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Abstract

Reliable multi-image geological reasoning is
essential for automating expert tasks in remote-
sensing mineral exploration, yet remains chal-
lenging for multimodal large language models
(MLLMs) due to the need for locating target
areas, accurate cross-image referencing, and
consistency over long reasoning chains. We
propose STA-CoT, a Structured Target-centric
Agentic Chain-of-Thought framework that or-
chestrates planning, execution, and verification
agents to decompose, ground, and iteratively re-
fine reasoning steps over geological and hyper-
spectral image sets. By aligning each reasoning
step to specific image target areas and enforcing
consistency through agentic verification and
majority voting, STA-CoT robustly mitigates
tool errors, long-chain inconsistencies, and er-
ror propagation. We rigorously evaluate STA-
CoT on MineBench, a dedicated benchmark for
multi-image mineral exploration, demonstrat-
ing substantial improvements over existing mul-
timodal chain-of-thought and agentic baselines.
Our results establish STA-CoT as a reliable
and robust solution for consistent multi-image
geological reasoning, advancing automated sci-
entific discovery in mineral exploration.

1 Introduction

Multi-image geological reasoning is the task of
synthesizing and interpreting geological evidence
from multiple remote-sensing images of a region
to produce a cross-image rationale over targeted
areas in the region (Alzubaidi et al., 2021). Among
its most impactful applications is mineral explo-
ration (Yousefi et al., 2019), where experts integrate
geological and hyperspectral imagery to identify
and assess economically valuable mineral deposits.
The ability to automate mineral exploration holds
tremendous significance, as it accelerates resource
discovery essential for global technological infras-
tructure and sustainability (Sabins, 1999). A do-
main expert may spend hours manually correlat-
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Figure 1: Three types of errors in visual-based augmen-
tation approaches in multi-image geological reasoning.

ing structured faults, alteration zones, and spectral
signatures across several images to narrow down
large survey regions into a small set of promising
candidates – demonstrating how automation can
drastically reduce the number of regions requiring
costly field investigation (Shirmard et al., 2022).

The performance of multi-image geological rea-
soning fundamentally relies on a model’s ability
to reason across both spatial and spectral modali-
ties, integrating diverse geological cues distributed
among multiple images over one region into a co-
herent, evidence-based conclusion. This motivates
the adoption of multimodal large language mod-
els (MLLMs), which unify visual and textual in-
puts, as well as the multimodal chain-of-thought
(MCoT) framework that decomposes complex vi-
sual reasoning into interpretable, step-by-step ratio-
nales (Wang et al., 2025a). Recent advances have
further strengthened these reasoning frameworks
by introducing prompt-based MCoT (Fei et al.,
2024; Zhang et al., 2024), structured planning (Wei
et al., 2024; Wang et al., 2025b), tool-augmented
decision-making (Tang et al.; Wu et al., 2024), and
mechanisms for consistency (Zhou et al., 2024) and
verification (Yan et al., 2025). Such techniques en-
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able MLLMs to not only elaborate their reasoning
processes but also actively validate and refine their
intermediate outputs, leading to accurate answers.

However, these techniques cannot be directly
applied to multi-image geological reasoning, as,
besides proper geological knowledge, the task
uniquely demands (i) accurate interesting target
location within each image, (ii) maintenance of a
long and complex reasoning chain, and (iii) precise
cross-image referencing that exceeds the typical
capabilities of existing approaches. In our pilot
experiments, when we adopt MCoT methods with
tool-augmentation and vanilla consistency & ver-
ification for this task, we observed three primary
categories of failure as in Figure 1: tool output
errors, long-chain inconsistencies, and error prop-
agation. These errors arise precisely because this
task amplifies the risk of faulty target location by
tools due to a lack of domain knowledge, increases
the chance for intermediate mistakes to accumulate
and propagate along extended reasoning chains,
and makes it difficult to maintain consistent refer-
ences and logic across multiple images – ultimately
undermining the reliability of the conclusions.

Motivated by these challenges, we seek to enable
reliable and domain-adapted multi-image reason-
ing for geological exploration. To this end, we
present Structured Target-centric Agentic Chain-of-
Thought, STA-CoT, a novel framework designed
to deliver consistent and accurate multi-image geo-
logical reasoning. It orchestrates specialized agen-
tic modules within a structured chain-of-thought
paradigm, explicitly aligning reasoning steps with
domain knowledge, visual targets, and cross-image
dependencies. By structuring the reasoning pro-
cess around targeted regions and incorporating
agent-based planning, execution, and verification,
STA-CoT mitigates the unique complexities of ge-
ological multi-image tasks. Specifically, it coor-
dinates three closely integrated agents: a Planner
that retrieves relevant geological knowledge and
decomposes the complex multimodal task into a
sequence of manageable sub-tasks; an Executor
that performs these sub-tasks by invoking special-
ized tools and integrates outputs via a rule-based
controller to ensure accurate visual alignment; and
a Verifier that continuously monitors intermedi-
ate reasoning steps, triggering a stepwise refine-
ment process to direct the Executor to revise faulty
outputs, thereby preventing error propagation and
maintaining causal stability throughout the chain.

As such, STA-CoT grounds each reasoning step

to specific image regions and systematically tracks
cross-image relationships through structured agen-
tic planning. Consistency is maintained by continu-
ally verifying intermediate outputs, while a major-
ity voting mechanism further reduces long-chain
inconsistencies, yielding stable and reliable con-
clusions in complex multi-image geological rea-
soning. To rigorously evaluate our approach, we
leverage MineBench, a dedicated benchmark de-
signed for multi-image mineral exploration tasks,
which integrates both geological and hyperspectral
remote-sensing data to emulate real-world explo-
ration scenarios (Yu et al., 2024). Empirical results
demonstrate that STA-CoT achieves state-of-the-
art performance, substantially outperforming prior
MCoT, multi-agent, and tool-augmented MLLM
baselines. These affirm the framework’s effective-
ness in delivering reliable and consistent geological
reasoning across complex multi-image contexts.

2 Related Work

Multimodal Chain-of-Thought. Multimodal
Chain-of-Thought (MCoT) (Zhang et al., 2023)
reasoning frameworks have rapidly advanced from
early prompt-based works that generate stepwise
textual rationales grounded in visual content (Fei
et al., 2024; Zhang et al., 2024) to sophisticated
paradigms like retrieved-augmented, structured and
tool-augmented multimodal reasoning. Retrieval-
Augmented Generation (RAG) injects external or
domain-specific knowledge to inform inferences in
complex scenarios (Dong et al., 2024; Pan et al.,
2024). And, structured and planning-based rea-
soning approaches (Gao et al., 2024; Hu et al.,
2024), such as Graph-of-Thought (GoT) (Besta
et al., 2024) and Compositional CoT (CCoT) (Mi-
tra et al., 2024), explicitly model the dependen-
cies and relationships between reasoning steps, of-
ten leveraging graph-based or compositional rep-
resentations to capture intricate cross-modal in-
teractions. Meanwhile, agentic tool-augmented
and Chain-of-Action (CoA) methods, including
KAM-CoT (Mondal et al., 2024), MM-Verify (Sun
et al., 2025), and Det-CoT(Wu et al., 2024), extend
MCoT by integrating external tools (e.g., visual
annotators, object detection, and recognition) to en-
able interactive perception and iterative refinement
of visual evidence.

Despite these advances, most existing paradigms
are evaluated on single-image or short-context
tasks, lack robust mechanisms for explicitly track-
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ing cross-image references. In contrast, STA-CoT
is designed to tackle the unique challenges of
multi-image geological reasoning, where retrieved-
augmented domain-contextual planning, accurate
alignment and referencing of targeted regions
across images, and structured management of long
and error-prone reasoning chains are indispensable
for consistent decision making.

Consistency and Verification. Maintaining logi-
cal consistency is particularly challenging in safety-
critical or scientific domains like mineral explo-
ration, where errors at intermediate reasoning steps
can undermine overall trustworthiness (Havrilla
and Iyer, 2024). Existing approaches to consis-
tency in reasoning generally operate at the chain or
output level, employing strategies such as majority
vote (Tan et al., 2024; Zelikman et al., 2022) and
post-hoc verification (Sun et al., 2025; Yan et al.,
2025). While these methods can improve the plau-
sibility of final predictions by selecting among al-
ternative reasoning chains, they offer limited mech-
anisms for diagnosing and repairing errors within
the reasoning process itself (Zhou et al., 2024).
Such coarse-grained consistency enforcement is
often insufficient in domains where interpretability
and reliability at every reasoning step are required.
In contrast, our STA-CoT framework addresses this
critical gap by introducing an agent-driven, itera-
tive refinement mechanism that enables stepwise
error detection and targeted repair, thus supporting
robust and trustworthy multimodal reasoning.

Mineral Exploration. Mineral exploration ex-
emplifies multi-image geological reasoning, requir-
ing the integration of geological and hyperspectral
evidence from multiple remote-sensing images to
identify mineralization patterns and predict deposit
locations (Sabins, 1999; Zuo et al., 2021). Un-
like standard multimodal tasks, models must accu-
rately detect and correlate key geological features
across images, mirroring expert geoscientists’ ap-
proach of synthesizing spatial and spectral cues
for reliable decisions. Although agentic MLLMs
have advanced scientific reasoning in fields such
as mathematics (Deng et al., 2024), medicine (Kim
et al., 2024; Li et al., 2024), and geoscience (Liu
et al., 2024; Xu et al., 2024), few frameworks (Yu
et al., 2024) address the specific challenge of cross-
image reasoning essential to mineral exploration.
This motivates our STA-CoT framework, which ex-
plicitly structures agentic reasoning around multi-
image evidence to achieve consistent and robust

mineral prospectivity assessments. In contrast to
MineAgent, which primarily established modular
pipelines and benchmarks, this work presents a
structured agentic chain-of-thought framework that
directly tackles cross-image consistency and tar-
geted geological reasoning.

3 Methodology

To enable automated mineral exploration with
remote-sensing imagery, we formally define the
reasoning objective as follows.

Task Formulation. Given a mineral-exploring
query Q (e.g., ‘Given the following remote-sensing
images, can deposits be detected? Answer: A. Yes
B. No.’) and a set of remote-sensing images I
representing a targeted region, the objective is to
determine the presence or absence of deposits:

Afinal ∼M(I, Q; θM ) (1)

where M denotes a multimodal large language
model parameterized by θM , and Afinal ∈ {A,B}
is the final predicted answer.

To address the complexity of multi-image geo-
logical reasoning – requiring integration of spatial
and spectral evidence, cross-image referencing, and
logical consistency – we adopt an agentic reason-
ing framework, as inspired by prior works (Yan
et al., 2025; Li et al., 2024; Kim et al., 2024; Sun
et al., 2025). Within this framework, the model not
only produces a final answer but also outputs an
interpretable reasoning chain:

R = (r(1), . . . , r(N)) (2)

where each step r(i) consists of a structured sub-
task and its corresponding multimodal observation
over N steps. Furthermore, STA-CoT explicitly
orchestrates structured domain-informed planning
(§3.1), target-centric visual execution (§3.2), and
agent-driven consistency verification (§3.3) to han-
dle geological reasoning tasks as below. Please see
Figure 2 for an illustration.

3.1 Structured Domain-informed Planning

Effective multi-image geological reasoning de-
mands not only general visual understanding but
also the ability to decompose complex queries into
domain-specific, actionable steps. To this end,
STA-CoT incorporates a domain-informed planner
(Mp), which systematically translates each mineral
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Figure 2: The workflow of our STA-CoT framework. Given a geological query (Q) and remote-sensing images
(I), STA-CoT generates a final decision and an interpretable reasoning chain. The process consists of: (1) domain-
informed planning by the Planner(Mp), (2) visual-grounded execution by the Executor (Me), and (3) agentic
verification and refinement by the Verifier (Mv). This iterative process ensures each reasoning step is grounded in
both domain knowledge and visual evidence.

exploration query Q into a structured sequence of
plan segments S = (s(1), . . . , s(N)).

This planner operates by leveraging a domain
knowledge base (Kdomain), encapsulating key geo-
logical concepts, and a curated visual toolkit (Tset)
tailored to mineral exploration. The toolkit pro-
vides specialized operations, such as (i) targeting
alteration zones (box maker color mode), (ii) iden-
tifying salient geological structures (box maker fea-
ture region), (iii) exploring spatial relationships
across images (spatial relationship explorer), and
(iv) integrating evidence for decision-making, as
detailed in Appendix C.3.

By orchestrating these components, Mp gener-
ates visually grounded, executable plans that break
down the task into sub-steps, each aligned with
relevant image area and geological priors:

S ∼Mp(Q, I,Kdomain, Tset; θp) (3)

where θp are the model parameters. This structured,
domain-informed planning forms the foundation
for accurate multi-image geological reasoning.

3.2 Target-centric Visual-grounded Execution
To faithfully realize each step of the structured
reasoning plan, STA-CoT employs a model-based
executor (Me) that transforms abstract plans into

concrete multimodal actions. Unlike generic execu-
tion, our executor explicitly aligns every sub-task
with precise target areas across the input images,
ensuring that each operation is spatially grounded
and contextually relevant.

For each plan segment s(i), the executor iden-
tifies the corresponding target area within the se-
lected imagery I(i)sel , then invokes the most appro-
priate visual tool t(i)sel as specified by the planner.
This process yields a rich observation ob(i) =

(o
(i)
txt , o

(i)
vis), consisting of both a textual rationale

(o(i)txt ) and a visual outcome (o(i)vis), such as an anno-
tated or segmented image.

Crucially, our execution is target-centric – all ac-
tions and tool invocations are explicitly conditioned
on the spatial context of geological interest, which
is vital for accurate cross-image reasoning. More-
over, the process is visual-grounded – ensuring that
each step produces verifiable visual evidence.

To safeguard the fidelity of each execution, Me

incorporates an internal rule-based controller Frule,
which checks the alignment between described re-
gions and visual outputs, automatically flagging
and correcting inconsistencies (see Appendix C.2).
This mechanism, together with optional agentic
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feedback [f
(k)
ext ], promotes error-resistant execution:

ob(i) = (o
(i)
txt , o

(i)
vis) ∼Me(s

(i), [f
(k)
ext ]; θe) (4)

where θe denotes executor parameters.
By explicitly grounding each reasoning step in

both targeted spatial context and visual evidence,
the STA-CoT executor ensures that multi-image
geological reasoning is interpretable, traceable, and
resilient to cascading errors.

3.3 Agentic Consistency-driven Verification

Long-chain multi-image geological reasoning is
uniquely prone to error propagation and logical
inconsistency, as minor mistakes in intermediate
steps can accumulate and distort the final conclu-
sion. Traditional output-level consistency mecha-
nisms are insufficient for safety-critical scientific
domains, where stepwise interpretability and re-
liability are paramount. Therefore, STA-CoT in-
troduces an agentic verifier to proactively monitor,
validate, and iteratively repair the reasoning pro-
cess, ensuring robust and trustworthy outcomes.

Verifier Basic. The verifier (Mv) serves as a
critical agent in STA-CoT, tasked with examining
the entire reasoning chain R = (r(1), . . . , r(N)),
where each node r(i) = (s(i), ob(i)) links a planned
segment and its multimodal observation. Mv con-
ducts fine-grained checks at both node and chain
levels—validating logical soundness, factual cor-
rectness, and semantic alignment between textual
and visual components (e.g., between o

(i)
txt and o

(i)
vis).

On detecting flaws, the verifier generates targeted
corrective feedback Fcorr for self-repair. The for-
mal output of the verifier is:

(isValid, Ap, Fcorr) ∼Mv(R,Q; θv) (5)

where isValid flags chain validity, Ap is the candi-
date answer, and Fcorr lists corrective guidance.

Progressive Reasoning Chain Construction.
STA-CoT utilizes a memory cache Mcache as a
shared workspace initialized with the query Q and
input images I, continuously enriched with inter-
mediate results. The planner Mp generates a struc-
tured sequence of plan segments S(N), while the
executor Me performs each s(i), producing multi-
modal observations ob(i). Each resulting reasoning
node r(i) = (s(i), ob(i)) is appended to the chain:

R(i) ← R(i−1) ⊕ r(i) (6)

Algorithm 1 Reasoning Chain Construction
1: procedure BUILDCHAIN(Q, I,Kdomain, Tset)
2: R(N) ← ∅; Mcache ← Initial(Q, I)

3: S(N) ←Mp(Q, I,Kdomain, Tset) ▷ Eq.3
4: for i = 1 to N do
5: s(i) ∈ S; ob(i) ←Me(s

(i)) ▷ Eq.4
6: r(i) ← (s(i), ob(i)) ▷ Form the reasoning node
7: R(i) ← R(i−1) ⊕R(i) ▷ Eq.6
8: Mcache ← Update(r(i))
9: end for

10: return R(N)

11: end procedure

This progressive execution and cache updating
ensure every step leverages the latest context, fa-
cilitating coherent and context-aware reasoning, as
detailed in Algorithm 1.

Adaptive Stepwise Chain Refinement. After
constructing R(N), the verifier Mv checks validity
as per Eq. 5. If isValid = true, Ap is accepted
as the final answer Afinal. If isValid = false, Mv

identifies m erroneous nodes in R(N), indexed by
{x1, . . . , xm}, and issues targeted revision guid-
ance f

(xp)
corr for each. These nodes are then re-

executed by the executor Me using the feedback,
generating revised observations ob(xp)

re , and updat-
ing the chain as follows:

r
(xp)
re ← (s(xp), ob

(xp)
re ) (7)

The refined chain R
(N)
re is re-validated by Mv, and

this loop continues until validation succeeds or a
maximum number of iterations is reached.

Fallback Global Majority Vote. If the chain
fails to pass verification after K rounds, STA-CoT
employs a majority voting mechanism. For each
round r ∈ [1,K], a candidate answer A(r)

p is ex-
tracted from the refined chain R

(N),r
re . The final

answer is then determined as:

Afinal ← majority-vote
(
A(1)

p , . . . , A(K)
p

)
(8)

This approach ensures robust decision-making by
aggregating the most consistent answer across mul-
tiple correction attempts.

By integrating fine-grained agentic verification
with iterative repair and robust fallback voting,
STA-CoT delivers consistent, interpretable, and
scientifically trustworthy multi-image geological
reasoning, as detailed in Algorithm 2.
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Algorithm 2 Adaptive Stepwise Chain Refinement
Require: Question Q, Image I, Domain Knowledge Kdomain,

Toolset Tset

Ensure: Final Answer Afinal

Step 1: Reasoning Chain Construction
1: Acandidate ← ∅
2: R(N) ← BUILDCHAIN(Q, I,Kdomain, Tset)

Step 2: Adaptive Stepwise Chain Refinement.
3: for r = 1 to K do
4: (isV alid,A

(r)
p , Fcorr)←Mv(R

(N), Q)) ▷ Eq.5

5: Add A
(r)
p to Acandidates

6: if isV alid then
7: return A

(r)
p ▷ Return validated answer

8: end if
9: for x = 1 to m do

10: ob
(xp)
re ←Me(s

(xp), f
(xp)
corr ) ▷ Eq.4

11: r
(xp)
re ← (s(xp), ob

(xp)
re ) ▷ Eq. 7

12: Mcache ← Update(Mcache, r
(xp)
re )

13: end for
14: R

(N),r
re ← Rprefix ⊕ r

(x1)
re ⊕ · · · ⊕ r

(xm)
re ▷ Rebuild

15: end for
Step 3: Fallback Global Majority Vote

16: if Acandidates ̸= ∅ then
17: return MAJORITYVOTE(Acandidates) ▷ Eq.8

18: else
19: return "Failed" ▷ All attempts failed

20: end if

4 Experiment

Implementation Details. We evaluate STA-CoT
on the MineBench dataset (Yu et al., 2024), which
is a recently proposed geological reasoning task
focused on multi-image mineral deposit identifi-
cation. Following (Yu et al., 2024), we report
three evaluation metrics: F1 score for the positive
class (Pos.F1), macro-averaged F1 (Avg.F1), and
Matthews Correlation Coefficient (MCC) (Chicco
and Jurman, 2020). STA-CoT consists of three core
roles: the planner, executor, and verifier, where the
planner is instantiated with the Gemini-2.0 (Team
et al., 2024), as high-quality planning is essential
for guiding the execution and verification of com-
plex multi-image tasks. The executor and verifier
roles are realized using a diverse set of MLLMs,
including proprietary models such as GPT-4o (Ope-
nAI, 2024) and Gemini-2.0, and the open-source
Qwen-2.5-7B (Bai et al., 2025). More details are
provided in Appendix C.3.

Expriment Setting. We evaluate a diverse set of
open-source and closed-source multimodal large

Model Method
Metrics

Pos.F1 Avg.F1 MCC

GPT-4o

MCoT 34.81 57.19 26.07

RAG 35.92 58.32 27.46

Tool-augmented 26.01 33.38 17.66

MineAgent 61.20 77.19 56.30

STA-CoT 63.10 78.62 58.03

Gemini-2.0

MCoT 37.50 66.10 40.45

RAG 41.12 67.75 39.51

Tool-augmented 37.50 55.16 33.97

MineAgent 60.18 78.06 59.62

STA-CoT 66.67 80.75 62.12

Table 1: Performance comparison of different MCoT
methods on the MineBench benchmark.

language models on the MineBench dataset. For
Qwen-VL-2.5-7B1, we utilize official pre-trained
checkpoints and perform all local inference on two
NVIDIA L40 GPUs (48GB each). For closed-
source models such as GPT-4o-2024-08-06 and
Gemini-2.0-Flash and Gemini-2.0-flash-thinking-
exp-01-21, inference is conducted through their re-
spective public APIs. When interacting with these
APIs, the allocation of computational resources,
memory, and execution time is fully managed by
the service providers. It is important to note that
the Gemini series may be subject to automatic up-
dates or model replacements by the provider, which
can result in variations in performance over time.
Specifically, Gemini-2.0 refers to the version re-
leased in February 2025. To ensure stability and
comparability across all model outputs, we set the
temperature to 0.05.

4.1 Main Result

In Table 1, we evaluate STA-CoT against four
representative baselines as identified in Sec-
tion 2: standard MCoT, RAG, Tool-augmented,
and MineAgent (structured and planning-based rea-
soning) methods. The tool-augmented baseline is
implemented using our target-centric tools without
additional verification or refinement steps. RAG
yields only marginal improvement over standard
MCoT, while tool-augmented baseline degrades
performance due to the injection of noisy or un-
validated relational information in the absence of
verification. MineAgent achieves substantial gains

1https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct
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Method Pos.F1 Avg.F1 MCC

w/o Planner 52.05 72.79 45.59

w/o Executor 10.39 52.20 22.04

w/o Verifier 37.50 55.16 33.97

STA-CoT 66.67 80.75 62.12

Table 2: Ablation Study using Gemini-2.0.
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Figure 3: Performance for different back-end model
combinations of Executor and Verifier (Avg.F1).

over unimodal and less structured baselines. STA-
CoT achieves the highest scores across all eval-
uation metrics, surpassing MineAgent by +1.4%
Avg.F1 on GPT-4o and +2.6% Avg.F1 on Gemini-
2.0. These results underscore the importance of
structured planning and consistent reasoning.

4.2 Necessity of Each Module
STA-CoT explicitly modularizes Planner, Execu-
tor, and Verifier, aligning each with its specialized
function in the multi-image reasoning pipeline. To
validate the complementary roles of these mod-
ules, we first conduct ablation studies to measure
the contributions of each component. This analy-
sis identifies how each component addresses key
challenges such as evidence integration, error sup-
pression, and logical consistency.

As shown in Table 2, removing domain knowl-
edge by disabling Kdomain in the Planner leads to
a noticeable, but relatively moderate, reduction in
performance. This suggests that explicit domain
adaptation is necessary for well-structured and con-
textually relevant plans, yet the Planner’s impact is
less critical as MLLMs have been equipped with
fair geological knowledge. In contrast, ablating the
Executor, thus eliminating multimodal evidence ex-
traction, results in a substantial drop, highlighting
the Executor’s essential role in providing visual
grounding. Similarly, disabling the Verifier causes

a marked Avg.F1 decline, underscoring its pivotal
function in maintaining logical reliability and sup-
pressing error propagation.

These results confirm that while all three mod-
ules contribute to overall reasoning performance,
the Executor and Verifier are particularly indispens-
able and complementary.

4.3 Efficient Executor-Verifier Tradeoff

As it’s verified that our Executor and Verifier play
dominant roles in the above ablation study, we fur-
ther investigate how their assignment and capacity
trade-offs impact overall performance and system
efficiency. The Executor is invoked at every reason-
ing step for stepwise multimodal evidence extrac-
tion, making it a candidate for lightweight model
deployment to reduce computational cost. In con-
trast, the Verifier operates only at the chain level,
enforcing global consistency and error correction,
and thus can be allocated higher-capacity models
without incurring significant resource overhead.

Empirical results in Figure 3 validate this de-
sign: increasing either module’s capacity improves
performance, but upgrading the Verifier yields a
more pronounced gain than upgrading the Execu-
tor. Notably, pairing a strong Verifier with a weaker
Executor achieves significantly higher Avg.F1 than
the reverse, illustrating that robust chain-level ver-
ification can effectively compensate for upstream
limitations in evidence extraction. These findings
provide a practical insight into STA-CoT: in real-
world deployments, prioritizing resources for the
Verifier while using efficient models for execution
can deliver strong reasoning performance with min-
imal computational cost.

4.4 Executor: Enhancing Visual-grounding

Motivated by the core challenges of multi-image
geological reasoning, particularly the need for ac-
curate target identification and precise cross-image
referencing, we evaluate the effectiveness of visual-
grounded augmentation within the Executor.

Visual Guidance Enhances Target Accuracy.
To address the challenge of accurate localization
within each geological image, we integrate visual
guidance into the box maker tool, providing curated
annotation examples and domain-specific prompts.
As shown in Figure 4(a), removing visual guidance
leads the Executor to produce noisy or erroneous
annotations, which yields a significant improve-
ment in Pos.F1 scores (Figure 5), confirming its
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Thought: Analyze the spatial continuity 
across the images. Continuity refers to the 
smooth spatial transition of colored regions. 
Determine whether such continuity is present, 
as it may indicate a complete mineral deposit.
Action: Analyze and compare spatial patterns 
using spatial_relationship_explorer ...

Thought: Identify and describe 
potential mineralization areas by 
evaluating both color intensity 
and the size of colored regions... 
Action: Use box_maker tool 
to mark high-value areas...

Example: the 
potential area is 
marked because  it 
includes both red
and green high-value 
regions .....

Planner

Executor
Spatial graph

The spatial relationship analysis reveals 
a connected pattern of spatial relations 
across the marked regions of <m1> 
<m2>, <m3> and <m4>, indicating  
form a coherent pattern. 

The spatial relationship 
analysis reveals that Area 1 
is close to and aligned with 
the <m1>, and it shows 
continuity with <m3>.

<m1> <m2>

<m3> <m4>

(a)  w/o vs. w/ Target-centric Visual Guidance. (b) w/o vs. w/ Graph-based Spatial Reasoning. 

Enhancement

Executor

Planner

Executor

M1_Area1

M2_Area1

M3_Area1

M2_Area1

Figure 4: Comparison of Qwen-2.5-7b performance with and without visual-grounded enhancements within
Executor: (a) visual guidance in the box maker tool; (b) graph-based guidance in the spatial relationship explorer.

Figure 5: Impact of visual-grounded enhancements on
Pos.F1 scores for Qwen-2.5-7b and Gemini-2.0.

critical role in accurate geological information.

Graph-based Reasoning Improves Cross-image
Consistency. To effectively maintain precise
cross-image referencing, another critical challenge,
we incorporate symbolic graph-based relational
reasoning into the spatial relationship explorer
tool (see Appendix C.1). The graph-based aug-
mentation explicitly encodes relational information
across multiple images, facilitating the continu-
ity and consistency that MLLMs alone struggle to
achieve (Figure 4 (b)). Removing this mechanism
results in a sharp performance decline (Figure 5),
emphasizing that graph-based reasoning is essen-
tial for capturing complex spatial dependencies.

Essential for Weaker MLLMs. These visual-
grounded mechanisms are particularly beneficial
for smaller models such as Qwen-2.5-7B, substan-
tially improving their baseline accuracy. Larger

(a) Majority Vote (b) Refinement (c) Ours
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Figure 6: Comparison of consistency mechanisms. (a)
Majority vote, (b) Stepwise refinement, (c) STA-CoT.

models, such as Gemini-2.0, also benefit from struc-
tured visual and relational guidance, further con-
firming the general applicability and necessity of
these enhancements across models.

4.5 Verifier: Enhancing Chain Consistency
through Stepwise and Global Correction

Given the complexity of long-chain geological rea-
soning, we evaluate two key consistency mecha-
nisms integrated within Verifier: stepwise refine-
ment and global majority voting ( Fig. 6). Both
mechanisms individually and in combination con-
tribute to improved reasoning reliability and accu-
racy, as reported in Table 3.

Global Majority Voting Stabilizes Outputs.
Employing global majority voting without refine-
ment partially stabilizes outputs by aggregating
multiple independent answers from a reasoning
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Method Pos.F1 Avg.F1 MCC

w/o refinement 51.30 68.81 49.31

w/o majority vote 35.05 64.74 36.73

STA-CoT (full) 66.67 80.75 62.12

Table 3: Ablation results for stepwise refinement and
global majority vote mechanisms on Gemini-2.0.

M2_Area2

M2_Area2

M1_Area1

overlay

overlay

(a) Spatial graph (b) Deposit localization 

Figure 7: Deposit localization and area estimation. (a)
Spatial graph illustrating candidate regions (red) and
detected spatial relationships (blue). (b) Predicted high-
potential regions are shown in red, while purple markers
indicate ground-truth deposit locations.

path. However, early errors often persist and prop-
agate throughout the chain, resulting in only mod-
erate performance. This indicates that majority
voting alone is insufficient to resolve correlated or
persistent errors.

Stepwise Refinement Repairs Local Errors.
Applying stepwise refinement without global vot-
ing effectively addresses some local errors within
individual reasoning chains. However, this ap-
proach struggles with global inconsistencies across
chains, which significantly reduces overall perfor-
mance. Such unresolved inconsistencies highlight
the necessity of global consensus mechanisms to
achieve reliable reasoning.

STA-CoT achieves the best overall performance,
confirming that the combination of adaptive local
repair and global consensus enhances stability and
interoperability of the geological reasoning.

4.6 Cross-images Deposit Localization

While STA-CoT primarily addresses classification-
style reasoning, practical mineral exploration re-
quires accurate localization of deposits that typi-
cally exhibit spatial continuity and extend across
multiple images. This necessitates cross-image
reasoning to integrate fragmented evidence into
spatially coherent mineralization zones.

To meet this need, we augment STA-CoT with a
post-hoc localization module (Appendix C.3) that
leverages the spatial graph constructed during exe-
cution, where nodes denote candidate regions and
edges capture spatial relationships (e.g., overlap,
adjacency), providing a structured basis for cross-
image evidence aggregation. Then, the localiza-
tion module refines candidate regions by iteratively
merging spatially connected areas, emphasizing
consistency across images and filtering out isolated
or low-confidence predictions.

As shown in Figure 7, this approach enables
spatially precise predictions closely aligned with
ground truth. Empirically, it achieves a recall
of 76.71% while reducing the explored area by
64.76%, demonstrating that structured cross-image
reasoning is essential for accurate and efficient de-
posit localization in real-world geological tasks.

5 Conclusion

We proposed STA-CoT, a structured agentic rea-
soning framework for consistent multi-image ge-
ological reasoning in mineral exploration. STA-
CoT integrates domain-informed planning, target-
centric execution, and iterative verification to ad-
dress cross-image dependencies and long-chain in-
consistencies. Evaluated on the MineBench bench-
mark, STA-CoT outperforms prior methods in both
accuracy and consistency, particularly excelling in
visual-grounded execution and stepwise error cor-
rection. Our results demonstrate the framework’s
robustness, efficiency, and practical value for au-
tomating expert-level geological reasoning using
remote-sensing data.

Limitations

One limitation of our current framework is the
increased computational overhead introduced by
multi-step execution and iterative refinement,
which may result in higher inference latency and
resource usage. Future work will explore optimiza-
tion strategies to enhance computational efficiency
while preserving reasoning robustness. Addition-
ally, the toolkit design is tailored to domain-specific
characteristics, and the scalability of STA-CoT to
larger-scale or cross-domain multi-image reason-
ing tasks remains to be systematically validated.
We plan to systematically evaluate and adapt our
approach for broader application scenarios in future
research.
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A Case study

We present a detailed case study (Figure 6) to illus-
trate how STA-CoT effectively manages long, com-
plex, and error-prone reasoning chains, addressing
key challenges such as error propagation and global
inconsistencies. Specifically, we highlight the co-
ordinated roles of the rule-based controller and ver-
ifier in ensuring consistent multi-image geological
reasoning. Initially, the reasoning process begins
with Step 1, where the rule-based controller iden-
tifies a location mismatch error – discrepancy be-
tween the textual description and visual annotation.
This detection immediately triggers a retry of Step
1, effectively preventing early-stage errors from
propagating. Subsequent reasoning progresses un-
til completion, at which point the verifier evaluates
the entire chain and identifies two critical errors:

• Step 2 error: Incorrectly interpreting a
grayscale image (M2) as containing colored,
high-potential mineralization zones.

• Step 5 error: Faulty spatial relationship anal-
ysis derived directly from the incorrect Step 2
assessment.

These errors cause an initial validity check to fail
(Valid Flag=0), necessitating targeted refinement.

In the refinement phase, STA-CoT triggers the
refinement executor to address these specific errors:

• Step 2 Retry: Correctly recognizes image
M2 as grayscale, accurately concluding no
potential mineralization.

• Step 5 Retry: Revises spatial relationship
analysis based on the corrected Step 2 out-
come, recognizing insufficient spatial evi-
dence to support a deposit.

Upon reevaluation, the verifier confirms that all
prior errors have been successfully resolved (Valid
Flag=1), and STA-CoT reaches a stable, consis-
tent conclusion: No deposit present. This case
exemplifies the robustness and reliability of STA-
CoT, demonstrating how structured verification and
targeted refinement effectively prevent error accu-
mulation and ensure globally consistent reasoning
outcomes.

B More Results

As our proposed STA-CoT framework is designed
for geological reasoning to tackle the multi-image
reasoning challenge, we further evaluated STA-
CoT on another dataset – a harder extension of

MineBench, dubbed MineBench-Hard (Yu et al.,
2024). This dataset is even more challenging, re-
quiring reasoning over 9 input images per exam-
ple. The comparison of STA-CoT with baseline
methods on both datasets is presented in Table 4.
The results show that STA-CoT consistently out-
performs all baselines on both datasets. Notably,
on MineBench-Hard, the performance gap between
STA-CoT and MineAgent is further enlarged com-
pared with MineBench, which demonstrates the
advantage of STA-CoT in more challenging multi-
image geological reasoning tasks.

Dataset Method Pos.F1 Avg.F1 MCC

MineBench

MCoT 37.50 66.10 40.45

MineAgent 60.18 78.06 59.62

STA-CoT 66.67 80.75 62.12

MineBench-Hard

MCoT 25.95 47.28 11.75

MineAgent 37.11 59.72 28.06

STA-CoT 44.90 64.55 39.37

Table 4: Performance comparison of STA-CoT and base-
lines on MineBench and MineBench-Hard. All methods
use Gemini-2.0 as the backbone.

C Configuration Details

C.1 Spatial Graph Construction

To enable robust cross-image spatial reasoning, we
construct a spatial graph that captures the geomet-
ric and relational structure among all candidate
regions identified from multiple remote sensing im-
ages. The process begins by aggregating all bound-
ing boxes (region proposals) extracted from each
image. Each box is uniquely indexed and normal-
ized to the respective image’s coordinate system to
ensure consistent comparison.

For every pair of images, we systematically ana-
lyze the relationships between all box pairs across
the image set. Two primary spatial relationships
are considered: overlap and proximity. Overlap
relationships are established when the Intersection-
over-Union (IoU) between two boxes from differ-
ent images exceeds a predefined threshold, with the
overlap degree used as a confidence score. If no
overlap exists but the boxes are sufficiently close,
we instead establish a proximity relationship, anno-
tating the edge with a proximity-based confidence
score. All spatial relationships are also tagged
with their relative spatial direction (e.g., left, right,
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Step2: ... shows a large, dense area 
with saturated colors, indicating 
high potential....

Step1: ...shows  in the central and 
bottom-right areas. 

Step1_Retry: ...shows distinct 
textural differences in the central 
and bottom-right areas. ...

Step5: ... M2_area1 is spatially 
associated with the M1, M3, and 
M4, indicating a coherent pattern 
that suggests the presence of a 
potential copper deposit.....

M2_Area1

Step6: ... strong evidence of M1, which is a 
critical feature for  deposits. Additionally, there 
is a spatial relationship across image, supporting 
the presence, answer is Yes ...

M3_Area1

M4_Area1

M1_Area2

Final answer: No,  Valid Flag: 0,  error_steps: 
{index: 2, reason: M2 is a grayscale image with no colored regions},
{index: 5, reason: Step 5 is based on the incorrect identification of M2 in Step 2; as 
a result, the assessment of spatial relationships is inaccurate.} Verifier

Step2_Retry: ...the image is 
grayscale, indicating no areas of 
potential.....

Step5_Retry: ...the spatial graph remains 
incomplete and is missing essential features 
needed to establish the presence of a deposit...

...

Final answer:No,  Valid Flag: 1,  No error_steps Verifier

Ruler controller: described as 
bottom-right but box in bottom-left

Progressive Reasoning 

Chain Construction

Adaptive Stepwise 

Chain Refinement

<m1>

<m1>

<m2>

<m2>

Figure 8: Visualization of qualitative example showcasing how our STA-CoT framework achieves successful,
consistent multi-image geological reasoning.

above, below, overlaps).
These detected relationships are used to con-

struct a directed spatial graph, where each node
corresponds to a candidate box, and edges encode
the type and confidence of spatial relationships
between regions from different images. This multi-
image spatial graph is then aggregated and ana-
lyzed to identify connected components, groups of
spatially coherent regions that may reflect geologi-
cally significant mineralization patterns spanning
multiple images.

This spatial graph underpins subsequent post-
hoc localization, area estimation, and multi-image
geological reasoning steps, providing a structured
and interpretable foundation.

C.2 Rule-Based Output Validation and
Iterative Feedback

This appendix details our rule-based controller for
automatic output validation and feedback-driven
correction in the annotation process. The controller
performs real-time checks on tool-generated bound-
ing boxes and associated descriptions, immediately
identifying common errors and issuing targeted
prompts to guide annotation revision. Below, we
summarize the primary error types and representa-
tive feedback provided by the system.

Region Size Errors. Marking excessively large
regions can reduce specificity, while marking re-

gions that are too small may capture irrelevant
noise. Our controller automatically flags boxes that
fall outside the acceptable size range and generates
immediate feedback such as:

Feedback
1. Too large: avoid marking a large region. Please
focus on specific features.
2. Too small: avoid marking small isolated spots and
areas that are not clear evidence.

Overlapping or Redundant Regions Highly
overlapping boxes are typically redundant and can
hinder downstream analysis. The controller detects
significant overlap (greater than 50%) and issues
prompts such as:

Feedback
Some of your marked regions overlap significantly.
Please remove redundant boxes and ensure each box
covers a distinct, important feature.

Location-Description Mismatch To ensure in-
terpretability and support spatial reasoning tasks,
we cross-validate each box’s coordinates with its
textual description. If mismatches or coordinate
system confusions are detected, the controller pro-
vides clear guidance, including a schematic refer-
ence of the coordinate system:
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Feedback
There is confusion between ’left’ and ’right’. In our
coordinate system, x=0 corresponds to the LEFT edge
and x=1 to the RIGHT edge of the image. Please
double-check that your spatial description (e.g., “top-
left”) matches the actual box position in [ymin, xmin,
ymax, xmax] format. Reference:

(0,0) ----> (0,1)
| |
v v

(1,0) ----> (1,1)

Excessive Total Area or Region Count To pre-
vent loss of focus and annotation noise, the con-
troller enforces limits on both total marked area
and region count. When these limits are exceeded,
the system provides feedback such as:

Feedback
You have marked too many regions or the total area
covered is excessive. Please limit your annotation to
at most five regions and ensure the combined area
covers less than 70% of the image.

Iterative Feedback and Correction For each
detected error, the STA-CoT generates feedback
that evolves over multiple correction rounds. Ini-
tial feedback is general and constructive, while
repeated violations elicit increasingly detailed, op-
erational guidance. On the final attempt, feedback
includes explicit instructions and a coordinate sys-
tem reference to resolve any remaining ambiguities,
as following:

Feedback
This is your final attempt. Please ensure:
1. All regions are appropriately sized (neither too
large nor too small).
2. Location descriptions match actual box coordinates
([ymin, xmin, ymax, xmax], with (0,0) at the top-left).
3. If no salient features are present, you may leave the
coordinates empty and state this in your description.
Reference:

(0,0) ----> (0,1)
| |
v v

(1,0) ----> (1,1)

This error-driven, feedback-enhanced controller
forms the backbone of our automated annota-
tion quality assurance, ensuring robust, inter-
pretable, and high-quality region outputs for vision-
grounded Executor.

C.3 Detailed Prompt Construction for
STA-CoT

We provide detailed prompts for each module and
the toolkit of STA-CoT.
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Planner
You are an expert in remote sensing and task planning. Your task is to analyze the following question and create a
detailed, logically ordered plan.

Provided Information

• Question: [The analysis question]

• Domain Knowledge Base: [Relevant context, if any]

• Available Tools: [List of suggested tools]

Task Guidelines

1. Task Decomposition:

• Break down the analysis into clear, sequential steps.
• Each step should be self-contained and focused.
• Steps should follow a logical progression.
• Include clear expected outcomes.

2. Resource Selection:

• Choose ONLY the most relevant images for each step.
• Explain why each image is needed.

3. Tool Selection:

• Only include tools when visual analysis is necessary.
• Each tool must have a clear purpose.
• Explain why each tool is needed.

Result Format
[

{
"Step": "Step number and name",
"Thought": "Why this step is necessary and what it provides",
"Action": [

{
"Suggested Tool": "Tool name (if needed)",
"Action": "Specific action and why this tool is needed"

}
],
"Resources": ["List of specific images needed for this step"]

}
]
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Executor
You are a remote sensing expert specializing in mineral exploration. Your task is to execute a specific analysis step using
the provided images and tools.

Provided Information

• Current Step: [Description of current subtask]

• Previous Analysis: [Prior step outputs, if any]

• Available Tools: [List of suggested tools]

Task Guidelines

1. Image Assessment:

• Carefully examine the provided image(s).
• Identify features or patterns relevant to the subtask.
• If no clear features are found, answer “No” without using tools.
• If features are found, proceed with tool usage.

2. Tool Selection and Usage:

• Use tools ONLY if necessary for the current step.
• Return the tool parameters.

3. Evidence Collection:

• Document all visual evidence found.
• Explain how the evidence supports or contradicts the analysis.
• If using multiple images, explain the relationships between them.

Result Format
[

{
"Step": "Current step number and description",
"Tools": [

{
"Name": "Tool name",
"Purpose": "Specific reason for using this tool",
"Parameters": "The parameters of tool"

}
],
"Result": {

"Sub_Inference": "Yes|No",
"Explanation": "Detailed findings and evidence",
"Global_Inference": "end|Unknown"

}
}

]

Result Format Guidelines

• Sub_Inference: “Yes” only with strong and clear visual evidence, otherwise “No”.

• Explanation: Clearly connect evidence to conclusions.

• Global_Inference: “end” if concluding, “Unknown” if continuing.
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Verifier
You are an expert evaluator tasked with assessing the correctness, coherence, and sufficiency of a multi-step reasoning
process that uses visual tools to answer geoscientific questions.

Provided Information

• Question: [Task question]

• Reasoning Process: [Prior knowledge/reasoning steps]

• Available Tools: [List of visual tools]

Evaluation Criteria

1. Reasoning Structure & Validity

• Is the reasoning logically structured and complete?
• Are all necessary steps present, without major gaps or unsupported claims?
• Minor flaws are acceptable only if they do not undermine the overall conclusion.

2. Tool Usage & Interpretation

• Were the appropriate tools selected and applied correctly?
• Are tool outputs interpreted accurately and relevant to the final conclusion?
• Tool use is optional only if direct visual analysis clearly provides visual evidence.

3. Answer Justification

• Conclude yes only if all CRITICAL features are clearly supported and SECONDARY features are present.
• Conclude no if any CRITICAL feature lacks evidence, contradictions or tool errors undermine CRITICAL

claims, or a CRITICAL feature is missing at any step.

Valid Flag

• Score 1 (Valid Reasoning): Logically sound, accurate, well-supported; appropriate tool usage; final answer
matches tool outputs.

• Score 0 (Flawed Reasoning): Missing/incorrect CRITICAL evidence; tool misuse; misinterpretation; contradic-
tions; unsupported CRITICAL features.

Efficiency Rule

• If a decisive flaw is found (e.g., unsupported CRITICAL feature): Skip remaining steps; score as 0 with
justification.

Apply efficiency logic to minimize unnecessary re-analysis once a conclusive flaw is identified.

Result Format

[
{

"evaluation": {
"score": "1 or 0",
"assessment": {

"final_answer": "yes or no",
"main_reasoning": "Summary of key reasoning steps and supporting evidence",
"tool_evaluation": "Evaluation of tool usage and interpretation",
"reasoning_evaluation": "Assessment of logical structure , completeness , and integration of

tool outputs"
},
"feedback": {

"issues": "List of reasoning flaws if score is 0 (e.g., missing steps , tool misuse ,
misinterpretation , contradictions)",

"error_steps": [
{ "index": 1, "reason": "Misinterpretation of tool output" },
{ "index": 2, "reason": "Incorrectly highlighted area in tool output" }

]
}

}
}

]

25442



Tool Definitions
Available tools are defined as follows:

{
"box_maker_color_mode": {

"description": "Identify and highlight continuous color regions based on visual color
distribution. Focus exclusively on color regions aligned with the color bar , ignoring the
grayscale background.",

"parameters": {
"Coordinates": "List of bounding box coordinates in normalized form: [[ymin , xmin , ymax , xmax],

...]",
"Image Resource": "List of image filenames used for color analysis",
"Description": "Explain the significance of each marked region and describe its position (e.g.,

'top -left corner shows a large , dense yellow -orange patch indicating high potential '). If
none are found , provide reasoning",

"Location": "List of approximate locations corresponding to each coordinate set (e.g., ['top -
left ', 'center -right ', 'bottom -center ', ...]) to verify coordinates match described
positions"

}
},

"box_maker_feature_region": {
"description": "Mark geologically or structurally significant regions , including patterns ,

textures , or anomalies related to geological formations , structural features , or mineral
deposits.",

"parameters": {
"Coordinates": "List of bounding box coordinates in normalized form: [[ymin , xmin , ymax , xmax],

...]",
"Image Resource": "List of image filenames used for analysis",
"Description": "Explain each marked region 's geological significance and position. If none are

found , provide reasoning.",
"Location": "List of approximate locations corresponding to each coordinate set (e.g., ['top -

left ', 'center -right ', 'bottom -center ', ...]) to verify coordinates match described
positions"

}
},

"spatial_relationship_explorer": {
"description": "Analyze the spatial relationships between marked regions in the provided images.

Step 1: Marking verification (label each as 'CORRECT ' or 'INCORRECT '). Step 2: Analyze
spatial relationships among correctly marked regions.",

"parameters": {
"Image Resource": "List of image filenames used",
"marking_accuracy_verification": "A list labeling each region as 'CORRECT ' or 'INCORRECT ', with

reasoning",
"spatial_relationships": "List of spatial relationships identified among correctly marked

regions , including type , description , and justification"
}

},

"decision_making": {
"description": "Determine the final answer by evaluating both the color -based potential of marked

areas and their spatial relationships , with emphasis on whether critical areas show at
least moderate potential.",

"parameters": {
"Image Resource": "List of image filenames used",
"critical_areas_assessment": "Whether all critical areas show at least moderate potential and

are clearly visible",
"relationship_validity": "Whether spatial relationships between critical areas are accurate and

visually supported"
}

}
}
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Localization Tool
You are a professional geological spatial analysis expert specializing in analyzing mineral alteration zones using image
information and spatial relationships. Please help determine the most appropriate parameter settings for running the
geological relationship analysis algorithm.

Optimization Goals:
1. High Recall: Ensure all truly important geological areas are captured in the prediction (minimize false negatives).

2. High Area Reduction: Minimize the total predicted area while maintaining high recall (maximize efficiency).

Algorithm Core Parameters:

• Centrality metric weights:
– degree_centrality_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Measures how many direct connections an

alteration zone has to other zones.
– betweenness_centrality_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Identifies zones that serve as bridges

between different geological features.

• Chain-related weights:
– chain_presence_weight [RANGE: 1.0–3.0, DEFAULT: 1.0] – Emphasizes intersection zones where

multiple geological processes overlap.

• Area type weights (determine from dialogue):
– Silicification Zone [RANGE: 1.0–2.0, DEFAULT: 1.0]
– Propylitic Alteration [RANGE: 1.0–2.0, DEFAULT: 1.0]
– Hydrothermal Alteration [RANGE: 1.0–2.0, DEFAULT: 1.0]
– False Color Composition [RANGE: 1.0–2.0, DEFAULT: 1.0]

(Different alteration types have varying associations with mineral deposits.)

• Boundary parameters:
– important_areas_count [RANGE: 3–7, INTEGER] – Controls how many high-priority areas the algorithm

will focus on.
– hop2_expansion_height [RANGE: 1.0–1.5] – Vertical expansion multiplier for hop2 level, to capture

peripheral mineralization.
– hop2_expansion_width [RANGE: 1.0–1.5] – Horizontal expansion multiplier for hop2 level, to capture

peripheral mineralization.
Note: Minerals typically have radiation zones extending beyond their central concentrations. These expansion parameters
are crucial to avoid missing peripheral mineralization at the edges of alteration zones and to capture transitional
boundaries where valuable deposits may exist.

Resutl Format:

{
"degree_centrality_weight": "float , range 1.0-3.0, default 1.0",
"betweenness_centrality_weight": "float , range 1.0-3.0, default 1.0",
"chain_presence_weight": "float , range 1.0-3.0, default 1.0",
"area_type_weights": {

"Silicification Zone": "float , range 1.0-2.0, default 1.0",
"Propylitic Alteration": "float , range 1.0-2.0, default 1.0",
"Hydrothermal Alteration": "float , range 1.0-2.0, default 1.0",
"False Color Composition": "float , range 1.0-2.0, default 1.0"

},
"important_areas_count": "integer , range 3-7",
"hop2_expansion_height": "float , range 1.0 -1.5",
"hop2_expansion_width": "float , range 1.0 -1.5"

}
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