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Abstract
Despite growing interest in explainable NLP,
it remains unclear how explanation strategies
shape user behavior in tasks like authorship
identification, where relevant textual features
may be difficult for lay users to pinpoint. To
support their analysis of text style, we consider
two explanation types: example-based style
rewrites and feature-based rationales, generated
using a LLM-based pipeline. We measured how
explanations impact user behavior in a con-
trolled study (n=95) where participants com-
pleted authorship identification tasks with our
types of assistance. While no explanation type
improved overall task accuracy, fine-grained
reliance patterns (Schemmer et al., 2023) re-
vealed that rewrites supported appropriate re-
liance, whereas presenting both explanation
types increased AI overreliance, minimizing
participant self-reliance. We find that partici-
pants exhibiting better reliance behaviors had
focused explanation needs, contrasting with the
diffused preferences of those who overrelied
on AI, or incorrectly self-relied. These findings
highlight the need for adaptive explanation sys-
tems that tailor support based on specific user
reliance behaviors.

1 Introduction

AI systems have increasingly been used as decision-
support tools across domains (Levy et al., 2024;
Sel et al., 2024; Echterhoff et al., 2024), despite
concerns about overreliance — when people de-
fer decision-making to AI suggestions even when
those suggestions are incorrect. Prior work has
documented this most clearly in settings involv-
ing tasks where AI errors are easily detectable or at
least verifiable, as in factual QA (Goyal et al., 2023;
Kim et al., 2024). However, we argue that less is
known in tasks where decision-making is more in-
terpretive in nature, or where system answers are
hard to verify.

This work investigates overreliance and human-
AI collaboration in one such setting: authorship

attribution. Determining the likely author of a text
often depends on subtle stylistic markers which can
be difficult for non-experts to pinpoint (Setzu et al.,
2024) and differs from how authorship models per-
form on the task (Faye et al., 2024).

As such, authorship identification offers a case
study for understanding how different forms of AI
explanations might support or distort user reason-
ing in tasks where decisions depend on navigating
potentially ambiguous signals or subjective crite-
ria with multiple defensible interpretations. We
consider two LLM-generated explanation types,
designed to guide users in making their own as-
sessments of the ambiguous signals inherent in
the task: (1) example-based style rewrites, which
show a contrastive rewrite of the input to surface
changes that might support an alternative decision,
inspired by counterfactual explanations, (Lee and
Chew, 2023; Cheng et al., 2023; Lee et al., 2024)
and (2) feature-based explanations, which highlight
and verbalize summary cues that the model uses to
faithfully generate its prediction.

We conduct an IRB-approved online user study
(n = 95) to explore how such explanations impact
people’s behavior when they are asked to identify
the author of a given text given two writing samples
from different authors. We designed an experiment
with four explanation conditions: (1) AI predic-
tion only, (2) prediction with stylistic rationales,
(3) prediction with author-style rewrites, and (4) all
support combined. We then evaluated how these
strategies affected participant performance, confi-
dence, and alignment with the original prediction,
particularly when the AI’s prediction was incorrect.

Our work contributes a behavioral lens on
human-AI collaboration in authorship decision-
making tasks by systematically analyzing how par-
ticipants respond to system predictions and expla-
nations. As the mere presence of explanations
may increase overreliance (Eiband et al., 2019), we
characterize a broad range of behavioral patterns
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(Schemmer et al., 2023), and show how explana-
tions shape these outcomes.

None of the explanation types provided im-
proved overall task accuracy. However, we found
that providing only the example-based or the
feature-based explanations led to better tradeoffs in
correct self-reliance and correct AI-reliance than if
users were to use either the dual (example+feature)
or no explanations. Additionally, fine-grained anal-
ysis suggests that participants with different re-
liance behaviors have different needs, and different
abilities to pinpoint what explanation properties
would be useful.

Altogether, results suggest that example-based
rewrites are a promising strategy for better appro-
priate reliance in authorship attribution, and call for
adaptive explanation designs tailored to user behav-
ior in explainable NLP to support better reliance
behaviors.

2 Background

We motivate our study by discussing prior work in
explanations for AI-assisted decision-making and
authorship analysis. We focus on how explanations
can shape human reliance, and then surface how
authorship authorship analysis is an ideal candidate
for studying how these explanations impact human
decision-making.

2.1 Explanations for AI-Assisted
Decision-Making

Explanations can support users in AI-assisted
decision-making, by helping users reason how AI
systems make predictions. However, prior work
has shown that users often defer to AI suggestions
despite provided explanations indicating potential
errors that those suggestions may not be correct
(Bansal et al., 2021). When verifying an expla-
nation is more cognitively demanding than com-
pleting the task itself, users may disengage from
critical evaluation of explanations and simply ac-
cept the suggestion (Vasconcelos et al., 2023). This
may stem from users implicitly trusting that ex-
planations signal credibility (Eiband et al., 2019;
Lai and Tan, 2019; Sieker et al., 2024), even when
local explanations are flawed or when they fail to
surface important underlying context that directly
impacts task success (Goyal et al., 2024). These
findings surface a reliance problem: users must de-
cide when to accept or override AI suggestions, and
explanations may or may not help that calibration.

Recent work has explored complementary types
of explanations: counterfactual explanations,
which make targeted edits to the input to show
how the input might look for a model to change
its prediction (e.g. (Lee and Chew, 2023; Si et al.,
2024)), and example-based explanations (Cheng
et al., 2023; Lee et al., 2024), which provide con-
crete instances of different classes that illustrate the
model’s decision boundaries.

Another line of research has investigated ratio-
nales directly generated by LLMs to explicitly jus-
tify given predictions (Wiegreffe et al., 2022; Li
et al., 2024; Mishra et al., 2024; Xu et al., 2024).
Although LLM-generated rationales have shown
improvements in explanation acceptability, these
rationales are not consistently reliable (Wiegreffe
et al., 2022). To motivate better explanations, there
is work explicitly focused on improving contrastive
or negative explanations to articulate why certain
predictions were made instead of alternatives, or
providing explanations for non-gold labels to en-
hance training signals for teaching models how
to explain effectively (Wiegreffe and Marasovic,
2021; Wang et al., 2023). We suggest moving
beyond focusing on explanation validity alone to
identify what properties that make explanations ac-
tionable for human decision-making, in order to
support both correct self-reliance and AI reliance.

In controlled prediction tasks, Chen et al. (2023)
found that example-based explanations helped par-
ticipants override incorrect AI advice, whereas
feature-based explanations increased overreliance.
However, their tasks (income prediction and biog-
raphy classification feature objective predictions
which incur relatively low verification cost for peo-
ple. In contrast, authorship identification requires
judging stylistic evidence that is more subjective
to verify in practice, leading to higher verification
costs. We aim to assess how explanations help
users make sense of system predictions, in order to
accomplish the task successfully.

2.2 Authorship Analysis

Authorship analysis (such as verification and at-
tribution) is used to power diverse applications
and domains (Stamatatos, 2009; Huang et al.,
2025), including plagiarisim detection (Quidwai
et al., 2023), the detection of machine-generated
text (Richburg et al., 2024), forensic analysis
(Ainsworth and Juola, 2018), and cultural heritage
research (Setzu et al., 2024). Most of this work
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focuses on automatic attribution. However, less is
known about how human-decision making can be
supported in their various contexts.

Given our human–AI lens, the design problem
is in which explanation form best supports human
decision-making. We examine (i) feature-focused
rationales and (ii) example-based contrasts. Re-
cent systems commonly realize (i) via stylometry-
inspired, LLM-generated rationales (Patel et al.,
2023; Hung et al., 2023; Huang et al., 2024; Ram-
nath et al., 2025; Alshomary et al., 2025). These
rationales intend to surface distinctive stylistic as-
pects, such as lexical or syntactic patterns, which
could also serve as explanatory aids to support hu-
man judgment in authorship identification tasks.
How these explanatory aids could impact human
decision-making remains underexplored, which
motivates the human study in our work.

3 Study Design

In designing our study, we ask the following re-
search questions:

RQ1. How do different explanation types influ-
ence reliance patterns in authorship attribution?

RQ2. What explanation properties do users per-
ceive as most useful for supporting both correct
self- and AI- reliance?

We explore these questions by designing a study
that explicitly prompts users to try the task by hand,
before being exposed to some AI support consist-
ing of explanation-by-example and explanation-
by-feature, when they can choose to revise their
decision.

Task Overview Figure 1a illustrates the core au-
thorship identification task. Participants are pre-
sented with a short Mystery Post and two writing
samples from two distinct authors (Candidate A,
Candidate B, where one of these is the ground
truth author). The task is formulated as a binary
classification: which of these authors authored M?
The domain is constrained on topic so that partic-
ipants need to rely on stylistic cues (e.g. lexical
choice, syntax, punctuation usage, etc.).

Explanation Interventions Figure 1b illustrates
the explanations we propose: Feature-Based Ra-
tionale: a rationale describing stylistic similarities
or differences between the Mystery Post and each
candidate’s writing. Example-Based Rewrite: a
rewrite of the Mystery Post in the style of each

candidate, offering participants an implicit compar-
ison through example. Dual Explanation: both
rationale and counterfactual rewrites.

Rationales aim to support user reasoning through
explicit comparison, while rewrites aim to provide
stylistic transformations as examples, aiming to
support user reasoning through implicit compari-
son through which rewrite shifts the style less.We
generate these outputs with LLMs as described in
Sections 4.3 and 4.2.

Experimental Setup We adopt a 2×4 mixed
design. The within-subject factor is AI correct-
ness (correct vs. incorrect prediction), evenly dis-
tributed across 10 trials (5 correct, 5 incorrect).
The between-subject factor is explanation type,
randomly assigned to participants, with four condi-
tions: (1) Prediction-only: The AI provides a sin-
gle prediction for the text’s author (Author A or Au-
thor B). (2) Dual explanation: The AI provides a
prediction accompanied by explanation-by-feature
(stylistic rationales) and explanation-by-example
(rewrites illustrating how the mystery post might
look if each candidate author had written it). (3)
Explanation-by-feature: The AI provides a pre-
diction accompanied by the selected explanation-
by-feature. (4) Explanation-by-example: The AI
provides a prediction accompanied by the selected
explanation-by-example.

In each trial, participants make an authorship de-
cision in two phases: human-only and AI-assisted.
In Phase 1 (human-only), they choose an author
and describe which stylistic cues influenced their
decision, with answer choices drawing on inter-
pretable stylistic feature sets (Patel et al., 2023).
In Phase 2 (AI-assisted), participants review the
model’s binary prediction as well as the provided
explanation in their assigned explanation condition,
and may revise their choice. After completing all
10 trials, participants complete a paraphrased ver-
sion of NASA-TLX (Hart and Staveland, 1988) to
assess mental workload and perceived task success.

Measures and Analysis We analyze participant
behavior in four key aspects:

• Confidence and Accuracy Change: compar-
ing human-only and AI-assisted confidence
and decisions.

• Reliance Patterns: categorizing participant
decision changes according to AI correctness
behavior(Schemmer et al., 2023).
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(a) The authorship identification task: the participant is asked
which of the two authors wrote the Mystery Post.

(b) The participant receives the prediction, and a counterfactual
rewrite as explanation

(c) The participant receives the prediction, and a stylistic ratio-
nale as explanation

Figure 1: Two-phase authorship attribution task design. Participants begin with only the Mystery Post and candidate
writings (a), and then may revise their decision after seeing AI-generated explanations (b) and/or (c).

• Cognitive Workload: using delta NASA-
TLX scores across conditions.

• Cue Use and Explanation Engagement: an-
alyzing which cues users cite and how expla-
nation needs differ by behavior.

To categorize user reliance patterns, we adopt
the Appropriateness of Reliance (AoR) framework
introduced by Schemmer et al. (2023), which char-
acterizes reliance in terms of two reliance behav-
iors:

• Relative AI Reliance (RAIR): The propor-
tion of cases in which the participant initially
made an incorrect decision and the AI pro-
vided a correct prediction, where the partici-
pant updated their decision to become correct.
Formally:

RAIR =
# Correct AI Reliance (CAIR)

# trials AI correct

• Relative Self-Reliance (RSR): The propor-
tion of cases in which the participant initially
made a correct decision and the AI provided

an incorrect recommendation, where the par-
ticipant maintained their original correct an-
swer. Formally:

RSR =
# Correct Self-Reliance (CSR)

# trials AI incorrect

This analysis allows us to go beyond decision
accuracy and evaluate the cognitive and behavioral
effects of explanation format, with a focus on how
different designs shape user reliance.

Participant Recruitment We recruited 95
English-fluent participants on Prolific and com-
pensated them at rates consistent with our local
minimum wage. Our survey was implemented in
Qualtrics. All participants indicated consent prior
to beginning the study after reading a form indicat-
ing that their responses would be anonymized and
possibly published in aggregate. Our study proto-
col was approved by our institution’s ethics board.
We collected basic demographic information (age,
education, and self-reported English fluency level)
from participants, summarized in Appendix D.
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Comparison Avg. Cosine Similarity

Mystery vs CandA 0.488
Mystery vs CandB 0.475
CandA vs CandB 0.357

RewA vs CandA 0.647
RewA vs CandB 0.433
RewB vs CandA 0.499
RewB vs CandB 0.566

Table 1: Cosine similarities between style embeddings.
The top block reports task difficulty (Mystery vs. candi-
dates and candidate–candidate). The bottom block re-
ports rewrite contrastiveness: RewA/RewB vs. intended
target and non-target candidates.

4 Task Materials

We construct task materials used in our user study
as described in the following sections: (1) process
and select data, (2) generate model predictions,
and (3) derive explanations (feature-based ratio-
nales and counterfactual rewrites).

4.1 Datasets

We use the PAN 2023 Style Change Detection
dataset1 which Bevendorff et al. (2023) presented
as a challenge task to identify positions within a
given multi-author document broken up by when
the author switches. Each dataset entry includes
multiple passages and a boolean value for each ad-
jacent pair of passages, marking whether or not
they were written by different authors. We exploit
these markers to construct our (M,A,B) tuples by
scanning lines in the hard validation split to find
a sequence of three paragraphs: two consecutive
paragraphs share the same author, while the other
differs. We designate one of the shared posts the
Mystery Post and the other two posts the candidate
posts. By pulling all three writing samples from
the same source document for one authorship trial,
we ensure consistent topic content across passages,
fulfilling our first desiderata of topical coherence.
For evaluation purposes, we sampled 60 tuples ran-
domly from 8.6k potential tuples.

Task Difficulty Check. To verify that trials are
comparably hard regardless of which candidate is
paired with the Mystery post, we compute cosine
similarity between style embeddings (Wegmann

1https://pan.webis.de/clef23/pan23-web/
style-change-detection.html

et al., 2022) for (Mystery, Candidate A), (Mys-
tery, Candidate B), and (Candidate A, Candi-
date B) (Table 1). The Mystery–Candidate simi-
larities are almost identical (0.488 vs. 0.475), indi-
cating that identifying the author is similarly chal-
lenging for both candidates. By contrast, the Can-
didate–Candidate similarity is lower (0.357), show-
ing that A and B are stylistically distinct. Thus, the
task is balanced while still containing discrimina-
tive signal, making the core challenge distinguish-
ing the Mystery post from either candidate rather
than differentiating A from B.

The task materials are generated by the follow-
ing models: an Identifier model (subsection 4.2)
that produces the authorship prediction, and two ex-
planation generators (subsection 4.3) that produce
stylistic feature-focused rationales, and example-
based rewrites, which we attach to predictions as
experimental conditions for the study.

4.2 How predictions are generated
The Identifier Model takes (M,A,B) and re-
turns a label in {A,B}. We compared open-
weight families to select a reliable model for use
in our study, leading to a controlled evaluation
with three open-weight model families across sizes
(Qwen2.5 (Yang et al., 2025), Mistral (Jiang et al.,
2023), Llama3 (Grattafiori et al., 2024)), and two
verification prompts (LIP, PROMPTAV). We se-
lected PROMPTAV + QWEN2.5-14B based on
held-out performance (Appendix B), as it achieved
strong correction performance with 0% degrada-
tion, ensuring that any gains do not come at the
cost of originally correct predictions.

Step 1: Authorship Verification (rationale
source). Given (M,A) and (M,B), we prompt
the LLM to articulate stylistic similarities or dif-
ferences, and produce a label or score for each
comparison that indicates authorship. Here, we
evaluated two prompt designs:

• LIP (Huang et al., 2024): prompts an LLM to
reason step-by-step about linguistic features
(e.g., phrasal verbs, punctuation, sarcasm) and
assigns a binary label denoting “same author”
or not.

• PROMPTAV (Hung et al., 2023): prompts an
LLM to focus on linguistic features (e.g. vari-
ables such as capitalization, acronyms, and
expressions), and report a similarity score (0
to 1) for two texts’ writing styles.
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These justifications serve both as the source for
our feature-based rationales, and the input context
for one of the judges in Step 2.

Step 2: Authorship Prediction (LLM-as-Judge).
We run two parallel LLM-as-judge passes with the
same base model, differing only in the evidence
they are conditioned on. The first is a rationale-
conditioned judge that receives the Step-1 stylistic
justifications for (M,A) and (M,B); and the sec-
ond is a rewrite-conditioned judge that receives
counterfactual rewrites of M in A’s and B’s styles
(see subsection 4.3). For sampling, we retain an
instance only if both judges agree on the predicted
author. This agreement filter helps define the final
Identifier Model outputs used across conditions.

4.3 How explanations are generated
We describe in more detail how we derived the two
types of explanations and use them as the condi-
tioning context for their corresponding judges in
the authorship prediction step.

4.3.1 Where feature-based rationale
explanations come from

Our feature-based rationales are directly derived
from the stylistic rationales produced during Step
1: Authorship Verification in subsection 4.2. The
verification prompts (LIP and PROMPTAV) gener-
ate short, structured descriptions of stylistic simi-
larities and differences for each pair. We use these
justifications directly as feature-based rationales.

4.3.2 Where counterfactual rewrite
explanations come from

We generate meaning-preserving rewrites of M in
each candidate’s style to provide concrete, con-
trastive examples. Inspired by STYLL (Patel
et al., 2024), we implement a streamlined two-step
pipeline (Figure 2) using LLAMA3-8b (Grattafiori
et al., 2024) as the base rewrite model.

Intended Use of Rewrites. In the user study, we
set each of the candidate authors as the “target au-
thor” to imitate, and produce one rewrite for each.
We expect that the genuine author’s rewrite typi-
cally requires only minor stylistic shifts, whereas
the foil author’s rewrite introduces more dramatic
changes in style.

Validation of Rewrites. For the rewrites, we as-
sess contrastiveness empirically by comparing each
rewritten text (RewA/RewB) to the intended target
and non-target candidates (Table 1). We find that

each rewrite is closer to its intended target than
to the non-target (RewA: 0.647 vs. 0.433; RewB:
0.566 vs. 0.499), validating that the style transfer
moves in the intended direction and provides effec-
tive rewrite examples to use as anchors.

5 Results and Discussion

Our analysis investigates how different explanation
types affect user reliance in AI-assisted authorship
attribution (RQ1), and what users say or show they
need to perform the task better (RQ2). We organize
our findings into four parts: changes in confidence
and accuracy, reliance behavior patterns, perceived
workloads of the task, and end with a discussion on
what participants rely on to do the task manually,
and what unmet needs they perceive to have with
respect to the presented explanations.

5.1 Confidence and Decision Accuracy

All AI support inflate confidence. All condi-
tions yielded a significant increase in self-reported
confidence after seeing the intervention, regardless
of correctness (p < 0.01). Confidence gains were
largest when stylistic rationales were present (Con-
ditions 2 & 3) (Figure 3), suggesting that rationales
increase participant confidence more than rewrites
alone. This aligns with prior findings (Vasconcelos
et al., 2023; Bansal et al., 2021) that explanations
encourage inappropriate reliance on AI.

No accuracy gains; effects depend on explana-
tion format and correctness. When the system
was correct, participant accuracy improved mod-
estly across all conditions. However, when the
system was incorrect, accuracy dropped in every
condition, especially in Condition 2 (Rewrite + Ra-
tionale), where the average accuracy decrease was
statistically significant (t = −4.23, p = 0.0003;
post-hoc t-test on accuracy deltas). This suggests
that combining rewrites with rationales increases
overreliance. In our authorship attribution setting,
explanations are themselves interpretive supports;
here, example- vs. feature-based formats did not
translate into accuracy gains and the dual format
was most fragile under incorrect model predictions.

Manipulation check. To validate that decision
changes were indeed driven by explanation sup-
port, after each intervention we asked participants
why they changed or did not change their choice.
Overwhelmingly, participants pointed to the AI
prediction, the provided rationales, or the rewrites,
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Stylistic Analysis

You are tasked with analyzing 
stylistic features of the writing 
from an author, noting variables�

� punctuation styl�
� special characters, 

capitalization styl�
� acronyms and abbreviation�
� writing styl�
� expressions and idiom�
� tone and moo�
� sentence structur�
� any other relevant aspects

Style-Constrained Rewrite

Using ONLY the stylistic 
analysis below, rewrite the 
Input Passage to align with that 
style. Keep factual content 
intact. 



Stylistic Analysis:

{STYLISTIC_FEATURES}

---

Input Passage: {MYSTERY_TEXT}

---

Rewritten Text:

Target Author Writing Sample Mystery Text

Mystery Text Stylized

as Target Author

Figure 2: Our Rewrite Model. The first step extracts stylistic variables as target descriptors, as used by Ramnath
et al. (2025). The second step then imitates a given target author by rewriting the Mystery Post M using the target
descriptors.

Figure 3: Comparison of explanation effects on (a) accuracy and (b) confidence, each conditioned on whether the
system was correct.

with very few citing “No influence” (Table 2). This
supports our assumption that the decision shifts are
attributable to the experimental interventions.

Summary. Across conditions, explanations reli-
ably increased confidence but did not yield mean-
ingful accuracy improvements. When the model
produced incorrect predictions, accuracy decreased,
most notably under the combined dual-format ex-
planation. These results suggest that our explana-
tions were persuasive enough to shift decisions but
insufficiently able to enable users for task success.
We then ask: how are these accuracy decreases
impacted by how participants rely on the system?

5.2 Behavioral Patterns of Reliance
To diagnose why confidence rose when exposed to
explanations without accuracy gains, we analyze
how participants relied on the system using the
AoR framework. Table Table 3 summaries these
metrics across conditions.

Explanations can support relative AI reliance.
All explanation conditions (2-4) show higher rel-
ative AI reliance (RAIR) than the prediction-only

baseline, indicating that explanations can help par-
ticipants align appropriately with correct AI out-
puts. Condition 2 has the highest RAIR (0.157),
suggesting it is most effective in improving accu-
racy when the AI is correct.

Dual-format explanations persuade well. Con-
dition 2’s dual combination also drove the lowest
relative self-reliance (RSR) (0.322), indicating that
users are least likely to resist the AI when it is incor-
rect. This suggests that participants are persuaded
by the dual-format explanation, possibly explained
by shortcutting.

Single-format explanations balance AI- and self-
reliance. Conditions 3 (rationale-only) and 4
(rewrite-only) achieve a more favorable tradeoff.
While not reaching the peak RAIR of Condition 2,
they still outperform the prediction-only baseline,
and show much higher RSR (especially in condi-
tion 4: dual explanations, the highest at 0.542),
indicating stronger resistance to AI errors. This
suggests that single-format explanations may offer
sufficient support.
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What influenced your decision? Dual Rationale-only Rewrite-only

No influence 27 38 46
The authorship prediction 121 108 126
The rewritten versions of the mystery post 91 – 135
The stylistic analysis 134 162 –

Table 2: Self-reported counts toward what influenced participant decision changes during the second phase of an
authorship identification trial, broken down by condition. Options not shown to participants in a given condition are
not marked.

Condition Explanation RAIR ↑ RSR ↑

1 Pred-only 0.108 0.467
2 Dual 0.157 0.322
3 Rationale-only 0.142 0.492
4 Rewrite-only 0.125 0.542

Table 3: Mean Relative AI Reliance (RAIR) and mean
Relative Self-Reliance (RSR) across explanation con-
ditions. Higher RAIR indicates better recovery from
errors when the AI is correct; higher RSR indicates bet-
ter resistance to AI when it is incorrect.

Figure 4: Change in perceived workload dimensions
(post–pre) across explanation conditions. Bars reflect
mean delta scores. Lower values for MENTAL BUR-
DEN, TIME PRESSURE, SUCCESS indicate better
outcomes with AI support. Lower values for DISCOUR-
AGED indicate high discouragement.

5.3 Perception of Workload

To evaluate how explanations influenced various
aspects of perceived workload, we analyzed deltas
from the NASA-TLX survey across five dimen-
sions: mental burden, time pressure, task success,
discouragement, and hardness. As shown in Fig-
ure 4, we observed no increase in reported mental
burden across any condition, suggesting that no ex-
planation was considered cognitively demanding.

Dual explanations yielded the sharpest decline
in perceived mental burden and time pressure, pos-
sibly reflecting a false sense of trust when they are
provided, aligning with its lower RSR (increased
overreliance). Single explanations yielded mild

increases in discouragement and slightly lower per-
ceived task success, suggesting that they may have
made participants more aware of ambiguity, and
more reliant on themselves to verify task success.

These patterns align with our behavioral obser-
vations. Dual explanations may reduce perceived
effort while encouraging inappropriate trust, while
single explanations led users to think critically.

5.4 Stylistic Cue Usage and Explanation
Unmet Needs

Figure 5: Stylistic cues participants identified as useful
for attribution. Sentence structure, formality, and tech-
nical or academic word usage dominated cue selection.

We analyze two questions: which stylistic cues
participants actually use for the task, and which
additional explanations they say would have helped
them with the task.

Across all conditions, the most frequently cited
cues included sentence structure, formality level,
and technical or academic word usage. These pref-
erences suggest that participants relied mostly on
surface-level and structural cues that are both visu-
ally salient and easier to contrast between authors.

We categorize participants by their dominant
reliance behavior. Within each category, we com-
pute each participant’s aggregate preference rank
of requested explanations across trials, then report
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Explanation Type CAIR CSR IAIR ISR

1. Highlighted keywords ✗⋆ ✓ ✓ ✓

2. Similar example post ✓⋆ ✓ ✓ ✗

3. Writing style summary ✗ ✓ ✗⋆ ✓⋆

4. Heatmap over post ✓ ✗ ✓ ✗

5. No additional explanation ✗ ✗ ✓ ✗⋆

Table 4: Preferences for explanation types across dominant reliance patterns. ✓indicates relative preference (lower
average rank); ✗indicates relative dispreference. A superscript ⋆flags the extreme within a column: ✗⋆= least-
preferred; ✓⋆= most-preferred.

group-level preferences. We report whether the
unseen explanation is relatively preferred (✓) vs
relatively dispreferred (✗) in Table 4.

When people follow the AI: correct (CAIR) vs.
incorrect (IAIR). Both groups who went with
the AI’s answer liked seeing a similar example post.
But CAIR participants leaned toward heatmaps
over the posts and were least positive about high-
lighted keywords. IAIR participants asked for
many different kinds of help: they liked highlighted
keywords, similar example posts, heatmaps, and
even no additional explanation. In this context,
participants displaying CAIR had focused expla-
nation needs, while participants displaying IAIR
felt that many different explanations would have
helped them in this task.

When people rely on themselves: correct (CSR)
vs. incorrect (ISR). Both participant groups ex-
hibiting correct self-reliance (CSR) and incorrect
self-reliance (ISR) preferred ✓writing style sum-
maries (most preferred by ISR), and highlighted
keywords, but diverged on similar example posts
(CSR would prefer, ISR would not), and strikingly,
ISR felt like they did not need additional explana-
tions to do the task, though they may have needed
explanations that persuasively explains why a sys-
tem prediction is correct.

Future Explanation Design Participants who ex-
hibit more appropriate reliance behaviors (CAIR
and CSR) appear to have clearer and more targeted
explanation needs. In contrast, participants with
less desirable reliance behaviors (IAIR and ISR)
request many available explanations, indicating a
general desire for support without a clear sense
of what would be useful. From a design perspec-
tive, this highlights the importance of adaptive ex-
planation strategies: effective systems should re-
inforce the successful behaviors of appropriately

calibrated users while identifying how to better
scaffold decision-making for users who struggle.

Implications for Authorship Attribution Be-
cause people have no outside knowledge to check
decisions against, they rely heavily on how the AI
frames the decision. We see this when participant
confidence increased across the board after AI in-
put, even when the overall accuracy did not. The
way those signals are packaged as explanations
has implications for appropriate reliance. Our re-
sults highlight what makes authorship attribution
uniquely challenging for human-in-the-loop. Par-
ticipants are required to reason about subtle stylistic
cues that are often hard to pinpoint, and even verify,
as we empirically see that many failed to recover
from initial mistakes (incorrect self-reliance).

6 Conclusion

We investigate how explanation-by-feature (ratio-
nale), explanation-by-example (rewrite), and their
combination affect human decision-making in an
authorship attribution context. Our results show
that single-format explanations hit the right balance
in introducing positive friction in their decision-
making process, while combining the two in the
dual explanation may have led to unintentionally
reducing perceived effort by leading them to short
circuit. These findings highlight a challenge in ex-
plainable AI: more explanations, even if they do
not increase mental burden, can inflate confidence
while degrading decision accuracy. Our explana-
tion preference analyses suggests a path forward –
people who exhibit appropriate reliance behaviors
tend to prefer more targeted, low-friction explana-
tions. Additionally, the single-format explanations
we test promote better self-reliance. Future work
should explore more adaptive explanations that pro-
mote correct self-reliance and help users recognize
when AI advice warrants revision.
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Limitations

Our study has several limitations. First, while au-
thorship attribution is a cognitively demanding task,
our study setup is low-stakes for participants, po-
tentially limiting the generalizability of our find-
ings to real-world decision-making scenarios with
higher consequences. Second, we do not provide
a clear ground truth or rationale to users, which
may have influenced participant engagement dif-
ferently than tasks with more objective criteria and
verifiable outcomes. While this ambiguity reflects
real-world challenges in interpreting AI decisions,
it also complicates the interpretation of accuracy
and reliance metrics. Our participant pool, though
diverse in demographics, consists of online crowd-
workers, which introduces potential selection bi-
ases. These users may differ from domain experts
or casual end-users in how they perceive AI support
or seek explanations. Additionally, our explanation
strategies are limited to two types—rationales and
rewrites—generated via prompting large language
models. Future work could explore a broader de-
sign space of explanations.

Potential Risks

Our work carries potential risks related to overre-
liance on AI systems in difficult-to-verify decision-
making tasks. While our goal is to understand
and mitigate inappropriate reliance on AI, the ex-
planation strategies we study could be misused to
increase user compliance regardless of accuracy or
quality. If deployed uncritically, such explanations
may lead users to defer to AI outputs even when
those outputs are incorrect or biased. To mitigate
these risks, we advocate for adaptive explanation
designs that support calibrated reliance and encour-
age user reflection.
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A Prompting Details

In this section, we include the full prompt tem-
plates used for authorship identification in Step 2.
Prompt2A and Prompt2B correspond to the base-
line and intervention conditions, respectively, as
described in the main text.

Prompt 2A: Vanilla Authorship Identi-
fication
Task: You are an expert in stylistic analysis.
Below you are given:

• A base text (the "Mystery Text").

• Two candidate author samples.

• A breakdown of stylistic elements assess-
ing whether or not the base text and one
candidate author text was written by the
same author ("MYSTERY POST WRIT-
TEN BY CANDIDATE [A,B]?")

Your task is to assess the comparisons of the
stylistic features of the Mystery Text against
Candidate A and Candidate B.
Then, in a final statement, identify which can-
didate is most likely the author of the Mystery
Text based on the presented stylistic evidence
as well as your analysis.

Mystery Text: {MYSTERY TEXT}

Candidate 1: {CANDIDATE 1 TEXT}

Candidate 1 Verification Rationale: {Stylis-
tic Analysis between Candidate 1 and Mystery
text}

Candidate 2 Verification Rationale: {Stylis-
tic Analysis between Candidate 2 and Mystery
text}

Candidate 2: {CANDIDATE 2 TEXT}

Figure 6: Prompt2A: Baseline LLM Judge Prompt.
Given the mystery text, two candidate texts, and ver-
ification rationales, the model selects the most likely
author.

B Identifier Model Evaluation

Table 5 summarizes the results of our evaluation
comparing authorship accuracy, correction rate,
degradation rate, and neutral rates across multiple

Prompt 2B: Counterfactual Authorship
Identification
Task: You are an expert in stylistic analysis.
Below you are given:

• A base text (the "Mystery Text").

• Two candidate author samples.

• Two stylistically rewritten versions of the
Mystery Text: one rewritten in Candidate
A’s style and one rewritten in Candidate
B’s style.

Your task is to assess the stylistic features of
the Mystery Text, its rewritten versions, and
the candidate texts. First, compare the Mys-
tery Text with Candidate A’s sample and its
rewritten version. Then, compare the Mystery
Text with Candidate B’s sample and its rewrit-
ten version. Based on your analysis, provide
a final statement indicating which candidate
is most likely the author of the Mystery Text.

Mystery Text: {MYSTERY TEXT} Can-

didate 1: {CANDIDATE 1 TEXT} Mys-

tery Text Rewritten in Candidate 1’s Style:
{Mystery Text Rewritten with CANDIDATE
1 Style descriptors} Mystery Text Rewrit-

ten in Candidate 2’s Style: {Mystery Text
Rewritten with CANDIDATE 2 Style descrip-
tors}

Figure 7: Prompt2B: Proposed LLM Judge Prompt. In
addition to the inputs in Prompt2A, the model is given
counterfactual rewrites of the mystery text based on
each candidate author’s style.

models and verification prompting methods (LIP
and PromptAV) with their counterfactual variants.
For completeness, we include also a baseline Di-
rect attribution system, which directly prompts an
LLM to make an authorship attribution decision
(with and without rewrites).

Counterfactual Accuracy The PromptAV
method consistently shows accuracy improvements
across all models evaluated. The largest accuracy
improvement was observed in the Qwen2.5-7B
PromptAV setting.

The setting with PromptAV supplied with the
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Model Method Original Accuracy Counterfactual Accuracy Correction Rate Degradation Rate

Qwen2.5-7B Lip 0.585 0.623 11.3% 7.5%
Qwen2.5-7B PromptAV 0.472 0.642 28.3% 11.3%
Qwen2.5-7B Direct 0.600 0.567 11.67% 15.0%

Qwen2.5-14B Lip 0.517 0.600 13.3% 5.0%
Qwen2.5-14B PromptAV 0.567 0.667 10.0% 0.0%
Qwen2.5-14B Direct 0.916 0.916 3.3% 3.3%

Qwen2.5-32B Lip 0.767 0.817 8.3% 3.3%
Qwen2.5-32B PromptAV 0.783 0.883 13.3% 3.3%
Qwen2.5-32B Direct 0.915 0.983 6.77% 0%

Mistral-7B Lip 0.617 0.717 21.7% 11.7%
Mistral-7B PromptAV 0.517 0.567 16.7% 11.7%
Mistral-7B Direct 0.728 0.847 22.03% 10.17%

Mistral-24B Lip 0.723 0.660 4.3% 10.6%
Mistral-24B PromptAV 0.745 0.787 10.6% 6.4%
Mistral-24B Direct 0.9 0.767 5.0% 18.33%

Llama-3.1-8B Lip 0.667 0.617 5.0% 10.0%
Llama-3.1-8B PromptAV 0.683 0.717 8.3% 5.0%
Llama-3.1-8B Direct 0.896 0.827 6.9% 13.79%

Table 5: Evaluation for authorship attribution accuracy, counterfactual accuracy, and correction rates. For conve-
nience, we bold the better between the "Original Accuracy" and "Counterfactual Accuracy". "Correction Rate" refers
to the percentage of predictions initially incorrect or unsure corrected by the rewrite intervention. "Degradation
Rate" refers to the percentage of predictions initially correct made incorrect by the rewrite intervention. We focus
on the “explain-then-attribute” pipelines to extract the model’s stylistic evidence and test how targeted rewrites
influence decisions. While a direct classifier generally attains higher accuracy, it lacks the extractions of explicit
evidence / rationales, which limits our user-facing experiments. We therefore tradeoff accuracy for manipulability
and measurable correction rates under controlled edits.

counterfactual rewrites raises accuracy score above
each original baseline, with steepest lift coming
from Qwen-2.5-7B, where PromptAV boosts coun-
terfactual accuracy by roughly 17 points (0.472
→ 0.642). The counterfactual configuration for
PromptAV outperforms its respective configuration
in LIP in 5 of the 7 models—the exceptions being
Mistral-7B (0.717 vs. 0.567). Direct generally
achieves higher raw accuracy than LIP or Promp-
tAV, and it is of interest that in this domain and
of the LLMs we test, the direct approach leads to
better task accuracy than feature-extraction-first
pipelines.

Correction and Degradation Rate. The cor-
rection rate measures the proportion of instances
where the intervention successfully corrected pre-
viously incorrect predictions. The degradation rate,
conversely, measures the proportion of instances
where the intervention makes incorrect the initially
correct prediction. In Table 5, there are two ex-
ceptions (Mistral-24B and Llama-8B) where the
correction rate is lower than the degradation rate.

Given the combined insights from accuracy im-
provements, correction and degradation rates, we
select PromptAV with Qwen2.5-14B as our final

Predictor Model due to it having the least degra-
dation rate (0%). Counterfactual accuracy alone
can hide trade-offs: a model might boost its score
simply by flipping as many correct predictions to
wrong ones as it fixes, leaving users with an unpre-
dictable tool. Our rationale for selecting the model
with the minimum degradation rate guarantees that
no originally correct decisions are sacrificed for
new gains. We also treat Direct as a performance
reference rather than a model whose outputs we use
in our human study, as we lack extractable natural
language features.

Although this evaluation shows that counterfac-
tual rewrites can reasonably enhance performance
on the attribution task, it remains unclear whether
such rich, whole-text explanations help or hinder
human decision-making. To investigate this, we
next run a controlled user study to examine whether
participants benefit from, and at what point they
may overrely on, explanations based on counterfac-
tual rewrites and rationales.

C Survey Task Instructions

Figure 8 shows the screen participants see when
they begin the study. Figure 9 shows Phase 1 of a
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given authorship trial. Figure 10 shows Phase 2 of
a given authorship trial.

D Participant Demographics

We asked only for age, education level, and English
fluency level, summarized in Table 6.

Demographic Count

Age
18–24 years old 11
25–34 years old 35
35–44 years old 19
45–54 years old 13
55–64 years old 11
65+ years old 6

Education
High school diploma or GED 12
Some college, no degree 5
Associates or technical degree 2
Bachelor’s degree 41
Graduate or professional degree 35

English Fluency
Very well 91
Well 4

Table 6: Participant demographic summary (age, educa-
tion, and English fluency; n = 95).

E Distribution of Behavioral Patterns.

To contextualize these aggregate scores, we show
the distribution of the observed reliance behaviors.
Figure 11 shows the full distribution of reliance
behaviors. We note that:

• Incorrect AI Reliance (IAIR) (C → I | I)
was most frequent in Condition 2.

• Correct Self-Reliance (CSR) (C → C | I)
was highest in Conditions 1 and 4.

• Correct AI Reliance (CAIR) (I → C | C)
was low across all conditions, suggesting lim-
ited support for correction, even with explana-
tions.

• Incorrect Self-Reliance (ISR) (I → I | C)
was low across all conditions, suggesting lim-
ited support for correction, even with explana-
tions.
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Figure 8: Introduction to the study task.
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Figure 9: Task instructions for Phase 1.
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Figure 10: Task instructions for Phase 2.
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Figure 11: Distribution of key reliance behaviors by condition. Notably, Condition 2 (Rewrite + Rationale) shows
the highest incorrect AI reliance and lowest self-reliance, indicating that our participants shift toward trusting the AI.
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