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Abstract

Event causality identification (ECI) is a chal-
lenging task that involves predicting causal re-
lationships between events in text. Existing
prompt-learning-based methods typically con-
catenate in-context examples only at the in-
put layer, this shallow integration limits the
model’s ability to capture the abstract semantic
cues necessary for identifying complex causal
relationships. To address this limitation, we
propose a novel model called Deep In-Context
Prompt (DICP), which injects in-context ex-
amples into the deeper layer of a pre-trained
language model (PLM). This strategy enables
the model to leverage the hierarchical seman-
tic representations formed in deeper layers,
thereby enhancing its capacity to learn high-
level causal abstractions. Moreover, DICP in-
troduces a multi-layer prompt injection mecha-
nism, distributing diverse in-context examples
across multiple transformer layers. This de-
sign allows the model to recognize a broader
range of causal patterns and improves its gen-
eralization across different contexts. We evalu-
ate the DICP model through extensive experi-
ments on two widely used datasets, demonstrat-
ing its significant improvement in ECI perfor-
mance compared to existing approaches. Fur-
thermore, we explore the impact of varying the
number of deep layers on performance, pro-
viding valuable insights into the optimal layer
configuration for ECI tasks. Code is available
at https://github.com/sj1071-cell/DICP.

1 Introduction

Event causality identification (ECI) involves pre-
dicting the causal relationships between events
mentioned in the text. For instance, consider the
sentence S1 : "John won the competition because
of his practice." Here, the two event mentions prac-
tice and won, are linked through the explicit cue
phrase "because of", which directly signals that
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Figure 1: The effect of concatenating prompts in front
of different layers used BERT on the ESC dataset.

practice causes won. In contrast, in sentence S2:
"The reporter was killed during the attack.", the
causal relationship between attack and killed is
implicit, as it lacks explicit connective phrases.
This highlights a key challenge in ECI: While ex-
plicit causality may be detected through lexical sig-
nals, recognizing implicit causality requires deeper
contextual and semantic understanding. Accurate
identification of such causal relationships is foun-
dational for a wide range of downstream natural
language processing (NLP) applications, such as
Question Answering (Oh et al., 2013) and Machine
Reading Comprehension (Berant et al., 2014).

Recently, researchers have focused on fine-
tuning pre-trained language models (PLMs) to
tackle ECI tasks, resulting in significant perfor-
mance improvements. Among these approaches,
the prompt learning paradigm has emerged as par-
ticularly promising (Liu et al., 2023b). This ap-
proach fine-tunes PLMs by concatenating task-
specific prompts with input, guiding the model
to generate more accurate predictions. A notable
example is the ICCL model (Liang et al., 2024),
which incorporates the concept of in-context learn-
ing (Dong et al., 2022). ICCL enhances the model’s
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causal reasoning by concatenating task-specific ex-
amples to the input as prompts, allowing the model
to infer patterns from relevant prior instances. This
method has achieved state-of-the-art performance,
particularly in cases involving implicit causality.

However, existing prompt-based ECI mod-
els (Liu et al., 2023a; Liang et al., 2024) suffer
from a key limitation: they restrict prompt infor-
mation to the input layer only. This architectural
constraint prevents the model from fully leveraging
the rich semantic information embedded in task-
specific prompts. Recent insights into PLM inter-
nals suggest that deeper layers capture more ab-
stract and semantically complex concepts (Skean
et al., 2024; Jin et al., 2025). Motivated by this ob-
servation, we conducted a preliminary experiment
on the ESC (Caselli and Vossen, 2017) dataset,
evaluating the effects of injecting in-context exam-
ples at various layers of PLMs. As illustrated in
Figure 1, injecting in-context examples into deeper
layers led to substantial performance improvements
over input-level-only in-context examples concate-
nation. These findings underscore the importance
of aligning the semantic complexity of the task
with the representational depth of the model.

Building on this insight, we propose a novel
model called Deep In-Context Prompt (DICP)
for the ECI task. DICP overcomes the limita-
tions of shallow prompt injection by embedding
diverse in-context examples directly into deeper
layers of a PLM, thereby enabling the model to
capture higher-order causal abstractions. Further-
more, DICP enhances this process by incorporating
diverse in-context examples across various deeper
layers. This strategy allows the model to effi-
ciently capture diverse causal patterns from these
in-context examples, further refining its ability to
recognize complex causal relationships. Addition-
ally, we employ an Abstract Meaning Representa-
tion (AMR) parser to comprehend semantic struc-
tures and extract event-related information from
the text.

In summary, our contributions are as follows:

• We propose Deep In-Context Prompt (DICP),
a novel prompt learning paradigm for ECI that
injects in-context examples into the deeper
layer of the PLM. This design enables the
model to fully exploit the semantic richness
embedded in contextual prompts, particularly
for implicit causality.

• We introduce a multi-layer injection strategy

that disperses diverse in-context examples
across various depths of the PLM. This ap-
proach enables the model to effectively cap-
ture a wide range of causal patterns, improv-
ing both generalization and semantic depth.

• We conduct comprehensive experiments on
two widely used ECI datasets. Our results
demonstrate that DICP significantly outper-
forms existing approaches. Furthermore, we
analyze the effects of varying the number of
injection layers, providing actionable insights
into optimal architectural configurations for
causality-focused NLP tasks.

2 Related Work

2.1 Tradition ECI Methods
Understanding the causal relationships between
events is fundamental for interpreting crucial infor-
mation in the text. Consequently, event causality
identification (ECI) has garnered significant atten-
tion from researchers. feature-based and rule-based
methods were commonly employed to tackle ECI
tasks (Beamer and Girju, 2009; Riaz and Girju,
2014; Ning et al., 2018; Gao et al., 2019). These
approaches relied heavily on handcrafted features
and predefined rules, limiting their adaptability to
diverse contexts and complex relationships. The ad-
vent of pre-trained language models (PLMs) revolu-
tionized ECI by enabling models to capture contex-
tual semantic representations and improving their
ability to recognize causal relationships. To ad-
dress the issue of insufficient training data, (Zuo
et al., 2020, 2021b) proposed data augmentation
methods to generate additional training data. Ad-
ditionally, (Hu et al., 2023) leveraged an abstract
meaning representation (AMR) parser to construct
semantic representations of sentences, using seman-
tic structure enhancement to improve recognition
capabilities. Although these methods all incorpo-
rate PLMs, they adopt the traditional fine-tuning
paradigm for classification, which does not lever-
age the full capabilities of the PLMs.

2.2 Prompt-based ECI Methods
Recently, large-scale PLMs such as GPT (Radford
and Narasimhan, 2018), BERT (Devlin et al., 2019),
and RoBERTa (Liu, 2019), have achieved signifi-
cant success in various NLP tasks. However, these
PLMs face the issue of a mismatch between the
pre-training tasks and downstream tasks, which
prevents them from utilizing their full potential. To
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address this issue, the prompt-based method was
proposed (Brown et al., 2020). It converts down-
stream tasks into a similar form as pre-training
tasks, greatly bridging the gap between the pre-
training and fine-tuning stages. Some studies have
applied the prompt-based learning paradigm to the
ECI task (Liu et al., 2023a; Liang et al., 2024; Wang
et al., 2024). For example, (Liu et al., 2023a) used
a masked language model and employed a prompt-
based paradigm to integrate background and related
knowledge from external knowledge bases to pre-
dict the answer word at the masked position. (Liang
et al., 2024) enhanced the distinction between posi-
tive and negative examples by applying contrastive
learning within the context, using a PLM to predict
causal relationships between event pairs.

2.3 In-Context Learning
The concept of in-context learning (ICL) was first
introduced in GPT-3 and mentioned in (Dong et al.,
2022). It has since become a widely used method
for using large language models (LLMs). ICL is a
technique that allows LLMs to learn specific tasks
using a small number of labeled examples. The
core idea of this method is to design task-related
instructions in the form of prompt templates and
use a few labeled examples as prompts to guide
the model in generating predictions on new test
examples.

3 Methodology

To address the challenges of recognizing complex
causality patterns in text, we propose the Deep
In-Context Prompt (DICP) framework, which inte-
grates three synergistic components: the Encoding
In-Context Module, the Deep Prompt Learning
Module, and the Semantic Structure Module,
as shown in Figure 2. These components are de-
signed to enhance the capabilities of pre-trained
language models (PLMs) by incorporating seman-
tic and contextual information tailored for event
causality identification (ECI) tasks.

3.1 Problem Definition
We frame the ECI task as a masked prediction prob-
lem, where the model infers the causal relation
between two events mentioned within a sentence.
Given an input instance x = {s, e1, e2}, where
s denotes the raw text, and e1, e2 represent two
event mentions within s, our objective is to predict
whether a causal relationship between e1 and e2.
We introduce two virtual answer words: Causality

and NA, which are added to the vocabulary of the
PLM. Causality indicates the presence of a causal
relationship between the two events, while NA indi-
cates the absence of such a relationship. Thus, the
output of the PLM denoted as y ∈ {Causality,NA}
indicates whether a causal relationship exists be-
tween the two events. We then design the prompt
template T (x) for input to the PLM:

T (x) = s+ [start] + e1 + [MASK] + e2 + [end].

where the tokens [start] and [end] are used to mark
the boundaries of the cloze-style template. [MASK]
is placed where the model will predict the causal
relationship.

3.2 Encoding In-Context Module
Prior methods have struggled to recognize these
complex causal patterns. To address this limita-
tion, we propose injecting in-context examples into
the deeper layer of the PLM. This approach allows
the model to learn from task-specific patterns and
improve its ability to identify causal relationships.
Since these implicit relationships are difficult to
identify, we initially select some sentences with
implicit relationships from the training set as a can-
didate set. Then, we randomly select n examples
from the candidate set for relevant sample exper-
iments. The in-context example set is denoted as
Demo = {d1, . . . , dn}, where each in-context ex-
ample di = {ei1, ei2, si, yi} includes the an event
mention pair, sentence, and causal label. Each
in-context example is then formatted using an in-
context example template Ticl(di):

Ticl(di) = si + [start] + ei1 + yi + ei2 + [end].

where the tokens [start] and [end] mark the bound-
aries.

After constructing the in-context example, each
is individually encoded using the same BERT
model, yielding initial representations for each in-
context example, denoted as contextual embedding
H = {H1, H2, . . . ,Hn}.

3.3 Deep Prompt Learning Module
Building on the semantic representations of in-
context examples captured in Section 3.2, this mod-
ule integrates these semantic representations into
the deep encoder layer of the model. This enables
the model to capture nuanced causal patterns at
deep levels of abstraction. To facilitate this integra-
tion, the prompt template T (x) is converted into
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Figure 2: Overview of our DICP framework for ECI. It consists of the Semantic Structure Module (left-upper part),
Deep Prompt Learning Module (left-middle part), Encoding In-Context Module (left-lower part), and the Prediction
section (right part).

the corresponding embedding representation used
by another BERT, denoted as φ((T (x))), which
serves as the input to the BERT model.

Due to the input length constraints of the BERT
model, we inject contextual embedding H into the
first n layers of the BERT encoder. This allows
the model to integrate the rich diverse causal infor-
mation from the diverse in-context examples into
its initial computations. The input at each layer is
the embedding of the example injected into that
layer, concatenated with the output from the previ-
ous layer. An example is injected into each layer,
and the first n layers are considered as deep layers.
During training, we use the same H for each input
sentence. At the l-th layer, the input embedding is
represented as:

Xl = Concat(Hl, Zl−1) (1)

where Xl ∈ R(ol−1+q)∗d, and q is the length of the
Hl, ol−1 is the output length of the l− 1 layer, and
d is the embedding dimension; Zl−1 denotes the
output of the l − 1 layer and l <= n. The output
of this layer is denoted as:

Zl = TransformerLayerl(Xl) (2)

When l > n, the subsequent layers no longer incor-
porate contextual embeddings H . The propagation
process proceeds as follows:

Xl = Zl−1 (3)

Zl = TransformerLayerl(Xl) (4)

Following the encoding of the final layers, the final
representation at the [MASK] position is obtained,
denoted as hmask, and captures the causal relation-
ships necessary for accurate prediction.

3.4 Semantic Structure Module
In this section, we describe how to capture explicit
semantic relationships encoded in text. The seman-
tic structure module leverages explicit relationships
extracted from text to enhance the model’s pre-
dictions of event causality. This module employs
an abstract meaning representation (AMR) (Ba-
narescu et al., 2013) parser to transform the input
text into a semantic graph, where vertices repre-
sent entities, events, or attributes, and edges repre-
sent semantic relationships. From this graph, two
complementary semantic structures are extracted:
event-centric structure and event-association struc-
ture.

The event-centric structure focuses on enriching
the representation of event pairs by aggregating
information from neighboring nodes and edges in
the graph. A Relational graph convolutional net-
work (RGCN) (Schlichtkrull et al., 2018) is applied
to the AMR graph to capture these relationships.
Given the presence of multiple arguments and their
contextual roles, we aggregate semantic informa-
tion from L-hop neighbors to obtain comprehensive
event representations. The final representations of
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the events e1 and e2 are denoted as he1 and he2 ,
respectively. To mitigate the effect of the relative
position, the sum of their embedding as the final
representation.

F
(e1,e2)
E = he1 + he2 (5)

While the event-centric structure focuses on lo-
cal context, the event-association structure models
the semantic path between events. Based on the
intuition that shorter paths indicate stronger rela-
tionships, we select the shortest path between two
events from the AMR graph. Each path is repre-
sented as a sequence of nodes and relations, de-
noted as (v1, r1); (v2, r2); ...; (vm, rpad), where vi
is the representation of the i-th node, ri is the rep-
resentation of the i-th relation edge, and rpad is the
special relation added to the last state. The nodes’
initial representations are obtained by utilizing the
RGCN, while the relation representations are ran-
domly initialized and updated during training. To
encode the path, we use a BiLSTM, which gener-
ates the final representation of the i-th semantic
path:

Pi = BiLSTM [(v1, r1); ...; (vm, rpad)] (6)

When multiple shortest paths exist, an attention
mechanism is employed to fuse information across
paths. The representation of the event pairs serves
as the query, while the representations of the paths
act as the keys and values:

αi =
(F

(e1,e2)
E WQ)(PiWK)T√

dk
(7)

F
(e1,e2)
P =

∑

i

Softmax(αi)(PiWV ) (8)

Here αi represents the attention score of the i-th
path, and WQ,WV ,WK are learnable parameters.

The final semantic representation integrates both
the event-centric and event-association structures.
This combined representation is expressed as:

FSem = F
(e1,e2)
E ⊕ F

(e1,e2)
P (9)

3.5 Training and Prediction
The final representation for the [MASK] position is
formed by concatenating above representations:

Fmask = hmask ⊕ FSem (10)

The prediction and training stages of our DICP
model are designed to evaluate and optimize its

ability to predict causal relationships effectively. In
the prediction stage, we use [MASK] token in the
input sentence to predict the answer word, indicat-
ing the presence or absence of a causal relationship.
The final vector representation at the masked posi-
tion, Fmask, is fed into the classifier of the masked
language model. This evaluates the probability of
each word in the vocabulary V at the [MASK] posi-
tion:

P ([MASK] = v ∈ V |T (x)) (11)

where T (x) represents the prompt template con-
structed for the input sentence.

To specifically address causal relationship pre-
diction, we expand the vocabulary by introducing
two virtual tokens, Causality and NA, which repre-
sent the presence and absence of a causal relation-
ship, respectively. A Softmax function is then
applied to the prediction scores of these two tokens,
normalizing their probabilities. For each sample
i ∈ I in the current batch I , there is:

Pi(vi ∈ Va|T (x)) =
exp(pvi)∑n
j=1 exp(pvj )

(12)

where Va = {Causality, NA}.
During the training stage, we optimize our model

using cross-entropy loss. This loss function min-
imizes the difference between the predicted label
and the true label for each training instance. The
cross-entropy loss is defined as follows:

LDICP = − 1

K

K∑

k=1

y(k)log(ŷ(k)) (13)

where yk and ŷ(k) are the ground-truth label and
the predicted label of the k-th training instance,
respectively. K represents the number of samples
in a training batch.

4 Experiments

4.1 Experiment Setting
Our approach is evaluated on two public datasets:
EventStoryLine Corpus version 0.9 (ESC) (Caselli
and Vossen, 2017) and Causal-TimeBank (CTB)
(Mirza et al., 2014).

ESC contains 22 topics, 258 documents, 4316
sentences, 5334 event mentions, and 1770 causal
event pairs. The dataset is divided into a develop-
ment set consisting of 6 major impactful events
and a test set consisting of 16 major impactful
events. Same as previous methods (Hu et al., 2023;
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Methods P R F1
LSTM (2017) 34.0 41.5 37.4
Seq (2017) 32.7 44.9 37.8
LR+ (2019) 37.0 45.2 40.7
ILP (2019) 37.4 55.8 44.7
KnowDis (2020) 39.7 66.5 49.7
LearnDA (2021b) 42.2 69.8 52.6
CauSeRL (2021a) 41.9 69.0 52.1
GenECI (2022) 59.5 57.1 58.8
KEPT (2023a) 50.0 68.8 57.9
SemSIn (2023) 64.2 65.7 64.9
DFP (2024) 55.9 69.8 62.1
ICCL (2024) 64.9 69.6 67.1
ICCL* (2024) 67.5 73.7 70.4
GPT-3.5-turbo 27.6 80.2 41.0
GPT-4 27.2 94.7 42.2
DICP (ours) 70.4 66.2 68.2
DICP (ours)* 73.5 69.4 71.3

Table 1: Experimental results on ESC. * indicates the
model is based on RoBERTa.

Liang et al., 2024), we use the last two topics of
ESC as development data and perform 5-fold cross-
validation on ESC. To evaluate the performance,
we utilize Precision (P), Recall (R), and F1-score
(F1) as our metrics.

CTB contains 184 documents, 6813 event men-
tions, and 318 causal event pairs. Similar to (Liang
et al., 2024), we perform 10-fold cross-validation
on CTB. Likewise, the performance of Causal-TB
is validated using precision (P), recall (R), and F1-
score (F1) as the evaluation metrics.

4.2 Baselines

We compare our approach with several baseline
models, categorized into feature-based, and PLM-
based methods. The detailed introduction of com-
petitors can be found in Appendix A.

Feature-based: For the ESC dataset, we
adopted the following baselines: LSTM (Cheng
and Miyao, 2017), Seq (Choubey and Huang,
2017), LR+ and ILP, (Gao et al., 2019). For the
CTB dataset, our choices are as follows: RB (Mirza
and Tonelli, 2014), DD (Mirza and Tonelli, 2014),
VR-C (Mirza, 2014).

PLMs-based: DICP is compared to various
PLMs-based approaches: KnowDis (Zuo et al.,
2020), LearnDA (Zuo et al., 2021b), CauSeRL
(Zuo et al., 2021a), GenECI (Man et al., 2022),
SemSIn (Hu et al., 2023), KEPT (Liu et al.,

2023a), DFP (Huang et al., 2024), ICCL (Liang
et al., 2024)

LLMs: We also compare DICP with large lan-
guage models (LLMs), including GPT-3.5-turbo *,
GPT-4 (Gao et al., 2023).

4.3 Implementation Details
In the experiments, we utilized the pre-trained
AMR parser parse_xfm_bart_large v0.1.0. The
PLM we used is BERT-base (Devlin et al., 2019),
which consists of 12 encoder layers and 12 atten-
tion heads, and the dimension of the hidden layer
is 768. The learning rate is set to 1e-5. For the
RGCN, we also use a learning rate of 1e-5. Ad-
ditionally, The dimension of added new learnable
tokens in the PLM vocabulary is set to 768. The
experiments are conducted on a single NVIDIA
RTX 3090 GPU, with a batch size of 20, and the
number of layers of the deep prompt used in our
experiments is 2. When training on the Causal-TB
dataset, we follow (Hu et al., 2023) and (Liang
et al., 2024) to implement a sampling strategy for
positive and negative samples, with sampling rates
set to 5 and 0.3, respectively. We apply the AdamW
optimization strategy to optimize all models.

4.4 Main Results
The experimental results on the ESC and Causal-
TB datasets are shown in Table 1 and Table 2, re-
spectively. Key findings include:

DICP’s performance superiority: Our DICP
model outperforms other ECI methods in terms of
F1 on both datasets, achieving 68.2% on ESC and
61.4% on CTB, respectively. This demonstrates
that incorporating in-context examples and inject-
ing them into deeper layers of the model allows
for more effective capture of complex causal pat-
terns, significantly improving the performance of
the model. This highlights the effectiveness of our
approach in improving ECI through a deeper repre-
sentation learning of causal information.

Comparison with prompt-based methods:
The DICP method outperforms a previous prompt-
based method, ICCL. This demonstrates the ra-
tionality of incorporating different examples into
multiple deeper layers, enabling the model to learn
distinct information at different layers. Compared
to the ICCL method, which concatenates contex-
tual examples with the input sequence and feeds
them together into the model to guide the recog-
nition of implicit relationships, DICP effectively

*www.openai.com
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Methods P R F1
RB (2014) 36.8 12.3 18.4
DD (2014) 67.3 22.6 33.9
VR-C (2014) 69.0 31.5 43.2
KnowDis (2020) 42.3 60.5 49.8
LearnDA (2021b) 41.9 68.0 51.9
CauSeRL (2021a) 43.6 68.1 53.2
GenECI (2022) 60.1 53.3 56.5
KEPT (2023a) 48.2 60.0 53.5
SemSIn (2023) 52.3 65.8 58.3
DFP (2024) 53.7 64.2 58.5
ICCL (2024) 60.5 58.4 59.1
ICCL* (2024) 63.7 68.8 65.4
GPT-3.5-turbo 6.9 82.6 12.8
GPT-4 6.1 97.4 11.5
DICP (ours) 56.4 68.6 61.4
DICP (ours)* 62.4 73.5 67.3

Table 2: Experimental results on Causal-TB. * indicates
the model is based on RoBERTa.

harnesses the capability of PLMs to extract infor-
mation at deeper levels through the injection of
diverse in-context examples across various deeper
layers.

Compared with LLMs: Finally, when com-
pared to large language models (LLMs), our DICP
method demonstrates superior performance despite
its smaller size. Specifically, DICP achieves a
41.5% improvement in F1 over GPT-4 (Gao et al.,
2023). The recall of LLMs is high, but the precision
is low, indicating that a large number of non-causal
event pairs are falsely identified as causal pairs.
The main reason for this may be that natural lan-
guage contains a large number of descriptions of
causal relationships, mainly indicated by causal cue
words such as “cause” and “therefore”. This high-
lights the importance of fine-tuning for optimizing
model performance, especially in specialized tasks
like ECI.

4.5 Ablation Study

To evaluate the impact of each component of the
DICP model, we conduct ablation experiments on
the ESC dataset. The results are summarised in Ta-
ble 3. In these experiments, the following variants
of the DICP model are considered: w/o.stru: The
model predicts event-causal relationships without
using semantic structure information and in-context
examples. w/o.icl: The model omits in-context ex-
amples. w/o.sem: The model does not use the

Methods P R F1 ∆

DICPw/o.stru 52.7 66.4 60.8 -
DICPw/o.icl 62.6 67.5 64.1 +3.3
DICPw/o.sem 67.1 65.6 66.3 +5.5
DICPw/o.deep 63.0 68.1 65.3 +4.5
DICPfirst 68.5 65.8 66.7 +5.9
DICPsecond 67.7 66.6 67.1 +6.3
DICP 70.4 66.2 68.2 +7.4

Table 3: Ablation results on ESC. ∆ means the improve-
ment of the F1 relative to DICPw/o.stru.

semantic structure module. w/o.deep: The model
concatenates the in-context examples only at the
input layer, rather than adding them in the deep
layer of the model. first: The model concatenates
the embedding representations of the examples and
then feeds them together as input before the first
encoder layer. second: The model concatenates
the embedding representations of the examples and
then feeds them together as input before the second
encoder layer. We now discuss the impact of each
component on the model’s performance:

• Impact of in-context example. First, we
examine the impact of in-context exam-
ples, Compared to the full DICP model,
DICPw/o.icl show a 4.1% decrease in the
F1-score. Comparing DICPw/o.sem with
DICPw/o.stru, we observe that DICPw/o.sem

achieves a 5.5% improvement in the F1-score.
This indicates that incorporating in-context
information plays a critical role in accurately
predicting causal relationships, as it guides
the model to focus on relevant patterns in the
input.

• Impact of semantic structure information.
Next, we analyze the role of semantic struc-
ture information. DICPw/o.sem demonstrates
a 1.9% decrease in the F1 compared to the full
DICP model. This demonstrates that semantic
structure information is also crucial for the
model’s ability to identify causal relationships
more effectively.

• Impact of deep layers. Then, we investigate
the effect of deep layers, DICPw/o.deep has
a 2.9% decrease in F1 compared to the full
DICP model. This decrease highlights the im-
portance of incorporating in-context examples
across different deep layers of the model. By
adding in-context examples to multiple layers,
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Figure 3: Impact of the number of deep prompt layers
on ESC.

the model can better learn and refine complex
causal patterns, capturing more causal clues
between event pairs.

• Impact of different layers. Finally, we
investigate the effect of different layers,
DICPw/o.deep shows a decrease of 1.4% and
1.8% in F1 compared to DICPfirst and
DICPsecond, respectively. This demonstrates
that injecting examples into deeper layers can
effectively enhance the model’s ability to rec-
ognize complex patterns. Compared to the full
DICP model, both DICPfirst and DICPsecond

achieve varying degrees of improvement in F1,
indicating that injecting diverse examples into
various deeper layers is an effective method
to improve prompt-based ECI model.

4.6 Number of Deep Layers
The number of deep layers n is a crucial parameter
that influences the model’s performance. To assess
the impact of n on the model, we conducted ex-
periments using different values of n on the ESC.
As shown in Figure 3, the model achieves the best
performance when n is set to 2. When n = 1, the
F1 decreases due to the insufficient number of deep
prompt layers, which limits the model’s ability to
retrieve meaningful information for the ECI task.
On the other hand, as n increases beyond 2, the
model performance deteriorates significantly. This
decline can be attributed to the introduction of ex-
cessive in-context examples, which introduce noisy
information and interfere with the model’s decision-
making process. Therefore, the optimal number of
deep layers is n = 2 balancing the richness of the
information and minimizing noise.

Strategy P R F1
Random 54.7 67.8 60.5
Random implicit 56.4 68.6 61.4
Similar implicit 58.4 65.1 61.1
Random implicit false 56.7 66.8 60.6

Table 4: Robustness analysis of the in-context example
selection strategy.

4.7 Robustness Analysis

In this section, we explore the robustness of our
DICP method under different in-context example
selection strategies. To investigate how in-context
example selection affects the model, we conducted
additional experiments on the CTB dataset using
four distinct methods for selecting training exam-
ples: 1) Random: randomly selecting in-context
examples from the training set; 2) Random im-
plicit: randomly selecting in-context examples that
contain implicit relationships; 3) Similar implicit:
selecting in-context examples with similar seman-
tic structures. 4) Random implicit false: changed
the label of one of the two randomly selected im-
plicit examples to an incorrect label.

As shown in Table 4, our DICP method con-
sistently maintains excellent performance across
all selection strategies, particularly in terms of F1.
This demonstrates the robustness of DICP to vary-
ing example selection strategies, highlighting its
ability to adapt effectively to different types of data
without significant loss in performance.

5 Conclusion

In this paper, we propose DICP for the ECI task.
DICP integrates three synergistic components to
enhance its performance. First, DICP selects a set
of diverse in-context examples and encodes them
into semantic embeddings that reflect a wide range
of causal scenarios. Second, these embeddings are
strategically injected across multiple deeper layers
of a PLM, enabling the model to learn abstract,
high-level causal representations that go beyond
surface-level patterns. Third, DICP incorporates
an AMR parser to extract and integrate structured
semantic information, thereby further enriching the
model’s ability to infer complex, implicit causal re-
lationships. We validate DICP through comprehen-
sive experiments on two widely used ECI datasets.
Results show that DICP consistently outperforms
existing methods, particularly in capturing nuanced
and context-dependent causal patterns. By address-
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ing the limitations of input-only prompt concatena-
tion, DICP leverages the semantic depth of PLMs
to achieve state-of-the-art performance in ECI.

6 Limitations

Our method has the following two limitations: (1)
When injecting the selected examples layer by
layer, we did not assign different levels of impor-
tance to each example. This uniform treatment
may have limited the model’s ability to effectively
leverage the most relevant information from each
example. (2) Injecting examples into deeper layers
could increase the risk of overfitting, leading the
model to rely too heavily on the provided examples
while potentially overlooking crucial information
in the input text.

7 Acknowledgements

This work is supported by the National Natu-
ral Science Foundation of China (No.62206004,
62572002, No.62272001, No.62406095), the
Natural Science Foundation of Anhui Province
(No.2308085MF213), and the Hefei Key Tech-
nology RD “Champion-Based Selection” Project
(No.2023SGJ011).

References
Laura Banarescu, Claire Bonial, Shu Cai, Madalina

Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguistic
Annotation Workshop and Interoperability with Dis-
course, pages 178–186, Sofia, Bulgaria. Association
for Computational Linguistics.

Brandon Beamer and Roxana Girju. 2009. Using a
bigram event model to predict causal potential. In
Computational Linguistics and Intelligent Text Pro-
cessing, Lecture Notes in Computer Science, page
430–441.

Jonathan Berant, Vivek Srikumar, Pei-Chun Chen,
Abby Vander Linden, Brittany Harding, Brad Huang,
Peter Clark, and Christopher D. Manning. 2014.
Modeling biological processes for reading compre-
hension. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
pages 1499–1510.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,

Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. arXiv
abs/2005.14165.

Tommaso Caselli and Piek Vossen. 2017. The event
storyline corpus: A new benchmark for causal and
temporal relation extraction. In Proceedings of the
Events and Stories in the News Workshop, page
77–86.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional lstm over dependency
paths. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), page 1–6.

Prafulla Kumar Choubey and Ruihong Huang. 2017. A
sequential model for classifying temporal relations
between intra-sentence events. In Proceedings of the
2017 Conference on Empirical Methods in Natural
Language Processing, page 1796–1802.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171–
4186.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey on in-context learning.
arXiv preprint arXiv:2301.00234.

Jinglong Gao, Xiao Ding, Bing Qin, and Ting Liu. 2023.
Is chatgpt a good causal reasoner? a comprehensive
evaluation. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, page 11111–11126.

Lei Gao, Prafulla Kumar Choubey, and Ruihong Huang.
2019. Modeling document-level causal structures
for event causal relation identification. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), page 1808–1817. Associa-
tion for Computational Linguistics.

Zhilei Hu, Zixuan Li, Xiaolong Jin, Long Bai, Saiping
Guan, Jiafeng Guo, and Xueqi Cheng. 2023. Seman-
tic structure enhanced event causality identification.
In Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), page 10901–10913.

Peixin Huang, Xiang Zhao, Minghao Hu, Zhen Tan,
and Weidong Xiao. 2024. Distill, fuse, pre-train:
Towards effective event causality identification with
commonsense-aware pre-trained model. In Proceed-
ings of the 2024 Joint International Conference on

2597

https://aclanthology.org/W13-2322/
https://aclanthology.org/W13-2322/
https://doi.org/10.18653/v1/N19-1179
https://doi.org/10.18653/v1/N19-1179


Computational Linguistics, Language Resources and
Evaluation (LREC-COLING 2024), page 5029–5040.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng
Zeng, Zhenting Wang, Wenyue Hua, Haiyan Zhao,
Kai Mei, Yanda Meng, Kaize Ding, et al. 2025. Ex-
ploring concept depth: How large language models
acquire knowledge and concept at different layers?
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 558–573.

Chao Liang, Wei Xiang, and Bang Wang. 2024. In-
context contrastive learning for event causality iden-
tification. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
page 868–881.

Jintao Liu, Zequn Zhang, Zhi Guo, Li Jin, Xiaoyu Li,
Kaiwen Wei, and XianSun. 2023a. Kept: Knowledge
enhanced prompt tuning for event causality identifi-
cation. Knowledge-Based Systems, 259(110064).

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023b. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9).

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Hieu Man, Minh Nguyen, and Thien Nguyen. 2022.
Event causality identification via generation of im-
portant context words. In Proceedings of the 11th
Joint Conference on Lexical and Computational Se-
mantics, page 323–330.

Paramita Mirza. 2014. Extracting temporal and causal
relations between events. In Proceedings of the ACL
2014 Student Research Workshop, page 10–17.

Paramita Mirza, Rachele Sprugnoli, Sara Tonelli, and
Manuela Speranza. 2014. Annotating causality in the
tempeval-3 corpus. In Proceedings of the EACL 2014
Workshop onComputational Approaches to Causality
in Language (CAtoCL), page 10–19.

Paramita Mirza and Sara Tonelli. 2014. An analysis of
causality between events and its relation to tempo-
ral information. In Proceedings of COLING 2014,
the 25th International Conference on Computational
Linguistics: Technical Papers, page 2097–2106.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018.
Joint reasoning for temporal and causal relations. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), page 2278–2288.

Jong-Hoon Oh, Kentaro Torisawa, Chikara Hashimoto,
Motoki Sano, Stijn De Saeger, and Kiyonori Ohtake.
2013. Why-question answering using intra- and inter-
sentential causal relations. In Proceedings of the 51st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1733–
1743.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Mehwish Riaz and Roxana Girju. 2014. Recognizing
causality in verb-noun pairs via noun and verb seman-
tics. In Proceedings of the EACL 2014 Workshop on
Computational Approaches to Causality in Language
(CAtoCL), page 48–57.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem,
Rianne van den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, page 593–607.

Oscar Skean, Md Rifat Arefin, and Ravid Shwartz-
Ziv. 2024. Does representation matter? exploring
intermediate layers in large language models. In
Workshop on Machine Learning and Compression,
NeurIPS.

Haoyu Wang, Fengze Liu, Jiayao Zhang, Dan Roth, and
Kyle Richardson. 2024. Event causality identifica-
tion with synthetic control. In Proceedings of the
2024 Conference on Empirical Methods in Natural
Language Processing, pages 1725–1737.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021a. im-
proving event causality identification via self su-
pervised representation learning on external causal
statement. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, page
2162–2172.

Xinyu Zuo, Pengfei Cao, Yubo Chen, Kang Liu, Jun
Zhao, Weihua Peng, and Yuguang Chen. 2021b.
Learnda: Learnable knowledge-guided data augmen-
tation for event causality identification. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), page 3558–3571.

Xinyu Zuo, Yubo Chen, Kang Liu, and Jun Zhao. 2020.
Knowdis: Knowledge enhanced data augmentation
for event causality detection via distant supervision.
In Proceedings of the 28th International Conference
on Computational Linguistics, page 1544–1550.

2598

https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815


A Baselines

We compare our approach with several baseline
models, categorized into feature-based, and PLM-
based methods.

Feature-based: For the ESC dataset, we
adopted the following baselines: LSTM (Cheng
and Miyao, 2017), is a sequential model based
on dependency paths; Seq (Choubey and Huang,
2017), is a sequential model that utilizes anthro-
pogenic features; LR+ and ILP, (Gao et al.,
2019) are document structure models; For the CTB
dataset, our choices are as follows: RB (Mirza and
Tonelli, 2014), is a rule-based model; DD (Mirza
and Tonelli, 2014), is an annotation framework for
ECI; VR-C (Mirza, 2014), enhances ECI with data
filtering and causal signals.

PLMs-based: DICP is compared to various
PLMs-based approaches: KnowDis (Zuo et al.,
2020), is a distant supervision method that en-
hances data and improves the model using large-
scale knowledge bases and external knowledge;
LearnDA (Zuo et al., 2021b), is a learnable
knowledge-guided data augmentation method for
ECI; CauSeRL (Zuo et al., 2021a), is a method
through self-supervised representation learning on
external causal statements; GenECI (Man et al.,
2022), is a generative model through the genera-
tion of important context words for ECI; SemSIn
(Hu et al., 2023), utilizes an AMR parser to ob-
tain semantic graphs, capturing the semantic struc-
ture information of the text to enhance identifi-
cation capability; KEPT (Liu et al., 2023a), is a
knowledge-enhanced prompt learning paradigm.
DFP (Huang et al., 2024), used the heterogeneous
information fusion module to deeply integrate it
with text knowledge, and further enhanced and
unified the representation of text and meta-graph
with the help of continuous pre-training for ECI.
ICCL (Liang et al., 2024), introduced in-context
contrastive learning modules to improve perfor-
mance.

LLMs: We also compare DICP with large lan-
guage models (LLMs), including GPT-3.5-turbo,
GPT-4 (Gao et al., 2023), which have demon-
strated superior performance across a wide range of
tasks due to their extensive pre-training on diverse
datasets.

2599


