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Abstract
Detectors of LLM-generated text suffer from
poor domain shifts generalization ability. Yet,
reliable text detection methods in the wild
are of paramount importance for plagiarism
detection, integrity of the public discourse,
and AI safety. Linguistic and domain con-
founders introduce spurious correlations, lead-
ing to poor out-of-distribution (OOD) perfor-
mance. In this work we introduce the con-
cept of confounding neurons, individual neu-
rons within transformers-based detectors that
encode dataset-specific biases rather than task-
specific signals. Leveraging confounding neu-
rons, we propose a novel post-hoc, neuron-
level intervention framework to disentangle
AI-generated text detection factors from data-
specific biases. Through extensive experiments
we prove its ability to effectively reduce topic-
specific biases, enhancing the model’s ability
to generalize across domains.

1 Introduction

The rapid development of Large Language Models
(LLMs) has revolutionized natural language pro-
cessing (NLP), allowing machines to produce text
that mirrors human writing in coherence and con-
textual relevance. However, as LLMs become in-
creasingly sophisticated, identifying AI-generated
text poses a critical challenge (Wu et al., 2025a;
Zhou and Wang, 2024). This task is particularly
pressing in contexts such as academic integrity, mis-
information detection, authorship attribution, and
cybersecurity, where the misuse of AI-generated
content raises ethical and societal issues (Beigi
et al., 2024; Gui et al., 2025). Despite advance-
ments in AI detection methods, state-of-the-art
(SOTA) systems still exhibit significant general-
ization failures, especially when applied across di-
verse domains, languages, and models (Wu et al.,
2025a; Gritsai et al., 2024).

Detection methodologies for AI-generated text,
based on fine-tuned transformer models (e.g.,
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Figure 1: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 − 50) con-
founding neurons. Removing as few as 20 (∼ 0.05%)
confounding neurons in the feed-forward MLPs interme-
diate layers results in up to a 6.9% improvement in the
test sets (in-domain, out-of-sample (OOS), and four out-
of-distribution (OOD)). The shaded area around zero
corresponds to the random baseline.

RoBERTa, XLM-R), achieve high accuracy (>99%)
on controlled datasets, their performance on out-of-
distribution (OOD) data remains unreliable, limit-
ing their applicability in real-world scenarios (Wu
et al., 2025a; Wang et al., 2024b).

Recent benchmarks, such as M4 (Multi-
Generator, Multi-Domain, Multi-Lingual) (Wang
et al., 2024b) and the GenAI Content Detection
Tasks (Lekkala et al., 2025), have underscored the
fragility of current detectors, particularly in cross-
domain generalization (Xu et al., 2024; Guo et al.,
2024).

Detectors struggle with generalization due to lin-
guistic and domain confounders, which introduce
spurious correlations that bias detection models
(Dai et al., 2022a; Voita et al., 2024). Linguistic
confounders, such as sentence length and lexical
diversity, reflect training data artifacts rather than
intrinsic AI text features, leading to poor out-of-
distribution (OOD) performance (Leng and Xiong,
2025; Wu et al., 2025b).
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Domain confounders further complicate detec-
tion by linking AI-generated text with specific top-
ics or styles rather than universal generation pat-
terns (Wang et al., 2024b; Doughman et al., 2025).
For instance, detectors trained on academic AI text
often fail with news articles, revealing a lack of
cross-domain robustness (Wang et al., 2024b).

We propose a neuron-level framework of
training-based AI text detectors, leveraging the con-
cept of Confounding Neurons: specific neuronal
activations that encode dataset-specific biases (Pan
et al., 2024; Voita et al., 2024). By systematically
identifying these neurons, we can analyze how and
where spurious correlations emerge, enabling the
development of generalizable detection strategies
that prioritize intrinsic textual features rather than
dataset-dependent artifacts. We show an example
of the effectiveness of our approach in Figure 1.

Emerging research indicates that LLMs encode
knowledge, writing styles, and topic preferences
within specific neurons (Dai et al., 2022b; Tang
et al., 2024; Zhao et al., 2025). While prior work
has examined neurons in the context of knowl-
edge storage and language generation, their role in
AI-generated text detection remains largely unex-
plored. Given that AI text detectors unintentionally
encode dataset-specific biases, understanding their
neuronal activations is crucial for disentangling
the detection task from these confounding factors.
We focus on computationally inexpensive and vali-
dated techniques within Knowledge Editing (Wang
et al., 2024a) to build a framework for interven-
ing at the neuronal level, enabling more reliable
detection systems that generalize across text distri-
butions.

Contributions This study advances robust
LLM–generated text detection through the follow-
ing contributions:

• Introduction of confounding neurons in the
context of LLM-generated text detection.

• Development of an experimental framework
for identifying and mitigating confounding
neurons to improve detector performance.

• Analysis of neuron localization, showing that
early-layer neurons can boost OOD accuracy
while maintaining in-domain performance

• Evaluation of neuron-ranking methods, iden-
tifying critical neurons whose removal en-
hances generalization and accuracy.

2 Related Works

Detection methods are mainly categorized into Sta-
tistical methods, Neural-based and LLM-based de-
tectors. Statistical methods detect AI-generated
text by analyzing linguistic features such as per-
plexity, n-gram frequency, or token distribution
(Hamed and Wu, 2024; Yang et al., 2024). These
methods are computationally efficient and perform
well for simple LLMs, but their effectiveness de-
creases when faced with larger more advanced mod-
els (Wu et al., 2025a). Neural-based detectors, em-
ploying transformer architectures like BERT (De-
vlin et al., 2019), RoBERTa (Zhuang et al., 2021),
and XLM-R (Chi et al., 2022), achieve high accu-
racy (often exceeding 99%) on controlled datasets
(Zeng et al., 2024). However, their performance de-
grades significantly on out-of-distribution (OOD)
data, revealing limited generalization (Wu et al.,
2025a).

A fundamental challenge for detection systems is
achieving OOD robustness. Despite their high accu-
racy within specific domains, neural detectors strug-
gle with diverse text types (Wang et al., 2024b), as
linguistic and domain confounders introduce spuri-
ous correlations that hinder generalization across
domain shifts (Wu et al., 2025a; Dai et al., 2022a).

Generalization in AI-Generated Text Detection
In this direction, Wang et al. (2024b) introduced

the M4 benchmark, a large-scale dataset designed
to evaluate detection models across multiple AI
generators and linguistic styles. Their findings re-
vealed that most models exhibit severe performance
degradation when tested on OOD data.

Similarly, Lekkala et al. (2025) investigated
domain-specific biases in AI text detection, demon-
strating that models trained on one dataset struggle
to adapt to new text domains. Gritsai et al. (2024)
reinforced these findings by analyzing dataset
quality issues, concluding that models are often
trained on unrepresentative samples, leading to
poor real-world adaptability. Wu et al. (2025b)
benchmarked several detection techniques in real-
world settings, revealing that even high-performing
models struggle with cross-domain generalization.
Gui et al. (2025) proposed AIDER, a robust topic-
independent model that generalizes well across
multiple domains using domain adaptation tech-
niques.

Studies such as Fraser et al. (2025) and Dough-
man et al. (2025) have also shown that detection
models perform poorly on short-form AI-generated
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content, such as news articles, where stylistic dif-
ferences between AI- and human-generated text are
less pronounced. Lee et al. (2024) demonstrated
that reward-based learning techniques can improve
robustness, but even these models fail when con-
fronted with adversarially optimized text.
Neuron-Level Interpretability and Detection

A rapidly growing area in LLMs interpretability
research have explored how neurons can store fac-
tual knowledge and respond to specific concepts
and how we can exploit these findings to perform
model interventions, that is, local modifications of
a LM performed after training for improving ef-
ficiency, knowledge editing, or unlearning (Wang
et al., 2024a). We can roughly categorize knowl-
edge discovery in transformer-based models in
activation-based (Voita et al., 2024), attribution-
based (Dai et al., 2022b), and probing (Gurnee
et al., 2023).

In Suau et al. (2024), neural intervention is used
to reduce toxic outputs in text generation tasks,
Tang et al. (2024) argue that a small subset of
neurons is responsible for language selection in
multilingual models. Chen et al. (2025) employ
attribution-based methods for finding clusters of
query-relevant neurons in LLMs for long-form
texts, while Dai et al. (2022a) use gradient-based
methods to trace neurons connected to syntactic
phenomena and discuss the practical relevance of
interventions on those neurons. To the best of our
knowledge, this is the first study of confounding
neurons in text detection systems.

3 Methods

The guiding hypothesis is that the cross-domain
fragility of modern AI–text detectors originates
in a small, localized subset of neurons whose ac-
tivity encodes linguistic and domain confounders
rather than generation source-specific signals. If
these neurons are identified and "deactivated" af-
ter training in a post-hoc approach, the detector
should preserve in-domain accuracy while exhibit-
ing better generalization to unseen text distribu-
tions. To examine this hypothesis, we propose
a model-agnostic framework (Figure 2) based on
neuron-level intervention:

1. Domain-aware data partitioning
(§3.1): construct a three-way split
(train / in-domain / OOD) that effectively
separates domains and topics, enabling
controllable distribution shifts.

2. Detector Training (§3.2) : fine-tune a pre-
trained transformer (BERT in our running ex-
ample) on the training split to obtain the refer-
ence model M0.

3. Confounding-neuron discovery (§3.3): Iden-
tify neurons correlated with domain-specific
cues by extracting topic-salient keywords,
scoring hidden units for keyword sensitiv-
ity, and aggregating scores through a label-
stratified top-K intersection.

4. Neuron patching / model steering (§3.4) :
mask the feed-forward layers of the trans-
former blocks at inference time to create a
patched model Mp effectively removing con-
founders from the inference path.

The framework allows for a controlled compari-
son between M0 and Mp on identical inputs; any
gain in OOD performance can thus be attributed
to the removal of the confounding neurons. The
remainder of this section details each stage, and §4
reports the empirical findings.

3.1 Domain-Aware Data Partitioning
We frame LLM-generated text detection as a binary
sequence-classification task over an open set of
textual domains. Given a labelled corpus of texts t:

D = {(ti, yi)}Ni=1, yi ∈ {0 (human), 1 (LLM)},

the goal is to learn a detector M0 : t 7→ [0, 1] that
predicts the origin –human or machine– of texts,
and exploit our framework to mitigate model degra-
dation when applied previously unseen texts do-
mains and topics. The degradation stems from spu-
rious cues, including linguistic confounders (e.g.,
sentence length, lexical diversity) and domain con-
founders, where specific topics or styles are incor-
rectly linked to authorship (Doughman et al., 2025).
This work primarily addresses the latter.

To disentangle genuine generative signals from
these confounders, we impose a three-way partition
that can be in principle instantiated on any multi-
domain corpus.

Let J be the set of topics in domain A and choose
a random subset Jtrain ⊂ J . Let JOOS =J \ Jtrain,
and dom(·) be the domain and topic(·) the topic
for a given text t:

Dtrain ={(t, y) | dom(t) = A, topic(t)∈Jtrain},
DOOS ={(t, y) | dom(t) = A, topic(t)∈JOOS},
DOOD ={(t, y) | dom(t) = B, topic(t)∈JOOD},
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Figure 2: Confounding Neuron framework: Given a text corpus, for each topic we extract the most topic-related
keywords 1 , and from the output embeddings of each keyword we compute the relevance score of the transformer
MLPs’ neurons for each text 2 . The scores are aggregated across texts and keywords obtaining a relevance
score matrix for each neuron in each transformer layer 3 . Finally, the top-K neurons (Confounding Neuron) are
suppressed based on the score ranking in order to improve the classification accuracy 4 .

Split Domain(s) Topic(s)

Train (Dtrain) A Jtrain
OOS (DOOS) A Jtest = J \ Jtrain
OOD (DOOD) B ̸= A any JOOD

Table 1: Domain-aware three-way dataset partition.

where J ∩JOOD = ∅ and A ̸= B. This partition
controls both topic-level {Jtrain, J \ Jtrain, JOOD}
and domain-level {A,B} distribution gaps.

3.2 Detector

In this work we assume to have a detector trained
for the task of binary LLM-vs-human text classi-
fication. In particular, we use a pre-trained trans-
former encoder that has been fine-tuned only on
the training split Dtrain. We take a pre-trained
transformer language models (PTLMs), unless
otherwise specified BERT, followed by a fully-
connected classification head, and refer to the re-
sulting model as M0. The method is tested and
proved effective also on the RoBERTa architec-
ture as shown in A.2. This choice reflects standard
practice in recent studies of AI-text detection and
provides a clear reference point for the neuron-level
analysis that follows. The purpose of selecting a
single detector is purely expository: it allows us to
trace how neuron-level interventions modify a spe-
cific network while clearly demonstrating that the
framework can be applied to alternative detection
models (e.g., RoBERTa, mBERT).

3.3 Confounding-Neuron Discovery
The aim of this stage is to pinpoint individual neu-
rons whose activity tracks confounding factors, as
topic, genre, length, surface style, rather than rele-
vant generation cues (Voita et al., 2024; Pan et al.,
2024). We decompose the procedure into three
modular blocks that can be instantiated with either
unsupervised or supervised topic information.

(i) Relevant-token extraction. The goal is to get
a set K = {k = 1, . . . ,K} of topic-salient token
that are potentially irrelevant to the detection.

Two alternative routes are available Supervised
or Unsupervised, depending if topic labels are
given in the considered corpus. For the supervised
case, Dtrain is divided by topics Jtrain and labels
{0, 1}. Within each slice, the top–K tokens are
retrieved and ranked by TF-IDF (term frequency-
inverse document frequency) weighting. In the
unsupervised setting, Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) is applied to Dtrain, retain-
ing the top-K tokens with the highest component
probability from each latent components

(ii) Neuron-level relevance scoring. Consider-
ing a PTLMs-based detector, each transformer
block contains an intermediate dense layer in
its feed-forward network (FFN); we examine the
H=3072 hidden units of each of its L=12 trans-
former layers, which are known to store factual,
stylistic, and topic features (Dai et al., 2022b; Pan
et al., 2024).

For each transformer block ℓ ∈ 1, . . . , L and
each neuron h ∈ 1, . . . , H , let aℓh(tik) denote the
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activation of neuron (ℓ, h) (prior to applying the
nonlinearity) for the token at position j in the i-th
input text. The first is the Integrated Gradient (IG)
(Sundararajan et al., 2017). For each text in a sam-
ple xi ∈ D̂train ⊂ Dtrain and topic-related keyword
index k ∈ K(xi), the IG score is computed as:

wIG
iℓhk = IG

(
aℓh(tik)

)
,

The second is the topic-prediction Average Pre-
cision score (AP), inspired by (Suau et al.,
2024). Given the train corpus Dtrain, we build
|Jtrain| complementary labeled datasets Dj =
{(xi, ci)}Ni=i, j ∈ Jtrain, where ci = j. For each
neuron (ℓ, h) and keyword k of an input text xi of
topic ci, the activation value aℓh(tik) is used as a
one-vs-rest predictor of ci, and the relevance score
is then given by the Average Precision score (AP)
over Dj with j ∈ Jtrain:

wAP
jℓhk = AP ({(aℓh(tik), ci), (xi, ci) ∈ Dj})

The tensor w is then reduced across texts and
either the keywords dimension for IG or the topic
dimension for AP, yielding an L×H importance
matrix from which the confounding-neuron ordered
sequence C is derived.

(iii) Score aggregation. Several aggregation
strategies can map the w relevance tensor onto the
L×H final neuron relevance representation, taking
into account that we want to simultaneously mini-
mize the importance of the selected neurons for the
final text detection task. We adopt a label-stratified
top-K intersection scheme that pinpoints neurons
whose largest relevant score are driven by topic
keywords in both classes, as a proxy for a purely
spurious correlation. Namely, for each text label
y ∈ {0, 1} we take the maximum across all the ex-
tra dimensions (qualitatively similar results are ob-
tained by taking the mean) and we keep the top-K ′

highest scoring indices, obtaining two ordered lists
R(0) and R(1). The final relevance score matrix
entries Slh are obtained by taking the intersection
R(0) ∩R(1) while assigning the maximum scores
between the two labels for each neuron, keeping
the top-K with K ≤ K ′ indices, and setting all the
other indices to zero.

Finally, from the matrix S we obtain the or-
dered confounding neurons sequence C = ⟨(ℓ, h) |
Sℓh ≥ 0⟩ that highlights hidden units that consis-
tently align with topic keywords across both author
labels, making them prime candidates for the patch-
ing intervention in §3.4.

3.4 Neuron Patching and Model Steering
From the confounding neurons sequence C, we
intervene on the baseline detector M0 without
touching any other parameters. We define a bi-
nary mask mℓ ∈ {0, 1}H for each block such that
mℓ[h] = 1 ⇐⇒ (ℓ, h) ∈ C. The mask is frozen
and applied at run time; no additional learning is
performed. For every input text t and block ℓ, let
aℓ(t) ∈ RH be the activations of the intermediate
feed-forward layer (see §3.3). We apply:

ãℓ(t) = (1−mℓ)⊙ aℓ(t) +mℓ ⊙ g
(
aℓ(t)

)
, (1)

where g(·) is a patching policy. Several policies can
be applied (Wang et al., 2024a; Voita et al., 2024;
Pan et al., 2024), such as hard ablation g(a) = 0,
soft scaling g(a) = αa, 0 < α < 1, or noise in-
jection. In this work we consider the hard ablation,
that is, the complete suppression of the considered
neuron obtaining the final patched detector Mp.

4 Experiments

In this section, we evaluate the proposed neuron-
level intervention framework for LLM-generated
text detection1. The experiments are designed to
assess the efficacy of our approach in addressing
domain generalization challenges.

We aim to answer three research questions:

RQ1 Localisation & distribution: where are con-
founding signals concentrated, and how do
they spread across layers?

Finding: Just 20 neurons in the early trans-
former blocks govern up to +7% accuracy
gains on OOD text, while leaving in-domain
performance intact, meanwhile, task-relevant
“detection” neurons cluster almost exclusively
in the final layers (Fig. 1, Fig. 4).

RQ2 Representation geometry: how does sup-
pressing confounding neurons reshape the de-
tector’s embedding space?

Finding: Patching collapses topic-driven clus-
ters in the classification embedding space, and
increasing detector specificity on unseen do-
mains (Fig. 3).

RQ3 Attribution robustness: do different neuron-
ranking methods yield consistent improve-
ments and similar high-leverage neurons?

1Code available at https://github.com/cborile/
confounding_neurons
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Finding: Integrated Gradients exposes a hand-
ful of neurons whose removal causes stepwise
accuracy jumps, whereas probing allows to
pruning up to ∼ 30% of the FFN units with
comparable OOD gains (Fig. 7).

4.1 Dataset description
To evaluate the proposed neuron-level intervention
framework, we conduct experiments using three
publicly available datasets commonly used in LLM-
generated text detection: DAIGT2, HC3 (Guo et al.,
2023), XSum from (Li et al., 2024), M4 (Wang
et al., 2024b) and Ghostbuster (GB) (Verma et al.,
2024). These datasets differ significantly in text
type, generation methods, and domain, allowing
for a robust evaluation of out-of-distribution (OOD)
generalization.

DAIGT is a large collection of student essays
based on the Persuade corpus (Crossley et al.,
2024), covering 23 different topics, generated us-
ing 11 different models. HC3 is a Q&A dataset
where responses are generated by ChatGPT. XSum
is a news summarization dataset with texts gener-
ated using GPT-based models. We summarize the
key statistics of each dataset in Table 2. M4 is a
large-scale benchmark of about 147k parallel hu-
man–machine texts (plus over 10 M human-only),
spanning seven languages, multiple domains (e.g.,
Wikipedia, Reddit, arXiv) and six LLM genera-
tors (GPT-4, ChatGPT, GPT-3.5, Cohere, Dolly-v2,
BLOOMz) for black-box machine-generated text
detection. GB is a dataset of human– and ChatGPT-
written texts in student essays, news, and creative
writing for AI-generated text detection.

In all the experiments, we select a subset of top-
ics/domains from a given dataset such as DAIGT
or HC3 that constitute the training dataset Dtrain

for training the base detector M0. The split is per-
formed with the Domain-Aware Data Partitioning
§3.1. We note that even if the absolute performance
of the detector is not important in our work, we al-
ways obtain a in-domain, in-sample test accuracy
above 97%, in line with state-of-the-art models.

After training, the topics excluded from train on
the same dataset constitute the OOS test set, and
the remaining datasets constitute the OOD test sets.

4.2 Results
To evaluate the proposed framework, we conducted
extensive experiments using multiple datasets §4.1

2https://www.kaggle.com/datasets/thedrcat/daigt-v4-
train-dataset

Figure 3: UMAP projection of the classification embed-
ding space for M0 (left panels) and Mp (right panels)
on Dtrain (top) and DOOD (bottom).

and various framework configurations §3. To ad-
dress the main research questions, we present spe-
cific instantiations of the framework in the main
text, while additional parameterizations, computa-
tional cost and experimental variations are provided
in the appendix §A.

Detection Generalization Improvement In Figure
1 we show an example of the efficacy of our method
in identifying relevant confounding neurons. We
fine-tune the detector on two topics of the DAIGT
dataset ("car-free cities" and "distance learning")
and use Integrated Gradients (IG) to identify the
most important confounding neurons as described
in §3. We then proceed to gradually remove the
top-K neurons (here K = 50) one at the time and
observe the difference in detection accuracy for five
test sets, i.e., DAIGT samples from different topics
(OOS), HC3 (OOD), Xsum (OOD), M4 (OOD),
and GB (OOD). We observe that removing as few
as 20 neurons can bring an improvement in detec-
tion accuracy up to 7% in texts OOS and 3% in
OOD, with specific single neurons responsible for
sudden jumps of around 3% in OOS detection accu-
racy. The shaded area acts as a baseline and depicts
the effect of randomly suppressing neurons from
intermediate layers, showing minimal effects in the
overall accuracy, as expected.

In Figure 3 we show a 2D representation of the
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Dataset Name # Humans # Machine Confounders/Topics Text Type Generators

DAIGT 27,371 17,497 23 Student Essays 11
HC3 24,322 23,867 5 Q&A ChatGPT
XSum 3,259 5,991 1 News Articles GPT-based
M4 9,000 53,033 3 wikipedia, arxiv 6
Ghostbuster 3,000 15,000 3 Student, News GPT-based

Table 2: Summary of the considered human- and machine-generated text data.

output [CLS] embeddings, that is, the input to the
final classification layer, obtained using UMAP
for the DAIGT Train (top) and HC3 OOD test
(bottom) datasets both without intervention (left
panel) and after removing the top-2 confounding
neurons found by our method (right panel). Each
dot represents a textand each color represents a
topic. For the top panel, human- and machine-
generated texts are well separated, with machine-
generated texts being almost perfectly clustered on
the left (see Figure 13 in the Appendix). For the
bottom panel, the labels are less well separated, as
expected, with right-top lobe is most associated to
machine-generated texts. As shown, the original
model clusters well the topics of each text, but after
the intervention on the confounding neurons the
embeddings are collapsed and the detection model
is not able to separate the topics anymore. More
experiments on the generalization improvements
can be found in Appendix A.2.

Distribution of Confounding Neurons An inter-
esting aspect of confounding neurons in LLM-
generated text detection models is their distribu-
tion across the transformer layers of the detector
and the comparison with the intermediate neurons
that are more associated with the main detection
task. In Figure 4 we compare the distribution of
the top-50 confounding neurons and the top-50
“detection” neurons obtained by applying our neu-
ron attribution method to the classification token
[CLS] instead of the topic keywords. While the de-
tection neurons are concentrated almost exclusively
at the final layers, confirming a general observation
in mechanistic interpretability (Dai et al., 2022b;
Bereska and Gavves, 2024). In contrast, confound-
ing neurons are more prevalent in the initial layers,
suggesting that the model processes topic-related
concepts early on and then propagates this informa-
tion to the later layers for final detection.

Supervised vs. Unsupervised topic definition Un-
supervised topic modeling techniques are powerful

2 4 6 8 10 12
Layer

0.0

0.2

0.4

0.6

Fr
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tio
n

Confounding Neurons
Detection Neurons

Figure 4: Distribution across layer of confounding neu-
rons (using IG scoring) and detection-relevant neurons.

and scalable but may introduce strong spurious
correlations with the text detection task. As illus-
tratory example, we consider the DAIGT dataset
with known ground-truth topics and compute the
LDA with total components nc = 2ngt where ngt

is the number of ground-truth topics and 2 takes
into account the binary classification task.

As shown in Figure 14 in the Appendix, there is
a good correspondence between ground-truth top-
ics and LDA components with many components
including only one topic. In Figure 5, we show an
illustrative example. Many components seem to
separate very well the human and LLM-generated
texts. While components 7 and 26 map to a single
topic and present a balanced mix of the two classi-
fication labels (check Figure 14), components 15
and 24 separate perfectly the detection labels in the
same ground-truth topic.

It is reasonable to assume that components such
as 15 and 24 can be utilized to extract relevant neu-
rons for the detection task. Consequently, suppress-
ing these neurons would likely lead to a reduction
in detection accuracy, as it becomes challenging to
effectively separate topic-related confounding fac-
tors from detection related information. In contrast,
components like 7 and 26, which map to individual
topics and maintain label balance, are ideal candi-
dates for identifying confounding neurons.
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Figure 6 confirms this hypothesis: a model
trained on components 15 and 24 (top) exhibits
a decrease in detection accuracy when our frame-
work is applied, whereas a model trained on compo-
nents 7 and 26 (bottom) shows the opposite effect.
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Figure 6: Relative variation in detection accuracy on
the in-domain, out-of-sample (OOS), and two out-of-
distribution (OOD) test sets of removing the top-K
(K = 1− 50) confounding neurons when the model is
trained on LDA topics that are not disentangled from the
task labels (top) and when the topics are not informative
for the detection task (bottom).

Comparison of Different Neuron-level Rele-
vance Scoring.

We compare two different neuron-level rele-
vance scoring methods, as described §3.3. The
Integrated Gradient IG-based scoring method is
derive by Knowledge Neurons (Dai et al., 2022b),
meanwhile the Average Precision insipred by the
Expert Neurons (Suau et al., 2024). Both methods
aim to identify neurons that encode specific knowl-
edge directly related to the final task (e.g., text
generation). Our framework, however, is designed
to find confounding neurons, that capture spuri-
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Figure 7: Effect on the in-domain, out-of-sample (OOS),
and two out-of-distribution (OOD) test sets of removing
the top-K (K = 1−50) confounding neurons computed
using the AP method for detection task.

ous correlations rather than essential information,
helping to improve the model’s generalization.

A first comparison of IG- and AP-based relevant
scoring can be appreciate in Figure 16 (for AP) and
4 (for IG): we obtain a very similar distribution of
topic vs. detection neurons across layers.

A second comparison focuses on identifying con-
founding neurons. While the AP-based method
yields high scores and demonstrates near-perfect
topic classification capabilities (Figure 15), it is not
as effective as IG in identifying specific confound-
ing neurons according to our definition.

Interestingly though, as shown in Figure 7, the
AP-based method allows for the removal of even
30% of the total intermediate layer neurons in the
feed-forward networks of the transformer blocks
not only without loosing detection accuracy, but
even improving it up to almost 7% for the OOD
datasets. This kind of phenomenology is not new,
as it is known that transformer-based models for
NLP tasks are extremely redundant (Dalvi et al.,
2020), it is worth noting the striking differences in
the two neuron ranking approaches: the IG-based
attribution score is able to identify a few confound-
ing neurons that correspond to sudden jumps in
detection accuracy, while the AP-based score fail
to recover these specific neurons but allows for
an extreme pruning of the detector while reaching
OOD detection accuracy that is comparable or even
better than the IG-based approach.

5 Conclusions

Through extensive experiments, we demonstrated
that fine-tuning text detectors on specific domains
or topics can lead to the emergence of confounding
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neurons: neurons that capture spurious correlations
associated with concepts orthogonal to the detec-
tion task. These confounding neurons significantly
compromise the model’s ability to generalize to
unseen domains and topics.

Our Framework shows that identifying and sup-
pressing a small number of these confounding neu-
rons within the intermediate layers of transformer-
based models can effectively mitigate this issue,
resulting in substantial improvements in out-of-
distribution performance. The proposed method
leverages simple yet effective neuron-relevance
scoring techniques, such as gradient-based attri-
bution and linear classification, without requiring
any retraining, making it scalable to larger models.

While the current focus is on LLM-generated
text detection, the proposed neuron-level interven-
tion framework is general and can be applied to
other text classification tasks where robustness to
domain shifts is crucial. Future work will investi-
gate extending this approach to a broader range of
classification challenges.

Limitations

While our proposed framework effectively im-
proves the generalization of LLM-generated text
detectors, it also presents several limitations. The
approach is primarily empirical, and we lack pre-
cise control over which confounding factors are
being captured. This limits our ability to fully ex-
plain the differences observed between the two
neuron-scoring methods (IG vs. AP) and to ensure
coverage of all relevant confounding dimensions
beyond topic and domain.

The datasets used for evaluation, although di-
verse, may not reflect the full complexity of real-
world scenarios. For instance, the performances
of LDA in separating labels suggest that existing
benchmarks might be relatively “easy,” lacking ad-
versarial examples or deeper semantic variation.
As a result, further evaluation on more challenging
and diverse datasets is necessary to better assess
robustness.

Our analysis also focuses exclusively on neurons
in the feed-forward layers of the transformer archi-
tecture, omitting attention mechanisms and other
components. While this already provide signifi-
cant improvements, incorporating other layers and
architectures could offer additional insights.

Finally, the framework currently relies on
keyword-based methods (LDA or supervised topic

extraction) to localize confounding neurons. This
assumes that spurious correlations are lexically
grounded, which may not hold for more abstract
or stylistic confounders. Developing alternative
approaches that leverage higher internal represen-
tations of the detection model (i.e. sparse autoen-
coder SAE) could help uncover a broader range
and more detailed confounding factors.
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A Appendix

A.1 Dataset details
As described in the main text, we consider three
datasets:

• DAIGT: A large collection of student essays
covering 23 different topics, generated using 11
different models.

• HC3: A Q&A dataset where responses are gen-
erated by ChatGPT.

• XSum: A news summarization dataset with AI-
generated texts generated using GPT-based mod-
els.

• Ghostbuster: Three paired datasets of human–
and ChatGPT-written texts in student essays,
news articles and creative writing, with about
3,000 human documents and 15,000 ChatGPT-
generated ones.

• M4: A large-scale benchmark of roughly 147k
parallel human–machine texts (plus over 10M
human-only), spanning seven languages, mul-
tiple domains (e.g., Wikipedia, Reddit, arXiv)
and six LLM generators for black-box machine-
generated text detection.

DAIGT is particularly fit for our study since it
contains several labeled topics with limited over-
lap and clear subjects. It’s a collection of 44,868
essays, 27,371 human and 17,497 LLM-generated,
from different transformer-based models. In Ta-
ble 3 we report the different generators used and
their text frequencies. In Table 4 we report the
topics and their frequencies.

HC3 is a corpus of 48185 texts, with 24320 hu-
man and 23865 generated by ChatGPT (GPT 3.5).

Xsum is a balanced dataset of 6,000 news, 3,000
human and 3,000 generated using GPT-based mod-
els, and it does not contain topic labels.

A.2 Additional Experiments
To confirm the validity of our approach, we tested
our framework in different training settings. First,
we trained the model on DAIGT varying the num-
ber of training topics, and considered the case of 4
different topics instead of 2. Results are shown in
Figure 8

In a different experiment, Figure 9, we train on
2 topics of HC3 and test on DAIGT and XSum as

Generative Model Count

mistral7binstruct_v2 2,421
chat_gpt_moth 2,421
llama2_chat 2,421
mistral7binstruct_v1 2,421
kingki19_palm 1,384
train_essays 1,378
llama_70b_v1 1,172
falcon_180b_v1 1,055
darragh_claude_v6 1,000
darragh_claude_v7 1,000
radek_500 500
NousResearch/Llama-2-7b-chat-hf 400
mistralai/Mistral-7B-Instruct-v0.1 400
cohere-command 350
palm-text-bison1 349
radekgpt4 200

Table 3: DAIGT Generative Models

Topic Count

Distance learning 5554
Seeking multiple opinions 5176
Car-free cities 4717
Does the electoral college work? 4434
Facial action coding system 3084
Mandatory extracurricular activities 3077
Summer projects 2701
Driverless cars 2250
Exploring Venus 2176
Cell phones at school 2119
Grades for extracurricular activities 2116
Community service 2092
"A Cowboy Who Rode the Waves" 1896
The Face on Mars 1893
Phones and driving 1583

Table 4: DAIGT Topics

Topic Count

reddit eli5 33,769
finance 7,866
medicine 2,493
open qa 2,373
wiki csai 1,684

Table 5: HC3 Topics

OOD test sets. We note that using HC3 as train
set makes the extraction of confounding neurons
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Figure 8: Accuracy gain in a human-vs-LLM detec-
tor BERT-based removing the top-K (K = 1 − 50)
confounding neurons. DAIGT as training set with 4
different supervised topics.

more challenging since the labeled topics are ac-
tually different sources of human-generated texts,
and consequently there may be more overlap across
topics. Interestingly, the best improvement in detec-
tion accuracy is obtained for the OOS data, while
the XSum OOD has always a very high accuracy
score.
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Figure 9: Accuracy gain in a human-vs-LLM detector
BERT-based removing the top-K (K = 1 − 50) con-
founding neurons. HC3 as training set.

In Figure 10, we consider the same experimen-
tal setting as described in Figure 1, but using
RoBERTa as the base model for the detector. The
experimental results confirm the effectiveness of
our method also for different transformer-based
detectors, with comparable gains in detection accu-
racy compared to the base detector.

To assess the robustness of our method we re-
peated the experiments described in 1 of the main
text 5 times with different random seeds both for
the training of the detector and the sampling of
the train/validation/test sets. The results are shown
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Figure 10: Accuracy gain in a RoBERTa-based human-
vs-LLM detector removing the top-K (K = 1−50) con-
founding neurons. Removing as few as 40 (∼ 0.1%)
confounding neurons in the feed-forward MLPs inter-
mediate layers results in up to a 6% improvement in the
out-of-distribution test sets.

in figure 11. All experiments show an improve-
ment in detection accuracy, with an average im-
provement of up to 5.2 percentage points for out-
of-distribution test sets.
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Figure 11: Average accuracy gain and standard devia-
tion in a human-vs-LLM detector BERT-based remov-
ing the top-K (K = 1 − 50) confounding neurons.
Each experiment is repeated 5 times. Here we consider
DAIGT as training set and HC3 and XSum as OOD test
sets.

In table 6 we report a summary of the results for
all the experiments, indicating the absolute values
for accuracy in OOS and OOD (best of the two),
both for M0 and Mp. When topics are unsuper-
vised and computed using LDA we denote with
(LDA ↑) when it is expected to see an improvement
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in generalization and (LDA ↓) when we expect
a reduction in detection accuracy because the ex-
tracted components do not allow a disentanglement
of topic and label, as described in the main text.
Detection Neurons: In Figure 4 in the main text we
discuss “detection” neurons, that is, neurons that
are most related to the detection task and are well
separated from the confounding neurons. Even if
these neurons are in fact connected to the detection
accuracy (see Figure 12), the focus of our study
is to improve the OOD generalization by remov-
ing spurious data-related and domain biases and
not acting on the neurons directly involved in the
detection.
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Figure 12: Accuracy variation in a human-vs-LLM de-
tector BERT-based removing the top-K (K = 1− 50)
detection-relevant neurons.

Finally, in Figure 13 we report the same embed-
ding projection of Figure 3 color-coded for the text
label.
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Figure 13: UMAP projection of the classification em-
bedding space for M0 (left panels) and Mp (right pan-
els). Colors indicate human (blue) and LLM (red) gen-
erated texts.

A.3 Implementation and Training Details
We use the transformers python package with
torch backend. The detector is a pretrained
bert-base-cased sequence classification model,

fine-tuned on the training dataset Dtrain for 4
epochs, with AdamW optimizer, learning rate lr =
2 · 10−5 and batch size bs = 32. Since BERT has a
maximum positional encoding of 512, we consider
up to the first 512 tokens for each text. In all exper-
iments we consider 5 top keywords for each topic
for topic relevance scoring.

A.4 Topics and Keywords Extraction
Supervised - TF-IDF: As detailed in the main text,
in case of data with given ground-truth topics we
extract the topic keywords by means of TF-IDF,
that is, a well known statistical measure used to
evaluate the importance of a word in a document
relative to a collection of documents (a corpus). It
assigns a weight to each term in a document based
on how frequently it appears in that specific docu-
ment (Term Frequency) and how rare it is across all
documents in the corpus (Inverse Document Fre-
quency). TF-IDF gives a higher weight to terms
that are frequent in a specific document but infre-
quent across the entire corpus. This helps to iden-
tify keywords that best characterize the content of
a document. In table 7 we report an example of the
keywords extracted.
Unsupervised - LDA: In case the considered train-
ing data do not have topic information, we employ
Latent Dirichlet Allocation (LDA). LDA is a gener-
ative probabilistic model used for topic modeling.
It is an unsupervised machine learning algorithm
that aims to discover the underlying “topics” that
occur in a collection of documents. LDA works
by analyzing the co-occurrence of words within
documents. It attempts to find groups of words that
frequently appear together across different docu-
ments, inferring these groups as underlying latent
topics. The model then determines the topic mix-
ture for each document and the word distribution
for each topic.

In Figure 14 we show the results when LDA to
the whole DAIGT dataset as described in the main
text and compared to the ground-truth topics.

A.5 Scoring Methods
Integrated Gradients. Integrated Gradients (IG)
(Sundararajan et al., 2017) is an axiomatic attri-
bution method used to explain the predictions of
deep neural networks. It aims to determine the
contribution of each input feature to the model’s
output. The core idea is to calculate the integral
of the gradients of the model’s output with respect
to the input features, along a straight path from a
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Train dataset # Train topics Scoring M0 OOS M0 OOD Mp OOS Mp OOD # Neurons
DAIGT 2 IG 0.92 0.76 0.95 0.83 50
DAIGT 4 IG 0.92 0.72 0.93 0.76 50
HC3 2 IG 0.69 0.87 0.74 0.88 50
DAIGT 2 AP 0.93 0.76 0.95 0.82 10000
DAIGT 2 (LDA ↑) IG 0.96 0.75 0.97 0.77 50
DAIGT 2 (LDA ↓) IG 0.88 0.76 0.86 0.70 50

Table 6: Results of confounding neurons detection generalization improvement.

Topic Keywords
Car-free cities car, usage, cars, limiting, people, air, transportation
Does the electoral college work? electoral, college, vote, states, president, popular, people
Distance Learning students, school, online, classes, home, learning, work

Table 7: Example of keywords extracted using TF-IDF supervised method for three topics of the DAIGT dataset.
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Figure 14: Distribution of the DAIGT corpus by LDA components and ground-truth topics. The number of
components is given by # components = 2 · # ground-truth topics

baseline input to the actual input. The baseline is
typically set to zero.

Mathematically, for an input x, a baseline x′,
and a model F , the attribution for the i-th feature
xi is defined as:

IGi(x) ≡ (xi−x′i)×
∫ 1

α=0

∂M(x′ + α(x− x′))
∂xi

dα

Here, α interpolates between the baseline and the
input. Following Dai et al. (2022b), we consider
a Riemann approximation of the Integrated Gradi-
ents where the integral is substituted by a discrete
summation. In our experiments we found that al-
ready for 5 summation steps the results provide a
good trade-off between computation cost and result
accuracy.
Average Precision Following Cuadros et al. (2022),
for each neuron we treat the activation value as the
output prediction score of a linear classifier, and
compute the Average Precision score (AP), that is,

the area under the precision-recall curve using as
output labels described in the main text. In Fig-
ure 15 we show the AP scores for each neuron
when the detector is fine-tuned on DAIGT con-
sidering two topics. The surprising general high
values of the AP score seem to indicate that almost
half of all the MLPs neurons encode the ability to
discriminate topics, in agreement with the results
shown in the main text.

In Figure 16 we show the distribution of the most
important 500 neurons using the AP score. In agree-
ment with IG, most of the important confounding
neurons are in the early layers of the detector, con-
trary to the detection neurons.

A.6 Computational Cost

Our method does not substantially increase the
computational cost of the base detectors. Topic
extraction (LDA) is extremely efficient, and AP
requires only a forward pass per layer for each text
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Figure 15: Distribution of the Average Precision scores
for all MLP neurons across all layers.
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Figure 16: Distribution across layer of confounding
neurons and detection-relevant neurons obtained using
the AP score.

from the training dataset. IG is slightly more com-
putationally demanding, but we noticed that only
a 5-step approximation of the integral (5 forward
passes per layer) is sufficient. These are run only
once when extracting the neuron scores.
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