LLM-based Open Domain Planning by Leveraging Entity-Attribute-Level
Domain Models

Dongning Rao', Songlin He', Zhihua Jiang?, Ruishi Liang**
! School of Computer, Guangdong University of Technology, Guangzhou 510006, China
2 Department of Computer Science, Jinan University, Guangzhou 510632, China
3 School of Computer Engineering, University of Electronic Science and Technology of
China, Zhongshan Institute, Zhongshan 528402, China
raodn@gdut.edu.cn, 2112305297@mail2.gdut.edu.cn,
tjiangzhh@jnu.edu.cn, liangruishi@foxmail.com

Abstract

Currently, large language models (LLMs)
based Open domain Natural language planninG
(LONG) has considerable room for improve-
ment. E.g., non-reusable plans with incom-
plete intermediate states and missing steps hin-
der real-world applications. To remedy these
flaws, this paper establishes a dataset with a
baseline for LONG. The GOLD dataset pro-
vides the largest dataset for textual procedures,
along with corresponding reusable formal plan-
ning domain definitions, to date. The base-
line, DIGGER, leverages entity-attribute-level
action models, which reveal relevant implicit
physical properties (aka attributes) of salient
entities in actions. DIGGER first extracts ac-
tion models and builds typed entity lists from
textual procedures. Then, it builds goal states
for new tasks and instantiates grounded actions
using domain prediction. At last, plans are gen-
eralized and translated into textual procedures
by LLM. Reference-based metrics, LLM-as-a-
Judge, and human evaluation are employed to
comprehensively evaluate LONG. Experiments
on GOLD validate that DIGGER is stronger
and more generalizable than recently proposed
approaches and LLMs. lL.e., DIGGER is the
best in seen domains and applicable to unseen
domains without adaptation. Specifically, the
BLEU-1 score increased from 0.385 to 0.408
on seen domains and rose to 0.310 on unseen
domains.

1 Introduction

Large language models (LLMs) based Open do-
main Natural language planninG (LONG?) is ideal
for real-world open domain planning (Zhang et al.,
2024c), which uses natural language (NL). How-
ever, the text procedures drafted by humans or

* Corresponding author: Ruishi Liang.

'Our source code can be visited via GitHub: https://
github.com/fip-1ab/DIGGER.

2Appx. B Tab. 5 is the list of abbreviations and mathemat-
ical symbols.
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yd How to Graft a Tree? AN
/[Stepq: Choose your cultivar and your rootstock)
Step, : Amputate your rootstock.

Step3: Cleave your rootstock.

Step4: Prepare the scions.

Steps : Insert the scions into the rootstock.
Stepg : the graft.

\Step7 : the graft.

J

Figure 1: The reference textual procedure for "How to
Graft a Tree". Unspecified verbs are in gray.

LONG contain flaws, such as incomplete states
and missing steps (Wang et al., 2023). E.g.,
Fig. 1 is a textual procedure on WikiHow?
for "How to Graft a Tree”. There are
at least three flaws in this plan. First, it ig-
nores objects’ positions (e.g., "hole”). Sec-
ond, details of "look after"” are missing (e.g.,
"cut away any excess rootstock”). Third,
steps for preparing or waiting are absent (e.g.,
"wait for the graft to heal”).

An appealing approach to boost the performance
of LONG (Zhang et al., 2023) is to define do-
mains in the Planning Domain Description Lan-
guage (PDDL) (Ghallab et al., 1998). However,
there are three challenges in facilitating PDDL in
LONG: the scarcity of annotated data, the diffi-
culty of building a complete domain model, and
the challenges in NL-PDDL translation.

Thus, to benchmark LONG, we propose DIG-
GER (llm-baseD open domaln planninG by
leveraGing Entity-attRibute-level domain models)
and a dataset GOLD (natural lanGuage prOcedural
texts with pddL Definitions).

GOLD includes 103 domains, 1100 tasks, and
1086 actions from four source datasets: Wik-
iHow (Koupaee and Wang, 2018), ALFRED-
L (Shridhar et al., 2020), Proc2PDDL (Zhang et al.,
2024c), and OPENPI2.0 (Zhang et al., 2024Db).

3https: //www.wikihow.com/Graft-a-Tree
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OPENPI, with human-drafted and planner-verified
PDDL definitions, is referred to as OPENPI+ in
this paper.

DIGGER has two stages: training and planning.
Training with GOLD, DIGGER builds domain clus-
ters, entity-attribute-level action models, and typed
entity (Scala and Vallati, 2021) lists. Domain clus-
tering prepares for domain prediction. Then, with
NL sentences and PDDL definition as labels, a
fine-tuned COMET (Bosselut et al., 2019) extracts
action models. We find entity attributes (i.e., physi-
cal properties of entities) using ConceptNet (Speer
etal., 2017), and action instantiating relies on typed
entity lists. Planning via DIGGER has six steps:
1) predicting the domain; 2) extracting goal states
from NL using COMET; 3) instantiating grounded
actions (Liu and ClaBen, 2025) with typed entity
lists; 4) providing a few-shot prompt for LLMs; 5)
planning via LLMs in PDDL format; 6) generating
text procedures.

While evaluating LONG is challenging, we em-
ploy a comprehensive evaluation using multiple
metrics. As previous studies, we uses reference-
based metrics (Schmidtova et al., 2024) includ-
ing BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), METEOR (Banerjee and Lavie, 2005), and
BERTScore (Zhang et al., 2020). We further use
LLM-as-a-Judge (LaJ) and human evaluation in
this paper. Experiments on GOLD show that DIG-
GER outperforms three LLMs and two recently pro-
posed approaches. The three LLMs are DeepSeek-
V3 (Biet al., 2024), GPT-4, and GPT-40, and the
two approaches are Open-Ground-Planning (Guo
et al., 2024) (or OGP for short) and PLAN (Lu
et al., 2023). Specifically, in seen domains where
OGP and PLAN can be applied without adaptation,
the best BLEU-1 score increased from 0.385 to
0.408. On unseen domains, while the best LLM’s
BLEU-1 score is 0.089 (GPT-4), DIGGER’s score
is 0.310.

Our contribution can be summarized as follows:

1) DIGGER uses entity-attribute to identify hid-
den states and intermediate steps.

2) GOLD is the largest dataset for textual proce-
dures with corresponding PDDL definitions;

3) Using most metrics, DIGGER is the best
model among all compared models on GOLD.

2 Backgrounds

2.1 Planning with Large Language Models

We are particularly interested in three common hy-
brid LLM-symbolic planning approaches (Huang
et al., 2025). First, reasoning with LLM on sim-
ulation domains (Zhao et al., 2024). E.g., itera-
tively constructs and refines plans as the response
to feedback (Zhang et al., 2024a). However, LLMs’
probabilistic nature might induce errors like snow-
balling (Sukai Huang and Cohn, 2025) on long
problems (Valmeekam et al., 2024b). Second, as-
sisting International Planning Competitions (IPC)
domain planning via interfacing with planners (Li
et al., 2025; Singh et al., 2025; Silver et al., 2024).
However, LLMs are likely to be trained on many
leaked IPC domains (Huang et al., 2025), and com-
plete PDDL definitions are necessitated. Third,
constructing PDDL domain models via NL-PDDL
translations to enable classical planners (Huang
et al., 2025). However, NL-PDDL translation is
challenging (Stein et al., 2025; Oswald et al., 2024)
and errors (Smirnov et al., 2024) are unavoidable.

However, GPT-4 (Achiam et al., 2023) only
achieves 35% accuracy in generating plans for sim-
ple problems (Valmeekam et al., 2024a). Thus,
trade-offs between efficiency, consistency, and scal-
ability might be unavoidable (Shlomi et al., 2025).
Le., elevating incomplete domain models with
entity-attribute and leveraging the robustness of
LLMs to handle errors could be promising.

Listing 1: A DIGGER-generated (entity-attribute en-

hanced) action model for the exmaple in Fig. 1.

(:action transplant

:parameters

(?entity — object ?location — location)

:precondition

(and (ready_for_transplant ?entity)

(not (at ?entity ?location)))

ceffect

(and (at ?entity ?location)
(transplanted ?entity ?location)))

2.2 Al Planning and PDDL

List. 1 shows a sample PDDL action model.
Formally, a lifted Al planning problem II =<
P,OAT,I,G >, where S <+ 7790,7' 1 S x
A — S (Ghallab et al., 2016). Let P be the fi-
nite set of predicates that describe the world, and
O be the finite set of objects in the world. While
grounding the first-order form predicates results
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Figure 2: The overall architecture of DIGGER. Blue process blocks are numbered subprocesses (from @ to @). The
green oval represents the training stage, and the purple oval represents the planning stage. Red hyper-rectangles are
output messages between subprocesses. White hyper-rectangles and the database icon represent external information.
The input/output examples of processes are highlighted in purple.

in prepositions, we call the first-order form action
definition as schemata (aka action model), and all
results of grounding are noted with the subscript .
Then 73;9 is the result of grounding P with O, i.e.,
the set of all states (S). Moreover, A is the set of all
actions, 7 is the initial state, and G is the goal state.
Thus, a planning domain D =< P,0, A, T >,
and the grounded action space is Agj. The result
planis ¥ =< aq, ..., a; >, where a; € A;Q,i e N.
In grounding actions and predicates, the parame-
ters are objects and their attributes. E.g., names of
entities are objects whose position is an attribute.

E.g., in List. 1 the action is transplant,
which is an a; € A, It has two pa-
rameters, which are ?entity and ?location

(Tentity, ?location € Q). The precondition and
effects of this action are grounded predicates in 73;9
like (not(at Tentity ?location)). However, due to
expertise requirements, complete PDDL definitions
exist only for [PC domains.

3 Large Language Models based Open
Domain Natural Language Planning

LONG aims to generate a textual procedure
TP for a given NL task title tsk (e.g.
"How to Graft a Tree?"). tsk is an NL goal
G in terms of a desired state that involves objects
(e.g., "a grafted tree"). TP should be an ex-

ecutive series of (maybe unseen) grounded actions
that lead to G. Le., T'P consists of a series of NL
steps NL(a) € NL(A), where NL(a) is an NL
action (a short sentence) and N L(.A) is the set of
all possible actions.

Suppose LLM(-) is the function of LLMs, a
probabilistic predictor of language tokens. IL.e.,
given a sequence of tokens 7" = (t1,...,t,),n €
N in a corpus C, LLMs (as a function LLM (-))
will output a new (reusable) ¢,,41 and associated
probabilities P C C' x R. See Eq. 1.

n
P(T) =] P(t:] t<i)
i=1
The goal of LONG is to acquire 1P for tsk. We
first generate a PDDL plan 7 for ¢sk with a partial
domain D. Then, we prompt LLMs to generate
TP.le.,TP + LLM(w) <+ LLM(D,tsk).

ey

4 A Two-Stage Solution for LONG

4.1 The Overall Architect of DIGGER

The architecture of DIGGER in Fig. 2 has two
stages: the training stage (top, green-yellow ellipse)
and the planning stage (bottom, thistle ellipse).

4.2 The Training Stage

There are three steps in the training stage: 1) train-
ing the COM E'T}t;0n, model with GOLD(upper
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left icon) which includes models II and text proce-
dures T'P; 2) building entity-attribute-level action
models a; (a skyblue sub-process) using Concept-
Net (a dataset icon); 3) clustering tasks into classes.

Step @ extracts coarse-grained plan steps a; (an
apricot hyperrectangle) from NL sentences N L(a).
Following previous studies (Li et al., 2024; Chen
et al., 2024), we fine-tune COMET (Bosselut et al.,
2019). Le., adjusting the weights in Eq. 2, with
human-drafted actions in GOLD as labels. E.g., for
the task “How to Transplan a Plant”(INL(a))
in GOLD, “transplan(?plant)”(a;) should be
extracted. Because this COME translates N L(a)
to a;, it is called COM ET yction.-

Ot = Opt — 1 - Vo L(0, GOLD) 2)

We now explain symbols in Eq. 2. 6; : model
parameters after fine-tuning. 0, : parameters ob-
tained from pre-training. 7: the learning rate. L:
the loss function. VyL(0, GOLD) : the gradient
of L with respect to the parameters 6§ on GOLD.

Step @ builds entity-attribute-level action mod-
els and typed entity lists. All entities’ attributes
(e.g., plant-location) in OPENPI and Con-
cetpNet (Speer et al., 2017) are embedded with
sentence-BERT (Reimers and Gurevych, 2019) as
Emb. E.g., suppose the function of sentence-
BERT is SBERT(-), then Emb = {ele «
SBERT (entity_attribute)}.  Emb are pre-
stored in a vector database, FAISS (Johnson et al.,
2019). Then, entity ¢’s attributes ¢’ are found using
Eq. 3.

CosineSim(e,e') = flefle) 3)

e fE@)l
Then, with related attributes, LLMs gener-
ate entity-attribute-level action models a;. E.g.,
transplant(?plant, ?location). Le., a] <«
LLM(a;,€e'), and I + LLM(A), where A

is the set of all a;. Appx. E Tab. 8 il-
lustrates the prompt. We merge all task en-
tities and attributes into a typed list. E.g.,

<plant, tree, rootstock, scion,...>.

Step @ clusters WikiHow tasks. We first per-
form the principal component analysis on em-
bedded sentences (Raunak et al., 2020). Then,
based on the silhouette score, we select 2,800
classes by k-means (kK = 2,800) clustering (Iko-
tun et al., 2023). Further, we manually choose
20 classes from the top-100 results of the DB-
SCAN algorithm (Schubert et al., 2017). E.g., tasks

“How to Plant”, “How to Grapft Plants”, and
“How to Transplant a Plant” (in the left of
Figure 1, in the middle of the planning and training
stages) are clustered as the task class “412”.

To prepare for the instantiation, we merge typed
entity lists of tasks to form the domain’s typed
entity list. For unseen domains, LLMs build an
extra global typed entity list.

4.3 The Planning Stage

There are six steps (blue sub-processes) in the plan-
ning stage (®~®). Step @ instantiates parameters,
and the Sim(-) function implements Eq. 3. For
a new task tsk (a white hyperrectangle), step @
predicts its domain D. Step ® extracts the goal
state G. With D and similar tasks, step ® instanti-
ates actions (Alg. 1). Step @ prepares the few-shot
prompts for step ®, which generates fine-grained
plan steps (in PDDL) via LLM (light blue sub-
processes). At last, step @ outputs the textual pro-
cedure 7'P via LLM.

Algorithm 1 Action Instantiating Algorithm
Input: G, the goal; G;: existed goals in domain D;,
where 1 < i < n; TE; : the typed entity list for
D;; the action schemata list sch; for D;; T' Egjopai:
the global typed entity list; 8*: the threshold for
unseen domain determination; k: a boundary for
the number of grounded actions.
Output: A’f ={ai, ..., a }, grounded actions;
1: 0, sch + arg max {Sim(G,G;)}, sch;
1<i<n

if 6 > 6* then

TE <+ TFE; // Seen domain.
else

TE < T'Egoba !/ Unseen domain.

A’ ;9 + instantiate all sch/ € sch with TE
if ||A’;9H > k then
A’ ;9 <+ top-k relevant actions

return A’;Q ={a,...,ar}

Step @ predicts the domain D of tsk. The crite-
rion of this prediction is the cosine similarity of the
embeddings of tsk and goals in GOLD*. E.g., for
task “How to Graft a Tree”, DIGGER predicts
it belongs to the task class 412.

Step ® extracts G from tsk. We fine-tuned an-
other COMET for this task, leveraging the weight
of COMET,ction. As this model output goal
states, it is called COM ETsqte. le., G «

*Appx. C.1 explains the selection of the threshold 6.

2570



COM ETsyqe(tsk, lAD) E.g., for the task in step
@, we get “graft_tree npc path”.

Step ® instantiates grounded actions and pro-
vides examples in a few-shot prompt. Alg. 1 is
the action instantiating algorithm which grounds
first-order action schemata from step @.

In Alg. 1, G is the goal of the new task, and G; is
the most similar goal for G in the training set. We
use Eq. 3 to find G; (and 7). Line 1 records G and
G;’s similarity (#), and uses sch; as the target sch.
In line 2, 6 is compared with a pre-defined thresh-
old (as step @) to determine whether the new task
is from unseen domains. Line 3 uses the predicted
domain’s typed entity list as the typed entity list
TFE for the new task. Otherwise, we use the global
typed entity list as T'F (line 5). Then, in line 6, we
instantiate sch as in previous studies (Holler et al.,
2020; Savas et al., 2016) with T'E. However, to
control the size of the action space, we set k as the
upper bound of the number of instantiated actions.
If the number of instantiated actions exceeds k, we
ask LLMs to select the top-£ actions for us (line 8).

E.g., with the output of step @ and step ®,
Alg. 1 generates fine-grained grounded actions
like “transplant(tree, location)”. Further,
the prompt for top-k relevant grounded actions se-
lection is shown in Appx. E as Tab. 9.

Step @ builds a few-shot prompts for LLMs.
First, it locates (three) similar tasks (e.g., the tasks
in step @) of tsk as examples of the few-shot
prompts. Second, step ®-generated instantiated
actions (i.e., the output of Alg. 1) are used for the
action set part in the prompts.

Step ® generates a plan 7w in PDDL for tsk by
LLM. Le., 7 <~ LLM(Il;,G,n’). Tab. 10 in
Appx. 10 exemplifies the prompt. In Tab. 10, there
are three sections: instruction, input, and output.
While the instructions after leading hints are fixed,
the task, goal state, domain file, steps so far, and
examples for reference are dynamically built. Le.,
in Tab. 10, texts in curly brackets are variables that
change from case to case. E.g., the output of Alg.
1 is a plan step in this example.

Step @ translates a plan 7 in PDDL to a tex-
tual procedure via LLMs. Le., TP < LLM().
E.g., it translates PDDL actions to NL sentences
like “Cut the scion”. Inspired by recent ad-
vances (Wang et al., 2024), we choose ol-mini®
as our component. Appx. G contains more details

5https ://openai.com/index/

01— —

— WikiHow

Figure 3: Statistics of the tasks from different source
sub-datasets of GOLD. #: number of. X-axis: # do-
mains, Y-axis: # tasks, Z-axis:# actions.

about the example in Fig. 2.

5 Experiments

5.1 Experiment Settings

The experiment settings are in Appx. A.1 Tab. 4,
and the computation costs are in Appx. D.

5.2 Datasets

The GOLD domain-task-action relationship is
quantified in Fig. 3. In Fig. 3, the X-axis displays
the number of domains (total: 103), the Y-axis rep-
resents the number of tasks (total: 1100), and the
Z-axis shows the number of actions (total: 1086).
Our experiment used an 8:1:1 split of GOLD for
training, validation, and testing.

5.2.1 WikiHow

WikiHow (Koupaee and Wang, 2018) is a dataset
of textual procedures. It contains tutorials that de-
scribe the steps to achieve tasks related to diversity
topics. We adhere to previous studies (Lu et al.,
2023; Guo et al., 2024) and select 271 tasks in 20
domains with 434 actions from WikiHow.

5.2.2 ALFRED-L

ALFRED (Action Learning From Realistic Envi-
ronments and Directives) is a human-annotated
household planning domain (Shridhar et al., 2020).
It is a benchmark for robot action planning, whose
subset is used in previous studies and is named
ALFRED-L (Lin et al., 2023). There is only one
domain and 11 actions in ALFRED-L, but the num-
ber of tasks is 690 (i.e., all tasks in the test set from

openai-ol-mini-advancing-cost-efficient-reasoning/ ALFRED-L are from the same seen domain).
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5.2.3 OPENPI+

OPENPI (OPEN Procedural Inference) (Zhang
et al., 2024b) tracks entity state changes in pro-
cedural texts selected from WikiHow. OPENPI+
has 55 domains, 286 actions, and 55 tasks. We
draft PDDL domain definitions for all tasks, and
the results are verified by the Fast Downward plan-
ner (Helmert, 2006). As in previous studies (Zhang
et al., 2024c), three graduate students with prior
knowledge of PDDL are recruited as annotators.
Because there is only one task for a domain from
OPENPI+, it cannot be included in the training set
if it is also in the test set. I.e., OPENPI+ domains
are unseen test domains in our experiments. Pre-
vious approaches cannot solve these unseen test
domains without adaptation, as there are no plan

traces6 .

5.2.4 Proc2PDDL

Proc2PDDL (Zhang et al., 2024c) contains open-
domain procedural texts and their corresponding
human-vetted PDDL representations, which have
27 domain files, 355 actions, and 84 problem files.
However, to control the plan length, Proc2PDDL
divided tasks into subtasks, using the original task
names as the names of all subtasks.

5.3 Compared LLM-based Planning Methods

Besides DeepSeek (Bi et al., 2024), GPT-4’ and
GPT-40®, the compared models are as follows.
Prior IPC or simulation-based studies are excluded
because our targets are real-world open domains.

5.3.1 Open Grounded Planning

OGP (Guo et al., 2024) aims to generate an ex-
ecutable plan based on a variable action set. It
requires LLMs to retrieve and rewrite plans within
pre-collected executable action sets to plan for var-
ious task fields. Thus, training OGP with GOLD is
difficult because the textual procedure and domain
pairs in GOLD are often one-on-one.

5.3.2 PLAN

PLAN (neuro-symbolic procedural PLANner) (Lu
et al., 2023) uses symbolic program executors on
the latent procedural representations for planning.
It only utilizes available steps in a specific domain

%We adapt the OGP without the plans in the test set and
the results are in Appx. C.3.

"Version: gpt-4-turbo-2024-04-09.

8Version: gpt-40-2024-08-06.

Model
Sub-Dataset | LLM OGP' PLAN Ours

ALFRED-L v X X v

OPENPI+ v N v N
Proc2PDDL N X X v
WikiHow v NN

! OGP: Open-Grounded-Planning.
2 OGP/PLAN can only solve selected tasks.

Table 1: Solving ability of models on datasets.

(e.g., selected tasks from WikiHow) and is there-
fore inapplicable to unseen domains, relying on ex-
ternal knowledge graphs. As most existing LONG
methods that fine-tune LLMs with planning traces’,
PLAN cannot be trained on GOLD.

5.3.3 Solving Ability of Models on Datasets

We summarize the solving ability of models in Tab.
1. It indicates that OGP and PLAN are domain-
specific, as they cannot handle unseen domains.

5.4 Metrics

Although LLMs might check soundness symboli-
cally (Katz et al., 2024), evaluating LONG is diffi-
cult. Previous assessments focused on plan validity
in IPC domains (Stechly et al., 2024; Kambham-
pati et al., 2024). However, the assessments of
validity require complete formal definitions and
simulation software. E.g., the success rate (SR)
depends on the simulator. In this paper, we argue
that multi-dimensional evaluation is beneficial. We
used reference-based metrics, LaJ, and human eval-
uation. Lal relies on biased LLMs, and human
judgments are subjective. However, they improve
upon reference-based metrics. These metrics pro-
vide a comprehensive evaluation of plan quality,
regardless of unmet goals, without requiring for-
mal definitions or simulations.

5.4.1 Reference-based Automatic Evaluation

This paper utilizes four popular automated
reference-based metrics. First, BLEU (BiLingual
Evaluation Understudy) (Papineni et al., 2002).
BLEU measures textual similarity according to
N-gram overlaps. Second, ROUGE-L (Recall-
Oriented Understudy for Gisting Evaluation) (Lin,
2004). ROUGE-L considers the length of the
longest common sequences between sentences.
Third, METEOR (Metric for Evaluation of Trans-
lation with Explicit ORdering) (Banerjee and
Lavie, 2005). METEOR aims to align human

°The planning traces are state-action-state sequences only
generated in simulated environment-oriented or IPC domains.
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Reference-based Automatic Evaluations LaJ Human
Model B-I° B-2 B-3 B-4 M R-1 R-2 R-L BS WTLRY SRt NSt

DeepSeek1 0.072 0.029 0.013 0.006 0.177 0.129 0.018 0.124 -0.082 | 72.2 88.6 0.638

LLM | GPT4 0.089 0.037 0.015 0.007 0.188 0.141 0.018 0.135 0.001 71.4 77.1  0.599
GPT-40 0.068 0.027 0.011 0.005 0.173 0.115 0.015 0.109 -0.136 | 58.7 829 0.614

Other OGP 0.385 0.293 0.252 0.230 0.395 0.427 0.274 0418 0.401 47.6 90.0  0.650
PLAN 0.020 0.005 0.003 0.002 0.043 0.035 0.002 0.033 0.005 100 0.0 0.070

DI? 0.408 0.303 0.245 0.207 0.359 0.534 0.336 0.528 0.407 N/A 88.6  0.656

Ours w/oC | 0.344 0.235 0.173 0.128 0.287 0.460 0.213 0.453 0.377 44 4 88.6 0.626
w/o 1 0.387 0.289 0.231 0.189 0.343 0.519 0.315 0.512 0.383 40.5 82.9 0.603

w/oE | 0.357 0.250 0.187 0.146 0.322 0.475 0249 0468 0.371 50.8 77.1  0.600

' D: Deepseek (https://www.deepseek.com/), G4: GPT-4, Go: GPT-40, OGP: Open-Grounded-Planning (Guo et al., 2024), PLAN: see Lu et al. (2023).
As most tasks can not be solved by OGP and PLAN, we only report the results on the WikiHow sub-dataset. Further, many PLAN generated plans are

empty.

2 DI: DIGGER, w/o C: without COM ET4cti0n, W/o I without instantiation, w/o E: without Entity-Attributes.

3 B: BLEU, M: METEOR, BS: BERTScore, R: ROUGE.
4 WTLR: (%)1.

Table 2: Comparisons of models, and ablation studies of DIGGER on GOLD. N/A: not applicable; Lal: LLM-as-a-
judge; WTLR: win-to-loss ratio defined by Eq. 4; SR: Success Rate; NS: Normalized human evaluation Likert scale
score (Eq. 5)); w/o: without. The best and second-best results are boldfaced and underlined, respectively.

evaluation on the closeness of words. Fourth,
BERTScore (Zhang et al., 2020). BERTScore
matches words in candidate and reference sen-
tences with the cosine similarity of embeddings.

5.4.2 LILM-as-a-Judge (LaJ)

LaJ is a new paradigm of automated evaluation in
the era of LLMs. Compared with human consensus,
it can achieve over 80% agreement (Zheng et al.,
2023). Following recent studies (Zhou et al., 2024),
we use ol-mini to judge the WTLR (win-to-loss
ratio). WTLR aims to compare plans generated by
two different models (Lu et al., 2023). However,
unlike previous finance studies (Huang et al., 2019),
we define WTLR as eqref eq:WTLR. In Eq. 4 the
number of comparisons our model wins is nWin,
and the number of total comparisons is n1 otal.

nWin

nT'otal @
Example prompts are in Appx. E.4 Tab. 11.

While fixed instructions are next to the leading

hints, we dynamically fill the task and compare

plans. As aresult, Appx. C.2 reports the correlation

between human judgments and LaJ.

WTLR =

5.4.3 Human Evaluation

While Lal is attractive, human validators remain
indispensable for ensuring the correctness of plan-
ning applications (Vishal Pallagani and Srivastava,
2025). Thus, in light of prior research (Guo et al.,
2024; Lu et al., 2023), we recruit human annotators
to evaluate plans’ SR, which denotes the likelihood
of agents completing tasks. Furthermore, we ask
the annotators to assign Likert scale scores to the
plans. The score s is normalized to [0,1] as Eq. 5,

where $,,q. = b and s,,5, = 1. We abbreviate this
normalized Likert scale score as NS.
S — Smin

NS = 5

Smazx — Smin

Following previous studies (Zhang et al., 2024c),
three graduate students are recruited as human
evaluators to evaluate samples (ten from each sub-
dataset). The Krippendorff’s coefficient (Krippen-
dorff, 2018) (inter-annotator agreement) among
three annotators is required to satisfy > 0.80.
We document details of the human evaluation in
Appx. E.5 Tab. 12.

5.5 Comparison Between Models

The experiment results comparing different models
are presented in the upper part of Table ref ta-
ble:modelCompare. We divide the compared mod-
els into two classes: three LLMs and two recently
proposed models. We use the metrics and their cat-
egory in §5.4 in Tab. 2. While the second category
only used the WTLR, we performed SR and NS in
human evaluations as compensation.

We draw two conclusions from Tab. 2. First, in
terms of reference-based metrics, DIGGER is as
effective as non-generalizable retrieve and rewrite
methods. Second, on both LaJ and human eval-
uations, LLMs exhibit advantages over existing
methods, but DIGGER stably improved the perfor-
mance. l.e., it doubles the WTLR of OGP and is
much better than PLAN on SR. E.g., as the result
of PLAN is the worst according to LLMs, the Lal
score for PLAN is the largest. However, the LLM-
favor effect might stem from a shared human/LLM
preference for interestingness over accuracy.
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Reference-based Automatic Evaluations LaJ Human
Sub-Dataset BLEU-1 METEOR ROUGE-L BERTScore | WTLR™ | SRt NSt
ALFRED-L | 0.541 0.477 0.789 0.578 1007 100 0.733
OPENPI+ 0.310 0.240 0.247 0.223 0 83.3 0.628
Proc2PDDL 0.073 0.077 0.122 0.025 333 66.7 0.544
WikiHow 0.277 0.242 0.226 0.233 4.76 100 0.697
! %, vs. GPT-40.

% The prime consideration of our WTLR definition (Eq. 4) is that there is no loss case in the ALFRED-L subdataset.

Table 3: Performance of DIGGER on four sub-datasets of GOLD. See Tab. 2 for the abbreviations.

5.6 Ablation Study

The lower part of Tab. 2 reports the ablation study
of DIGGER on GOLD. We can rank the efficiency
of components of DIGGER as: COM E'Tction >
Entity-Attributes > Instantiation, based on Tab.
2. There are three observations. First, the effec-
tiveness of COM ET,t;on, Witnesses the power of
PDDL planning. Second, for reference-based met-
rics, the Entity-Attributes is a double-edged sword.
Le., it introduces extra names (entity attributes that
are ignored in references), which might decrease
the score. Third, Instantiation is crucial for LaJ and
human evaluation.

5.7 Results on Sub-Datasets

Tab. 3 reports the performance of DIGGER on dif-
ferent source sub-datasets. The results lead to three
observations. First, for tasks from seen domains
(e.g., ALFRED-L), we can observe that the more
examples are provided, the better. Second, entity-
attributes make a difference in tasks from unseen
domains. Lacking domain models (e.g., OPENPI+
tasks), similar cross-domain tasks are helpful due
to the presence of similar cross-domain entities.
Third, we believe the Lal in Tab. 3 is untrustwor-
thy for the self-preference bias of LLMs (Gulcehre,
2024; Shimabucoro et al., 2024; Panickssery et al.,
2024; Dai et al., 2024). It is also possible that the
procedural knowledge of some open-world tasks
(e.g., from WikiHow) might already be (partially)
learned by LLMs. See Appx. C.2 for more analysis
between human judgments and LaJ. As previous
studies (Zheng et al., 2023), Appx. C.2 Tab. 7
shows that LaJ achieve an 80% agreement with
human.

5.8 Qualitative Examples

Fig. 4 shows the result plan with entity-attribute
for Fig. 1. As a comparison, plans for
" How to Graft a Tree" that are generated
by OGP and GPT-40 are shown in Appx. F Fig.
5~Fig. 6. Comparing Fig. 1 and 4, we can see

How to Graft a Tree?

Step1 : Plant the rootstock in the prepared
grafting hole.
Step, : Plant the scion
the rootstock.
Step3 : Treat the rootstock area with a healing
solution to promote growth.
Stepy :
successful attachment.
Steps : Cut the rootstock to

for grafting.
Stepg : Cut the scion to

to ensure

Stepy : Place the scion onto the rootstock,

Stepg : Tie the rootstock and scion together
securely using grafting tape or string.

Stepg : and the tissues
to fuse properly.

Stepo: Remove the binding once the graft is
firmly established and secure.
Stepq1:

the graft area.

to tidy up

Figure 4: The plan for “How to Graft a Tree” that is gen-
erated with entity-attribute-level information by DIG-
GER. Details added by DIGGER are in magenta.

the advantages of DIGGER. First, there are more
intermediate steps in Fig. 4, e.g., Stepy and Stepg.
Second, the plan clarifies details about the positions
of objects (e.g., "same hole next to" ), and
constraints of actions (e.g., "tightly joined” ).
As a comparison, no other models pay atten-
tion to the positions of objects. Third, our
model fills in the missing details of obscure verbs.
E.g., the gray verb "look after "is extended as
"cut away any excess rootstock” .

6 Conclusion

While there are many ways to utilize Al plan-
ning, this paper will hopefully spark further de-
velopments in LONG. First, considering that a
high-quality PDDL definition is costly and unavail-
able under most circumstances, DIGGER lever-
ages reusable, incomplete domain models with
entity-attribute-level information to identify the hid-
den, fine-grained state information in intermediate
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states. Second, benefit from the fact that LLMs can
tolerate NL-PDDL translation-induced errors; ex-
tra validation mechanisms via (incomplete) PDDL
definitions boost the performance of LONG. Third,
as the most extensive dataset for textual procedures
with corresponding PDDL definitions, GOLD is
indispensable for LONG.

7 Limitations

Despite our best efforts, our study may still have at
least eight limitations.

¢ Due to our limited resources, we have been
able to perform our experiments on open
source LLMs no larger than BART.

¢ One foreseeable limitation of our work is the
dependency of the fine-tuning process.

e LLMs-generated augmentations are only
silver-standard. The human evaluation is nec-
essary as a benchmarking tool.

» Because the stability of LLMs is out of scope
(of this paper), all LLMs involved in experi-
ments are just a single run.

* We only consider the English language, thus
limiting the study of LLM-based planning to
these cultures and languages/dialects.

* The annotated procedures are still insufficient.

» Existing entity-attribute information in
OPENPI+ and ConceptNet is not enough.

e Better automated evaluation metrics for
LONG are absent.

Addressing these limitations will be the focus of
our future work.

8 Ethical Considerations

First, licenses. All four sub-datasets of GOLD ex-
cept WikiHow have annotated PDDL definitions
and use the MIT License code. WikiHow uses the
Attribution-Noncommercial-Share Alike 3.0 Cre-
ative Commons license. Second, safety prompts.
The proposed prompts do not involve collecting
or using personal information to train other indi-
viduals. Furthermore, as illustrated in Appx. E,
our prompts would not compromise the safety of
others. Third, reinforcing LM biases. Aligning Al
systems with humans requires utmost sensitivity.

If our study is applied in the real world, it might
strengthen LM biases by encouraging inappropriate
actions.
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Hardware/Software/Model Setting

oS Ubuntu 20.04.1 LTS
CPU Intel Core 19-10900K
GPU RTX 6000%4

Python 3.10.13

PyTorch 24.0

Sentence Embedding Tool SBERT '

Vector Database Faiss-gpu 1.5.3
Action/State Extraction Model COMET?®

Loss function Cross-entropy

Train batch size 8

Epoch 3

Learning rate le-4
Learning rate schedule (warmup)  Linear decay
Fp-16 False

Early stopping False

! https://www.sbert.net/, all-MiniLM-L6-v2.
2 https://pypi.org/project/faiss-gpu/1.5.3/.
3 https://github.com/atcbosselut/comet-commonsense.

Table 4: Experiment settings.
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A Experiment Settings and Datasets

A.1 Experiment Settings

Tab. 4 lists the settings and implement details of
our experiments.

B Abbreviations

Tab. 5 lists the abbreviations and mathematical
symbols used in our paper.

C More Experiments

C.1 Theta for Unseen Domains

We sample 56 plans from WikiHow to determine
the threshold for determining unseen domains. Of
these 56 domains, 42 plans are from seen domains,
and 14 are from unseen domains. We summarize
the results in Tab. 6. The average similarity of
plans from seen domains is 0.4110, with a standard
deviation of 0.0937, and a 95% confidence inter-
val of [0.3619, 0.4601]. The average similarity of
plans from unseen domains is 0.5957, the standard
deviation is 0.1005, and the 95% confidence inter-
val is [0.5653, 0.6261]. Thus, we use 0.4601 in our
experiments.

C.2 Correlation between Human Judgments
and La]J

We compare human judgments and LaJ by asking
humans the same question for LL.Ms, and the result
is in Tab. 7. In this experiment, we sample five
tasks from each subdataset.

Suppose there are two plans 71 and 79 that are
generated by different models for a task. Let .J; be
“my is better than m2”, J2 be “mr; is as good as m3”,
and J3 be “my is better than 73”. Then, if the Lal
human both believe J;, we say the judgments are
consistent. In another case, we say the judgments
are inconsistent. Divide the number by the total
number of sampled tasks, and we obtain the ratio
of consistency.

Tab. 7 shows that LaJ achieve an 80% agree-
ment with human. By contrast, LaJ in Tab. 3 is
untrustworthy. E.g., for the example in Fig. 4, our
model’s plan in Fig. 1 is superior to GPT-40’s in
Fig. 5. However, according to GPT-40, the GPT-
4o-generated plan is better than ours.

C.3 Open-Ground-Planning in Unseen
Domains

We adapt the OGP approach without the plans in
the test set, and the results are as follows: the
BLEU-1 score is 0.2513, the METEOR score is
0.2285, the ROUGE-L accuracy is 0.2210, and the
BERTScore score is 0.2157. Comparing the values
in Tab. 2, we can see that although OGP can be
adapted to serve unseen domains, the performance
is not as good as ours.

D Computational Cost

Regarding computational cost, 95% of the cost is
spent on LLLMs. The process involves four API
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https://www.sbert.net/,all-MiniLM-L6-v2
https://pypi.org/project/faiss-gpu/1.5.3/
https://github.com/atcbosselut/comet-commonsense
https://arxiv.org/abs/2403.00092
https://arxiv.org/abs/2403.00092

| Abbreviation or Symbol [ Meaning
LLM large language models
LONG LLMs based open domain natural language planning
PDDL Planning Domain Description Language
GOLD natural language procedural text with PDDL definitions
DIGGER LLMs based open domain natural language planning by leverag-
ing entity-attribute-level domain models

BLEU bilingual evaluation understudy
NL natural language
ALFRED Action Learning From Realistic Environments and Directives
OPENPI OPEN Procedural Inference
OPENPI+ OPENPI with additional PDDL domain definitions
COMET commonsense transformers

Abbreviation ROUGE recall-oriented understudy for gisting evaluation
METEOR metric for evaluation of translation with explicit ordering
LaJ LLM-as-judge
PLAN the neuro-symbolic procedural planner
SBERT the sentence-BERT model
FAISS the facebook Al similarity search vector database
DBSCAN density-based spatial clustering of applications with noise
# the number of
w/o without
N/A not applicable
OGP Open-Grounded-Planning
IPC the international planning competitions
WTLR the win-to-loss ratio
SR the success rate
NS the Likert scale score
CI the confidence interval
«a the Krippendorff’s coefficient
TE the typed entity list
sch the action schemata list
II the lifted Al planning problem
P the probability function
P the finite set of predicates
@ the finite set of objects
g the result of grounding
S the set of states
A the set of actions
T the transition function
A the initial state
g the goal state

Symbol D the planning domain
m the plan
a the action
TP the textual procedure
tsk the task
C the corpus
N the set of all natural numbers
R the set of real numbers
0 the parameter
n the learning rate
v the gradient
L the loss function
o the standard deviation

Table 5: Abbreviations and mathematical symbols used in this paper.

2579



Domain | Avgsim' | o° [ 95% CI°
Seen 0.4110 0.0937 [0.3619, 0.4601]
UnSeen | 0.5957 0.1005 [0.5653, 0.6261]

! Avg.sim : average similarity of plans.
2 o : standard deviation.
3 CI: confidence interval.

Table 6: Similarity analysis of seen/unseen domains.

Sub-Dataset [ DeepSeek-v3  GPT-4 GPT-40
ALFRED-L | 100 100 100
OPENPI+ 60 60 80
Proc2PDDL | 80 80 80
WikiHow 80 100 100

! %. The ratio of consistent between LaJ and humans.

Table 7: Comparison between human judgments and
Lal.

calls to LLMs per task, while the training time
of the COM ET  ction, COM ETgpqte, and the do-
main predictor is accomplished in 30 minutes. We
conducted experiments with gpt-4-turbo-2024-04-
09 and gpt-40-2024-08-06 API, at a cost of $0.4 per
1 million tokens input and $1 per 1 million tokens
output. We spent $300 in total. Additionally, we
spent 150 minutes on training the COM ET,tion
and COM ET 4t model.

E Prompt Examples

E.1 An Example of the Prompt for the
Entity-Attribute-Level Action Model
Generation

Tab. 8 is an example of the prompt for LLMs to

generate entity-attribute-level action models.

E.2 An Example of the Prompt for the Top-k
Relevant Grounded Actions Selection

Tab. 9 is an example of the prompt for LLMs to

select the top-k relevant grounded actions.

E.3 An Example of the Prompt for the
LLM-based Planning

Tab. 10 is an example of the prompt for LLM-based

planning.

E.4 An Example of the Prompt for the
LLM-as-a-Judge

Tab. 11 is an example of the prompt for LLM-based

judgment.

E.5 An Example of the Prompt for the
Human Evaluation

Tab. 12 is an example of the prompt for human
evaluation.

How to Graft a Tree?

Stepq : The player removes the shrub from the container,

Stepz: The player
are suitable for grafting.

, making sure they

Step3: The player , ensuring
that the prepared roots are correctly positioned.
Steps: The player , ensuring it

is securely planted.
Steps : The player spreads mulch around the shrub, providing it with
a protective layer to retain moisture and suppress weeds.

Figure 5: The plan for “How to Graft a Tree” that is
generated by GPT-40. Unspecified verbs are in gray,
and additional steps and supplementary details are in
magenta.

How to Graft a Tree?

Stepq :
Step; :
Step; :
Stepy :
Steps :
Stepg :
Step7 :
Stepg :
Stepg :

Select a healthy, pest and disease free parent plant.
Choose your cultivar and your rootstock.
Cut a healthy bud and attached wood from the scion plant.
Make a T-shaped cut on the rootstock plant.
Insert the scions into the rootstock.

the graft.
Apply a protectant.
Wait for the graft to grow and tie it to the target plant.

the graft.

Figure 6: The plan for "How to Graft a Tree" that is gen-
erated by OGP. Unspecified verbs are in gray, additional
steps and supplementary details are in magenta.

F Qualitative Examples for Comparison

As a comparison, we put the plan for
"How to Graft a Tree"” that is generated
by OGP in Fig. 6, and Fig. 5 is the result of
GPT-40. We found that intermediate steps, such as
Stepy and Steps, are inserted in Fig. 6. However,
the positions of objects are still ignored, and
details of actions are still missing (e.g., "seal”
and "look after” in Fig. 6). The output of
PLAN for task "How to Graft a Tree” is empty.
On the other hand, While addition details like
”place the shrub into the pre-dug hole”
are attached to the procedure in Fig. 5, some steps
are still missing, and many of the instructions are
unspecified (e.g., "ready for"” and "prepares”).

G More Details of the Example in Fig. 2

While the steps in natural language for our new
task are in Fig. 1, the generated PDDL steps for
our new task are in List. 2.
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INSTRUCTION:

You are a brilliant Al planning assistant, responsible for generating PDDL (Planning Domain
Definition Language) actions for a given task. Your objective is to translate the task’s steps
into corresponding PDDL actions that capture the intent and logic of each step. Follow the
example provided below and generate the appropriate PDDL actions based on the steps and
their descriptions. The point of action is to consider descriptions, steps, and other states as
auxiliary information.

In this section, the entity states before and after each action will be provided to help define
the PDDL effects and conditions. Each state includes attributes like location, condition, or
readiness of objects involved.

Instructions for Generating PDDL Actions:

For each step, generate a corresponding PDDL action that follows these guidelines:

¢ Action name: Provide a concise and descriptive name for the action.
* Parameters: Parameters: List the objects, agents, or items involved in this action.
* Preconditions: Define the conditions that must be met before the action can be performed.

o Effect: Specify the resulting changes or outcomes once the action is completed, based on
the entity states provided.

Task: {{task}}
File Name: {{file_name}}
Steps:

Step 1: {{step_1}}

Step 2: {{step_2}}

Step 3: {{step_3}}

Step 4: {{step_4}}
Descriptions: [Descriptions]
Entity State:[Entity State]

Here is an example:

Suppose the task is:

### Task: {task description}

### Steps: { step description}

### Descriptions: { Descriptions }

### PDDL Actions:{PDDL Actions}

Here is Our Task:

Now, generate PDDL actions based on the following new task and steps:

### Task: {task description}

### Steps: { step description}

### Entity state: { Entities in states }

### Entity attribute knowledge: {entity attribute knowledge }

If a step is irrelevant to the task or description, or appears to be wrong, modify it to be relevant to
the step and generate task-specific PDDL actions.Generate the PDDL actions using the format
and structure shown in the example.

OUTPUT:

Table 8: An example of the prompt for entity-attribute-level action model generation. Section
names are in brown and text variables are in curly brackets.

Further, List. 2 is translated to natural language
steps in Fig. 4.

The instantiated actions for our new task are in
List. 3~4. Similar tasks for our new task are in
List. 5~7.

Further, more action models for this domain are
in List. 8~9.

Listing 2: The PDDL steps (plan) for the new task in
Fig. 2.

choose(tree target)
dig(agent resource hole)
place (agent item destination)
cut(agent target)
transplant(tree location)
tie (tree target)

wait(tree target)
remove(tree target)
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INSTRUCTION:

You are an expert in Al planning and PDDL (Planning Domain Definition Language). I'll give
you the names of similar objects in the domain and tasks to solve. You need to determine how
these objects relate to the task name

INPUT:

### Available object:{a dictionary of objects}

### Target task: {name of the task}

Processing Rules:

1. Three-level correlation judgment:

 Strong association: The following conditions must be met
(a) The object name contains the task keyword.
(b) The object type matches core requirements of the task.
¢ Medium association: One of the following conditions is met
(a) Objects that may be used in solving tasks.

2. Special Treatment:

* Compound word objects are divided into separate lexical judgments.

** Output requirements: ** - Strictly in order of correlation strength: Strong -> Medium
Here is an example:

Available object:

’book’, ’schedule’, ’school’, "policy’, ’opinion’, ’reading’, ’return’, ’list’, ’family’, ’deal’,
’loan’, ’library’, “member’, ’question’, 'forum’, ’friend’, ’rule’, ’acquisition’, ’discussion’,
’community’, *club’

Target task:

"How to Start a Book Club at School"

Output:

 Strong correlation: book club school
* Related in: member community reading library list discussion

Please strictly follow the preceding format to output the result. Do a good job of checking when
you output, and do not output any objects that do not exist in [Available object], otherwise the
PDDL field specification will be incorrect.

OUTPUT:

Strong correlation:

Related in:

Table 9: An example of the prompt for top-k relevant grounded actions selection. Section names
are in brown and text variables are in curly brackets.
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INSTRUCTION:

You are a brilliant AI specialist in PDDL (Planning Domain Definition Language), tasked with
generating strictly formatted PDDL planning steps for a new task.

#i## Task Description

Define the task objectives. Select appropriate actions from the provided instantiated action set
and combine them logically to generate a series of steps that achieve the goal.

Action Selection and Combination Guidance

1. Select actions that support mission completion: Choose only those actions that directly
contribute to achieving the goal.

2. Ensure alignment with task requirements: Each action must be consistent with the
mission requirements and drive the task toward its objective.

3. Arrange actions in logical sequence: Order the actions according to the complexity of
the task and the dependencies between them.

4. Consider dependencies: Some actions may require the result or condition of a previous
action. Ensure these dependencies are respected.

5. Dynamically adjust based on progress: Modify the sequence as necessary based on the
current status of the task.

6. Deeply consider various planning forms: Use your self-judgment to choose the most
appropriate steps that truly satisfy the task requirements.

7. Ensure appropriateness: When choosing an action, always consider current conditions
to guarantee that each step is appropriate.

8. Operability and specificity of the steps: Emphasize that each step should be as specific
and actionable as possible. For example, require each step to clearly identify a tool or
material. This ensures that the generated steps are more realistic and avoids actions that
are too abstract or vague.

Note: The provided Goal_state is for reference only and does not necessarily represent the
correct or unique target state. The generated planning steps must ensure logical coherence and
valid state changes, but they do not have to force the final state to exactly match the reference.
Output Requirements

1. Strict PDDL Format: Output only in PDDL, with no natural language descriptions or
action definitions.

2. Step Structure: Each step must include an action name and the corresponding parameters.

Step Constraint The plan should contain a maximum of {max_steplen} steps (£1-2 steps). If
the goal has been partially accomplished, the generated plan can be appropriately reduced in
the number of steps. Each step should effectively change the state of the entity, be concise and
actionable, and move the task toward the final goal.

INPUT:

### Task: {task description}

### Goal State:{goal state}

### Action set:{instantiating action}

Example Workflow

1. By learning examples of similar tasks, understand how to generate target steps and refer
to their generated steps.

2. Logically combine operations to build a complete PDDL plan, ensuring that the sequence
of steps drives tasks toward the end goal.

### Similar task:{Similar task}

Now, generate the PDDL planning step for task:{task description}

Output results in strict PDDL format. The output should contain only PDDL steps, each
including the action name, corresponding parameters, and state changes. ......

OUTPUT:

Table 10: An example of the prompt for LLM planning. Section names are in brown and text
variables are in curly brackets.
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INSTRUCTION:

You are an expert evaluator tasked with comparing two texts: Text 1 and Text 2. Your primary
goal is to evaluate them based on how well they align with the task goal. The evaluation should
focus on how effectively each text helps in achieving the core objective of the task, emphasizing
comprehensiveness, practicality, and relevance.

Please evaluate both texts based on the following criteria, prioritizing the alignment with the
task goal:

Task Alignment & Goal Focus:

Does the text clearly understand and align with the task goal?

Does the text directly address the core objective of the task without deviating or introducing
irrelevant content?

Information Richness & Task Completeness:

Does the text provide sufficient details and cover all necessary steps to complete the task as per
the task goal?

Does it guide the user in understanding and completing the task successfully?

Clarity of Expression & Practical Usability:

Is the text easy to understand and clearly expressed?

Does it provide actionable, practical guidance for the task goal?

Linguistic Fluency & Relevance:

Does the text flow naturally and logically without awkward phrasing?

Is the information entirely relevant to the task goal, avoiding redundant or unrelated details?
After evaluating both Text 1 and Text 2 based on these criteria, provide an overall judgment on
which text performs better in terms of helping the user achieve the task goal.

INPUT:

Task: How to Graft a Tree

Gold Step: [’Choose your cultivar and your rootstock.”, ’Amputate your rootstock.’, ’Cleave
your rootstock.’, "Prepare the scions.’, "Insert the scions into the rootstock.’, ’Seal the graft.’,
’Look after the graft.’]

Text 1:

*Task**: How to Graft a Tree

**Steps in Natural Language™**:

. **Choose** the appropriate rootstock for your tree grafting project.

. **Select** a compatible scion to join with the rootstock.

. **Mix** the necessary soil and dig a hole in the chosen location.

. **Place** a stake into the hole to support the grafted area.

. **Cut** the scion to prepare it for grafting.

. **Insert** the cut scion into the prepared hole in the rootstock.

. **Tie** the graft securely around the insertion point to hold it in place.

. **Wait** for the binding to secure the graft properly.

. **Remove** the binding once the graft has stabilized.

10. #*Cut** any excess branches from the rootstock to promote healthy growth.

11. **Wait** for the scion to grow and establish itself on the rootstock.

12. **Remove** any additional branches from the rootstock as needed to ensure proper
development.

Text 2:

’Select a healthy, pest and disease free parent plant.’

, ’Choose your cultivar and your rootstock.’

, "Cut a healthy bud and attached wood from the scion plant.’

, "Make a T-shaped cut on the rootstock plant.’

, "Insert the scions into the rootstock.’

, "Seal the graft.’

, “Apply a protectant.’

, “Wait for the graft to grow and tie it to the target plant.’

, "Look after the graft.’

OUTPUT:

Only output the result without explanatory texts.

Output format example: Final Judgment: Text 1: Win

O 00 JONN B WIN—

Table 11: An example of the prompt for LaJ. The problem is “How to Graft a Tree.” Text1 is the
planning step generated by DIGGER, and Text2 is the planning step generated by the OGP.
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Manual Evaluation Guide:

1. Evaluator Requirements:

- Three graduate students specializing in Al planning conducted independently of the evaluation.
Independent scoring is mandatory during the evaluation; collaboration with reviewers and
information sharing is forbidden.

2. Normalization of Scoring Criteria (0-5 points:

Reviewers must assess each of the three dimensions and round their scores to two decimal
places.

**Fluency:** The assessment criteria consider both the fluency of expression and the logical
soundness of the conclusion.

**Goal Alignment**: Evaluation of the degree to which generated results align with predefined
task goals, including identification of any deviations.

**Rationality**: Determining if the solution generated is practical and aligns with the logical
principles of Al planning.

3. Correctness Judgment:

- #*Correct**: The generated content successfully meets all specified requirements; its method
is sound, and its outcomes are demonstrably effective.

- #*Error**: The generated content contains critical flaws, cannot meet objectives, and deviates
from specified requirements.

4. Evaluation process:

(1). **Independent review stage** - Each reviewer must score the generated results and provide
a **correctness judgment (right/wrong)**.

(2). **Summary stage**

- **Aggregating Scores**: Compute the average of the three reviewers’ scores (range: 0-1).

- **Determining Correctness**: The final correctness will be determined by a majority vote
(affirmation from a minimum of two reviewers).

Table 12: An example of the prompt for human evaluation. Section names are in brown and text
variables are in curly brackets.
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Listing 3: The instantiated actions for the new task in
Fig. 2 (part 1).

remove (entity hole agent),
dig(agent tree hole),
dig(agent rootstock hole),
dig(agent scion hole),
dig(agent branch hole),
dig(agent root hole),
dig(agent plant hole),
dig(agent soil hole),
place(agent item destination),
choose(entity target),
drink (entity liquid pot),

test(entity
test(entity
test(entity
test(entity
test(entity
test(entity
test(entity

modify_state (actor

tree hole),
rootstock hole),
scion hole),
branch hole),
root hole),
plant hole),
soil hole),
target

statel state2)

add(agent tree hole),

Listing 4: The instantiated actions for the new task in
Fig. 2 (part 2).

slide (entity pot),
cut(agent target),

use (agent tool),
keep(entity target),
treat(tree loc),

treat (rootstock loc),
treat (scion loc),

treat (branch loc),
treat (root loc),
treat(plant loc),

treat (soil loc),
stop(agent target),
order(tree hole),
order(rootstock hole),
order(scion hole),
order (branch hole),
order(root hole),

order (plant hole),
order(soil hole),
press (entity hole item),
plant(agent item hole),
determine (agent subject context),
unpack (agent pot item),

add(agent
add (agent
add(agent
add (agent
add(agent
add (agent

rootstock hole),
scion hole),
branch hole),
root hole),
plant hole),
soil hole),

stake (agent
stake (agent
stake (agent
stake (agent
stake (agent
stake (agent
stake (agent

tree target hole),
rootstock target hole),
scion target hole),
branch target hole),
root target hole),
plant target hole),
soil target hole),

move(entity from to),

plan(agent
plan(agent
plan(agent
plan(agent
plan(agent
plan(agent
plan(agent

tree ),
rootstock),
scion),
branch),
root),
plant),
soil)

replant (item hole),
transplant(entity hole),
gotolocation(entity from to),
harvest(agent tree),
harvest(agent rootstock),
harvest(agent scion),
harvest(agent branch),
harvest(agent root),
harvest(agent plant),
harvest(agent soil)
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Listing 5: The 15 similar task for the new task in Fig.

2.

cluster_label: 412,
task: How to Plant,

step: [

Choose the best location for your tree.

Till the soil lightly with a pick or a
shovel.

Dig a hole in the area that is twice as
wide as the root ball of your tree.

Loosen the roots in preparation for the

transplant.

the container away from the root

ball until it is completely exposed.

Look for roots that are circling.

Place the root ball of the tree in your
hole .

Mix one part compost with three parts

soil before you fill the hole around

the tree.

in the area around the root ball

with your mixture of compost and

soil .

Create a circular berm or small mounded
hill.

Cover the area with a layer of mulch.

Use stakes to support the tree.

Water the area.

Enjoy your gift

Pull

Fill

to the earth!.

Listing 6: The 2"d similar task for the new task in Fig.
2.

cluster_label: 412,

task: How to Graft

step: [

Plant the rootstock plants

Prepare to graft the plants
weather when the
budding .

Make a T-shaped cut on the rootstock
plant.
Cut a healthy bud and attached wood from
the scion plant.
Insert the bud wood into
Tie the plants together.
Wait for it to heal before removing the
binding .

Cut the rootstock branch some distance
above the new bud.

Once the bud wood has grown a few new
leaves, remove the rest of the
rootstock branch.

Plants,
in advance.

in cool
scion plant is

the T cut.

Listing 7: The 3"d similar task for the new task in Fig.
2.

cluster_label: 412,

task: How to Transplant a Plant,

step: [

Research the date when you should move
your plant outside.

Begin to harden the plant off 2 weeks
before the transplanting date.

Plan to transplant during the cool part
of the day.

Fill the planting bed with gardening
soil .

Dig a hole big enough to hold the plant'
s pot.

Turn the pot upside down and slide the
root ball out.

Leave the plant in the pot if it's made
from peat or paper.

Loosen the root ball with your fingers,
if needed.

Place the root

Fill

ball into the hole.
the space around the root ball
more soil and pat it down.
Water the plant thoroughly.

]

with
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Listing 8: Action models generated by our model in
PDDL for the exmaple in Fig. 1.

(:action remove

:parameters (?entity — object ?location
— location ?agent — agent)

:precondition (and

(at ?entity ?location)

(at ?agent ?location)

(not (removed ?entity))

)

:effect (and

(removed ?entity)

(not (at ?entity ?location))

)

)

(:action dig

:parameters (?agent — agent ?resource -—
resource ?location — location)

:precondition (and (at ?agent ?location)

(or (and (moisture ?location dry) (type
?7resource root_center))

(and (in_bag ?resource) (type ?location
garden))

(and (soil_removed ?resource) (type ?
resource fir))

(and (unselected ?resource) (type ?
location area))

(and (covering_tracks ?resource) (type ?
resource track))

(and (empty ?resource) (type ?resource
berm))

(and (at ?resource ?location) (type ?
resource plant))

(or (and (not (cut ?resource)) (type ?
resource plant))

(and (not (roots_dug ?resource)) (type ?
resource fir))

(and (not (built_water_basin ?location))
(type ?resource location))

(and (not (contacted_extension_office ?
agent)) (type ?resource track))
(and (not (fuller ?resource)) (type ?

resource berm))))
)
:effect (and (moisture ?location wet))

)

Listing 9: More action models generated by our model
in PDDL for the exmaple in Fig. 1.

(:action place

:parameters (?agent — agent ?item - item
?destination — destination)

:precondition (and

(available ?7agent)

(not (placed ?item ?destination))

(or

(and (at ?item ?destination) (mot (
in_hole ?item)))

(and (inventory ?agent ?item) (loosened
7item))

(and (planned ?item) (empty ?destination
))

(and (in_pot ?item ?destination) (mnot (
in_soil ?item)))

(and (at ?item ?destination) (selected ?
destination))

(and (at ?agent ?destination) (mnot (
created ?destination)))

(and (selected ?destination) (fuller ?
destination))

(and (at ?agent ?destination))

(and (in_hole ?item) (full_of_soil ?
destination))

(and (at ?item ?destination) (inventory
7Tagent ?item))

)

)
:effect (and

(placed ?item ?destination)

(not (in_hole ?item))

)

)

(:action choose

:parameters (?entity — entity ?target —
target)

:precondition (and (at ?entity ?target)
(not (state_changed ?target)))

ceffect (and (state_changed ?target))

)

(:action cut

:parameters (?agent — agent ?target -
target)

:precondition (and (at ?agent ?target) (
or (mot (cut ?target)) (reforested ?
target)))

ceffect (and (cut ?target) (when (
reforested ?target) (and (mowed ?
target) (mot (reforested ?target))))

)

(:action gotolocation

:parameters (?entity — object ?from -
location ?to — location)

:precondition (and (at ?entity ?from) (
not (at ?entity ?to)))

:effect (and (at ?entity ?to) (mot (at ?
entity ?from)))

)
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