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Abstract

Direct alignment algorithms have proven an
effective step for aligning language models to
human-desired behaviors. Current variants of
the Direct Preference Optimization objective
have focused on a strict setting where all tokens
are contributing signals of KL divergence and
rewards to the loss function. However, human
preference is not affected equally by each word
in a sequence but is often dependent on spe-
cific words or phrases, e.g. existence of toxic
terms leads to non-preferred responses. Based
on this observation, we argue that not all tokens
should be weighted equally during PO and pro-
pose a flexible objective termed SparsePO, that
aims to automatically learn to weight the KL
divergence and reward corresponding to each
token during PO training. We propose two dif-
ferent variants of weight-masks that can either
be derived from the reference model itself or
learned on the fly. Notably, our method in-
duces sparsity in the learned masks, allowing
the model to learn how to best balance reward
and KL divergence contributions at the token
level, learning an optimal level of mask sparsity.
Extensive experiments illustrate the effective-
ness of our approach at aligning to preference
proxies, including sentiment control, helpful-
ness and harmlessness, and summary quality.
Our method obtains +10% and +3% win rate
points in summarization and dialogue scenar-
ios, respectively, without compromising model
reasoning or the relevancy and faithfulness of
the summary response.

1 Introduction

The rise of employing Large Language Models
(LLMs) as conversational agents has increased the
importance of aligning them with human prefer-
ences. Preference Optimization (PO), i.e. the train-
ing paradigm that aims to steer models to a desired
behavior (typically related to human perception),

*Equal contribution

is considered one of the most important step in the
pipeline of LLM training for producing accurate,
harmless and controllable models. Reinforcement
Learning from Human Feedback (RLHF; Chris-
tiano et al. (2017)) was the primary method for
obtaining such a behavior. However, due to it’s
inherent complexity it has been overpowered by Di-
rect Preference Optimization (DPO; Rafailov et al.
(2023)), a simpler, offline approach that produces a
policy model that fits the preference data without
the need for reinforcement learning.

DPO performs at the sequence level, optimizing
rewards and measuring KL divergence for com-
plete responses. However, various studies have
shown that signals from specific tokens are primar-
ily responsible for learning desired behaviors, both
during pre-training (Lin et al., 2024) and prefer-
ence optimization (Yang et al., 2024). In particular,
in domains where the preference is determined by
a specific aspect (e.g. sentiment, toxicity) or when
the decision relies on certain subsequences (Pal
et al., 2024), it is necessary to consider more fine-
grained updates. To further illustrate this point, Fig-
ure 1 shows that DPO is already learning implicitly
to assign different token-level rewards, with higher
values on a few tokens with positive/negative polar-
ity (e.g. pretty, weak). However, noting the various
lone tokens with high rewards, DPO’s reward dis-
tribution seems inconsistent, and we posit that it
would benefit from a more explicit signal.

Aligned with prior work, we argue that not all
tokens are important in preference optimization.
We further propose that in order to have more
diverse responses, and flexible optimization, we
should allow only certain tokens to be close to
the reference model so that the rest are able to
grow beyond it–dismissing the need for measur-
ing KL divergence on all tokens. As such, in this
work we propose sparse token-level preference op-
timization (SPARSEPO), a method that learns auto-
matically during training inherently sparse masks

25477

efstathia.christopoulou@huawei.com
ronald.cardenas.acosta@h-partners.com
 {gerasimos.lampouras,haitham.ammar}@huawei.com 
jun.wang@ucl.ac.uk


Figure 1: Token-level rewards for chosen (top) and rejected (bottom) responses given an input prompt. After a
GPT2-Large model is trained with DPO on the IMDB dataset to generate positive movies reviews, these rewards are
calculated as the log ratio of token probabilities between policy (DPO) and reference model (original GPT2-Large).
Denser values indicate higher probability score assigned to a token by the policy than the reference, implying
importance towards that preference.

over token-level rewards and KL divergences. Ap-
proaches that have been developed based on this
observation, either use external models to identify
important tokens (Yoon et al., 2024) or need to first
perform DPO training to select high-rewardable
tokens (Yang et al., 2024). Our method targets flex-
ibility, with masks that can be either shared or in-
dependent between rewards and KL divergence. In
addition, it is not reliant on external models and can
be combined with any possible masking method.
In this work, we present two masking strategies but
our method is orthogonal to alternative strategies.

Our contributions include (1) a flexible frame-
work, termed SparsePO, for weighting token-level
reward and KL contributions tailored to the offline
preference optimization objective, (2) analyses over
the induced masks’ sparsity and reward frontier and
how they correlate with controlled KL divergence,
(3) quantitative and qualitative gains when employ-
ing our proposed approach to different domains
with explicit or implicit preference indicators. Ex-
tensive experiments demonstrate the effectiveness
of SparsePO, obtaining +10% and +3% win rate
points in summarization and dialogue tasks, respec-
tively, without compromising the reasoning capabil-
ities of the model, or the relevancy, lexical diversity,
and faithfulness of the summary response.

2 Methodology

2.1 Preference Optimization
The purpose of aligning models with human prefer-
ences is to steer model behavior to produce human-
acceptable responses. To realize that, we assume
training data in the form of static, paired pref-
erences. A prompt x is associated with two re-
sponses, chosen yc and rejected yr, so that yc is
preferred over yr (yc ≻ yr|x), resulting in a dataset
D = {x(i), y(i)c , y

(i)
r }Ni=1. Such responses and their

rankings are typically collected either by humans or
automatically from other models (Xu et al., 2024).

In PO, we aim to train a model to generate re-
sponses closer to yc than yr.

In the standard Reinforcement from Human
Feedback (RLHF) pipeline (Ziegler et al., 2019)
this is realized in a sequence of steps. Firstly,
we perform supervised fine-tuning on the task for
which we would like to learn preferences, to shift
the distribution of the language model in-domain
with the PO data. Then, a reward model is trained,
responsible for assigning a higher score (reward)
to chosen responses and lower scores to rejected
ones. Given a policy network π (i.e., the model that
we aim to optimize), responses are sampled and
then scored by the reward model. The policy train-
ing aims to maximize the rewards associated with
chosen responses and minimize those of rejected
ones, subject to a KL constraint with a reference
model πref. The constraint prevents the policy π
from deviating too much from the distribution that
the reward model has learned, as well as avoids
reward hacking. The above process is translated
into the following objective.

Jπ = max
π

Ex∼D,y∼π(·|x) [r(x, y)]

− βDKL [π(·|x)∥πref(·|x)] , (1)

where r(x, y) corresponds to the reward for re-
sponse y given input x, DKL is the Kullback-
Leibler Divergence between the policy π(·|x) and
the reference model πref(·|x) over response se-
quences. In practice, policy and reference are the
same at the start of training with the latter frozen.

2.2 Sparse Preference Optimization

Motivated by the fact that not all tokens are re-
quired to infer a preference, and in order to control
token-level contributions, we start by converting
the previous objective (Equation 1) that operates
on the sequence-level to token-level. Based on
the work of Zeng et al. (2024) (TDPO), this corre-
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sponds to maximizing the following equation:

Jπ = max
π

Ex∼D,yt∼π(·|x,y<t)

[
Aπref(y

t|x, y<t)
]

− βDKL

[
π(·|x, y<t)||πref(·|x, y<t)

]
(2)

with Aπref(y
t|x, y<t) ≡ Qπref(y

t|x, y<t) −
Vπref(x, y

<t) being the advantage function for the
reference model as the difference between the state-
action Q and the state-value function V , and β be-
ing a tunable parameter controlling the deviation
from the reference model. Note that here the KL
divergence is over the next-token distribution (i.e.,
the vocabulary of the model).

We argue that in order to control the contribu-
tion of each token, we can add a weight in front
of the token-level KL divergence term, so that not
all tokens are forced to stay close to the reference
model. This should lead to more diverse generation
of responses, since only a few important tokens in-
dicating preference will have to be in-distribution.

Thus, we introduce a mask function m(y<t) ∈
[ϵ, 1], ϵ > 0 that produces a scalar for each token yt

in a sequence y that measures the amount of token
KL participation in the loss function.

Jπ =max
π

Ex∼D,yt∼π(·|x,y<t)

[
Aπref(y

t|x, y<t)
]

− β m(y<t) DKL

[
π(·|x, y<t)||πref(·|x, y<t)

]
(3)

Deriving Equation 3, similarly as TDPO, and as-
suming the mask is dependent on the reference
model alone and previously seen tokens, m(y<t) =
fπref(x, y

<t), we end up with this optimal policy,

π∗(yt|x, y<t) =
1

Z(x, y<t)
πref(y

t|x, y<t)

· exp
(

1

β m(y<t)
Qπref(y

t|x, y<t)

)
,

(4)

where Z(x, y<t) is the partition function. The
Bradley-Terry model (Bradley and Terry, 1952) is
a popular theoretical formula employed to model
the human preference distribution. As it operates
on the sequence-level, its equivalent to the token-
level is the Regret Preference model as previously
proven by Zeng et al. (2024).

PBT (yc > yr|x) =

σ

(
T1∑

t=1

γt−1Aπ

(
yt
c|x, y<t

c

)
−

T2∑

t=1

γt−1Aπ

(
yt
r|x, y<t

r

)
)
.

(5)

Solving Eq. 4 for Qref, considering A ≡ Q−V and
substituting to Eq. 5, we obtain the final objective,

named SparsePO. Our primary difference is that m
is dependent on each token, effectively weighting
both components of the objective.*

LSparsePO =− Ex,yc,yr∼D

[log σ (u(x, yc, yr)− δ(x, yc, yr))],
(6)

u(x, yc, yr) = β

T1∑

t=1

mu(y
t
c) log

π∗(ytc|x, y<t
c )

πref(ytc|x, y<t
c )

− β

T2∑

t=1

mu(y
t
r) log

π∗(ytr|x, y<t
r )

πref(ytr|x, y<t
r )

(7)

δ(x, yc, yr) =βDMaskKL[x, yc;π
∗∥πref]

− βDMaskKL[x, yr;π
∗∥πref], (8)

where DMaskKL[x, y;π
∗∥πref] =∑T

t=1md(y
t) DKL[π

∗(·|x, y<t)∥πref(·|x, y<t)].
The objective effectively adds token-level masks
mu on rewards (Equation 7) and md on the
KL (Equation 8) for each response respectively.
Naturally, these masks can either be shared or
be independent. In the following sections we
experiment with both mu = md and mu ̸= md.

2.3 Mask Computation

In the previous section we showed how we can
control the contribution of rewards and KL diver-
gence of each token through the introduction of
weights in the loss function. Next, we introduce
two strategies to obtain these weights from the ref-
erence model, one that is derived directly from its
internal activations and another that is learned in
parallel during preference optimization.

Model Activation-based Mask. We leverage
the rich information in the activations of the refer-
ence model and aggregate them into token-level
weighting masks, as follows. Let atg ∈ Rd′

be the output of activation function g(∗) in net-
work πref , and ātg its average value across di-
mensions for time step t. Note that atg is ex-
posed to information from y<t due to the au-
toregressive nature of generation. We obtain
[ã1g, .., ã

T
g ], where ãtg = (ātg − mean(āg))/std(āg)

is the standardization of ā across sequence
*Refer to Appendix A.2 for the detailed solution
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y. Then, we define activation-based mask
m(y<t) = mean{ãtg|∀g ∈ πref}, i.e. the average
ãtg for all activations in the reference model. In
practice, we aggregate outputs from feed-forward
layers, residual connections, and attention lay-
ers, across all layers in πref . Finally, we set
mu(y

<t) = md(y
<t) = m(y<t), i.e. a common

mask for the rewards and KL terms given, and term
this variant SPARSEPO[DENSE].

Learnable Sparse Mask. In our second variant,
mask m(y<t) is computed using learnable param-
eters. Specifically, we learn one feed-forward net-
work (FFN) with ReLU activation for each model
layer, and aggregate representations from all lay-
ers with a linear layer.* A single layer mask is
computed as follows:

m(l)(y<t) = ReLU
(
H(l)(yt) ·w(l) + b(l)

)
,

where H(l) ∈ RN×d corresponds to the reference
model hidden representation for layer l for N
tokens and w(l) ∈ Rd,b(l) are the l-layer learned
parameters. Consequently, when learning multiple
masks per layer, they are combined as m(y<t) =
ReLU

(
Concat

(
m(1)(y<t), ...,m(L)(y<t)

)
·wo

)
,

with wo ∈ RL the output merging vector.
The ReLU activation function produces a spar-

sity in the masks, the degree of which is depen-
dent on the target preference data and the reference
model. The mask values (independent of strat-
egy) are utilized solely during PO training and
are ignored during model inference. We denote
SPARSEPO[mu = md] when learning a common
mask for reward and KL terms, and [mu ̸= md]
when learning independent masks.

3 Experiments

In this section, the effectiveness of SparsePO is
investigated in both proxy-preference and human-
preference setups. Proxy-preference setups are
analyzed through sentiment control, and summa-
rization, whereas human-preference setup is ana-
lyzed through single-turn dialogue tasks. See Ap-
pendix B and C for further details on experimental
setup and complementary results, respectively.

3.1 Model Comparison
We consider the following baselines that model
preference at the response and token level:

*We initially experimented with learning two FFNs per
layer, one for chosen and one for rejected responses. However
this led to overfitting, hence we learn a single vector per layer.
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Figure 2: Pareto frontier of expected reward and
response-level KL divergence w.r.t. the reference model,
for a sentiment control scenario over the IMDB dataset.
Solid lines estimate the frontier for each system, and
points represent hyper-parameter variations.

DPO (Rafailov et al., 2023); SimPO (Meng et al.,
2024), which aims to maximize the probability dif-
ference between chosen and rejected responses;
DPOP (Pal et al., 2024), which adds a penalty
term to the DPO loss to encourage high probability
scores of the preferred completions; SePO (Yang
et al., 2024), that maximizes the margin between
probabilities of chosen and rejected responses,
where these probabilities are calculated using only
a fixed percentage of tokens in each response;
TDPO v1 and v2 (Zeng et al., 2024), which add
token-level KL divergence as a regularization term;
and finally, D2PO (Shao et al., 2025), that adds a
temporal decay factor at the token level that penal-
izes lengthy responses.

3.2 Sentiment Control
Following prior work (Rafailov et al., 2023; Amini
et al., 2024; Zeng et al., 2024), we use sentiment
as a proxy for preference and align models to gen-
erate positive movie reviews. As SFT model we
use GPT2-LARGE (Radford et al., 2019) trained
on the IMDB dataset (Maas et al., 2011).* To
train PO, preference data is generated by sampling
two completions per review prefix from the SFT
model. Then, we use a sentiment classifier* as
a ground-truth reward model and set chosen (yc)
and rejected (yr) responses such that score(yc) >
score(yr), where score(y) = p(y|positive) or 1 −
p(y|negative) if y is classified as positive or nega-
tive, respectively.

Reward and KL Divergence Trade-off. We in-
vestigate the trade-off between ground-truth reward

*Huggingface: insub/gpt2-large-imdb-fine-tuned
*Huggingface: siebert/sentiment-roberta-large-english
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and response-level KL divergence by estimating
their Pareto frontier. For all policies, we train using
β = {0.01, 0.1, 0.2, ..., 1, 2, .., 5}, We sample two
generations per prompt in the test set every 100
training steps using multinomial sampling, and re-
port the ground-truth reward and average response-
level KL divergence, averaged over samples.

As shown in Figure 2, SparsePO[dense] presents
comparable performance to TDPO v1 for KL < 3,
and dominates the frontier thereafter until KL =
15, point when our [mu = md] and [mu ̸= md]
variants take over. These results demonstrate that
SparsePO allows a much larger effective KL diver-
gence range without sacrificing sentiment control
significantly.

Sparsity and Token-level KL divergence.
Next, we analyze the trade-off between mask
sparsity and token-level KL divergence through-
out training, in the independent mask setup of
SparsePO. Figure 3 shows results for chosen re-
sponses from systems trained at different values
of β.* Firstly, we note that sparsity in the reward
mask (mu) always starts high (80%), increasing
slightly and then steadily decreasing until the end
of training, reaching as down as 20%. Such de-
crease is controlled by increasing β until 0.8, after
which the trend is inverted. We hypothesize that the
reward mask first learns to identify the tokens most
informative for sentiment control, and increasingly
expands this token set as training proceeds at a rate
controllable by β. This insight adds to previous
findings (Yang et al., 2024) that PO-trained models
can learn to identify highly rewardable tokens.

Regarding the divergence mask, we find that
increasingly higher values of β induce higher lev-
els of sparsity in md, restricting the amount of to-
kens allowed to diverge in a sequence, which trans-
lates to lower token-level KL divergence through-
out training. However, for sufficiently low values
of β, sparsity can be kept below 20%.

In summary, we find that low values of β in-
duce scenarios where reward sparsity is high and
divergence sparsity is low, meaning that the loss is
dominated by term δ(x, yc, yr). Conversely, a high
β induces high sparsity on both masks, hindering
learning significantly. However, we do observe that
a more balanced sparsity level in both masks can
be induced with mid-range values of β.

Qualitative Analysis. Finally, we perform qual-
itative analysis on the learned masks by observing

*See Figure 12 in App. C for results over rejected.

their token-level values on example sentences. Sim-
ilarly to Figure 1, we calculate token-level rewards
as the log ratio of response probabilities between
policy and reference models. Token-level KL di-
vergence is calculated as the token-level KL be-
tween policy and reference. We show the values
of reward and KL divergence after the mask ap-
plication in a common mask setup(mu = md →
common) and on independent setup (mu ̸= md →
indp). We also compare with the TDPO baseline
as the closest method to ours. Technically, when
mu = md = 1 our objective becomes equivalent
to TDPO, hence we can check the influence of the
proposed masks on the target objective. Figure 4a
illustrates that a common mask has less sparsity
compared to independent, highlighting a larger set
of tokens. Comparing directly reward maps with
TDPO we see that that independent mask is weight-
ing only subsequences that express a certain polar-
ity (watch it again), while TDPO gives a weight
to all tokens in the sequence. The same stands for
common masks while being slightly noisier in the
tokens they cover. Looking at KL divergence maps
in Figure 4b, lower values indicate minor to no
divergence from the reference. TDPO is stricter in
KL control, forcing the token majority to be close
to the reference, while common and sparse masks
allow more diversity with higher values on particu-
lar tokens, possibly easing diversity. Heatmaps for
the rejected response can be found in Figure 21.

3.3 Helpfulness & Harmlessness Control

Here, we investigate the effectiveness of our ap-
proach in aligning models to generate helpful and
harmless responses in dialogue. We employ the An-
thropic HH dataset (Bai et al., 2022), consisting of
open-ended multi-turn dialogues in which humans
ask an assistant for help, advice, or to perform a
task. We train Pythia 1.4B (Biderman et al., 2023)
using the chosen completions for SFT training and
the preference dataset for PO.

Preference alignment is measured by using GPT-
4 as a judge for helpfulness and harmlessness and
reporting win rates between generated responses
and chosen responses, and between generated re-
sponses by our systems against those generated by
DPO (Liu et al., 2025).* Results are tested for sig-
nificance using a one-sided ANOVA test (p < 0.05)
followed by a pair-wise post-hoc Tukey-HSD test
(CI= 0.95), performed across temperatures.

*Refer to Appendix B.3 for more experimental details.
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Figure 3: Sparsity levels in the reward mask (mu, left) and the token-level KL divergence mask (md, middle), as
well as token-level KL divergence of chosen responses during training (over IMDB), for increasing values of β.

(a) Chosen response rewards.

(b) Chosen response KL values.

Figure 4: Token-level heatmaps for chosen responses for TDPO-v2 SparsePO. Darker color indicates higher values.
All scores are scaled in [0, 1] for comparison.

Additionally, we investigate the impact of
our approach on knowledge-intensive reasoning
(ARC,Clark et al. (2018); MMLU, Hendrycks et al.
(2021a)), commonsense reasoning (HellaSwag,
Zellers et al. (2019); WinoGrande Sakaguchi et al.
(2021)), and truthfulness (TruthfulQA, Lin et al.
(2022)), using the LM Evaluation Harness frame-
work (Gao et al., 2024) for metric calculation.*

Statistical significance at the system level is tested
pairwise using Bootstrap resampling (Davison and
Hinkley, 1997) with a 95% confidence interval.

Alignment and Reasoning. In terms of align-
ment efficacy, SparsePO[mu = md] consistently
obtains the higher win rates against chosen re-
sponses, as shown in Figure 5, with +6.8% over
TDPO v1, +12.6% over TDPO v2 and +5.6% over
DPO. We found the score differences between
SparsePO[mu = md] and DPO to be significant
for all temperatures except T = 1, whereas scores
from all SparsePO variants are significantly higher
than TDPO v2 across all temperatures. Similarly,
when compared against DPO responses, shown in

*GSM8k excluded due to low performance of all models.

Method Temperature
0 0.25 0.50 0.75 1.0

TDPO V1 44.32 34.64 37.44 33.60 34.60
SPARSEPO
[DENSE] 54.12 47.08 46.88 43.32 39.16
[mu=md] 62.96 53.16 57.08 55.04 58.44
[mu ̸=md] 55.44 51.04 53.24 48.16 48.80

Table 1: Win rates (%) per temperature against DPO
responses in Anthropic HH single-turn dialogue. Best
models are bolded.

Table 1, SparsePO[mu = md] is consistently and
significantly preferred at all temperatures, with an
average gain of 19.56% over TDPO v1.

In reasoning, SparsePO[dense] performs best
in average, closely followed by both SparsePO
variants, as shown in Table 2. In knowledge-
intensive reasoning, SparsePO[mu = md] per-
forms best on MMLU, while SparsePO[mu ̸= md]
and SparsePO[dense] remains competitive on ARC.
In commonsense, SparsePO[dense] performs best
on HellaSwag, while SparsePO[mu = md], on
WinoGrande. In contrast, any PO method seems
harmful for instruction-following tasks (IFEval), as
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Methods ARC HSw TQA MMLU Wno Avg

SFT 26.52 46.74 41.63 22.49 56.43 38.76

DPO 27.61 47.64 42.35 23.87 56.80 39.65
TDPO V1 30.20 49.05 41.35 24.11 56.09 40.16
TDPO V2 28.95 48.61 43.14 23.48 56.27 40.09
SIMPO 28.50 33.07 47.73 23.21 51.93 36.89
DPOP 30.38 47.91 43.48 22.83 56.09 40.14
SEPO 27.98 37.78 42.76 22.99 51.30 36.56
D2PO 28.58 47.63 44.28 23.62 54.93 39.80

SPARSEPO
[DENSE] 29.10 50.89 41.63 24.63 57.77 40.80
[mu=md] 28.73 48.48 42.23 24.91 59.12 40.69
[mu ̸=md] 29.92 47.15 42.97 23.64 57.46 40.23

Table 2: Performance of Pythia 1.4B models on Open
LLM Leaderboard tasks after PO with Helpfulness &
Harmlessness as proxy for human preference.

indicated by SFT’s high scores.
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Figure 5: Win rates of system responses against chosen
responses in Anthropic HH single-turn dialogue.

3.4 Summary Quality Control
We employ overall summary quality as proxy for
human preference, which includes quality aspects
such as information coverage, faithfulness, and co-
herence. We use Reddit TL;DR dataset (Völske
et al., 2017) and its preference annotations (Stien-
non et al., 2020) to fine-tune a GPTJ-6B (Wang and
Komatsuzaki, 2021) SFT model* using LoRA (Hu
et al., 2022).

For evaluation, we take 100 prompts from
the test set and sample 5 completions using nu-
cleus sampling (p = 0.95) and temperatures
T = {0, 0.25, 0.50, 0.75, 1.0}. Regarding auto-
matic metrics, we report ROUGE-L F1 (Lin and
Hovy, 2003) for lexical relevance; and employ
SummaCZS (Laban et al., 2022) as base metric
for self-entailment and document-summary entail-
ment as a measure of diversity and faithfulness,
respectively. Additionally, we report win rates of
system summaries against reference summaries and
win rates, and between system summaries against
those generated by DPO (prompt available in Ap-
pendix B.2). Similarly to the previous case study,

*Huggingface: CarperAI/openai_summarize_tldr_sft

Method Temperature
0 0.25 0.50 0.75 1.0

TDPO V1 31.24 36.72 34.64 35.52 35.97
SPARSEPO
[DENSE] 47.56 55.16 50.60 53.68 55.96
[mu=md] 46.52 46.64 47.92 48.56 47.33
[mu ̸=md] 55.20 48.76 47.96 48.12 48.53

Table 3: Win rates (%) per temperature against DPO re-
sponses for the TL;DR test set. Best models are bolded.

systems are compared using a one-sided ANOVA
test (p < 0.05) followed by a pair-wise post-hoc
Tukey-HSD test (CI= 0.95), performed across tem-
peratures.

Alignment, Diversity, and Faithfulness. We
investigate how our method balances alignment ac-
curacy –as measured by win rates and summary
relevancy–, generation diversity, and faithfulness.
First, win rates against reference summaries, as
shown in Figure 7, reveal that SparsePO[dense]
achieves comparable alignment across tempera-
tures, while being significantly better (statistically
speaking) than DPO and TDPO v1 at 0.25 and of-
fering a 6.4 points significant improvement over
DPO at 1.0. Similarly, when compared against
DPO responses, Table 3, SparsePO[mu ̸= md]
is significantly preferred at T = 0, whereas
SparsePO[dense], at all other temperatures, with
an average gain of 17.2% over TDPO v1.

Next, Figure 6 presents scores for relevancy,
diversity, and faithfulness, for test set instances
with high document–reference summary faithful-
ness (Aharoni et al., 2023). Overall, we observe
that all SparsePO variants obtain comparable scores
across temperatures, with Sparse[mu = md] higher
faithfulness scores at T = 0. Therefore, a common
mask SparsePO produces faithful, diverse sum-
maries without trading off relevancy at low tem-
peratures. Nevertheless, on this domain, sparsity
results in suboptimal performance.

4 Related Work

Since the introduction of DPO, several methods
have been developed to mitigate the various short-
comings of the method, mostly by introducing fur-
ther constrains to the loss function. Identity Prefer-
ence Optimization (Gheshlaghi Azar et al., 2024,
IPO) was proposed to primarily tackle overfitting,
that does not rely on the Bradley-Terry modulation
assumption. Ethayarajh et al. (2024) introduced
KTO, that takes advantage of that Kahneman-
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Figure 7: Win rates against reference summaries from
the TL;DR test set.

Tversky model of human utility. The method drops
the requirement for preference pairs and is de-
pendent only on a binary signal of whether a re-
sponse is acceptable or not. To control response
length and dismiss the need for a reference model,
SimPO (Meng et al., 2024) uses the average log
probability of the sequence (instead of the sum)
while also requiring the difference between re-
sponses to be at least equal to a margin. Another
method that does not require a reference model
or prior supervised fine-tuning, is ORPO (Hong
et al., 2024), that optimizes the odds ratio together
with cross-entropy. On a similar vein, Amini et al.
(2024) argues that not all preference pairs are con-
sidered equal, requiring the preferred responses to
have a likelihood larger than an offset value from
the dispreferred ones, based on the score assigned
to each response from an external reward model.
Other methods that incorporate margins between
probability differences include DPO-Positive (Pal
et al., 2024), where the log probability of the pre-
ferred response for the policy needs to be higher
than that of the reference model. The method is par-
ticularly effective when the edit distance between
responses is low, e.g in math data. Wu et al. (2024)
specifically aimed at a dynamic optimization of the
β value for each batch, proposing β-DPO.

Closer to our approach, there is a family of meth-
ods that focus on token-level rather than sequence-
level optimization. In TDPO (Zeng et al., 2024),
the sequence-level DPO objective is converted into
token-level, which results in the KL divergence
to act as a regularization term, optimized together
with the original objective. The new loss leads to
more controllable KL values throughout the course
of training. Inverse-Q*(Xia et al., 2024) optimizes
the same objective as PPO assigning token-level
reward feedback via an estimated policy. Simi-
larly, Token-level Continuous Rewards (Yoon et al.,
2024, TLCR) incorporate a discriminator trained to
distinguish positive and negative tokens (obtained
from GPT-4 judgments). The confidence of the
discriminator is used to assign continuous rewards
to each token considering the context. Similarly to
our motivation, in Selective PO (Yang et al., 2024,
SePO), not all tokens are considered equal. An
oracle model is trained first to identify which to-
kens are important in chosen and rejected responses
(based on their reward values). These tokens are
then used to train DPO again, while the rest are ze-
roed out. In contrast to the above methods, we aim
for maximum flexibility. Our approach does not
require an external LLM to model rewards and our
proposed masks are learned on the fly, effectively
assigning higher rewards to tokens that are impor-
tant to the target preference. In addition, SparsePO
induces the necessary sparsity in the masks auto-
matically with a single stage of training.

5 Discussion

Based on the controlled experiments we conducted
in the previous section, here we briefly discuss our
overall findings. Firstly, based on the sentiment
control analysis, SparsePO allows larger KL diver-
gence at little to no cost in expected ground-truth
reward. The β value is able to control sparsity in
both masks, across domains, with values between
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0.6 to 4 leading to mid-range sparsity levels, de-
pending on the domain and target preference proxy.
We found that higher sparsity was present in sen-
timent control, highlighting a certain triviality of
the task as the SFT model seems able to already
identify words that are important for the target pref-
erence. On the other end, for summarization, lower
sparsity between 0.2 and 0.4 seemed best in terms
of alignment accuracy as summary correctness is
a less well-defined preference proxy. For helpful-
ness control, optimal sparsity was found instead
between 0.6 and 0.8, possibly as existence of toxic
terms renders response dispreferred. We argue that
the mask works in tandem with beta and we ob-
served that the range of betas that are effective with
SparsePO is generally higher than DPO (with best
values between 0.4-1).* Furthermore, SparsePO
avoids reward hacking by maintaining a meaning-
ful distribution of values in masks for reward and
token-level KL terms, as revealed by our analysis
in § 3.2 and § C.5.

From our analysis over DPO, TDPO and their
variants, it is important to note that, although
restricting divergence at the response or token-
level proves effective at maintaining the model in-
domain, this does not guarantee better ground-truth
rewards or better downstream task performance.
For cases in which the preference proxy is com-
plex, such as ‘helpfulness’, ‘summary quality’, this
plain control can even hinder performance. In con-
trast, we devise a training procedure in which a
model can learn to enhance or suppress the reward
and KL divergence for each token independently.
Our qualitative analysis shows that indeed for triv-
ial tasks, tokens that are considered important for
the preference proxy get high rewards and low KL
divergence, meaning they need to be close to the
reference predictions to maintain preference.

Finally, regarding the scalability of our method,
we provided a principled comparison across a wide
range of mode sizes (albeit considered relatively
small for current industrial standards) going from
500M (GPT2) to 1.4B (Pythia) and 6B (GPTJ), as
well as dataset sizes going from 10k (IMDB) to
150k (HH). The results showed that SparsePO can
scale effectively to model size and training data
size across a variety of domains.

*β = 1.0 results in slightly suboptimal performance.

6 Conclusion

We introduced Sparse Token-level Preference Opti-
mization (SparsePO), a novel LM alignment strat-
egy that learns to weight the reward and KL diver-
gence for each particular token in a response during
PO training. We proposed two masking strategies,
obtaining model activation-based masks from the
reference model and learning mask representations
either commonly for both reward and divergence
terms or independently. By allowing masks to be
learned along with preference, we observed that
they converged to a non-trivial level of sparsity
which can be controlled with well-studied hyper-
parameters in preference optimization, while being
dependent on target preference proxy. Extensive ex-
periments across several tasks and domains, reveal
that our method consistently outperforms strong
baselines that model preference at the response and
token-level, while assigning higher rewards and
lower KL values to tokens that are important for
inferring target preference.

7 Limitations

In our experiments, we focused on artificial as well
as real human preference scenarios. However, we
acknowledge that the results in this paper might
not translate to specific human preference proxies,
as the applicability of PO methods is highly task-
dependent.
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A Mathematical Derivations

A.1 Obtaining the Optimal Policy

In order to get the optimal policy, we take advantage of A(yt|x, y<t) ≡ Q(yt|x, y<t)− V (x, y<t) and
solve the following objective that includes our introduced mask m(y<t). Note that m(y<t) ∈ [ϵ, 1], ϵ > 0
to ensure proper definition of the following derivations. In the following equations, π refers always to
next-token distribution π(·|x, y<t), and we oftentimes omit (yt|x, y<t) for simplicity.

Jπ
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π
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Where the partition function is given by:

Z(x, y<t) = Eyt∼πref πref(y
t|x, y<t) exp

(
1

β m(y<t)
Qπref(y

t|x, y<t)

)

=
∑

y<t

πref(y
t|x, y<t) exp

(
1

β m(y<t)
Qπref(y

t|x, y<t)

)
. (10)

The objective in Equation 9 can be minimized if the KL term becomes zero (as Z and Vπref are not
dependent on π), which effectively equals to the optimal policy becoming

π∗(yt|x, y<t) =
1

Z(x, y<t)
πref(y

t|x, y<t) exp

(
1

β m(y<t)
Qπref(y

t|x, y<t)

)
. (11)

A.2 Deriving the SparsePO Objective from the Bradley-Terry Equivalence

The equivalence of Bradley-Terry with the Regret Preference Model, its equivalent on the token-level, has
been previously proven in Zeng et al. (2024) as the probability of preferring a chosen response yc over a
rejected response yr,

PBT(yc > yr|x) = σ

(
T1∑

t=1

Aπ(y
t
c|x, y<t

c )−
T2∑

t=1

Aπ(y
t
r|x, y<t

r )

)
(12)

Replacing Aπref(y
t|x, y<t) ≡ Qπref(y

t|x, y<t) − Vπref(x, y
<t) in Equation 12 and considering that

Vπref(x, y
<t) = Eπref [Qπref(y

t|x, y<t)] we have

T∑

t=1

Aπref(y
t|x, y<t)

=
T∑

t=1

Qπref(y
t|x, y<t)− Vπref(x, y

<t)

=
T∑

t=1

Qπref(y
t|x, y<t)− Eyt∼πref [Qπref(y

t|x, y<t)] (13)

Adding logarithms in front of each part of Equation 11 and solving for Qπref , we get

log π∗(yt|x, y<t) = log

(
1

Z(x, y<t)
πref(y

t|x, y<t) exp

(
1

β m(y<t)
Qπref(y

t|x, y<t)

))

log π∗(yt|x, y<t) = log

(
1

Z(x, y<t)

)
+ log πref(y

t|x, y<t) +
1

β m(y<t)
Qπref(y

t|x, y<t)

log π∗(yt|x, y<t)− log πref(y
t|x, y<t) = − logZ(x, y<t) +

1

β m(y<t)
Qπref(y

t|x, y<t)

Qπref(y
t|x, y<t) = β m(y<t) log

π∗(yt|x, y<t)

πref(yt|x, y<t)
+ β m(y<t) logZ(x, y<t) (14)
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Now, leveraging Equation 14, Equation 13 becomes

T∑

t=1

Aπref(y
t|x, y<t)

=

T∑

t=1

β m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
+ β m(y<t) logZ(x, y<t)

− Eyt∼πref [β m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
+ β m(y<t) logZ(x, y<t)]

=
T∑

t=1

β m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
+ β m(y<t) logZ(x, y<t)

− Eyt∼πref [β m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
]− Eyt∼πref [β m(y<t) logZ(x, y<t)] (15)

Since m(y<t) depends only on the previously seen tokens (and not the current one), we can say that
Eyt∼πref [β m(y<t) logZ(x, y<t)] = β m(y<t) Eyt∼πref [logZ(x, y<t)] = β m(y<t) logZ(x, y<t).
Replacing the above to Equation 15,

T∑

t=1

Aπref(y
t|x, y<t)

=

T∑

t=1

(
β m(y<t) log

π∗(yt|x, y<t)

πref(yt|x, y<t)
− Eyt∼πref

[
β m(y<t) log

π∗(yt|x, y<t)

πref(yt|x, y<t)

])

=

T∑

t=1

(
β m(y<t) log

π∗(yt|x, y<t)

πref(yt|x, y<t)
− β m(y<t) DKL[π

∗(·|x, y<t)∥πref(·|x, y<t)]

)

=
T∑

t=1

β m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
−

T∑

t=1

β m(y<t) DKL[π
∗(·|x, y<t)∥πref(·|x, y<t)]

= β
T∑

t=1

m(y<t) log
π∗(yt|x, y<t)

πref(yt|x, y<t)
− β

T∑

t=1

m(y<t) DKL[π
∗(·|x, y<t)∥πref(·|x, y<t)] (16)

Finally, replacing the result of Equation 16 that into Equation 12

PBT(yc > yr|x) =

σ
(
β

T1∑

t=1

m(y<t
c ) log

π∗(ytc|x, y<t
c )

πref(ytc|x, y<t
c )

− β

T1∑

t=1

m(y<t
c ) DKL[π

∗(·|x, y<t
c )∥πref(·|x, y<t

c ))

− β

T2∑

t=1

m(y<t
r ) log

π∗(ytr|x, y<t
r )

πref(ytr|x, y<t
r )

+ β

T2∑

t=1

m(y<t
r ) DKL[π

∗(·|x, y<t
r )∥πref(·|x, y<t

r )]
)

(17)

Where we define,

u(x, yc, yr) = β

T1∑

t=1

mu(y
<t
c ) log

π∗(ytc|x, y<t
c )

πref(ytc|x, y<t
c )

− β

T2∑

t=1

mu(y
<t
r ) log

π∗(ytr|x, y<t
r )

πref(ytr|x, y<t
r )

(18)
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δ(x, yc, yr) = β

T1∑

t=1

md(y
<t
c ) DKL[π

∗(·|x, y<t
c )∥πref(·|x, y<t

c )] (19)

− β

T2∑

t=1

md(y
<t
r ) DKL[π

∗(·|x, y<t
r )∥πref(·|x, y<t

r )]

Resulting in

pBT (yc > yr|x) = σ (u(x, yc, yr)− δ(x, yc, yr)) (20)

Formulating the maximum likelihood objective given the probability of human preference data in terms
of optimal policy in Equation 20, the loss function becomes

LSparsePO = −E(x,yc,yr)∼D[log σ (u(x, yc, yr)− δ(x, yc, yr))] (21)
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B Details on Experimental Setup

In this appendix, we provide further details on the
experimental setup. All experiments used AdamW
optimizer (Kingma and Ba, 2015). The code for
reproduction is available at some.url.

B.1 Sentiment Control

Dataset. We use the IMDB dataset prepro-
cessed for preference optimization by Amini et al.
(2024), which uses prefixes of length 5-8 tokens as
prompts.

Training and Optimization. All models are
trained over three epochs with an effective batch
size of 64. For TDPO, we set α = 0.7, as it was
reported as best for IMDB in Zeng et al. (2024).
For DPOP, we set λ = 50 as reported by Pal
et al. (2024). For D2PO, we use γ = 0.98 (Shao
et al., 2025); and for SePO, we set token ratio
k = {0.2, 0.8} (Yang et al., 2024).

B.2 Summary Quality Control

Dataset. For preference optimization, we use the
TL;DR feedback dataset collected by Stiennon et al.
(2020), comprising of two subsets, one with pair-
wise comparison and the other with the individ-
ually rated summaries. Following Amini et al.
(2024), we binarize the single-summary subset
by selecting the summary with highest and low-
est overall Likert score as the chosen and rejected
response,respectively. In order to mitigate the com-
pounding effect of summary length, we filtered
out training instances with chosen and rejected re-
sponses with a length difference greater than 100
words. From these resulting filtered dataset, We
uniformly sample 20k and 4k preference instances
from each subset to form a training and test set of
40k and 8k instances, respectively.

Training and Optimization. All models are
trained using LoRA with parameters rank r = 16,
α = 16, and dropout 0.05. Training is done for
three epochs with an effective batch size of 256
and learning rate of 1e−4. We set β = 0.8 for all
systems; α = 0.5 for TDPO v1 and v2; γ = 0.98
for D2PO; k = 0.8 for SePO; weight decay of 0.01
over mask weights; and L1 regularization of 0.001
over all mask values for SparsePO.

Evaluation. Statistical significance at the sys-
tem level is tested pairwise using Bootstrap resam-
pling (Davison and Hinkley, 1997) with a 95% con-
fidence interval. We filter the test set following the
methodology in Aharoni et al. (2023) and keep

instances with a reference summary–document
entailment probability higher than 0.6, given by
SummaCZS (Laban et al., 2022).* For ROUGE,
we report results using stemming; for BERTScore,
we use RoBERTa large (Liu et al., 2019) as under-
lying model with sentence-level IDF importance
weighting, for which the scores were calculated
over the training set. EDNA scores we calculated
using the SummaCZS score.

Regarding win rate calculation, we uniformly
sample 100 prompts from the entire test set
and sample 5 completions using nucleus sam-
pling (p = 0.95) and temperatures T =
{0, 0.25, 0.50, 0.75, 1.0}. Then, we elicit quality
judgements from GPT4 (gpt-4-turbo) using the
prompt in Figure 8 in two settings. In the first one,
we compare reference summaries against system
responses, and in the second one, DPO responses
against responses form other systems on an all vs
all fashion. The order of responses is randomly
chosen for each instance.

B.3 Helpfulness & Harmlessness Control
Dataset. We use the Anthropic HH dataset avail-
able in HuggingFace.*

Training and Optimization. The reference
model is trained for one epoch over chosen re-
sponses with a learning rate of 1e−5 and an ef-
fective batch size of 1024. Preference policy mod-
els are trained for three epochs at full precision
with an effective batch size of 128, learning rate
of 1e−6, and, otherwise specified, β = 0.1. For
TDPO v1 and v2, we set α = 0.5 as it performed
better in preliminary experiments. Similarly, we set
β = 2.5 and γ = 0.3 for SimPO. We set γ = 0.98
for D2PO and k = 0.8 for SePO. For SparsePO,
we set a learning rate of 5e−7, mask weight decay
of 0.01, and L1 normalization parameter of 0.001
for both reward and KL masks.

Evaluation. Similarly to the previous section,
we calculate win rates using 100 prompts from the
single-turn subset of the test set, sample 5 comple-
tions with nucleus sampling (p = 0.95) and temper-
atures T = {0, 0.25, 0.50, 0.75, 1.0}. Statistical
significance at the system level is tested pairwise
using Bootstrap resampling (Davison and Hinkley,
1997) with a 95% confidence interval. Figure 9
shows the prompt used to obtain judgments from
GPT4 (gpt-4-turbo), again using two setups. In

*https://github.com/tingofurro/summac
*https://huggingface.co/datasets/Anthropic/

hh-rlhf

25493

some.url
https://github.com/tingofurro/summac
https://huggingface.co/datasets/Anthropic/hh-rlhf
https://huggingface.co/datasets/Anthropic/hh-rlhf


Which of the following summaries does a better job of summarizing the most important
points in the given forum post, without including unimportant or irrelevant details?
A good summary is both concise and precise.

Post:
<post>
Summary A:

<summary_a>

Summary B:
<summary_b>

FIRST provide a one-sentence comparison of the two summaries, explaining which you
prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice.
Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

Figure 8: Prompt given to GPT4 for win rate calculation over TL;DR summaries in the test set.

the first one, we compare chosen responses against
system responses, and in the second one, DPO re-
sponses against responses form other systems on
an all vs all fashion. The order of responses is
randomly chosen for each instance.

C Complementary Results

In this appendix, we provide results complemen-
tary to our experiments in Section 3. In terms of
systems, we include all baselines considered in
this paper. Additionally, we include a case sce-
nario in which SparsePO cannot outperform other
systems, showcasing our method’s limitations in
detail. This scenario consists of performing prefer-
ence optimization for the task of text-to-code gen-
eration, using a simple preference dataset created
from Python programming problems.

C.1 Sentiment Control
Reward and KL Divergence Trade-off. Figure 10
presents the reward-KL frontier for all baselines.
Note that for each system, only the convex hull
over all its configurations is shown. We observe
that DPOP restricts KL divergence and reward
to under 5 and 0.82, TDPO v1 to 15 and 0.97,
TDPO v2 to 19 and 0.75, and SimPO to 81 and
0.99. This shows that TDPO v2 allows slightly
larger KL divergence than v1 but it does not reach
higher rewards. Among our proposed systems,
SparsePO[dense] notably dominates the frontier,
reaching a moderate KL of 15 and a reward of
0.99, higher than DPO (0.96). Notably, we note
that token-weighting baselines (SePO, D2PO) fall
significantly below SparsePO’s frontier for all con-
figurations, showcasing the effectiveness of our

method in masking reward and KL terms, in all
variants of SparsePO.

Reward and Response-level KL Divergence
Trade-off. Next, we present further evidence that
SparsePO is able to generate responses with higher
ground truth reward whilst allowing for larger val-
ues of KL divergence, compared to strong PO
baselines. Figure 11 presents the case for the
sentiment control scenario, showing the relation-
ship between ground truth reward (as given by a
sentiment classifier) and response-level KL diver-
gence (i.e., an aggregate of sequence tokens). The
plot groups instances in the test set of IMDB by
KL divergence level, reporting the average reward
per bin, for each system. We compare SparsePO
and SparsePO[dense] against baselines for β =
{0.1, 0.8} and report the following insights. First,
at β = 0.1, DPO exhibits a heavy trade-off between
reward for KL divergence, whilst SparsePO[mu =
md] and SparsePO[dense] show similar trade-off
to TDPO-v1. Notably, SparsePO[mu ̸= md] re-
sponses maintain a high level of reward regardless
of their KL divergence level. Second, at β = 0.8,
we observe that all DPO and TDPO responses show
a KL divergence lower than 10 and a reward of
0.70. Intriguingly, SparsePO[dense] does show a
heavy reward-KL trade-off, whilst responses gen-
erated by SparsePO systems and SimPO maintain
high reward levels across all KL levels. The ef-
fectiveness of the latter might be explained by the
additional γ term by which response probabilities
are augmented, possibly forcing them to get high
enough values that translates to high KL diver-
gence.

Sparsity and Token-level KL Divergence. We
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For the following query to a chatbot, which response is more helpful?

Query: <the user query>

Response A:
<either a system completion or baseline>

Response B:
<the other response>

FIRST provide a one-sentence comparison of the two responses and explain which you
feel is more helpful. SECOND, on a new line, state only "A" or "B" to indicate
which response is more helpful. Your response should use the format:
Comparison: <one-sentence comparison and explanation>
More helpful: <"A" or "B">

Figure 9: Prompt given to GPT4 for win rate calculation over single-turn dialogue completions in the HH test set.
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Figure 10: Pareto frontier of expected reward and
response-level KL divergence w.r.t. the reference model,
for all baselines. Solid lines estimate the frontier for
each system, and points represent hyper-parameter vari-
ations.

also report the sparsity levels in the reward and
divergence masks, for increasing values of β, over
the rejected responses during training for sentiment
control in Figure 12.

Complementing the discussion in Section 3.2
we can add that, in practice, β is acting as the max-
imum weight we assign to KL restriction, and the
mask adjusts it appropriately to each token. We
would argue that the mask works in tandem with
beta and we observed that the range of betas that are
effective with SparsePO is generally higher than
DPO (with best values between 0.4− 1). Remov-
ing beta (β = 1.0) results in slightly suboptimal
performance.

C.2 Summary Quality Control

Figure 13 shows the win rates against reference
summaries for all systems and baselines. We ob-
serve that SparsePO[dense] still remains the best
system at temperatures 0.25 and 1.0, remaining
competitive at other temperatures.

C.3 Helpfulness & Harmlessness Control
Figure 14 shows the win rates against chosen re-
sponses for all baselines and systems. We find that
SparsePO[mu = md] obtains +6.8% over TDPO
v1, +12.6% over TDPO v2, similarly outperform-
ing other baselines.

In terms of reasoning tasks, we report results
over the OpenLLM leaderboard v2 tasks with
scores normalized across tasks, as recommended
by the leaderboard v2 authors.* In this way, individ-
ual task scores are reported in the same 0-100 scale,
and final average scores are not biased toward one
single task. The results, presented in Table 4, indi-
cate that the tasks are extremely challenging for a
model of the scale and training flops of Pythia 1.4B.
Nevertheless, our proposed alignment strategy and
its variants, SparsePO, demonstrate their effective-
ness at balancing alignment goals and reasoning,
with SparsePO[dense] being the best in average.

In terms of specific reasoning and task type, the
following can be noted. Firstly, our mask strategies
are effective for certain types of reasoning. Al-
though mathematical reasoning (MATH) poses a
challenge to all systems, SparsePO[dense] outper-
forms all baselines, followed by SparsePO[mu ̸=
md]. Similarly, SparsePO[mu ̸= md] performs
best at BBH, followed by SparsePO[dense], in-
dicating a better handling of factual and world
knowledge as well as algorithmic reasoning. Multi-
step soft reasoning tasks (MuSR) are best handled
by SparsePO[mu = md], followed by TDPOv2.
However, tasks that require extensive knowledge
(GPQA and MMLU-pro) pose a challenge to all
systems, and our masking strategies in particular.

In terms of average score, showcased in Table 2,
*https://huggingface.co/docs/leaderboards/

open_llm_leaderboard/normalization
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Figure 11: Ground-truth reward of responses grouped by KL divergence range, for responses to the test set of IMDB,
for PO systems at β = 0.1 (left) and 0.8 (right).
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Figure 12: Sparsity levels in the reward mask (mu, left) and the token-level KL divergence mask (md, middle), as
well as token-level KL divergence of rejected responses during training (over IMDB), for increasing values of β.
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Figure 13: Win rates against reference summaries from
the TL;DR test set, for all systems.

SFT performs better than all systems, indicating
a sharp trade-off between alignment objective and
task performance, regardless of the PO strategy.
This could indicate that by making a model more
helpful and harmless, we sacrifice some reasoning
capabilities (Luo et al., 2025). Nevertheless, our
proposed alignment strategy variants, SparsePO,
demonstrate their effectiveness at balancing align-
ment goals and reasoning, being the best among
PO strategies.

In terms of specific reasoning and task type,
the following can be noted. Firstly, our mask
strategies are effective for certain types of reason-
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Figure 14: Win rates of system responses against chosen
responses in Anthropic HH single-turn dialogue, for all
systems.

ing. Although mathematical reasoning (MATH)
poses a challenge to all systems, SparsePO[dense]
outperforms all baselines including SFT, fol-
lowed by SparsePO[mu ̸= md]. Similarly,
SparsePO[mu ̸= md] performs best at BBH, fol-
lowed by SparsePO[dense], indicating a better han-
dling of factual and world knowledge as well as
algorithmic reasoning. Multi-step soft reasoning
tasks (MuSR) are best handled by SparsePO[mu =
md], followed by TDPOv2. However, tasks that
require extensive knowledge (GPQA and MMLU-
pro) pose a challenge to all systems, and our mask-
ing strategies in particular. Similarly, tasks based
on verifiable instructions (IFEval), both instruction
and prompt based, exhibit the starkest trade-off be-
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METHODS BBH MATH GPQA MUSR MMLU IFEVAL AVG
PRO INST. PROM.

SFT 2.87 0.30 0.78 4.02 1.71 25.90 14.97 7.22

DPO 2.64 0.60 0.00 3.77 1.19 21.46 10.54 5.74
TDPO-V1 3.01 0.53 0.00 4.30 1.50 20.62 9.98 5.71
TDPO-V2 2.65 0.23 0.00 5.87 1.68 18.47 8.32 5.32
SIMPO 2.10 0.00 1.12 4.36 1.41 19.90 9.24 5.45
DPOP 2.71 0.68 1.57 3.85 1.43 20.02 9.06 5.62
SEPO 3.08 0.00 0.00 2.13 1.47 22.78 13.12 6.08
D2PO 3.52 0.01 0.00 4.53 1.02 20.98 10.53 5.79

SPARSEPO[DENSE] 3.60 0.91 0.00 3.94 1.33 22.78 12.57 6.45
SPARSEPO[mu = md] 3.24 0.23 0.00 6.67 1.25 22.78 12.38 6.65
SPARSEPO[mu ̸= md] 4.10 0.76 0.00 3.45 1.42 22.78 11.28 6.25

Table 4: Performance of Pythia 1.4B models on Open LLM Leaderboard 2 after PO with Helpfulness & Harmlessness
as proxy for human preference. Best number across PO methods are bolded.

tween alignment and task performance, given the
sharp decrease in metric scores after preference op-
timization. Still, SparsePO and SparsePO[dense]
outperform all other PO strategies, trailing second
only to SFT. Finally, regarding win rates, SparsePO
surpasses all methods with +6.8% over TDPO-v1,
+12.6% over TDPO-v2 and +5.6% over DPO.

C.4 Text-to-Code Generation

We perform preference optimization for the task of
text-to-code generation, using a simple preference
dataset created from Python programming prob-
lems from Gee et al. (2025). In this complementary
experiment, we aim to optimize for correctness,
i.e. a chosen program is an executionable one that
passes all accompanied unit-tests and a rejected
program is one with the opposite behavior. The
MBPP dataset (Austin et al., 2021)* is employed,
which consists of 384 train, 90 validation and 500
test programs.

We use StarCoder-1B (Li et al., 2023)* to sam-
ple 100 solutions for each problem in train and
validation with multinomial sampling. Training is
done for 30 epochs with a learning rate of 5e−7, a
warmup of 10% of the total training steps, linear
learning rate decay and an effective batch size of
32.

Evaluation. For evaluation we employ the
BigCode-evaluation-harness framework (Ben Al-
lal et al., 2022) sampling 100 solutions with
temperature 0.6 and p = 0.95. The reported
numbers on HumanEval and MBPP are obtained
after tuning the β values for each method on

*https://huggingface.co/datasets/
google-research-datasets/mbpp

*https://huggingface.co/loubnabnl/
starcoder-1b

the [0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 5.0, 10.0] set. The
best β is obtained based on the performance of
each model on pass@10 with 10 samples on Hu-
manEval.

After testing the generated programs, we end
up with 183 prompts with at least two passing and
one failed solution for the training set and 40 for
the validation set. The preference data is built by
selecting randomly different pass-fail solutions for
each prompt at every epoch. Using the resulting
data, we use StarCoder-1B for PO training. Per-
formance is measured in terms of functional cor-
rectness* on MBPP and HumanEval (Austin et al.,
2021), sampling 100 solutions with temperature
0.6 and p = 0.95 in Table 5.

Overall, DPO shows the strongest performance
across the board on HumanEval for all pass@k
setups, while all methods manage to improve over
the baseline SFT model. Our proposed models
tend to perform on par with other PO methods
although worse on pass@100. On MBPP though,
SparsePO shows gains over pass@100, offering a
+2% improvement compared to DPO, with a slight
decay in the remaining metrics. The discrepancy
between HumanEval and MBPP could be attributed
to the MBPP being the in-domain PO data.

These results indicate that although SparsePO is
weighting more tokens as important for preference,
in the code domain and in particular code execu-
tion, this requirement cannot be easily satisfied. In
fact, code sequences are heavily structured and ev-
ery ‘word’ is intricately reliant on all other ‘words’
in the sequence, i.e. there is little information that
may be considered redundant. As such, a weigh-

*A functionally correct response is one that executes and
produces the correct answer to all test cases.
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ing scheme (such as in SparsePO) will effectively
ignore parts of the sequence that can be crucial;
this is further supported from qualitive analysis
presented in Figure 22 in the Appendix. Since the
goal of the task is to improve functional correctness
(whether a programs runs correctly or not) ignoring
any ‘word’ in a code sequence will most certainly
lead to a functionally incorrect solution. This is
in contrast to natural language, where some words
are naturally more important for preference than
others. This includes the standard Preference Opti-
mization goals of reducing toxicity or style adap-
tation, but it extends on reasoning tasks as well
when that reasoning is happening through natural
language. This also explains SparsePO’s benefits
to the MATH benchmark, as performance there is
enabled by Natural Language instructions through
chain-of-thought reasoning.

Similarly to sentiment control, we also report
sparsity values as a function of training steps for
models trained with different values of β; see Fig-
ures 15 and 16.

HumanRankEval Evaluation. We further
report results on the HumanRankEval bench-
mark (Gritta et al., 2024) in Table 6. The reported
categories correspond to Unix-based OS (UNIX),
English Language (ENG.), Physics, LaTeX, Soft-
ware Engineering (S.ENG.), Maths and Statistics
(STATS), CS+DB (CodeReview, Computer Science,
Data Science and Databases), Apple and Android
(A+A) and Lang+Sci (Latin, Chinese, French, Ger-
man, Japanese, Spanish plus Engineering, Chem-
istry, Biology, Earth Science and Astronomy).

Sparsity and Token-level KL Divergence. Fig-
ure 15 shows sparsity and token-level KL diver-
gence for chosen responses and Figure 16 for the
rejected ones in the code domain. Higher values
of β do offer significant KL control, resulting into
lower KL. Sparsity is much lower for reward masks
and higher for KL masks, with both being relatively
stable within a small range of values (± 4-6 points).

C.5 Mask Distribution and Token-level KL
Divergence

Next, we investigate whether our method incurs on
any sort of mask collapse or KL term collapse, clear
signs of reward hacking. For this objective, we ana-
lyze the distribution of mask values and token-level
KL divergence, for the case of controlled summa-
rization, dialogue, and text-to-code generation. For
each task, we report the distribution of mask values
over chosen and rejected responses of the corre-

sponding test set, obtained by SparsePO[mu ̸=
md], SparsePO[mu = md], and SparsePO[dense].
Additionally, we report the token-level KL di-
vergence during training, as well as the diver-
gence margin, defined as |DSeqKL(x, yw;πθ|πref )
−DSeqKL(x, yl;πθ|πref )|.

Summary Quality Control. Figure 17 shows
the mask distributions and Figure 18, the token-
level KL divergence for the summarization case.
When learned independently (SparsePO[mu ̸=
md]), reward (mu) and KL masks (md) obtain
value distributions with significantly different con-
centration regions, as shown in Figure 17. The
reward mask concentrates its values around 1.0,
signifying that for summarization, most response
tokens do contribute to the reward. In contrast,
the KL mask concentrates in the lower half of
its range, indicating that KL is controlled more
strictly for most tokens in a response. However, as
seen in Figure 18, SparsePO[mu ̸= md] obtains
higher KL than SparsePO[mu = md] throughout
training, possibly indicating that the tokens that
SparsePO[mu ̸= md] assigned high mask values
to were also allowed to diverge more compared
to SparsePO[mu = md]. Lastly, SparsePO[dense]
showcases a seemingly normal distribution cen-
tered on 0.5. This is to be expected since its mask
values are derived from the reference model activa-
tions.

Helpfulness & Harmlessness Control. Fig-
ure 19 and Figure 20 present mask distributions
and token-level KL divergence for the HH case,
respectively. For SparsePO[mu ̸= md], both the
reward (mu) and and KL (md) masks exhibit val-
ues close to zero, with mu showing a slightly
larger range. Similarly, SparsePO[mu = md]
obtains values of up to 0.5 but still concentrated
at zero. Also, note that the token-level diver-
gence of SparsePO[mu = md] is larger than that
of SparsePO[mu ̸= md] during training. This
means that a lower accumulation of mask val-
ues around zero (and hence lower sparsity) al-
lows KL to diverge more in SparsePO[mu = md]
than in SparsePO[mu ̸= md]. The divergence in
SparsePO[mu ̸= md] is nevertheless significant,
showing that, similarly to the summarization case,
the few tokens that are allowed to diverge are di-
verging quite largely.

Text-to-Code Generation.
Lastly, we analyze the case of code executability

and find that the interplay between mask distribu-
tion and KL divergence is similar to the HH control
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HUMANEVAL MBPP

METHOD PASS@1 PASS@10 PASS@100 PASS@1 PASS@10 PASS@100

STARCODER-1B 12.22 24.69 38.41 17.83 39.94 59.60
DPO 14.61 28.42 46.34 21.36 44.71 62.40
TDPO-V1 14.46 27.42 46.34 21.58 44.48 61.60
TDPO-V2 13.30 26.06 45.73 19.93 42.51 62.00
SIMPO 14.55 27.74 45.73 22.89 43.63 59.20

SPARSEPO[DENSE] 14.12 27.30 42.07 20.93 43.63 62.20
SPARSEPO[mu = md] 14.15 27.32 42.68 20.92 44.25 64.80
SPARSEPO[mu ̸= md] 14.39 28.29 44.51 19.81 43.71 62.00

Table 5: Pass@k results for text-to-code generation using StarCoder-1B.

METHODS A+A C++ CS+DB ENG. HTML JAVA LANG+SCI LATEX MATH PHYSICS PYTHON S.ENG. STATS UNIX AVG

PYTHIA-1.4B 10.15 14.66 8.46 12.52 11.27 10.84 12.76 16.55 13.70 12.43 9.47 9.60 13.78 11.71 11.99
SFT 10.61 14.87 8.82 12.27 12.23 11.21 13.26 16.10 13.34 12.18 9.37 9.22 13.40 11.59 12.03

DPO 11.36 15.20 10.09 11.44 13.39 11.41 13.74 16.64 13.33 12.25 9.82 9.99 14.13 11.86 12.47
TDPO-V1 11.28 15.14 9.35 11.39 12.56 11.17 13.30 16.31 13.52 12.36 9.33 9.80 13.79 11.67 12.21
TDPO-V2 10.64 14.88 9.09 11.85 12.59 11.12 13.25 16.15 13.58 12.12 9.07 9.30 13.77 11.60 12.07
DPO-P 11.11 15.15 9.45 11.81 12.83 11.47 13.51 16.45 13.57 12.33 9.66 9.54 14.06 11.96 12.35
SIMPO 3.35 7.68 3.99 6.04 6.29 2.79 4.80 5.26 2.69 6.32 7.57 2.97 -1.69 8.20 4.73

SPARSEPO[DENSE] 11.19 15.03 10.50 10.73 13.05 11.62 13.32 16.27 13.60 12.52 9.66 10.74 13.81 11.45 12.39
SPARSEPO[mu = md] 11.23 15.45 9.80 11.37 13.38 11.55 13.73 15.80 13.23 11.72 10.12 10.35 13.84 11.25 12.34
SPARSEPO[mu ̸= md] 12.94 17.09 11.27 12.52 14.68 13.99 15.08 17.52 13.86 12.34 12.48 9.58 15.39 13.19 13.71

Table 6: Performance of Pythia 1.4B models on HumanRankEval after PO with Helpfulness & Harmlessness as
proxy for human preference.

case. Both masks in SparsePO[mu ̸= md] concen-
trate their values around zero, with mu showing a
wider spread than md, similar to the behavior of
the common mask in SparsePO[mu = md]. This
means that, when allowed to learn md indepen-
dently from mu, SparsePO implements a stricter
control over KL compared to the control over re-
wards, as also seen in the lower token-level diver-
gence of SparsePO[mu ̸= md].

C.6 Qualitative Analysis

Figure 21 presents complementary results to Fig-
ure 4b, showcasing mask values per token in re-
jected response examples, for the case of sentiment
control.

Mask behavior and response correctness.
Next, we analyze the behavior of the mask in sce-
narios where the ‘correctness’ of the task can be
verified deterministically, taking as test cases the
tasks text-to-code generation and mathematical rea-
soning. Both of these tasks require that a response
is ‘correct’, however with a crucial difference on
how the intermediate steps are treated. In current
math benchmarks (e.g. MATH) correctness is eval-
uated as obtaining the correct final answer, regard-
less of the correctness of intermediate reasoning
steps. Hence, a model has liberty in generating a
response consisting of steps and the final answer,
i.e. if a response contains incorrect intermediate

steps but the correct final answer, it will be deemed
as correct. Similarly in our text-to-code setup, the
output code is required to be executable but also
correct in that it returns the correct response for
all test units. However, in contrast to math bench-
marks, an incorrect intermediate logical step in the
output, even if executable, will prompt an incorrect
answer (or fail to run).

Based on this intuition, we hypothesize that
SparsePO struggles in cases where the response
consists of formal language or rigorous steps, i.e.
where there is little to no leeway for generation
diversity. Figure 22 shows the mask values for
responses in HH control, code generation, and al-
gebraic reasoning. The latter example was taken
from the MATH dataset (Hendrycks et al., 2021b)
and derived using our Pythia-1.4B model trained
over HH. In the first example, showing a response
to a query in HH, the mask accentuates relevant
tokens in the response (e.g. consists of, vegetables).
In the second example, algebraic reasoning, the
mask manages to accentuate relevant operators and
intermediate results and, more strongly, natural
prose. Finally, the last example shows that pro-
gramming language poses a significative challenge
to SparsePO. The derived mask is sparse and ac-
centuates wordpieces of little relevance.
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Figure 15: Sparsity levels in the reward mask (mu, left), the token-level KL divergence mask (md, middle), and
token-level divergence of chosen responses during training MBPP), for increasing β.
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Figure 16: Sparsity levels in the reward mask (mu, left) and the token-level KL divergence mask (md, middle), as
well as token-level KL divergence of rejected responses during training (over MBPP), for increasing values of β.

D Ablation Studies

In this section, we present ablation studies that
investigate the contribution of design choices in
mask architectures. All experiments were done by
performing SFT and PO training on Pythia-410M
using the DPO-mix-7k dataset curated by Argilla.*

This dataset consists of 7k instances mixed from
Capybara* a synthetic multi-turn dialogue dataset;
Intel ORCA*, a single-turn dataset based on FLAN,
with prompts aiming at helpful, truthful, and verbal-
ized calibration; and the binarized, filtered version
of UltraFeedback.* Training was done for three
epochs with learning rate of 5e − 7 and effective
batch size of 128 for all models. Unless otherwise
stated, all SparsePO systems were trained using the
common mask setup.

D.1 Mask Architecture
We experiment with the number of model layers
used for mask calculation, as well as the number
of feedforward layers in the mask architecture it-

*https://huggingface.co/datasets/argilla/
dpo-mix-7k

*https://huggingface.co/datasets/argilla/
distilabel-capybara-dpo-7k-binarized

*https://huggingface.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs

*https://huggingface.co/datasets/argilla/
ultrafeedback-binarized-preferences-cleaned

self. Table 7 showcases the performance of our
design choices over benchmarks in the OpenLLM
learderboard v2.

D.2 Hyper-Parameter Tuning
Next, we investigate the effect of weight decay
regularization applied over the mask, with results
shown in Table 8.

D.3 Binary and Random Masks
Finally, we experiment with variations of SparsePO
in which the learned mask is replaced by a
uniformly-sampled random vector with values be-
tween [0, 1], and a learned binary mask with a sign
activation function, i.e. the mask is set to 1 for all
positive values and 0, otherwise. Table 9 presents
the results over the OpenLLM leaderboard.
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Figure 17: Distribution of mask values obtained for summarization (TL;DR) in chosen (top) and rejected (bottom)
responses. From left to right, SparsePO reward (mu) and KL masks (md) learned independently (SparsePO[mu ̸=
md]); SparsePO common mask (SparsePO[mu = md]); and SparsePO[dense] mask.
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Figure 18: Token-level KL divergence chosen (left) and rejected (middle) responses, as well as the KL margin
(right), over TL;DR.

Lay.per Mask #FFm BBH MATH GPQA MuSR MLMU IFEval Avg.
pro Instr. Prom.

All Layers 1 4.60 0.91 1.68 12.47 1.57 21.70 11.28 7.74
Last Layer 1 4.34 0.68 2.01 11.74 1.41 19.42 9.61 7.03
Last Layer 2 4.60 0.98 1.68 11.57 1.24 19.30 9.61 7.00

Table 7: OpenLLM leaderboard v2 performance of mask architectural choices, for Pythia 410M-based models
trained over DPO-mix-7k.

Wgt. BBH MATH GPQA MuSR MLMU IFEval Avg.
Decay pro Instr. Prom.

0 4.44 0.83 1.57 13.39 1.48 22.42 11.09 7.89
0.001 4.41 0.38 1.45 11.47 1.61 21.82 11.09 7.46
0.01 4.56 0.38 1.12 14.00 1.36 23.02 12.57 8.14

0.1 4.83 0.68 1.34 12.03 1.66 21.82 10.91 7.61
1.0 4.65 0.68 1.45 12.70 1.64 21.70 10.72 7.65

Table 8: OpenLLM leaderboard v2 performance for several levels of weight decay regularization over the mask.
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Figure 19: Distribution of mask values obtained for dialogue (Anthropic HH) in chosen (top) and rejected (bottom)
responses. From left to right, SparsePO reward (mu) and KL masks (md) learned independently (SparsePO[mu ̸=
md]); SparsePO common mask (SparsePO[mu = md]); and SparsePO[dense] mask.
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Figure 20: Token-level KL divergence chosen (left) and rejected (middle) responses, as well as the KL margin
(right), over Anthropic HH.

(a) Rejected response rewards.

(b) Rejected response KL values.

Figure 21: Token-level heatmaps for rejected responses for TDPO-v2 SparsePO. Darker color indicates higher
values. All scores are scaled in [0, 1] for comparison.
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Prompt: How do I make minestrone?
Response:

(a) Helpfulness & Harmfulness (Anthropic’s HH)

Prompt: One endpoint of a line segment is $(4,3)$ and its midpoint is $(2,9)$. What is the sum of
the coordinates of the other endpoint?

(b) Algebraic reasoning (MATH)

Prompt: def len_log(list1): “‘Write a python function to find the length of the shortest word.”’
Response:

(c) Text-to-code generation (MBPP)

Figure 22: Token-level mask values obtained by SPARSEPO[mu = md] over chosen responses in HH, MBPP, and
MATH. Darker color indicates higher mask value.

Mask BBH MATH GPQA MuSR MLMU IFEval Avg.
pro Instr. Prom.

SparsePO[mu = md] 4.56 0.38 1.12 14.00 1.36 23.02 12.57 8.14
SparsePO[Binary] 4.55 1.13 1.68 13.03 1.46 18.71 8.50 7.01

Random 4.84 0.68 1.34 14.49 1.33 20.26 9.61 7.51

Table 9: OpenLLM leaderboard v2 performance for binary and random masks.
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