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Abstract

This work demonstrates that diffusion models
can achieve font-controllable multilingual text
rendering using just raw images without font la-
bel annotations. Visual text rendering remains
a significant challenge. While recent methods
condition diffusion on glyphs, it is impossible
to retrieve exact font annotations from large-
scale, real-world datasets, which prevents user-
specified font control. To address this, we pro-
pose a data-driven solution that integrates the
conditional diffusion model with a text segmen-
tation model, utilizing segmentation masks to
capture and represent fonts in pixel space in
a self-supervised manner, thereby eliminating
the need for any ground-truth labels and en-
abling users to customize text rendering with
any multilingual font of their choice. The exper-
iment provides a proof of concept of our algo-
rithm in zero-shot text and font editing across
diverse fonts and languages, providing valuable
insights for the community and industry toward
achieving generalized visual text rendering.

1 Introduction

Diffusion model is one of the dominant paradigms
in image generation (Ho et al., 2020; Saharia et al.,
2022; Zhang et al., 2023b; Rombach et al., 2022;
Betker et al., 2023; Ramesh et al., 2022; Esser et al.,
2024), because of its iterative denoising process
that allows fine-grained image synthesis. While
these models effectively capture data distributions
of photorealistic or artistic images, they still fall
short in generating high-fidelity text. Rendering
text in images is inherently more challenging as it
requires precise knowledge of the geometric align-
ment among strokes, the arrangement of letters as
words, the legibility across varying fonts, sizes,
and styles, and the integration of text into visual
backgrounds. At the same time, humans are more

*Co-first authors. This is preliminary work and code will
be released at github.com/bowen-upenn/ControlText.

sensitive to minor errors in text, such as a missing
character or an incorrectly shaped letter, compared
to natural elements in a visual scene that allow for
a much higher degree of variation.

Increasing attention has been paid to visual text
rendering (Bai et al., 2024; Han et al., 2024; Li and
Lian, 2024) due to its high user demands. Instead
of relying solely on diffusion models to remember
exactly how to render text, recent research is start-
ing to embed the visual attributes of texts, such as
glyphs (Tuo et al., 2023; Liu et al., 2024; Ma et al.,
2024; Yang et al., 2024b), as input conditions to
diffusion models. However, it is still difficult for
users to specify the desired font in the open world,
and there remain open challenges that burden the
development of font-controllable text rendering:

• No ground-truth font label annotation is avail-
able in the massive training dataset, while syn-
thetic images often fail to accurately mimic
subtle details that appear in reality.

• There are numerous fonts available in the open
world, but many fonts with different names
are very similar, which confounds evaluation.

• Users like visual designers may want to ex-
plore different fonts during their design pro-
cess, even creating novel fonts of their own.

This work aims to address the above challenges.
To summarize our contributions, we introduce
the simplest and, to our best knowledge, one of
the few (Ma et al., 2024; Liu et al., 2024) open-
source methods for rendering visual text with user-
controllable fonts. We provide code in the hope
that others can draw inspiration from the underly-
ing data-driven algorithm and benefit from the
simplicity in the self-supervised training.

We also provide the community with a compre-
hensive dataset for font-aware glyph controls col-
lected from diverse real-world images. We further
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Figure 1: Examples of real-world test images with text generated by ControlText in various fonts and languages.
Each row presents both the rendered images and the textual part of the corresponding glyph controls that provide
the text and the intricate font information in pixel space.

propose a quantitative evaluation metric for han-
dling fuzzy fonts in the open world. Experimental
results demonstrate that our method, ControlText,
as a text and font editing model, facilitates a human-
in-the-loop process to generate multilingual text
with user-controllable fonts in a zero-shot manner.

2 Related Work

Generation from Prompts or Text Embeddings
Text-to-image generation (Zhang et al., 2023a; Bie
et al., 2023) has advanced significantly in recent
years, leveraging conditional latent diffusion mod-
els (Ho et al., 2020; Rombach et al., 2022; Zhang
et al., 2023b). Foundational image generation
models (Ramesh et al., 2021; Betker et al., 2023;
Midjourney; Saharia et al., 2022; AI; Esser et al.,
2024; Yang et al., 2024a; Zhao et al., 2023; Hoe
et al., 2024; Sun et al., 2025; Chang et al., 2022)
have achieved remarkable progress in creating high-
quality photo-realistic and artistic images.

Despite these advancements, visual text render-
ing (Bai et al., 2024; Han et al., 2024; Li and
Lian, 2024) continues to pose significant chal-
lenges. Several algorithms rely on text embed-
dings from user prompts or captions to control
the diffusion process, such as TextDiffuser (Chen
et al., 2024b), TextDiffuser2 (Chen et al., 2025),
and DeepFloyd’s IF (DeepFloyd-Lab, 2023). Li
et al. (2024b) utilizes intermediate features from

OCR (Du et al., 2020) as text embeddings, Liu
et al. (2022); Wang et al. (2024b); Choi et al. (2024)
take one step deeper into the character level,and
TextHarmony (Zhao et al., 2024b) queries a fine-
tuned vision-language model to generate embed-
dings from images and captions.

Generation from Glyphs The majority of algo-
rithms rely on visual glyphs, pixel-level representa-
tions of texts, to guide the generation process. How-
ever, because most image training datasets lack
ground-truth font annotations, most algorithms
utilize a fixed standard font to render the texts
on their glyph controls. For instance, GlyphCon-
trol (Yang et al., 2024b) and GlyphDraw (Ma et al.,
2023) render OCR-detected text using a fixed font,
with the former adding a glyph-specific Control-
Net (Zhang et al., 2023b). TextMaster (Wang et al.,
2024a), DiffUTE (Chen et al., 2024a), and Any-
Trans (Qian et al., 2024) enforce font consistency
within images, while Zhang et al. (2024) introduces
font variation through random sampling. Layout
generation is also addressed using language and
vision models (Tuo et al., 2023; Zhu et al., 2024;
Li et al., 2024c; Seol et al., 2025; Lakhanpal et al.,
2024; Paliwal et al., 2024b; Zhao et al., 2024a). In
contrast, we focus on human-in-the-loop text edit-
ing without large language or multimodal models.

Our work builds upon the codebase of Any-
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Text (Tuo et al., 2023), a glyph-based algorithm
that trains a base ControlNet (Zhang et al., 2023b)
model to render visual texts, with glyphs being gen-
erated in a fixed standard font due to unavailability
of ground-truth font annotations, leaving the model
to infer an appropriate font.

Font-Controllable Generation Fewer recent
works are more closely related to ours in enabling
controllable fonts (Tuo et al., 2024; Ma et al., 2024;
Li et al., 2024a; Shi et al., 2024; Paliwal et al.,
2024a; Liu et al., 2025). However, none of these
works provide a quantitative evaluation metric
to assess the generated fonts in open-world set-
tings. AnyText2 (Tuo et al., 2024) is a concurrent
work developed by the authors of AnyText (Tuo
et al., 2023). We share a similar architecture (Tuo
et al., 2024), but we eliminate its use of lengthy
language prompts in the inputs, separate models to
support different languages, and the trainable OCR
model to encode the font features. Instead, we use
OCR solely to filter out low-quality glyph controls.
Tuo et al. (2024) is also not yet open-sourced at the
time of our submission.

Several works tackle font control through prede-
fined font labels or additional supervision. Glyph-
ByT5 (Liu et al., 2025, 2024) requires language-
specific font labels and emphasizes language un-
derstanding, while we treat text rendering as purely
visual. GlyphDraw2 (Ma et al., 2024) learns font
features via cross-attention and a fine-tuned lan-
guage model, but lacks quantitative font evalua-
tion. JoyType (Li et al., 2024a) focuses on syn-
thetic e-commerce images with 10 fixed fonts and
vision-language models, assuming OCR is font-
sensitive—unlike our font-agnostic assumption.
FonTS (Shi et al., 2024) and CustomText (Pali-
wal et al., 2024a) rely on pre-specified font labels
or user-defined font names. While Liu et al. (2024)
highlights challenges with small fonts, we show
that localized editing improves small-font quality.
In contrast to above methods, we eliminate the
need for font labels, special tokens, or prede-
fined font names (Liu et al., 2024; Shi et al., 2024;
Paliwal et al., 2024a), enabling generalization to
unseen fonts and languages.

3 Technical Approach

We envision this method being used as a modu-
lar plug-in for existing text-to-image generation
frameworks. It works with images generated by
any base models or actual photos. For instance,

when incorrect text is generated, or the user wants
to replace some text or modify its font, our algo-
rithm can be specifically targeted to these localized
regions without altering remaining parts in images.
By leveraging a human-in-the-loop approach, the
model aims to render controllable visual text within
the user-specified region, perform background in-
painting, and blend the modified region back into
the original image, regardless of its original size.

3.1 Data-Driven Insights
ControlText enables user-controllable font render-
ing through a simple, data-driven approach, with-
out complex architectures, embracing the princi-
ples of the bitter lesson (Sutton, 2019). By training
on diverse unsupervised glyphs rich in pixel-level
font details, the diffusion model learns to recon-
struct images directly from visual cues. The key
insight is that the model learns to use pixel-level
glyphs as direct cues for text generation, elim-
inating the need for font labels. Glyphs can
mimic any target font, with guidance provided
solely by their visual appearance.

In inference, the model should have seen a di-
verse set of glyphs during training, including
intricate font features represented by pixel de-
tails near the textual edges in the glyphs. With
this information, it can render unseen languages
or unfamiliar text without requiring prior knowl-
edge of how to write the text from scratch, how
to arrange individual letters or characters, or un-
derstanding their semantic meaning. The model
just treats text as a collection of pixels rather
than linguistic entities. This self-supervised data-
driven approach not only enhances the model’s
generalizability to open-world scenarios, but also
ensures scalability when more image data, compu-
tation, and larger base models become available.

3.2 Training Pipeline
3.2.1 Collection of Font-Aware Glyphs
Our training pipeline begins with the collection of
glyph controls by performing text segmentation on
images. We use TexRNet (Xu et al., 2021) as our
text segmentation algorithm to identify text regions
and provide fine-grained masks, preserving intri-
cate features of different fonts in pixel space, It also
provides bounding boxes that will serve as position
controls (Tuo et al., 2023). The segmentation algo-
rithm is a pre-trained deep-learning-based model,
so it may occasionally miss masks for certain let-
ters or parts of letters. As a result, we introduce an
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Figure 2: System overview. It consists of two parts (1) Training pipeline: text segmentation masks are extracted as
glyph controls from a large image dataset without ground-truth font annotations. Low-quality masks are filtered
out using an OCR model, and random perturbations are applied to prevent the model from overfitting to exact
pixel locations of the glyphs. (2) Inference pipeline: users upload images, specify text regions, and provide any
desired font file through the user front-end. The model generates an image patch with the rendered text, which is
then seamlessly blended into the original image. Throughout this figure, models marked with a fire icon indicate
trainable weights, while those marked with a snowflake icon are frozen.
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Figure 3: Evaluation pipeline: the cropped regions of
the generated text and the input glyph are processed by
a pretrained font classification model, which may not
have seen the user-specified font. The proposed l2@k
and cos@k metrics for fuzzy fonts assume that similar
fonts have similar output probability vectors, while we
retain only top-k values while zeroing out the rest.

OCR model, specifically PaddleOCR-v3 (Du et al.,
2020), into the pipeline following the segmentation
process. The OCR model validates the detected
text by filtering out masks that fail to meet our
quality criteria, regardless of the font: (1) an OCR
confidence score no lower than 0.8. (2) an edit dis-
tance no greater than 20% of the string length. This
step ensures that only high-quality segmentation
masks are retained as glyph controls.

3.2.2 Perspective Distortion

Segmentation masks, even after quality filtering,
are not directly usable as glyph controls. In real-
world scenarios, users are unlikely to specify the

exact locations of text or precisely align the text
with the background. To address this issue, we ap-
ply random perspective transformations to the col-
lected glyph images, introducing slight translations
and distortions to the text, without affecting the
fonts. Specifically, we add random perturbations to
the four corner points of the text’s bounding box,
with the perturbation upper-bounded by ϵ pixels.

We then compute a homography matrix M ∈
R3×3 that maps the original text region to a slightly
distorted view. This design ensures that the dif-
fusion model does not rigidly replicate the exact
pixel locations of the glyphs but instead learns
to adaptively position the text in a way that best
integrates with the output image.

3.2.3 Main Training Process
The diffusion process builds upon AnyText (Tuo
et al., 2023), leveraging ControlNet (Zhang et al.,
2023b) as the base model. As shown in Figure 2,
the model takes the following five inputs during
training. We expect the training dataset to consist
of images containing text, captions, and polygons
for the text region. The text and polygons can be
automatically extracted using an OCR algorithm.

• Font-aware glyph control cg ∈ Rn×n: A bi-
nary mask representing the text and its font
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features in pixel space.

• Position control cp ∈ Rn×n: A binary mask
for the bounding box of the text region. We re-
strict ourselves to square local image regions.

• Masked image cm ∈ Rn×n×3: An RGB im-
age normalized to the range [−1, 1], where the
region within the box position cp is masked to
0. Every other pixel is identical to the target
image I ∈ Rn×n×3.

• Image caption cl: We adopt the same handling
approach in Tuo et al. (2023), except for us-
ing our own cg. We empirically observe that
image captions are not crucial for this work.

• Random noise input xT ∈ Rm×m×d in the
embedding space to initialize the reverse de-
noising process (Ho et al., 2020).

The model outputs a denoised tensor xT ∈
Rm×m×d after T timesteps, which can be recon-
structed back to an image Î ∈ Rn×n×3. In the
expressions above, n denotes the edge length of
the image, m represents the spatial resolution of
the hidden features in the latent diffusion (Ho et al.,
2020), and d represents the number of channels.

We concatenate all input conditions as c and
perform the following reverse denoising process:

c = φ(cat[ξg(cg), ξp(cp), ξm(cm)]) (1)

pθ (xt−1 | xt, c) = N (xt−1;µθ (xt, t, c) ,Σθ(t))
(2)

where each ξ is some convolutional layers that
transform the input to Rm×m×d, φ is another fusion
layer, pθ is the probabilistic model that predicts the
distribution of a less noisy image xt−1 from xt

with t ∈ [0, T ], and µθ and Σθ are the mean and
variance of the normal distribution N . We follow
the same training losses in AnyText (Tuo et al.,
2023) to train this diffusion model.

3.3 Inference Pipeline
Our philosophy is to design a more streamlined
training pipeline that is easily scalable to larger
open-world datasets, while shifting additional steps
to inference time to provide users with greater con-
trol and flexibility as needed.

3.3.1 Main Generation Process
The reversed denoising process takes the same set
of inputs outlined in Section 3.2.3. However, unlike

training where the glyph control cg is extracted
using the text segmentation model M, it is now
provided directly by the user.

On the user front-end, the required inputs include
the original image I with a short caption cl, the
desired text t, the font f (which can be uploaded
as a font file), and the polygon points p selected
on I to define the region where the text will be
rendered. To streamline the process, the pipeline
automatically converts polygon points p into the
position control cp, generates the masked image
cm, and converts text t into the font-aware glyph
control cg. Users are allowed to type multiple lines
of text, possibly in different languages, fonts, or
orientations, in a single cp, cg, and cm.

Finally, the reverse denoising process is run over
t timesteps following the same Equations 1-2 to
generate the output image x0, whose region within
the polygon mask cp is will be blended into the
original image I using normal seamless cloning or
other blending algorithms. This completes the gen-
eration process, and the next two subsections illus-
trate optional steps that can be applied as needed.

3.3.2 Inpainting Before Editing
When editing text in an image, the mask cm must
encompass all the old text in the background. How-
ever, this mask could be larger than the size of the
new text t in the new font f , particularly when a
narrower font is selected. Larger masks may intro-
duce additional text rendered in the output image
not specified in the glyph control cg. To address
this challenge, we minimize the mask size to be
just large enough to fit the text t in the new font f .
Following recommendations in (Li et al., 2024c),
we utilize an off-the-shelf inpainting model (Raz-
zhigaev et al., 2023) to erase the original text. After
inpainting, a new polygon p̂ is automatically tight-
ened from p to match the new text.

3.3.3 Small Textual Regions
Handling smaller text remains a challenge (Liu
et al., 2024; Paliwal et al., 2024a), as the diffu-
sion process operates in the embedding space with
potential information loss. To address this, we sim-
ply zoom into the text region specified by the user
and interpolate it to the input size of the diffusion
model. Finally, we blend the generated region with
the original image I . Figure 4 includes some ex-
amples of small text rendered with high quality,
demonstrating effective performance without the
need for more complex algorithms or datasets.
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Figure 4: Continuation of Figure 1. Examples of real-world and AI-generated images with text generated by
ControlText in various fonts and languages. Each row presents both the rendered images and the textual part of
their glyph controls. We also try the most complex Chinese character, “biang", in the bottom row, accompanied
by a zoomed-in view of the rendered character. ControlText effectively renders text with realistic integration into
backgrounds while maintaining correct letters and characters in their user specified fonts.

3.4 Evaluation Metrics

3.4.1 Evaluating Text

We adopt the same evaluation metrics from Any-
Text (Tuo et al., 2023) to ensure that the gener-
ated text remains recognizable regardless of the
font. Specifically, we utilize Sentence Accuracy
(SenACC) and Node similarity with Edit Distance
(NED) derived from OCR to assess text recogniz-
ability. We also employ Fréchet Inception Distance
(FID) to evaluate the overall image quality.

3.4.2 Evaluating Fuzzy Fonts

Evaluating the accuracy of fonts in visual text re-
mains an open question, as ground-truth font labels
are typically unavailable in large-scale, real-world
datasets. It is also the case that many fonts ap-
pear visually similar, making distinctions among
them practically meaningless. These challenges
highlight the need for a new evaluation metric
that can handle fuzzy fonts in an open-world
scenario. To address this, we introduce a novel
evaluation framework leveraging a pre-trained font
classification model F . Specifically, we use the
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Google Font Classifier by Storia-AI (AI, 2025),
an open-source model trained on c = 3474 fonts
on both real and AI-generated images. Due to the
large value of c, the classifier’s embedding space
is expected to provide meaningful representations,
even if the model may have never encountered the
evaluated font before. For example, two fonts that
look similar should have similar embeddings
in this pretrained font classification model, and
vice versa. Therefore, we propose two metrics
l2@k and cos@k to evaluate font fidelity in any
generated images with text of any fonts.

• Step 1 Embedding Extraction: Both the
input glyph cg and the output image x0

are forwarded through the font classification
model F to obtain their last-layer probabilities
pg,px ∈ Rc, respectively, where c is the num-
ber of labels F is pretrained on. Optionally,
text regions in x0 can be first isolated using a
text segmentation model M, eliminating the
influence of color and background.

• Step 2 Distance Calculation: We retain only
the top k largest values in pg and px, zeroing
out the others, to ensure that the distance cal-
culation focuses on the most likely k labels.
It helps reduce disturbances from the accumu-
lation of remaining insignificant values. The
metric l2@k and cos@k then compute the l2-
distance and cos-distance between them.

4 Experimental Results

4.1 Experimental Setups
We finetune the ControlNet (Zhang et al., 2023b)
model, with a size of around 1B pretrained by Any-
Text (Tuo et al., 2023) and several convolutional
encoders to process input conditions, for 10 epochs
using 4 NVIDIA V100 GPUs, each with 32 GB
memory. We use a batch size of 6, a learning rate
of 2×10−5, and focus solely on inpainting masked
images. The dataset is curated from AnyWord-
3M (Tuo et al., 2023) but with our font-aware glyph.
Each RGB image of size 512 by 512 has at most 5
lines of text. The dataset comprises approximately
1.39 million images in English, 1.6 million images
in Chinese, and 10 thousand images in other lan-
guages. Following this, we continue training the
model for another 2 epochs, turning on the textual
perception loss introduced in Tuo et al. (2023). We
use AnyText-benchmark (Tuo et al., 2023) with
1000 test images in English and Chinese to show
quantitative results.

4.2 Visual Results

Figures 1 and 4 showcase open-world images gen-
erated by our model. We always follow the text
editing pipeline to either modify existing text or
render new text. The original images I used in
our experiment include both real (PIXTA, n.d.; Un-
splash, n.d.; Business Insider, 2011; CNN Travel,
n.d.; peterpom211, 2024; Tripadvisor, n.d.; Nipic,
n.d.) and AI-generated (Wikipedia contributors,
n.d.; Monks, 2023) examples. ControlText demon-
strates high-fidelity text rendering, accurately pre-
serving both the text and the font styles. It automat-
ically render text in either flat formats or with depth
and color effects based on the background, such as
outward-engraved text on a shabby storefront sign
on the street, a metallic board on wall, a chocolate
bar, or with neon light effects at night.

We present images in multiple languages: En-
glish, French (zero-shot), traditional and simpli-
fied Chinese (including the most complex charac-
ter “biang"), Japanese (including Kaomoji), and
Korean, rendered in either single or multi-line for-
mats. Additionally, we incorporate various font
styles, including novel designer fonts sourced from
the web (Apple Inc., n.d.; Fonts.net.cn, n.d.).

4.3 Quantitative Results

Table 1 presents the quantitative results evaluated
on the AnyText benchmark (Tuo et al., 2023), along
with our proposed metrics l2@k and cos@k with
k = 5, 20, 50, and the full logits, i.e., c = 3474
in the pretrained font classification model to as-
sess font fidelity. ControlText generates glyphs
via a segmentation model, which may yield occa-
sional low-quality masks. Since users can provide
high-quality glyphs in practice, these results serve
as lower bounds. For fairness, we filter out low-
quality masks with criterion from Section 3.2.1.

To further evaluate the cross-lingual generaliza-
tion ability of our model, we conducted zero-shot
inferences on Kannada and Korean scripts from
the MLe2e dataset (Gomez and Karatzas, 2016),
previously unseen by the model. As shown in Ta-
ble 2, ControlText consistently outperforms Any-
Text across all metrics. Specifically, ControlText
achieves lower average cosine and l2 distances
across top-5, top-20, top-50, and full-set com-
parisons in font accuracy metrics, indicating bet-
ter font-style consistency and generation quality.
Meanwhile, these results reinforce that Control-
Text generalizes better to underrepresented scripts
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Table 1: Results on AnyText–benchmark. “AnyText with font–aware glyphs” denotes AnyText (Tuo et al., 2023) that
directly adopts our glyph controls without fine-tuning as an ablation. ControlText consistently preserves detailed
font information while maintaining strong text accuracy.

English

Method Text Accuracy ↑ Fuzzy Font Accuracy (distance) ↓
SenACC NED l2@5 l2@20 l2@50 l2@full cos@5 cos@20 cos@50 cos@full

ControlText (ours) 0.8345 0.9537 0.3431 0.3387 0.3382 0.3381 0.2710 0.2523 0.2504 0.2500
AnyText (Tuo et al., 2023) 0.8315 0.9518 0.4654 0.4628 0.4623 0.4622 0.4125 0.3974 0.3954 0.3948
AnyText w/ glyphs 0.5524 0.8387 0.4738 0.4709 0.4705 0.4703 0.4261 0.4096 0.4077 0.4070
TextDiffuser (Chen et al., 2024b) 0.5966 0.8236 0.6293 0.6280 0.6278 0.6277 0.5536 0.5448 0.5436 0.5432
GlyphControl (Yang et al., 2023) 0.4098 0.7414 0.6046 0.6031 0.6029 0.6028 0.5423 0.5321 0.5307 0.5302
ControlNet (Zhang et al., 2023b) 0.5837 0.8305 0.6853 0.6839 0.6837 0.6837 0.5896 0.5812 0.5802 0.5798

Chinese

Method Text Accuracy ↑ Fuzzy Font Accuracy (distance) ↓
SenACC NED l2@5 l2@20 l2@50 l2@full cos@5 cos@20 cos@50 cos@full

ControlText (ours) 0.7867 0.9276 0.3561 0.3508 0.3499 0.3497 0.3295 0.3015 0.2975 0.2964
AnyText (Tuo et al., 2023) 0.8591 0.9515 0.4632 0.4593 0.4585 0.4583 0.4743 0.4488 0.4444 0.4431
AnyText w/ glyphs 0.5578 0.8120 0.4683 0.4646 0.4638 0.4636 0.4808 0.4553 0.4512 0.4490
TextDiffuser (Chen et al., 2024b) 0.0611 0.2816 0.6773 0.6761 0.6757 0.6756 0.6638 0.6528 0.6509 0.6502
GlyphControl (Yang et al., 2023) 0.0377 0.2338 0.7298 0.7285 0.7282 0.7281 0.6995 0.6891 0.6873 0.6865
ControlNet (Zhang et al., 2023b) 0.3500 0.6393 0.7609 0.7594 0.7591 0.7590 0.7123 0.7018 0.7001 0.6994

Table 2: Fuzzy font accuracy on held-out Kannada and Korean languages in zero-shot settings. Lower values
indicate better font similarity preservation. ControlText consistently outperforms AnyText with better generalization
to completedly unseen languages, without explicitly being trained on them.

Method Fuzzy Font Accuracy (distance) ↓
l2@5 l2@20 l2@50 l2@full cos@5 cos@20 cos@50 cos@full

ControlText (ours) 0.4564 0.6090 0.4507 0.6075 0.4503 0.6074 0.4503 0.6073
AnyText (Tuo et al., 2023) 0.4587 0.6209 0.4526 0.6193 0.4522 0.6192 0.4521 0.6192

such as Kannada and Korean, even without explicit
training on these languages.

While ControlText shows some differences com-
pared to AnyText in SenACC and NED on Chi-
nese characters, it successfully maintains large
gaps across metrics on English data and fuzzy font
accuracy. Meanwhile, when using identical font-
aware glyph controls in ControlText, AnyText expe-
riences a substantial decrease in text accuracy with
almost no improvement in font accuracy, as shown
in the row marked “AnyText-v1.1 Font Aware" in
Table 1. This demonstrates ControlText’s superior
ability to handle diverse and nuanced font varia-
tions without requiring fine-tuning for each font.

5 Discussion

This work presents a simple and scalable proof-
of-concept for multilingual visual text rendering
with user-controllable fonts in the open world. We
summarize our key findings as follows:

Font controls require no font label annotations
A text segmentation model can capture nuanced
font information in pixel space without requiring
font label annotations in the dataset, enabling zero-
shot generation on unseen languages and fonts (as
evidenced by generated images with Japanese in
Figure 1), as well as scalable training on web-scale

image datasets as long as they contain text.

Evaluating ambiguous fonts in the open world
Fuzzy font accuracy can be measured in the embed-
ding space of a pretrained font classification model,
utilizing our proposed metrics l2@k and cos@k.

Supporting user-driven design flexibility Ran-
dom perturbations can be applied to segmented
glyphs. While this won’t affect the rendered text
quality, it accounts for users not precisely aligning
text to best locations and prevents models from
rigidly replicating the pixel locations in glyphs.

Working with foundation models With limited
computational resources, we can still copilot
foundational image generation models to perform
localized text and font editing.

Future work will focus on improving data effi-
ciency in the training pipeline, particularly for fonts
in low-resource languages. We also plan to explore
reinforcement learning with text and font verifica-
tion signals in multimodal transformers. Addition-
ally, we aim to enable more advanced artistic style
control of text based on user prompts, extending
beyond font attributes to include interactions with
diverse background content.

25421



6 Limitations

Our model is based on ControlNet (Zhang et al.,
2023b) with a CLIP text embedding model (Rad-
ford et al., 2021), although modified by Any-
Text (Tuo et al., 2023) to incorporate glyph line
information. However, the CLIP-text encoder has
relatively limited language understanding capabili-
ties compared to state-of-the-art foundation models.
Unlike text itself, this limitation affects the model’s
ability to accurately render complex artistic visual
features or backgrounds, which users might specify
in their input prompts, such as asking the text to
appear like clouds or flames, that go beyond merely
the font information.

Additionally, due to limited training resources,
our experiments were conducted using a smaller
diffusion model as a proof-of-concept compared
to commercial ones. Each epoch requires approx-
imately 380 GPU hours on NVIDIA V100 GPUs
with 32 GB of memory, but we anticipate signifi-
cantly improved efficiency on newer hardware and
with a larger memory. This constraint may result
in suboptimal inpainting of background regions
within the text area, as well as instability in the
quality of rendered text. This also made it difficult
to try other base models for comparison. Moreover,
the limited training resources also made it difficult
to conduct more ablation studies, which could have
provided more nuanced insights into the architec-
ture’s effectiveness. The users also have limited
controls of background pixels behind the text.

Some sacrifice in text quality is observed for
non-Latin languages on the AnyText-Benchmark
in exchange for improved font controllability.

The embedding layers of the glyph controls can
also lead to reduced text quality, especially when
the text in a font is very small, thin, or excessively
long. In such cases, fine details of the font informa-
tion in the glyphs may be lost.

As with all other text-to-image algorithms that
rely on diffusion models, our approach requires
a certain number of denoising steps to generate a
single image at inference. End-to-end transformer-
based models (Xie et al., 2024) may improve the
time efficiency of the generation process.

7 Ethical Impact

This work is intended solely for academic research
purposes. While our algorithm allows users to gen-
erate images with customized text, there is a poten-
tial risk of misuse for producing harmful or hateful

content or misinformation. However, we do not
identify any additional ethical concerns compared
to existing research on visual text rendering.
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