the scale of model size improve models’
ability to handle negations?
In one of the findings of Truong et al. (2023),
itis posited that the LLMs are unable to reason
under negation, with the increased size of the
LLM not being a mitigating factor. We review
this claim by evaluating models from the same
LLM family with varying model sizes.

RQ2: Is the models’ capability to handle negations
language-dependent?
As most studies concerning negation in LLMs
focus on English datasets, we extend our
scope to include multiple languages with dif-
fering levels of word-order flexibility.

The primary contributions of this work are:

* The development and release of two novel,
multilingual textual entailment datasets specif-
ically designed to evaluate negation. These
datasets span English, Czech, German, and
Ukrainian and feature paired examples differ-
ing only in negation.

* Empirical evidence demonstrates that larger
model sizes can indeed improve the handling
of negations, offering a counterpoint to some
earlier research. An analysis reveals that while
linguistic features of a language play a role,
the specificity and length of the premise con-
text have a more pronounced impact on an
LLM’s robustness to negation than the lan-
guage itself.

The paper is structured as follows. Section 2
presents the preparation of our two new NLI
datasets. Section 3 describes the methodology and
the LLMs we use in our experiments. Results are
discussed in Section 4. We conclude and outline
future directions in Section 5.

2 Datasets

We evaluate the accuracy of the models in our ex-
periments using two datasets that have been origi-
nally formatted for the Natural Language Inference

(NLI) task, i.e., containing premise-hypothesis
pairs and the label denoting their logical relation-
ship (entailment, neutral, contradiction).

SNLI (Bowman et al., 2015) is a popular NLI
dataset focusing on the evaluation of general
and common sense knowledge of the LLMs.
The premises are captions of images captur-
ing everyday situations and, as such, are quite
short, consisting of one to two sentences. The
hypotheses have been generated manually by
human annotators.

FEVER-NLI (Thorne et al., 2018) is a modifica-
tion of the FEVER dataset, which originally
focused on the task of fact extraction and ver-
ification. The dataset consists primarily of
factual statements retrieved from Wikipedia.

Both of the original datasets are available under
permissive Creative Commons licenses, The SNLI
dataset is licensed under CC BY-SA 4.0 and the
FEVER NLI dataset is licensed under CC BY-SA
3.0.

As we aim to study the effects of negation on
the accuracy of the models, we modify the format
of these datasets for the TE task and extend them
to contain the negation of the original hypothesis.
The original datasets contain a low percentage of
hypotheses with common negation markers, such
as no, n’t, not, nobody, neither, or nothing, and
differ in the verbosity of premises, as seen in the
Table 1.

In Table 2, we include average lengths of
premises and hypotheses of the newly prepared
datasets for comparison, NoFEVER-ML and
NoSNLI-ML.

SNLI FEVER-NLI
Rows in the dataset 20,000 10,000
Rows w/ negation 868 189
% of rows w/ negation  4.34 1.89
Premise word count 13.94 51.96
Hypothesis word count  7.50 8.80

Table 1: Comparison of the original English SNLI and
FEVER-NLI datasets

2.1 Preparation of new datasets in English

In order to prepare new datasets containing nega-
tion, we first sanitize the datasets and then extend
the datasets with hypotheses including negation.

25539



CES
FEVER
MANUAL

CES
FEVER SNLI

CES ENG ENG DEU DEU UKR UKR

FEVER SNLI FEVER SNLI FEVER SNLI

Premise (chars)

268.36 265.06 51.71 266.31 58.02 306.60 70.33 278.54 58.55

Hypothesis without negation (chars)  42.87 41.69 24.06 42.12 28.71 49.63 34.55 43.38 27.71
Hypothesis with negation (chars)  44.89 43.58 26.42 51.13 37.26 53.69 38.87 45.11 29.70
Premise (words)  49.36 48.85 10.74 54.12 14.05 55.43 13.58 47.90 10.55

Hypothesis without negation (words) 7.86 7.66 520 872 7.13 897 7.01 735 499
Hypothesis with negation (words) 7.86 7.69 532 1095 923 982 793 834 599

Table 2: Comparison of average lengths across evaluated datasets, NoOFEVER-ML and NoSNLI-ML.

Contrary to Gururangan et al. (2018), we do not
distinguish between contradiction and logical nega-
tion of tokens expressing negation. We then man-
ually replace incorrectly generated sentences and
create 2 datasets.

NoFEVER-ENG dataset: This dataset contains
2,600 premise-hypothesis-negated_hypothesis
triplets, with 1,513 premises entailing the
hypothesis without negation, and 1,087
premises entailing the hypothesis with
negation.

NoSNLI-ENG dataset: This dataset contains
6,261 triplets, with 3,245 premises entailing
the hypothesis without negation, and 3,016
premises entailing the hypothesis with
negation.

Sanitization and Filtration Firstly, we sanitize
the datasets by removing all incomplete or invalid
rows, i.e., removing rows with empty premises,
empty hypotheses, or invalid labels. Secondly, we
remove rows that have the neutral entailment label,
as the effect of negation on their entailment value
is not uniform.

Negation We employ the negate Python mod-
ule for the first phase of our negation process.
This module is a rule-based negation tool for
the English language, utilizing the spaCy model
en_core_web_md for POS tagging and dependency
parsing in order to correctly locate the verb in the
sentence. The verb is then negated by the inclusion
of an auxiliary verb and a negation marker, with
our preference in the module set to the contraction
n’t. The tool is able to negate in both directions,
meaning that it can remove negation from the verb
as well.

Rows with hypotheses that do not contain verbs
are discarded during the generation process.

Manual verification As the tool we used for the
hypothesis generation is rule-based, it comes with
certain limitations and cases that are not covered
by the rules and have to be fixed manually. For
the second phase of our negation process, we have
performed a full manual check to ensure the cor-
rectness of the newly created hypotheses.

Some, any, nor yet are properly supported.
Example 1:
Input: There is someone jumping.
Negate output: There isn’t someone jumping.
Manual change: There isn’t anyone jumping.
Example 2: -
Input: Keegan-Michael Key has yet to play anyone.
Negate output: Keegan-Michael Key doesn’t have
yet to play anyone.
Manual change: Keegan-Michale Key has played
someone.

The rules of the module as aimed at the Not-
negation, most likely due to its higher frequency
in the English language, in comparison to the
No-negation.

Example 3:

Input: There is no one running.

Negate output: There isn’t no one running.
Manual change: There is someone running.

The typos in the original datasets have been fixed
only in cases where the typo directly impacted the
negation of the verb.

2.2 Translation of new datasets into Czech,
German, and Ukrainian

To explore the impact of negation on the accuracy
of the LL.Ms across languages as started by (Hart-
mann et al., 2021) for English, Bulgarian, Ger-
man, French and Chinese, we translate our English
(ENG) datasets into Czech (CES), German (DEU),
and Ukrainian (UKR). We have chosen these lan-
guages due to their differing features, such as mor-
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phology, orthography, alphabet, and projectivity,
as specified in Table 3. Additionally, we highlight
Slavic-language negation phenomenon, negative
concord, in Czech and Ukrainian, where the nega-
tion of multiple words within the sentence is inter-
preted as a single semantic negation. While similar
constructions can appear in English, it is generally
classified as gramatically incorrect and is not a part
of our English datasets. This phenomenon may
challenge the LL.Ms, which could misinterpret the
multiple negated words as separate negations.

Translator Selection There are many machine
translation tools to choose from. To choose be-
tween Google Translate and DeepL., we have trans-
lated 100 rows from the modified English FEVER-
NLI dataset into Czech, comparing the quality of
translation between the translations and to a preex-
isting translation of the FEVER-NLI dataset that
has been manually verified by a human annota-
tor. From these 100 rows, DeepL provided higher
quality for 44 rows, Google Translate for 30, with
26 rows having equal translation quality between
them.

We carry out the Statistical Sign Test with the
ties equally split and with the alpha level o = 0.05.
The null hypothesis is that both translators are of
equal quality. Our result value is p-value= 0.2 and
thus we cannot reject our null hypothesis.

As the difference between the translations is not
statistically significant in the 100 examples, we
have chosen to use DeepL to translate the datasets
due to the higher percentage of winning transla-
tions.

Translation validation To validate the transla-
tions, we manually reviewed a random sample of
600 rows from each translated dataset. Our review
focused on preserving the logical relationship and
the correct application of negation. Across this
substantial sample, we found no systematic errors,
confirming the high quality of the machine transla-
tion for this task.

Dataset Availability Our datasets are publicly
available in a Zenodo repository (Vrabcovi et al.,
2025a).

3 Methodology

To study the effect of negation on the reasoning reli-
ability of large language models, we evaluate them
on textual entailment (Putra et al., 2024). In this
task, the model receives two claims, a premise and

a hypothesis, and decides whether the hypothesis
follows from the premise.

In our experiments, we inspect whether the pres-
ence of lexical negation (e.g. “not”) in the hy-
pothesis causes degradation in the accuracy of the
language model reasoning. For this purpose, we
prepare a set of paired evaluation sentences that
differ only in a negation of the primary verb. We
call the variants hypotheses without negation and
hypotheses with negation based on whether they
contain a negation. Necessarily, if one follows
from the premise, the other contradicts it, and vice
versa. If the models’ reasoning is robust to nega-
tions, its accuracy should be the same between the
two groups. We deliberately chose such a sim-
ple task in order to minimize confounding factors
and to demonstrate that the difficulty with negation
arises even in the most basic form of the task.

The evaluated models are LLama 3 (Llama
Team, 2024b) with 3B, 8B, and 70B parame-
ters (Llama Team, 2024a), Qwen 2.5 (Yang et al.,
2024) with 1.5B, 7B, and 72B parameters (Qwen
Team, 2024), and Mistral Nemo 12B, Small 22B,
and Large 123B (Mistral Al, 2024).

All of the evaluated models are publicly
available state-of-the-art models based on the
transformer architecture (Vaswani et al., 2017),
have open weights, a multi-lingual pre-training,
and are fine-tuned to follow user instructions. In
the evaluation, we prompt the model to judge if a
hypothesis follows from a premise or not. We let
the model finish a response “The answer is:” with
either True or False using a greedy decoding. To
ensure the response follows the predefined struc-
ture, we employ Outlines (Willard and Louf, 2023)
and LMFE (Gat, 2024). More details of the prompt
format can be found in Appendix B.

Our implementation for running the experiments
is publicly available as a GitHub repository (Vrab-
cova et al., 2025b).

4 Results

We summarize our results in this section, including
the results of the statistical tests to support these
claims. We find that accuracy and negation sensi-
tivity improve with increasing model size and the
information specificity of dataset premises, while
variations in languages are not statistically signifi-
cant.

Unless otherwise stated, for the statistical tests,
we are using an alpha level (significance threshold)
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ENG CES

DEU UKR

Language Family
Script Latin Latin
Linguistic Typology Analytic Fusional
Word Order Flexibility Low High

West Germanic West Slavic  West Germanic

East Slavic
Latin Cyrillic
Fusional w/ Agglutinative Features Fusional
Moderate High

Table 3: Comparison of linguistic features between languages English (ENG), Czech (CES), German (DEU), and

Ukrainian (UKR).

a = 0.05. More details of the specific values used
during computation can be found in Appendix C.

Model size has a positive correlation with mod-
els’ ability to handle negation. Figure 2 shows
the accuracy change of different models for the
hypotheses with and without negation. We found
that all evaluated models perform better than a ran-
dom guess and that the larger models narrow the
gap between the accuracies, with two outliers on
the SNLI dataset: a slight increase on the middle-
sized Llama model (8B) and a marked drop on the
middle-sized Mistral model (22B).

Using the results shown in Figure 4, we compute
the correlation of the model size and the relative ac-
curacy change for each evaluated dataset, as well as
the overall correlation. Using the Shapiro-Wilk test,
we find that the majority of datasets do not have a
normal distribution over the different model sizes.
Thus, we compute correlation using the Spearman
correlation coefficient, as the Pearson correlation
coefficient presumes a normal distribution of val-
ues.

The results indicate a strong positive correla-
tion between model size and the relative accu-
racy change on the FEVER dataset and a weak-to-
moderate positive correlation on the SNLI dataset.
For an averaged relative accuracy change for all
languages per model, the results indicate a strong
positive correlation with the Spearman correlation
coefficient of 0.867, supporting out RQ1.

We posit that the differences in correlation are
due to different philosophies behind the datasets.
The FEVER dataset was originally based on the
fact verification dataset and consists of factually
specific premises that are sufficient for the predic-
tion of the textual entailment. The SNLI dataset,
on the other hand, relies more heavily on implicit
semantical patterns that the models learn during
training, introducing an uncertainty we cannot eas-
ily predict.

Our findings are in contrast to the results
of (Truong et al., 2023, Section 3, Finding 1),
where it is posited that pre-trained language mod-
els perform comparably or worse than a random
baseline, and model scaling has almost no effect.
The difference in our findings can be caused by a
particular choice of the evaluated models and their
level of fine-tuning, or the increase in the qual-
ity of the models themselves since the prior study.
Differences in methodology may also contribute,
as our benchmark specifically focuses on simple
examples of lexical negation. Another plausible
explanation might be that the measured accuracy
strongly benefits from fine-tuning of prompts.

Larger LMs are more sensitive to negation for
TE task. Table 4 shows the negation sensitivity
of each model across individual datasets. Our nega-
tion sensitivity metric represents the percentage
of datasets in which the model assigned opposite
entailment scores to pairs of hypotheses with and
without negation. The best results were achieved
only by the biggest models, supporting our RQ1.

Similarly to the relative accuracy change, we
compute the correlation between model size and
the model’s sensitivity to negation. As per the com-
puted p-values for the Shapiro-Wilk test, we can
see that the majority of our negation sensitivity
metric across datasets does not have a normal dis-
tribution either. Therefore, we are again using the
Spearman correlation.

The results indicate a very strong positive corre-
lation of negation sensitivity with the model size
on the FEVER datasets, with a rather weak correla-
tion on the SNLI datasets. For an average negation
sensitivity for all languages per model, the results
indicate a strong positive correlation, with a Spear-
man correlation coefficient of 0.866.

Larger models are less likely to classify pair hy-
potheses with the same textual entailment label,
and the impact of negation is more effectively prop-
agated through the model. One outlier in our results
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Figure 2: Robustness to negations across model sizes: Models’ accuracy difference on textual entailment when
facing a hypothesis (i) including and (ii) not including a negation. The results are an aggregate across four languages
(CES, DEU, ENG, UKR) measured for FEVER (solid line; left) and SNLI (dashed line; right) datasets.
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Figure 3: Robustness to negations across languages: Accuracy difference of smaller (<7B; left) and large models
(>70B; right) on textual entailment when facing a hypothesis (i) including and (ii) not including a negation. Inputs
are identical across different languages. The results are aggregated across three models in each size group, measured
for two datasets: FEVER (solid line) and SNLI (dashed line).

is the Mistral (22B) model, which has been outper-
formed by the Mistral (12B) model on the CES,
ENG, and UKR SNLI datasets, as well as on the
DEU FEVER dataset.

Language plays a role in the models’ accuracy.
Figure 3 shows the accuracy change on different
models with regard to the language of the dataset.
As the language is a categorical variable, instead
of correlation, we compute and compare the vari-
ance of the relative accuracy change across the four
evaluated languages (CES, ENG, DEU, UKR), ex-
cluding the Czech manually translated dataset. We
aggregate the values shown in Figure 4 per lan-
guage and use the Friedman test as our analysis
method. Our null hypothesis is that all languages
have the same average of relative accuracy change,

and the alternate hypothesis is that the averages are
not the same.

Analysis has shown that for our degrees of free-
dom dy, = 3, dgy = 33, the results are F'-statistic
= 13.000 and p-value = 0.0046.

As the p-value is less than our alpha level, we
can reject our null hypothesis. Thus, we conclude
that there is a significant difference in the relative
accuracy change across different languages.

Delving further and applying the Wilcoxon
Signed-Rank Test on the results of language pairs
per specific dataset, we find that there is a statis-
tically significant difference on the Czech SNLI
dataset and all of the other languages, with the mod-
els performing worse on the Czech dataset. On the
FEVER dataset, the models performed the worst
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68.04 %
80.5 %

87.62 %
55.92 %
81.85 %
87.65 %
80.65 %
85.23 %
87.81 %

68.04 %
80.5 %

87.62 %
55.92 %
81.85 %
87.65 %
80.65 %
85.23 %
87.81 %

Llama (3B
Llama (8B
Llama (70B
Qwen (1.5B

)

)

)

) 64.77 %
Qwen (7B)

)

)

)

)

89.54 %
92.65 %
87.88 %
91.46 %

Qwen (72B
Mistral (12B
Mistral (22B
Mistral (123B

94.81 %

9131 %

68.36 %
79.08 %
78.98 %
37.85 %
72.85 %
70.34 %
66.19 %
62.08 %
74.09 %

65.19 %
80.38 %
84.77 %
54.31 %
79.46 %
85.38 %
77.04 %
77.81 %
84.23 %

61.85 %
84.46 %
89.69 %
58.58 %
83.85 %
88.38 %
83.81 %
87.08 %
89.08 %

49.08 %
78.07 %
84.22 %
48.08 %
70.95 %
75.56 %
74.8 %

63.79 %
77.3 %

81.23 %
86.93 %
92.29 %
62.37 %
77.35 %
80.93 %
87.06 %
66.79 %
80.59 %

Table 4: Evaluation of the negation sensitivity of each model across individual datasets, with the best results
bolded. Our negation sensitivity metric represents the percentage of datasets in which the model assigned opposite
entailment scores to pairs of hypotheses with and without negation. The best results (in bold) were achieved only by

the biggest models supporting our RQ1.

ENG DEU UKR ENG DEU UKR

CES 0.030 0.0273 0.0390 0.039 0.6523 0.6523
ENG 0.4961 0.4961 0.2005 0.0977
DEU 0.0195 0.2031

Table 5: p-values of Wilcoxon Signed-Test for language
pairs on the SNLI (left) and the FEVER (right) datasets

on the Czech dataset as well, but the difference is
statistically significant only in comparison to the
English dataset.

Our results partially conform to our presupposi-
tions in RQ2 that the models will perform worse in
languages with higher word-order flexibility. How-

ever, part of the observed differences may also be
explained by language-specific phenomena, such
as negative concord in Czech, where a single nega-
tion is expressed by multiple negated words, or by
biases in the models, as English and German are
likely more prevalent in their training data.

5 Conclusions and future work

This work presents novel datasets enabling the
evaluation of language models’ robustness in han-
dling negations in four languages.We have ex-
tended existing FEVER (Thorne et al., 2018) and
SNLI (Bowman et al., 2015) datasets to include
paired hypotheses that are logically opposite to
each other by negating the primary verb in the
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original hypothesis. We have evaluated the mod-
els’ accuracy separately on hypotheses with and
without negation and computed the accuracy drop
that occurred due to the addition of negation in
the hypothesis. New datasets NoFEVER-ML and
NoSNLI-ML are freely available (Vrabcova et al.,
2025a), together with the code used in the negation
project (Vrabcova et al., 2025b).

We find that model size plays a key role
in handling negation correctly, countering the
previous work of Truong et al. (2023). The results
on differing language datasets only partially match
the initial expectations, with models performing
worse on the Czech configuration. This may be due
to the relative simplicity of hypotheses, which do
not lend to the inclusion of more complex negation
structures, such as the negation token being farther
away from the verb, as may be the case in German.

In regard to the differing accuracy from one
dataset to another, we hypothesize that the accuracy
is also heavily dependent on the specificity of in-
formation in the premise; the more common-sense
SNLI dataset performed worse than the more fact-
explicit FEVER dataset. Our finding that negation
handling is less reliable on common-sense tasks
(SNLI) suggests a potential source for hallucina-
tions, where models may default to learned seman-
tic patterns over strict logical constraints. Improv-
ing robustness to negation is, therefore, a direct
step towards more factually grounded and reliable
LLM:s.

Our work provides new resources for address-
ing the deficiency of language models in handling
negations. It shows that while the ’pink elephant’
of negation is still in the room, larger models are
becoming better at seeing what isn’t there, particu-
larly when given a clear description of the room’s
other contents.

In future, studying and understanding which part
of model architecture is responsible for the prob-
lems with negation is our ultimate goal. We will
use the lens of LLM-microscope (Razzhigaev et al.,
2025) to look at the tokens that play decisive role,
depending on subsets of our newly created datasets.
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Limitations

The details of model preparation (training data, hy-
perparameters) limit the full understanding of the
results we report, as we use pretrained models. Ad-
ditionally, this paper does not delve into the effects
of post-training and fine-tuning, and possible expo-
sure to classes of negation examples as contradic-
tory usage of negation.

Our study focuses on lexical negation (e.g.,
“not”) and does not cover more complex forms
of negation, such as negation scope or double nega-
tion, which can further challenge model reasoning
in natural language inference. Similarly, it does not
cover negative polarity items or downward entail-
ment from a superset to a subset (e.g., from “not
animal” to “not dog”), which are also known to
pose difficulties for language models. We deliber-
ately focus on lexical negation to isolate its effect
and show that the problem with negation persists
even in this simplified setting. For a similar reason,
we focus exclusively on the fextual entailment task.

The results may be biased by the semi-automated
translations of datasets into their German, Czech,
and Ukrainian versions, as shown in Table 6. Al-
though the translation quality of the model we have
used is generally high, it is still an LLM that is not
immune to hallucinations on rarely seen data. We
have, for example, in the Ukrainian SNLI dataset,
observed the outlier case shown in Table 6. This
behavior does not occur when the sentence does
not include negation. We suppose that the com-
bination of the inclusion of negation, the tense in
the original English sentence, and the inclusion of
an initialism (pb and j) created confusion in the
model. However, as the training data of the model
isn’t public, we cannot confirm our hypothesis.

However, we did a manual check to ensure the
quality of a subset of the translations and did not
encounter any errors related to the application of
negation in context.

Additionally, our study is limited to two Ger-
manic (English, German) and two Slavic (Czech,
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Ukrainian) languages, which constrains the general-
izability of our findings. Evaluating additional lan-
guages from other language families could reveal
further challenges and insights regarding negation
in LLMs.
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Original/Translated Sentence

Sentence in English

ENG A man isn’t eating pb and j

CES Muz nejipb aj.

DEU Ein Mann isst kein Pb und J

UKR YouJtosik He icTh maoM0ip 3 coeBuMu 606amMu

A man isn’t eating pb and j
A man isn’t eating pb and j.
A man isn’t eating Pb and J
A man isn’t eating ice cream with soy beans

Table 6: Translation of an outlier example sentence using DeepL.
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A Full details of accuracy across
evaluated models

We include figures 5 and 6 as the full tables of accu-
racies of models for hypotheses with and without
negation on the task of textual entailment. In both
tables, we can see that almost all models achieve
the highest accuracy on the English datasets, on
both hypotheses, with and without negation.
However, the accuracy of the models from the
Qwen family shown in Figure 4 gave us pause, par-
ticularly the fact that overperformance is present
only for one specific dataset. The English SNLI

dataset with hypotheses without negation is very
similar to the original SNLI dataset, as less than
5 percent of hypotheses in the original test dataset
contain negation. As the original SNLI is a very
popular benchmark for the evaluation of NLI and
textual entailment tasks, and the Qwen overperfor-
mance did not translate across languages on the
same dataset, nor did it translate into an increase
of accuracy on hypotheses with negation, we have
to wonder whether the training data of the Qwen
model family inadvertently included the SNLI eval-
uation data.

B Prompting template

All the models we evaluated support a chat-like
interface with a system prompt, a user prompt, and
a model response.

As a system prompt, we used the following tem-
plate:

You are a fact checker for queries
in the <English / Czech / German
/ Ukrainian> language. You will
be given a premise, which you
know is factually correct, and
a hypothesis. You will return
the truth value of the hypothesis,
based on the premise. Return
True if the hypothesis is correct
and False if the hypothesis is
incorrect.

The user prompt follows a simple format:

Premise: <premise>
Hypothesis: <hypothesis>

The model decides by finishing a prepared re-
sponse:

The answer is: <True / False>

C Statistical tests

In tables 7 and 8 we provide the values used during
statistical computations explained in Section 4.

D Sentence complexity

As mentioned in Section 4, we posit that the larger
models can more accurately capture nuanced lan-
guage patterns, enabling them to correctly handle
negations in more complex sentences that elude the
smaller models. From each model family, we take
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Figure 5: Absolute accuracy for all evaluated models across all evaluated languages and datasets for textual

entailment of hypotheses without negation.
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Figure 6: Absolute accuracy for all evaluated models across all evaluated languages and datasets for textual

entailment of hypotheses with negation.

CES = GCES GCES ENG ENG DEU DEU UKR UKR

FEVER
MANUAL FEVER SNLI FEVER SNLI FEVER SNLI SNLI FEVER
Shapiro-Wilk test p-value 0.279  0.004 0.008 0.134 0.001 0.016 0.046 0.003 0.016

Spearman correlation coefficient ~ 0.867 0.883 0.400 0.883 0.250 0.900 0.300 0.883 0.150

Table 7: Values used during the computation of correlation between the model size and the relative accuracy change
across all evaluated datasets.

the smallest and the largest models and compare the =~ model, we compute the average sentence complex-
average sentence complexity of the hypotheses that ity of the additional correctly classified hypotheses,
the model is able to correctly classify. However, we  i.e., the subset for the larger model consists of hy-
hypothesize that many hypotheses correctly clas-  potheses that the larger model correctly classified,
sified by the smaller model are also correctly clas-  which are not present in the smaller model’s subset.
sified by the larger model. Therefore, for the larger
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CES

FEVER

MANUAL
Shapiro-Wilk p-value 0.013  0.013 0.052 0.008 0.405 0.101 0.002 0.027 0.022
Spearman correlation w/ model size  0.950 0.950 0.583 0.817 0.267 0.683 0.900 0.817 0.400

CES CES ENG ENG DEU DEU UKR UKR
FEVER SNLI FEVER SNLI FEVER SNLI SNLI FEVER

Table 8: Values used during the computation of correlation between the model size and the negation sensitivity
across all evaluated datasets.

CES

FEVER

MANUAL
Llama Family 0.027 0.215 0.064 0.270 0.196 0.219 0.056 0.155 0.049
Qwen Family 0.082 0.173 0.006 0.215 0.174 0.024 0.030 0.148 0.041
Mistral Family ——0.016 0.184 0.037 0.271 0.137  0.245 0.001 0.121 -0.017

CES CES ENG ENG DEU DEU UKR UKR
FEVER  SNLI FEVER  SNLI FEVER  SNLI FEVER  SNLI

Table 9: Increase of average depth of hypotheses without negation that were correctly predicted only by the largest
model of the LM family and the correctly predicted hypotheses by the smallest model of the LM family.

Coem  CES CES  ENG ENG  DEU DEU  UKR UKR
MANUAL FEVER SNLI  FEVER SNLI  FEVER SNLI  FEVER SNLI

Llama Family 0.019 0.076 0.090 0.089 0.145 0.041 0.030 0.150 0.067
Qwen Family 0.038 —-0.09 0.027 —-0.016 0.065 —0.053 —0.084 —0.006 —0.080
Mistral Family — —0.016 0.031 0.064  0.125 0.101  0.103 -0.012 0.151 -0.017

Table 10: Increase of average depth of hypotheses with negation that were correctly predicted only by the largest
model of the LM family and the correctly predicted hypotheses by the smallest model of the LM family.

CES

FEVER

MANUAL
Llama Family  2.52 % —0.12 % —4.31 % —5.77 % —15.30 % —4.73 % —16.01 % —1.20 % —6.83 %
Qwen Family —0.47% 4.19% 2.55% 788 % —500% 090% 358% 4.66% 1.44 %
Mistral Family 0.89% 449 % 042% 694 % —1.63% 1.02% 626 % 2.49% —1.92 %

CES CES ENG ENG DEU DEU UKR UKR
FEVER SNLI FEVER SNLI FEVER SNLI FEVER  SNLI

Table 11: Increase of average sentence dissimilarity of premises and the evaluated hypotheses without negation
that were correctly predicted only by the largest model of the LM family, and the correctly predicted hypotheses by
the smallest model of the LM family.

CES

FEVER

MANUAL
Llama Family 2.00 % 397 % —-3.02% 236% 062% 552% 21.12% 5.56 % —1.52 %
Qwen Family 024 % 1249 % 19.41 % 12.50 % 21.14 % 10.56 % 25.16 % 9.44 % 15.28 %
Mistral Family 159 %  4.06 % 11.77% 522% 6.11% 530% 11.96% 4.94 % 10.36 %

CES CES ENG ENG DEU DEU UKR UKR
FEVER  SNLI FEVER  SNLI FEVER  SNLI FEVER SNLI

Table 12: Increase of average sentence dissimilarity of premises and the evaluated hypotheses with negation that
were correctly predicted only by the largest model of the LM family, and the correctly predicted hypotheses by the
smallest model of the LM family.

We evaluate the sentence complexity using the ~ Hypothesis depth. Depth of the hypothesis de-
following metrics: pendency tree. Sentence complexity increases with
the depth of the dependency tree.
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Tables 9 and 10 show the increase of average hy-
pothesis depth between the smallest and the largest
model per the language model family. Due to the
relative simplicity of the hypotheses (short length
as described in Table 2, average of one verb per
hypothesis), the increase of depth is not substantial,
being less than one level across all datasets for all
language model families.

Dissimilarity of hypothesis to the premise.
Number of content words present only in the hy-
pothesis and not the premise, divided by the total
number of content words in the hypothesis. Sen-
tence complexity increases with the increase of
dissimilarity. We compute the similarity on the
lemmatized forms of the words, with the most com-
mon stop words per language filtered out. High
dissimilarity may be caused by the usage of syn-
onyms, hypernyms, hyponyms, or other linguistic
features that require a higher understanding of syn-
tactic patterns in the hypothesis.

Tables 11 and 12 show the increase in the aver-
age dissimilarity of the premise and its hypothesis
between the smallest and the largest model per the
language model family. Here, we can see a marked
increase in dissimilarity for hypotheses with nega-
tion, especially within the Qwen family models,
showcasing the largest model’s increased ability to
correctly reason and determine entailment on texts
that use different formulations to express the same
meaning.
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