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Abstract

Large models can achieve higher performance
on complex problems through iterative self-
reflection. Yet when reflection is uncontrolled,
it often leads to longer outputs, higher inference
cost, and an increased risk of hallucination. Ex-
isting training methods rarely address this trade
off. We introduce ReFLAIR, a unified frame-
work that teaches multimodal large models to
perform structured reflection via an explicit
<think><re-think><answer> format and hy-
brid reward learning. ReFLAIR begins with
supervised cold start training on the ReFLAIR-
cold dataset of curated multimodal reasoning
trajectories, and then trains a Reflection Quality
Scorer (RQS) to quantify the utility of rethink-
ing steps. A modified grouped relative policy
optimization algorithm optimizes a hybrid re-
ward that combines answer correctness, struc-
tural fidelity, reflection utility, and sample diffi-
culty. Evaluated on challenging mathematical
benchmarks including MathVista, MathVerse,
MM-Math and GSM8K, ReFLAIR yields im-
provements up to +12.2% absolute accuracy,
produces higher quality reflective traces, and re-
duces harmful or redundant revisions. An adap-
tive test time reflection scheduler further re-
duces inference cost by nearly 25% while main-
taining or improving accuracy. These results
demonstrate that structured, reward guided re-
flection offers a scalable pathway to more reli-
able and interpretable reasoning in multimodal
models.

1 Introduction

Large language models (LLMs) have achieved
remarkable success in complex reasoning tasks,
aided by techniques like chain-of-thought (CoT)
prompting (Wei et al., 2022), program-aided rea-
soning, and reinforcement learning (OpenAI, 2024;
DeepSeek-AI et al., 2025). These advances enable
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near-human or superhuman accuracy on bench-
marks such as GSM8K and AIME. Multimodal
large models (LMMs) have further extended this
capability to vision-language tasks, reasoning over
inputs like charts, equations, and diagrams. Re-
cent surveys and benchmarks (Fu et al., 2023; Sun
et al., 2024; Lu et al., 2024; Huang et al., 2024a;
Masry et al., 2021; Wang et al., 2024b) highlight
both rapid progress and the continued difficulty
of handling complex visual reasoning. In paral-
lel, reflection—where models iteratively evaluate
and revise their own outputs—has emerged as a
promising path for improving reasoning depth and
robustness (Zelikman et al., 2022; Madaan et al.,
2023; Ranaldi and Freitas, 2024; Shinn et al., 2023;
Yan et al., 2024; Chen et al., 2025).

However, reflection remains underdeveloped
in many state-of-the-art systems. For exam-
ple, Vision-R1 (Huang et al., 2025) adopts a
<think><answer> structure and achieves strong
results, while also noting the prevalence of re-
flective tokens in its training corpus. Yet, its fi-
nal model does not explicitly reinforce reflection,
leaving this capability underexploited. Conversely,
Satori (Shen et al., 2025) introduces a more so-
phisticated Chain-of-Action-Thought format with
custom tokens that promote self-reflection. Despite
this, it lacks fine-grained control over the quality
and utility of each reflective step, often generating
redundant or unfocused reasoning. These limita-
tions point to a gap: existing approaches either
omit structured reflection or apply it without tar-
geted guidance, leading to inefficiencies or halluci-
nations.

To address these limitations, we present Re-
FLAIR, a unified training framework that treats
structured reflection as a first-class component of
reasoning. The core idea is to scaffold multi-stage
cognition with an explicit reflection structure, opti-
mized through a combination of supervised learn-
ing and reinforcement learning. Supervised train-
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Figure 1: Overview of ReFLAIR, which integrates supervised cold-start training, reflection quality scoring, and
reinforcement learning with hybrid rewards to foster reliable and structured reflective reasoning in MLLMs.

ing on the ReFLAIR-cold dataset provides initial
reflective supervision by exposing models to di-
verse reasoning trajectories that cover exploratory
and corrective revision. Reinforcement learning
then enhances this capability through a hybrid re-
ward scheme that integrates correctness, structural
adherence, and a learned Reflection Quality Scorer
(RQS). RQS is trained to estimate the value added
by reflection steps using scalar annotations derived
from reference trajectories, which enables more
precise control over the utility of reflection. To en-
sure stability during optimization, the framework
incorporates recent advances in preference-based
reinforcement learning such as GRPO and DAPO
(DeepSeek-AI et al., 2025; Yu et al., 2025). This
training paradigm encourages models to produce
reflective steps that are not merely verbose but
demonstrably beneficial for downstream correct-
ness. Illustrative examples of the reflection struc-
ture and generated trajectories are provided in Ap-
pendix A.

We evaluate ReFLAIR primarily on mathemati-
cal reasoning benchmarks. Our experimental suite
encompasses multimodal and textual math datasets
used across the paper, and the empirical study
focuses on (i) end-to-end improvements in accu-
racy, (ii) ablation analyses that quantify the con-
tribution of cold-start supervised trajectories, the
<re-think> structural signal, and RQS supervi-
sion, (iii) transfer experiments showing that the
reflection-aware training provides gains when ap-
plied to smaller textual LLMs, and (iv) analy-
ses of test-time reflection scaling, where an adap-

tive scheduling mechanism reduces inference cost
while maintaining or improving accuracy. Across
these dimensions, ReFLAIR consistently produces
more accurate and interpretable reasoning traces
compared to baselines that lack targeted reflective
supervision.

Our contributions are threefold. First, we intro-
duce ReFLAIR, a training framework that explic-
itly scaffolds multi-stage reflection and aligns it
with task utility. Second, we develop a reflection-
aware reward scheme that integrates correctness,
format adherence, and a learned reflection quality
signal within a stabilized preference-optimization
procedure. Third, we present comprehensive em-
pirical evidence on mathematical reasoning bench-
marks, including ablations, transfer studies to tex-
tual LLMs, and test-time scaling analyses, demon-
strating that structured reflection yields reliable
gains in both performance and interpretability.
Please refer to the attached source code for further
details1.

2 Related Work

2.1 Prompting and Chain-of-Thought
Reasoning

Large language models benefit substantially from
prompting strategies that elicit structured reason-
ing. Chain-of-Thought prompting (Wei et al.,
2022) enables models to generate intermediate
steps, improving accuracy on complex problems.
Building on this idea, Self-Consistency (Zelik-

1https://github.com/jjz1011/ReFLAIR
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man et al., 2022), Least-to-Most prompting (Zhang
et al., 2022), and Tree-of-Thought reasoning pro-
pose different ways of sampling or decomposing
reasoning trajectories. Beyond prompting, rea-
soning patterns have been distilled into smaller
models through instruction tuning (Madaan et al.,
2023), making structured reasoning more broadly
deployable. These methods achieve strong per-
formance on benchmarks such as GSM8K (Cobbe
et al., 2021), SVAMP, and MATH (Hendrycks et al.,
2021a).

2.2 Reinforcement Learning for Long-form
Reasoning

Reinforcement learning (RL) provides another
paradigm for improving reasoning ability in large
models. OpenAI’s o1 model (OpenAI, 2024) and
systems like DeepSeek-R1 apply RL to encour-
age models to internalize reasoning strategies dur-
ing generation. RL has also been widely used for
preference alignment, with RLHF (Stiennon et al.,
2020) as a canonical example, and extended to
adaptive computation settings (Guo et al., 2025).
Recent advances explore alternative formulations,
including DAPO (Yu et al., 2025), GRPO, and
multi-head feedback mechanisms (Li et al., 2025),
showing the flexibility of RL in aligning long-form
reasoning with desirable outcomes.

2.3 Reflection and Iterative Self-Improvement

An emerging line of work focuses on enabling mod-
els to critique and revise their own outputs. Early
approaches such as STaR (Zelikman et al., 2022)
and Reflexion (Shinn et al., 2023) demonstrate the
benefits of leveraging model-generated feedback to
improve reasoning. Later methods like Self-Refine
(Ranaldi and Freitas, 2024), Hindsight (Li et al.,
2024b), and Mirror (Yan et al., 2024) refine this
process through iterative revision, multi-path val-
idation, or multiple-perspective reflection. These
approaches vary in whether they rely on heuristic
rules, oracle supervision, or internally generated
critiques, but collectively highlight the promise of
self-feedback for reasoning improvement.

2.4 Benchmarks and Evaluation

The evaluation of reasoning has expanded be-
yond simple answer accuracy toward more diag-
nostic settings. Classical benchmarks such as
GSM8K, MATH (Hendrycks et al., 2021a), and
AQuA remain central, while newer multimodal
and domain-specific datasets such as MathVista

(Lu et al., 2024), ChartQA (Masry et al., 2021),
and MathVerse (Huang et al., 2024a) test math-
ematical and visual reasoning. Recent resources
specifically target reflection and revision, including
Mirror (Yan et al., 2024) and LR2Bench (Chen
et al., 2025), which introduce datasets such as
MathReflex-10K and ReflectQA to measure itera-
tive self-improvement across math and multimodal
domains. Together, these benchmarks provide a
rigorous basis for evaluating both chain-of-thought
reasoning and reflective refinement.

3 Method

Raw Data

MLLM

Sampled 
Reasoning Paths 

Reasoning Model

Image Caption

<think>
<re-think>
<answer>

ReFLAIR-cold Dataset

Figure 2: Pipeline for generating cold-start data.

We present ReFLAIR, a training framework
designed to enhance the reflective reasoning ca-
pabilities of multimodal large language models
(MLLMs). As illustrated in Figure 1, ReFLAIR
consists of three key components: (1) cold-start
supervised fine-tuning (SFT) on structured reflec-
tive reasoning trajectories, (2) a learned Reflection
Quality Scorer (RQS) that estimates the value of
model self-reflection, and (3) reinforcement learn-
ing with a hybrid reward function that encourages
innovative and meaningful reflection. Each compo-
nent is detailed below.

3.1 Overview of ReFLAIR

This cold-start stage is not merely preparatory —
it endows the model with an explicit cognitive
scaffold, teaching it to internalize the semantics
of <think>, <re-think>, and <answer> as mean-
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Figure 3: Pipeline for generating training data for RQS.

ingful reasoning markers. Through exposure to
carefully curated, high-quality reflective trajecto-
ries, ReFLAIR-SFT learns to treat reflection as a
first-class citizen in reasoning — not only gener-
ating answers, but understanding how and why an
answer emerges through multi-step introspection.

To further optimize the model, we apply rein-
forcement learning to ReFLAIR-SFT, yielding the
final ReFLAIR model. The reward function is
carefully designed as a hybrid of model-based and
rule-based signals. The model-based component is
derived from the Reflective Quality Scorer (RQS),
which provides a learned, high-level assessment of
reasoning quality. The rule-based components en-
sure fidelity to task goals by explicitly scoring the
correctness of the final answer and structural adher-
ence to the <think><re-think><answer> format.
This dual mechanism encourages the model to align
with both latent human-like reasoning patterns and
explicit task constraints, enabling ReFLAIR to gen-
erate responses that are not only accurate, but also
cognitively coherent and structurally principled.

3.2 Cold-Start Training with Reflective Paths

To initialize ReFLAIR with a strong inductive
bias toward reflective reasoning, we construct
a multimodal dataset annotated with structured
<think><re-think><answer> sequences. As il-
lustrated in Figure 2, we begin with math-focused
image–question–answer datasets and augment
them through the following processes:

Exploring alternative reasoning strategies. For
each image–question pair, we use a pretrained mul-
timodal model to sample multiple reasoning paths,
filtering them based on answer correctness. In par-
allel, we generate a detailed caption of the image
to support grounded reasoning. Given the question,
caption, and the pool of sampled reasoning paths,
we prompt DeepSeek-R1 to select a pair of correct
solutions that differ significantly in approach, as
well as a pair consisting of one correct and one
incorrect solution with clear logical divergence.
These selected pairs are then refined by DeepSeek-
R1 into coherent <think><re-think><answer>
sequences. The correct–correct pairs model reflec-
tion as exploration of alternative valid strategies,
while the incorrect–correct pairs promote reflective
shifts from flawed logic to sound reasoning.

Step-level error correction. To further model in-
trospective reasoning, we use a multimodal model
to generate single sampled solutions for each im-
age–question pair and obtain corresponding image
captions. These solutions, which may contain sub-
optimal reasoning, are paired with their associated
question and caption and passed to DeepSeek-R1.
The model identifies critical flaws in the reason-
ing chain and generates a revised reflective path,
which is only retained if the final answer is cor-
rect. The resulting <think><re-think><answer>
sequences are fluently rewritten by DeepSeek-R1.
This process strengthens the model’s ability to both
reinforce sound reasoning through focused reflec-
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tion and recover from errors by re-evaluating key
steps.

The resulting dataset, ReFLAIR-cold, consists
of high-quality reflective trajectories spanning both
strategic exploration and targeted error correction.
It is used to train the initial ReFLAIR-SFT model,
equipping it with the ability to produce structured,
cognitively motivated reasoning from the outset.

3.3 Reflection Quality Scorer and Its Training
The Reflection Quality Scorer (RQS) is designed
to assess whether a model’s reflection genuinely
improves the reasoning process. High-quality re-
flections either correct flawed logic or introduce
effective new reasoning strategies. In contrast, shal-
low paraphrasing, repetition, or logically mislead-
ing modifications are penalized.

We define a scoring rubric to categorize reflec-
tion quality into four levels:
Fundamental Shift (0.8–1.0): reflections that
transform an incorrect or suboptimal solution into
a correct and structurally different one.
Insightful Revision (0.3–0.7): reflections that re-
vise key reasoning steps or provide useful insights,
while largely maintaining the original strategy.
Surface Edit (0.0 to –0.5): reflections that result
in only superficial or stylistic changes, without im-
proving reasoning quality.
Harmful Edit (–2.0): reflections that reinforce
errors or introduce new mistakes into the reasoning
process.

To construct training data for RQS, we build
a dedicated dataset named ReFLAIR-RQS (see
Figure 3). For each image–question pair, we sam-
ple multiple reasoning paths and answers using a
multimodal model and generate a detailed image
caption. From these, we form reflection candidates
across three categories: (1) correct–correct (diver-
gent yet valid strategies), (2) correct–incorrect, and
(3) incorrect–incorrect. Given the question, cap-
tion, candidate reasoning paths, and the rubric, we
prompt DeepSeek-R1 to generate a reflection qual-
ity score and a natural language explanation.

We then fine-tune a small language model us-
ing the resulting ReFLAIR-RQS dataset. Training
is conducted with both regression loss (to predict
scalar reflection quality scores) and pairwise rank-
ing loss (to enforce relative quality ordering). The
model is supervised with both scores and explana-
tions. Once trained, RQS is frozen and used as a
model-based reward component during reinforce-
ment learning, evaluating the introspective quality

of the <re-think> step in generated sequences.

3.4 Reinforcement Learning with Structured
Rewards

To further enhance reflection-aware reasoning, we
apply a structured reinforcement learning approach
based on GRPO (DeepSeek-AI et al., 2025), ex-
tending the DAPO framework (Yu et al., 2025) to
integrate reflective reasoning signals and learned
rewards.

The total reward R assigned to a sampled rea-
soning trajectory is defined as:

R = λ1 · Racc + λ2 ·
√
Rrqs · D + λ3 · Rfmt

where Racc ∈ {0, 1} indicates the correct-
ness of the final answer, Rrqs ∈ [−2, 1] is
the reflection quality score given by the RQS
model, and Rfmt ∈ {0, 1} is a structural re-
ward indicating whether the output adheres to the
<think><re-think><answer> format. The diffi-
culty score D = 1 − p̂ + b adjusts for sample
difficulty, where p̂ is the empirical accuracy of the
base model on the same instance across multiple
samples, and b is a small positive bias term for
stability.

This reward formulation encourages thoughtful
reflection on difficult problems, while minimizing
redundant or unmotivated elaboration on easier
ones. We adopt GRPO to optimize grouped re-
sponse candidates. Following DAPO (Yu et al.,
2025), we increase the upper clipping bound (high)
to promote exploration and avoid premature con-
vergence to suboptimal tokens.

4 Experiments

4.1 Experiment Settings
Datasets and Benchmarks. We construct three
reflective reasoning datasets, named ReFLAIR-
cold, ReFLAIR-RQS and ReFLAIR-RL, by se-
lecting and transforming examples drawn from
four large-scale sources: MathVision (Wang et al.,
2024a, 2025), PolyMath (Gupta et al., 2024),
OpenMathInstruct-2 (Toshniwal et al., 2024), and
NuminaMath-CoT (Li et al., 2024a). The two
datasets ReFLAIR-cold and ReFLAIR-RQS are
constructed following the pipelines illustrated in
Figure 2 and Figure 3 respectively, incorporating
format restructuring, quality filtering, and reflec-
tion prompting. We evaluate our models on five
mathematical reasoning benchmarks: MathVista
(Liu et al., 2024), MathVerse (Huang et al., 2024b),
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MM-Math (Wang et al., 2024c), GSM8K (Cobbe
et al., 2021), and MATH500 (Hendrycks et al.,
2021b).

Implementation Details. For reproducibility of
our main results we use the model Qwen2.5-VL-
7B (Bai et al., 2025) trained on the ReFLAIR-cold
dataset comprising 50K samples with responses
formatted as <think><re-think><answer>. The
Reflection Quality Scorer (RQS) is initialized from
Qwen2.5-VL-3B. We employ a hybrid reward
scheme based on GRPO for the reinforcement
learning phase, which is built on the supervised
fine-tuned model. Further implementation details
are provided in Appendix B.

4.2 Main Results on Math Domain

Table 1 shows that ReFLAIR consistently demon-
strates strong performance across all five bench-
marks. On MathVista, MathVerse, and MM-
Math—three challenging multimodal mathematical
datasets—ReFLAIR reaches or surpasses the per-
formance of both larger and similarly sized models.
Compared with ReFLAIR-SFT, the reinforcement
learning variant improves by 8.1 percentage points
on MM-Math and 3.1 points on MathVerse, un-
derscoring the importance of reward-guided reflec-
tion. On GSM8K and MATH500, ReFLAIR also
outperforms most open-source baselines, includ-
ing Qwen2.5-VL-7B-Instruct and Vision-R1-7B,
and matches or exceeds the performance of models
such as Satori-Qwen-7B that are also specifically
designed for mathematics. These results confirm
that our structured reflection method substantially
enhances reasoning performance on both multi-
modal and symbolic mathematical tasks without
increasing model size. Compared with proprietary
models such as GPT-4o and OpenAI O1, ReFLAIR,
despite being an open-source mid-scale model,
achieves comparable or even superior performance,
suggesting that structured reflection is a promising
alternative to scale-intensive approaches.

4.3 Component Effects Across Tasks

<re-think> prompting. In the ablation setting,
the model is constrained to predict directly with
the <answer> token, effectively bypassing the re-
flective step. This shortcut removes the opportunity
for the model to identify and revise intermediate
reasoning errors. The comparison in Table 2 shows
that eliminating the explicit reflection prompt con-
sistently reduces performance, underscoring that

structured prompting is indispensable for leverag-
ing prior reasoning traces to improve final solu-
tions.

Supervised cold-start training. Eliminating the
initial supervised stage leads to a marked degrada-
tion on complex reasoning tasks. Such tasks often
require multi-step symbolic manipulation or spatial
inference, where naive trial-and-error provides lit-
tle benefit. Training on high-quality reflection data
establishes a prior for self-correction, enabling the
model to perform meaningful adjustments during
reinforcement learning rather than relying on ran-
dom perturbations. The relatively smaller effect ob-
served on GSM8K suggests that shorter and more
structured problems can be effectively learned with
reward-based optimization alone.

Reflection Quality Scorer (RQS). Substituting
RQS with simple rule-based rewards yields consis-
tent and substantial performance declines across
benchmarks. This indicates that RQS provides a
more precise alignment signal between reflection
quality and model updates, particularly in datasets
that contain ambiguous or open-ended reasoning er-
rors. Although the gap is narrower on datasets such
as GSM8K and MathVista—where carefully de-
signed rules approximate reflection quality reason-
ably well—the overall results highlight that RQS
enhances sensitivity to subtle yet meaningful im-
provements in reflection, especially those with se-
mantic or logical significance.

Ablation analysis further reveals that the three
components of ReFLAIR reinforce each other in
a complementary manner rather than functioning
in isolation. The <re-think> token provides the
structural signal for reflection, but without super-
vised training on curated reflection data, the revi-
sions remain shallow and often ineffective. Cold-
start training establishes a prior for meaningful
self-correction, which in turn enables RQS to serve
as a precise reward signal rather than a noisy proxy.
Likewise, RQS amplifies the benefits of reflection
prompting by rewarding improvements that are
semantically and logically substantive. Taken to-
gether, these components form a mutually reinforc-
ing system. As shown in the final row of Table 2,
the full ReFLAIR model achieves the best overall
performance, with the largest margins observed on
tasks requiring multi-hop or symbolic reasoning.

25406



Model MathVista MathVerse MM-Math GSM8K MATH500

Proprietary Models
GPT-4V 49.9 39.4 23.1 - -
GPT-4o 63.8 37.6 31.8 - 60.3
OpenAI O1 73.9 - - - 85.5

Open-Source Models
Qwen2.5-VL-7B-Instruct 68.1 46.7 34.1 91.6 75.5
Qwen-2.5-Math-7B-Instruct - - - 95.2 83.6
Qwen2.5-VL-72B 73.5 51.3 45.6 - -
QwQ-32B-Preview - - - 95.5 90.6
Vision-R1-7B 73.5 52.4 40.2 - -
Satori-Qwen-7B - - - 93.2 85.6

Ours
ReFLAIR-SFT 73.1 55.2 38.2 93.1 82.8
ReFLAIR 73.6 58.3 46.3 93.9 86.8

Table 1: Evaluation results on five mathematical reasoning benchmarks: MathVista, MathVerse, MM-Math,
GSM8K, and MATH500. We compare performance across proprietary models, large-scale open-source models,
7B-scale open-source models, and our ReFLAIR variants. ReFLAIR achieves consistently strong and often
state-of-the-art performance, with clear advantages in multi-step mathematical reasoning.

Configuration MathVista MathVerse MM-Math GSM8K MATH500

w/o <re-think> 71.3 53.6 40.5 92.3 81.3
w/o cold-start SFT 74.1 52.9 37.2 92.8 79.9
w/o RQS (rule only) 70.5 54.2 36.0 92.0 78.3
Full ReFLAIR 73.6 58.3 46.3 93.4 84.2

Table 2: Ablation study on the three key components of ReFLAIR across five benchmarks. Removing reflection
prompting, cold-start supervised training, or RQS supervision all lead to notable performance degradation, especially
on complex multimodal and symbolic reasoning tasks.

4.4 Reflection Quality Scorer (RQS) Analysis
4.4.1 Learning Dynamics of RQS Rewards
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Figure 4: Training dynamics with RQS supervision.
Both RQS scores and average rewards show a brief
initial decline followed by consistent improvement, re-
flecting the exploration and optimization stages of rein-
forcement learning.

During reinforcement learning, both RQS scores
and average rewards initially dip before steadily ris-
ing as training progresses. This pattern reflects the

exploration phase of optimization, followed by con-
vergence to higher-quality behaviors. The average
reward remains consistently above the RQS score,
and the gap widens over time, suggesting that im-
provements in reflection quality translate into pro-
gressively stronger task-level outcomes. This tra-
jectory highlights the role of RQS in fostering re-
flections that are not only structurally coherent but
also substantively beneficial for downstream rea-
soning.

4.4.2 Effect of Model Scale and Training
Duration

Analysis of different RQS configurations shows
that a smaller model trained for longer yields more
reliable improvements than a larger model trained
for the same or greater duration. The 3B model ben-
efits from extended training, while the 7B variant
shows signs of diminishing returns and even degra-
dation under longer training. These findings sug-
gest that reward quality depends more on careful
calibration of training than on raw model capacity,
with smaller models providing better generalization
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RQS Configuration MathVista MathVerse MM-Math GSM8K MATH500

3B, 1 epoch 73.1 57.9 43.2 92.8 79.4
3B, 2 epochs 73.6 58.3 46.3 93.9 86.8
7B, 1 epoch 73.4 57.2 45.7 92.3 81.9
7B, 2 epochs 72.1 56.0 43.9 92.0 80.6

Table 3: Downstream performance with different RQS reward models. The smaller 3B RQS trained for two epochs
achieves the best overall performance, indicating that extended training is more influential than model size in
producing a reliable reward signal.

when sufficiently optimized.

4.4.3 Validation of RQS Judgments
To assess the reliability of RQS, we constructed a
set of reflective reasoning trajectories and obtained
ground truth scores by applying the rule-based cri-
teria described earlier. Three scoring sources were
then compared against this ground truth: DeepSeek-
R1, our learned RQS, and GPT-4o. Results are
summarized in Table 4.

The agreement scores demonstrate that both
DeepSeek-R1 and RQS deliver consistent evalu-
ations of reflection quality, with RQS exhibiting
slightly stronger alignment with the ground truth.
This outcome shows that RQS does not merely
replicate biases from its training source but success-
fully generalizes the reflection evaluation criteria,
thereby providing a stable and trustworthy signal
for reinforcement learning.

4.5 Test-Time Reflection Scaling
4.5.1 Fixed Reflection Depth
We first evaluate the effect of manually increasing
the number of reflection steps at test time using the
final trained ReFLAIR model. Experiments were
conducted with one, two, and three reflection steps
on MathVista and MM-Math. Results indicate that
additional steps yield only marginal gains on MM-
Math and no improvement on MathVista. Notably,
performance deteriorates when three steps are en-
forced, primarily due to excessive verbosity and the
accumulation of reasoning errors. Case analysis
further reveals hallucination-like behaviors, where
successive reflections compound spurious reason-
ing paths and lead to incorrect final answers. These
findings suggest that unregulated overthinking can
be detrimental, underscoring the need for mecha-
nisms that balance depth and reliability in reflective
inference.

4.5.2 Adaptive Reflection Scheduling
Since the optimal number of reflections depends
strongly on task complexity, we further investigate

an adaptive scheduling mechanism. A lightweight
Thought Quality Scorer (TQS) is trained to assess
the quality of reasoning fragments generated be-
fore the </think> token. Based on this score, the
model either proceeds to an answer or initiates
another reflection. This approach prevents unneces-
sary repetition on simple problems while allowing
deeper reasoning when needed.

The adaptive strategy achieves measurable effi-
ciency gains without compromising accuracy. On
MathVista, it yields a modest but consistent per-
formance increase, while average inference time is
reduced by nearly a quarter. These results demon-
strate that dynamically regulating reflection depth
provides a principled balance between accuracy
and computational cost.

5 Discussion

5.1 Discussion and Future Directions
Our results show that explicitly structured reflec-
tion improves both the accuracy and interpretability
of large language model (LLM) reasoning. The
<re-think> stage enables the model to revise or
extend its initial reasoning, which is particularly
valuable in multimodal settings where errors often
arise from visual or symbolic misalignment. The
reward design aligns cognitive plausibility with
task-oriented metrics such as correctness and diffi-
culty, offering a principled way to supervise beyond
final answers.

ReFLAIR’s modularity also supports integra-
tion with diverse prompting strategies and archi-
tectures. While we focus on mathematical and
chart-based reasoning, the framework generalizes
to other domains such as instruction following and
critique generation, suggesting broader potential
for reflection-aware training.

We further investigated whether reflection fre-
quency can be learned end-to-end through rein-
forcement learning. After equipping the model
with multi-step reflective reasoning via supervised
fine-tuning, RL was used to associate task difficulty

25408



Scorer Ground Truth (%) GPT-4o Agreement (%)

DeepSeek-R1 93.25 / 98.50 95.00 / 97.25
RQS 95.75 / 98.75 95.25 / 99.00

Table 4: Agreement between RQS, DeepSeek-R1, and GPT-4o on reflection quality ratings. Results indicate that
RQS provides robust and generalizable judgments closely aligned with the rule-based ground truth.

Reflection Steps MathVista MM-Math

One step 73.6 46.3
Two steps 73.6 47.2
Three steps 71.9 45.3

Table 5: Performance impact of enforcing fixed num-
bers of reflection steps. Excessive iterations introduce
verbosity and reasoning drift, leading to degraded re-
sults.

Method MathVista Avg. Inference Time

Fixed (1 step) 73.6 1.0×
Fixed (2 steps) 73.6 1.8×
Adaptive (TQS) 74.5 0.77×

Table 6: Comparison of fixed and adaptive reflection
strategies. The TQS-based mechanism achieves higher
efficiency while maintaining or improving accuracy.

with reflection depth. Across five benchmarks,
however, the improvements over fixed single-step
inference were marginal. This suggests that while
RL can in principle capture scheduling behav-
ior, more refined formulations are needed. In
contrast, our adaptive scheduling approach based
on lightweight thought-quality estimation already
achieves measurable gains in both accuracy and
efficiency.

These findings point toward several directions:
richer forms of meta-reflection spanning multiple
<re-think> cycles, adaptive control informed by
task complexity or confidence, and alignment of
reflective reasoning with human pedagogical pref-
erences. Advancing along these axes may yield
systems that are not only more accurate but also
more interpretable and aligned with human reason-
ing practices.

5.2 Generalization to Large Language Models
(LLMs)

To examine the applicability of our approach be-
yond multimodal reasoning, we further evaluate
ReFLAIR on a custom-built textual math ques-
tion answering dataset using purely language-
based LLMs. The results, summarized in Table 7,

show that ReFLAIR provides substantial improve-
ments, especially for smaller models. In particular,
Qwen2.5-7B-Instruct achieves an absolute gain of
+35.3 points under ReFLAIR compared to its base-
line, a margin even larger than the improvements
observed with multimodal models. This result high-
lights both the difficulty of the dataset and the effec-
tiveness of reflection-aware training in enhancing
the reasoning capacity of compact models. We will
release this dataset to encourage further investiga-
tion and reproducibility.

Model Accuracy (%)

o1-preview 60.2
Qwen2.5-7B-Instruct 21.0
Qwen2.5-72B-Instruct 52.9
ReFLAIR-SFT 48.9
ReFLAIR 56.3

Table 7: Performance comparison on a custom-built
textual math QA dataset using purely textual LLMs. Re-
FLAIR provides substantial improvements, particularly
for smaller-scale models.

6 Conclusion

We have introduced ReFLAIR, a framework that
elevates reflective reasoning to a central compo-
nent of multimodal language model training. Re-
FLAIR integrates three ingredients: a large-scale
reflection-annotated dataset for cold-start super-
vision, a trainable Reflection Quality Scorer that
quantifies the utility of rethinking steps, and a hy-
brid reinforcement learning scheme that balances
correctness, structural fidelity, and reflection utility.
Experiments on diverse mathematical reasoning
benchmarks demonstrate consistent gains in both
accuracy and interpretability, supported by ablation
studies, transfer experiments to textual models, and
analyses of test-time scaling. These results high-
light that structured reflection, when aligned with
explicit utility signals, provides a scalable path to-
ward reasoning systems that critique, revise, and
improve their own cognition.
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Limitations

Despite its advantages, ReFLAIR has several lim-
itations. First, incorporating reflection introduces
additional inference cost, which is mitigated but
not eliminated by the proposed adaptive scheduling
mechanism. More principled approaches to dynam-
ically deciding when reflection is necessary remain
to be explored. Second, the Reflection Quality
Scorer is trained on proxy annotations derived from
model trajectories. Although validated against hu-
man judgments, its alignment with human prefer-
ence and pedagogical value is still limited. Third,
the framework has been primarily trained and eval-
uated on math-focused multimodal data. Its exten-
sion to other domains such as dialogue, program-
ming, or long-context reasoning tasks is yet to be
demonstrated. Finally, reflection itself is shaped by
cultural, ethical, and stylistic norms, and optimiz-
ing behavior in line with these diverse considera-
tions remains an open challenge for deployment in
real-world applications.
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A Illustrative Reflective Trajectories

We present two examples that showcase different
roles of structured reflection. The first example
demonstrates how a brief self-review corrects a
shallow but common error. The second example
highlights a distinct pattern: the model uses the
initial <think> stage to outline a multi-step plan
without performing detailed computations, and the
subsequent <re-think> stage executes that plan
to completion. No external images are required
for understanding these examples; the captions em-
phasize how reflection reduces superficial mistakes
and converts planning into reliable execution.

This example illustrates the corrective role of
reflection. The initial step applies a superficial
rule that is easy to produce but incorrect in context.
The reflection stage explicitly recalls the appro-
priate quantity to compute, derives the total time
and distance, and produces the correct result. The
trajectory is short and focused: reflection targets
the precise misconception rather than expanding
verbosity.

The second example demonstrates a complemen-
tary use of reflection. During <think>, the model
constructs a structured plan that enumerates the
counting stages and potential pitfalls. By deferring
arithmetic to <re-think>, the model reduces the
likelihood of early calculation errors and explic-
itly validates modeling assumptions. The executed
trajectory confirms that the correct combinatorial
decomposition is

(
3
2

)
× 5× 4 = 60, and it avoids

Input Question:
A train travels from City A to City B at an aver-
age speed of 60 km/h. It returns from City B to
City A on the same route at an average speed of
40 km/h. What is the average speed of the entire
round trip?
Model Reasoning:
<think> To find the average speed of the entire
round trip, I can simply average the two speeds:
(60 + 40) / 2 = 50 km/h. </think>
<re-think> The arithmetic mean of the two
speeds is not the correct measure for average
speed over a round trip. Average speed should
be total distance divided by total time.
Let the one-way distance be d km. The time for
the first leg is d/60 hours, and for the return leg
it is d/40 hours. The total distance is 2d and the
total time is d/60 + d/40 = 5d/120 = d/24
hours. Therefore the average speed is

2d

d/24
= 48 km/h.

</re-think>
<answer> The average speed for the round trip
is 48 km/h. </answer>

Table 8: A concise corrective reflection. The initial
<think> adopts a common but shallow heuristic, while
the <re-think> stage replaces the heuristic with a dis-
tance–time derivation that yields the correct answer.

double-counting because the collaborative assign-
ment is treated as a set assigned to a single, labeled
project while the remaining student is assigned to
a distinct, labeled project.

B Implementation Details

In this appendix we provide full specifications of
training configurations and dataset splits that un-
derpin the results reported in Section 4.

The ReFLAIR-cold dataset comprises 50,000
examples randomly sampled (without replace-
ment) from the union of MathVision, PolyMath,
OpenMathInstruct-2, and NuminaMath-CoT, af-
ter quality filtering to remove examples with
malformed reasoning or invalid answers. For
ReFLAIR-RQS and ReFLAIR-RL, the same
sources are used; their splits are 15,000 examples in
the RQS training set (for annotated reflections) and
approximately 15,000 examples for the RL phase.

All fine-tuning is performed with the AdamW
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optimizer, learning rate set to 5 × 10−5, weight
decay 0.01, batch size 64. Qwen2.5-VL-7B is
trained for one epoch over ReFLAIR-cold, using 8
NVIDIA A100 GPUs, which amounts to roughly
22 hours of wall-clock time. Qwen2.5-VL-3B is
trained with identical hyperparameters. The Re-
flection Quality Scorer (RQS) is initialized from
Qwen2.5-VL-3B and fine-tuned for two epochs on
15,000 annotated reflections, using 2 A100 GPUs,
taking approximately 12 hours. For reinforcement
learning (ReFLAIR-RL), we adopt a GRPO-based
algorithm with a hybrid reward composed of cor-
rectness of the final answer and a quality metric of
reflection steps; this phase builds on the SFT model
and is run for approximately 36 hours on 8 A100
GPUs. Gradient clipping is applied at norm 1.0;
mixed precision (FP16) is used throughout. All
training seeds are fixed for reproducibility.

Input Question:
Five distinct projects are available and three stu-
dents are to be assigned so that one project re-
quires a pair of students working together and
one other project accepts exactly one student. In
how many distinct ways can the students be as-
signed under these constraints?
Model Reasoning:
<think> I will outline a plan before computing.
First, choose which two students will form the
collaborating pair. Next, select which project
will host the collaborating pair. Then choose the
project that will receive the remaining student. I
will not carry out the arithmetic here; instead I
will follow this plan and perform each counting
step carefully in the revision stage. </think>
<re-think> Execute the planned steps precisely.
Choose the pair of students in

(
3
2

)
= 3 ways.

Choose the project for the collaborating pair in
5 ways. From the remaining projects, choose
the project for the single student in 4 ways. The
collaborative pair is assigned as an unordered
set to its project, so no additional internal per-
mutation should be counted. Multiplying these
factors yields

3× 5× 4 = 60.

Thus there are 60 distinct valid assignments un-
der the stated constraints. </re-think>
<answer> There are 60 distinct valid assign-
ments. </answer>

Table 9: A multi-step planning and execution example.
The <think> stage states a clear plan without numerical
work; the <re-think> stage follows that plan, performs
the required combinatorial computations, and verifies
assumptions about ordering and distinguishability.
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