Diverse Multi-tool Aggregation with Large Language Models for Enhanced
Math Reasoning

Bohan Yao'”? Vikas Yadav!
'ServiceNow Al 2University of Washington
s1104@cs.washington.edu

Abstract

Augmenting large language models (LLMs)
with external tools is a promising avenue for de-
veloping high-performance mathematical rea-
soning systems. Prior tool-augmented ap-
proaches typically finetune an LLM to select
and invoke a single tool at each reasoning step
and show promising results on simpler math
reasoning benchmarks such as GSM8K. How-
ever, these approaches struggle with more com-
plex math problems that require precise rea-
soning over multiple steps. To address this
limitation, in this work, we propose Multi-
TAG, a Multi-Tool AGgregation-based frame-
work. Instead of relying on a single tool,
Multi-TAG guides an LLM to concurrently
invoke multiple tools at each reasoning step.
It then aggregates their diverse outputs to ver-
ify and refine the reasoning process, enhanc-
ing solution robustness and accuracy. Notably,
Multi-TAG is a finetuning-free, inference-only
framework, making it readily applicable to
any LLM backbone, including large open-
weight models which are computationally ex-
pensive to finetune and proprietary frontier
models which cannot be finetuned with cus-
tom recipes. We evaluate Multi-TAG on four
challenging benchmarks: MATH500, AIME,
AMC, and OlympiadBench. Across both open-
weight and closed-source LLM backbones,
Multi-TAG consistently and substantially out-
performs state-of-the-art baselines, achieving
average improvements of 6.0% to 7.5% over
state-of-the-art baselines. !

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities across a wide va-
riety of tasks, with reasoning emerging as a core
area of research (Jiang et al., 2023; OpenAl, 2023,
2022; Yang et al., 2024). In particular, imbuing
LLMs with the ability to perform complex math-
ematical reasoning remains an active challenge

"Multi-TAG GitHub will be open-sourced soon.

(Ahn et al., 2024). To address this challenge,
tool-augmented LLM (TALM) frameworks such
as Program-Aided Language Models (PAL) (Gao
et al., 2023), Program-of-Thought (PoT) (Chen
et al., 2022), Tool-Integrated Reasoning Agent
(ToRA) (Gou et al., 2024), and MATHSENSEI
(Das et al., 2024) equip LLMs with external tools
such as Python code execution or WolframAlpha
querying. While previous TALM frameworks have
shown notable progress on simpler math bench-
marks such as GSM8K (Cobbe et al., 2021a), their
performance plateaus and remains low on more
complex benchmarks such as MATH500 (Light-
man et al., 2023), AIME, AMC, and Olympiad-
Bench (He et al., 2024).

Inference-time compute scaling approaches such
as OpenAl ol (OpenAl, 2024), DeepSeek-R1
(DeepSeek-Al et al., 2025) and rStar-Math (Guan
et al., 2025) allocate more computational resources
to LLMs at inference time to allow them to rea-
son more methodically about problems, and also
demonstrate promise towards addressing the chal-
lenge of LLM math reasoning. Although these ap-
proaches achieve impressive performance on com-
plex math benchmarks, they generally require ex-
tensive finetuning, which can be especially brittle
and requires training tricks and carefully tuned hy-
perparameters to be effective (Zeng et al., 2025).
Moreover, finetuning can be prohibitively expen-
sive, especially for larger LLMs, and may not be
possible for proprietary LLMs whose APIs do not
support the finetuning recipes used in these ap-
proaches. Furthermore, recent work has shown that
these approaches exhibit non-robust reasoning be-
haviors in various scenarios, such as number trans-
formations (Yu et al., 2025), adversarial triggers
(Rajeev et al., 2025), unanswerable tasks (Hashemi
et al., 2025), and executing algorithmic solutions
(Shojaee et al., 2025).

In this work, we propose Multi-TAG, a Multi-
Tool AGgregation framework that aims to address

25264

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 25264-25282
November 4-9, 2025 ©2025 Association for Computational Linguistics

the limitations of existing TALM frameworks on
complex math reasoning tasks by adopting the
inference-time scaling paradigm. As opposed to
previous TALM frameworks which select a sin-
gle tool to invoke at each reasoning step, Multi-
TAG scales up inference-time compute usage by
invoking multiple tools at each reasoning step and
aggregating their outputs, utilizing the consensus
between different tool invocations to ensure that
accurate reasoning steps are made.

The core benefit of multi-tool aggregation is
cross-validation of different tools’ outputs. Since
different tools have different strengths and failure
modes (see Section 5.1.2), their agreement on a re-
sult provides strong evidence of its correctness. For
example, a natural language reasoning tool and a
Python code execution tool both proposing a consis-
tent result lends significant credence to the validity
of the result, as it is improbable that both tools
made unique mistakes thematic to their own weak-
nesses (e.g. calculation mistakes for the natural
language tool and logical mistakes for the Python
tool) yet coincidentally arrived at the same incor-
rect result. By invoking and aggregating a diverse
set of tools at each reasoning step, Multi-TAG
harnesses this principle to self-validate candidates
for each step, significantly improving the overall
reasoning performance.

Beyond superior reasoning performance, another
key strength of Multi-TAG is that it is a purely
inference-time approach, making it readily applica-
ble to any general instruction-tuned LLM. In con-
trast, finetuning-based TALM approaches such as
ToRA (Gou et al., 2024) or MathCoder (Wang et al.,
2024a) incur a significant compute overhead for
finetuning when applied to new backbone LLMs
and cannot be applied to proprietary LLMs lack-
ing finetuning APIs. To demonstrate Multi-TAG’s
transferability to different LLM backbones, we
replicate our main results on three LLMs, includ-
ing both open-weight and proprietary models, and
observe consistent and significant performance im-
provements over baselines for all three LLMs. Fur-
thermore, Multi-TAG’s inference compute costs
are adjustable, allowing users to tune Multi-TAG
to fit their cost-performance tradeoff requirements,
as opposed to prior TALM approaches where com-
pute allocation is not easily tunable. We study how
performance and compute usage vary for differ-
ent Multi-TAG hyperparameter settings in Section
5.2 and propose a simple hyperparameter heuristic
to maximize performance under a fixed compute

budget.

Our key contributions are:

1. We introduce Multi-TAG, a tool-augmented
LLM framework that effectively solves complex
math reasoning tasks by aggregating multiple
tool invocations at each reasoning step. The
code repository for Multi-TAG code will be
open-sourced in the near future.

2. We present extensive evaluations of Multi-
TAG, seven simple baselines, and five state-of-
the-art TALM baselines on three LLM back-
bones and four challenging math reasoning
benchmarks: MATHS500, AIME, AMC, and
OlympiadBench. Across the three LLMs, state-
of-the-art TALM baselines perform poorly, with
the strongest TALM baseline for each model
achieving 1.3% to 6.2% lower accuracy com-
pared to the strongest simple baseline for each
model. Meanwhile, Multi-TAG performs much
better, achieving 6.0% to 7.5% higher accuracy
compared to the strongest simple baseline for
each model and 7.9% to 13.7% higher accuracy
compared to the strongest TALM baseline for
each model.

3. We present comprehensive analyses highlight-
ing the strengths of Multi-TAG and benchmark-
ing the cost-performance trade-off. In particu-
lar, we analyze Multi-TAG’s performance by
problem difficulty and problem subject area in
Section 5.1. We also study how Multi-TAG’s
performance and compute cost vary with differ-
ent hyperparameter settings and present insights
for how users can tune Multi-TAG to extract
maximal performance under various computa-
tional budgets in Section 5.2.

2 Related Work

Tool-Augmented Language Models Recent ad-
vancements in developing tool-augmented lan-
guage models (TALMs) have shown promise in
improving performance on reasoning tasks. Frame-
works such as ToolFormer (Schick et al., 2023),
OlaGPT (Xie et al., 2023), and ART (Paranjape
et al., 2023) demonstrate that allowing LLMs to
access external tools can significantly boost perfor-
mance in various domains. Many previous works
have also focused on developing TALMs for math
reasoning tasks. Program-aided Language Models
(PAL) (Gao et al., 2023) and Program of Thoughts
(PoT) (Chen et al., 2022) propose to prompt LLMs
to generate Python code solutions to math prob-

25265

lems instead of natural language Chain-of-Thought
(CoT) solutions and achieve strong performance
on simple math word problem datasets such as
GSMS8K (Cobbe et al., 2021a) and SVAMP (Patel
et al., 2021). Mammoth (Yue et al., 2023) fine-
tunes models to produce both CoT solutions and
Python code solutions to math problems. More
recent works have recognized the importance of
multi-step tool use for solving more challenging
math problems which are too complex to solve
with a single tool call. MuMath-Code (Yin et al.,
2024) and ToRA (Gou et al., 2024) finetune mod-
els to generate solutions with multiple interleaved
CoT and Python code reasoning traces. MathSen-
sei (Das et al., 2024) prompts LLMs to solve math
problems by following handcrafted workflows of
sequences of tool invocations. Code-based Self-
Verification prompting (Zhou et al., 2023) lever-
ages GPT4 Code Interpreter’s built-in code execu-
tion capabilities to verify each CoT reasoning step
with a Python script.

While previous TALM approaches have been
effective on simpler math reasoning tasks, their
use of only one tool invocation per reasoning step
may limit their scalability to more complex math
problems. To address this limitation, we hypothe-
size that allowing TALMs to invoke multiple tools
at each reasoning step improves their capacity
for solving complex math problems by enabling
cross-verification and leveraging the complemen-
tary strengths of different tools. To this end, the
proposed Multi-TAG framework aggregates out-
puts from multiple tools at each step, allowing dif-
ferent tools to validate and reinforce each part of
the reasoning process, thus enhancing the accuracy
of intermediate reasoning and the final solution.
Furthermore, TALM approaches that rely on fine-
tuning are not easily generalizable to all models,
requiring significant computational resources to
finetune larger models (DeepSeek-Al et al., 2025),
and impossible to apply to proprietary models lack-
ing finetuning APIs. In contrast, our framework
relies solely on prompting and the inherent instruc-
tion following capabilities of LLMs, allowing it to
be seamlessly applied to any LLM.

Inference-time Compute Scaling Inference-
time compute scaling approaches aim to improve
LLM reasoning performance by utilizing more
compute at inference time. Self-consistency (Wang
et al., 2022) proposes a simple way to implement
inference-time scaling, where multiple solutions

are sampled from an LLLM and the most common
answer is chosen. Building on top of these repeated
sampling approaches, other works have further pro-
posed to train verifiers to better select the best so-
lution from the sampled solutions. Some works
propose to train verifiers to judge entire solutions
(Cobbe et al., 2021b), whereas others propose to
train verifiers to judge individual steps of solutions
(Lightman et al., 2023; Wang et al., 2024b). Inline
with step-wise verification approaches, our Multi-
TAG approach also performs verification at each
reasoning step, but utilizes cross-verification be-
tween different tools’ outputs instead of trained
verifiers.

Inference scaling via long CoT reasoning has
also been shown to be an effective technique
(Muennighoff et al., 2025; DeepSeek-Al et al.,
2025), although solving reasoning tasks with only
CoT reasoning has limitations in various settings
(Sprague et al., 2025; Yu et al., 2025; Rajeev et al.,
2025; Hashemi et al., 2025; Shojaee et al., 2025).
In a complementary direction, our work explores
inference-time scaling through multi-tool aggrega-
tion to enhance the performance of TALMs.

3 Multi-TAG

Multi-TAG is an LLM reasoning framework that
scales up inference-time compute via multi-tool
aggregation to improve reasoning performance. It
equips an LLM-based problem solver with a di-
verse set of tools to solve complex problems in a
step-by-step manner. At each step, each tool is
invoked multiple times, generating a set of tool-
augmented reasoning steps that serve as candidates
for the next reasoning step. Note that each candi-
date may propose a different objective for the next
step, creating a more diverse pool of candidates
and allowing each candidate to tailor its proposed
objective to the strengths of the tool used. These
candidates are then aggregated, and the most ac-
curate and productive candidate is selected to con-
tinue the solution. By aggregating candidates us-
ing different tools, Multi-TAG exploits the unique
strengths of each tool to cross-validate each candi-
date’s reasoning. Specifically, Multi-TAG utilizes
final answer estimates derived from each candidate
to aggregate candidates that utilize different tools
and potentially achieve different objectives.
Figure 1 provides an overview of the Multi-TAG
system, and Algorithm 1 provides an explicit pseu-
docode implementation. Given a problem P and a

25266

‘Question‘

B @/

- g X
Answer: 1 o
(O] M oY)
- 0 @ 5
's - E Solutf:sevzrrr:\%letlon “ 3) 3 § Consistency Gap
. Q| A}
36 - >| vy coen i
=} Answer: 1
= i Final Answer Threshold?
Solution Completion Estimate: 1 Estimate: 3
cr | = R
(1) 3% Q) (4)
Length: 266 @ Length: 447 ll Length: 178
o O J
[ON ol
-
8 & —|: CoT (4)
&
@ A/
a 5
O — (@) @ ;
olution Completio Q o, Consistency Ga|
L o CoT (1) =) > ; ga SRS
£ @ 3 >
e olutio ompletio <
ER2 Python (2) e ':J‘> awall Final Answer
= Estimate: 1 Threshold?
Vs
<@ (1)
Completion Completion
o] ' Length: 76 Length: 92
O N — J
o a | a
[ORN0] Python(2) EE I B O O S S S O S e e .
D
® @ Generated
- Solution

{ Final Answer 1

CoT Tool

Python Tool o

c 2

Final AnswerJ

Figure 1: Visualization of the Multi-TAG framework with a consistency threshold value of 1. In the first step, after the first
four executors are invoked, candidates CoT (1), Python (2), WolframAlpha (3), and CoT (4) are produced. Candidates (1),
(3), (4) have final answer estimate 1, while executor (2) has final answer estimate 3. The frequency of the most frequent final
answer estimate, 1, is 3, while the frequency of the second most frequent final answer estimate, 3, is 1, so the consistency gap is
3 — 1 = 2, which is greater than the consistency threshold value. Hence, executor invocation terminates. To select a candidate,
first the candidates (1), (3), (4) are shortlisted as they reach the most frequent final answer estimate of 1. Then, (4) is selected as
it has the shortest solution completion. In the second step, only two executors were invoked for the consistency gap to exceed the
consistency threshold value. Candidate (2) was selected due to having the shorter solution completion. This process repeats until
the selected step reaches a final answer for the problem. The full generated solution to the problem is the concatenation of all the

selected steps.

setoftools 7 = {11, T>, ..., T}, Multi-TAG con-
structs a step-by-step solution s1, s2, . . . , S, With
each step invoking one of the tools in 7. At the p’th
step, Multi-TAG starts by sequentially invoking a
set of m x t LLM executors. An early stopping
criteria is checked after each executor’s invocation
to determine if executor invocation should be ter-
minated early; see Section 3.1 for details. The ¢’th
executor is assigned tool T((;_1) mod)+1 and given

P and the current partial solution s1, s2, ..., Sp_1.
It is prompted to propose a candidate s; for the
next reasoning step. The value of m x ¢ is a tunable
hyperparameter which we call the max executors
value, which can be tuned to adjust the amount of
inference compute utilized.

After executor invocation is completed, each can-
didate s), is appended to the current partial solu-
tion, forming a candidate partial solution cand; =

25267

51,82, +.,8p—1, s;. An LLM completer is then in-
voked for each candidate partial solution. The i’th
completer is given P and cand; and is prompted
to generate a natural language solution comple-
tion comp;, which when concatenated after cand;
forms a complete solution to P. The final answer
reached by this concatenated solution serves as a
quick “approximation” of the final answer assum-
ing cand; is accurate, and we call it the ¢’th final
answer estimate est;.

Finally, to select the best cand; to serve as the
next step in the current partial solution, a two-step
selection procedure is employed. In the first step,
the most frequent final answer estimate maxest =
mode({esty, esta, ..., est,,«¢}) is identified, and
all candidates cand; such that est; = maxest are
shortlisted. Similar to self consistency’s motiva-
tion, the more candidates that reach consistent fi-
nal answers, the more confident we can be about
the candidates’ accuracy. In the second step, the
shortlisted candidate with the shortest solution com-
pletion (measured in number of LLM tokens) is
selected to be the next step in the current partial so-
lution. Intuitively, selecting this step would lead to
the most concise solution, improving Multi-TAG’s
compute efficiency. Furthermore, we find in our
ablation analyses in Appendix B.3 that using this
second selection step also improves performance.
This finding can be intuitively explained by the Oc-
cam’s Razor principle, that concise explanations
should be favored over complex ones, and is con-
sistent with recent work demonstrating that concise
reasoning can sometimes lead to stronger perfor-
mance (Sui et al., 2025).

We perform ablation tests on our two-step se-
lection procedure in Appendix B.3 and find em-
pirically that both steps are necessary to achieve
maximum performance. Furthermore, we demon-
strate that the second step additionally improves
inference efficiency, and removing it results in sub-
stantially higher inference costs.

3.1 Consistency Threshold And Early
Termination

At each reasoning step, Multi-TAG invokes ex-
ecutors sequentially. After each executor invoca-
tion, Multi-TAG uses the consistency threshold to
determine whether executor invocation should be
terminated early.

We define the consistency gap as the difference
between the frequencies of the most frequent and
second most frequent final answer estimates. If the

consistency gap exceeds the consistency threshold
value, executor invocation is terminated. Intuitively,
when the consistency gap is high, the executors are
largely consistent with each other, and hence we
can be confident that the largest group of consistent
executors are accurate. The consistency threshold
is a hyperparameter that can be tuned to trade infer-
ence cost for performance and vice versa.

We perform ablation tests to validate the effec-
tiveness of the consistency threshold in Appendix
B.2. We find that the consistency threshold low-
ers inference costs substantially, while incurring a
negligible accuracy penalty.

4 Results
4.1 Datasets & Models

Following many recent works on LLM reason-
ing, we evaluate Multi-TAG on challenging short
answer math problems. One motivation for this
choice is that there are many math datasets with
thoroughly vetted ground truth answers publicly
available. Furthermore, answers to short answer
math problems can be easily and accurately verified
by comparing the model answers to ground truth
answers with a symbolic equality checker such as
SymPy. Hence, evaluating on short answer math
problems enhances the reliability and reproducibil-
ity of our evaluations.

We select four challenging math reasoning
datasets for evaluation: MATH (Hendrycks et al.,
2021), AMC 2, AIME 3, and OlympiadBench (He
et al., 2024). Following recent work on math
reasoning, we evaluate on the MATHS00 subset
(Lightman et al., 2023) of the full MATH dataset
to accelerate evaluations. For OlympiadBench, we
only use the two English, text only, open ended
(short answer) splits, OE_TO_maths_en_COMP
and OE_TO_physics_en_COMP.

Multi-TAG is applicable to any LLM. We run
evaluations using LLaMA-3-70B (Team, 2024),
LLaMA-3.3-70B, and GPT-40 (05-13) to illustrate
the efficacy of our method on less performant open
models, near-frontier level open models, and fron-
tier level proprietary models.

4.2 Multi-TAG Implementation Details

For all Multi-TAG experiments, unless specified
otherwise, we use a maximum of 12 executors per

2https://huggingface.co/datasets/AI—MO/
aimo-validation-amc

3https://huggingface.co/datasets/AI—MO/
aimo-validation-aime

25268

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime

step and a consistency threshold of 2. We selected
these hyperparameters to achieve near-optimal per-
formance while maintaining a relatively low com-
pute cost; see Section 5.2 for a detailed analysis of
Multi-TAG hyperparameters. We provide Multi-
TAG with three tools: CoT reasoning, Python
script execution, and WolframAlpha queries. For
sampling tool invocations, we use temperature 0.7
and top_p 0.9, and for partial solution completions,
we use temperature 0.0. For MATH500, AIME, and
AMC, we use Math-Verify to grade model predic-
tions. For OlympiadBench, we use the autograder
provided in the OlympiadBench GitHub. Multi-
TAG prompts are available in Appendix D.1.

4.3 Baselines

Simple We evaluate simple baselines that per-
form a single tool invocation per problem. Specif-
ically, for each of the three tools available to
Multi-TAG, we create a baseline where an LLM is
prompted to solve the problem with a single invo-
cation of the tool, with the tool’s output serving as
the final answer. For the WolframAlpha baseline,
the WolframAlpha API often returns improperly
formatted results, such as Unicode math expres-
sions, which are erroneously marked incorrect by
the autograder. To address this, we add a second
LLM step to the WolframAlpha baseline to refor-
mat the WolframAlpha output into a I&[[EX format-
ted answer. In addition, we evaluate four simple
majority voting baselines where multiple single-
tool solutions are sampled, and the most frequent
tool output is taken as the model’s answer. We
create a majority voting baseline for each of the
three tools available to Multi-TAG, each of which
only sample solutions using the tool it corresponds
to. A fourth majority voting baseline is developed
that samples solutions using all three tools. For all
majority voting baselines, we sample 12 traces per
problem to match the maximum of 12 executors
per step used in Multi-TAG. The multi-tool major-
ity voting baseline achieves this by sampling four
traces from each of the three tools.

Tool Augmented Frameworks We also compare
Multi-TAG against several state-of-the-art tool
augmented LLM frameworks, including PAL (Gao
et al., 2023), PoT (Chen et al., 2022), ToRA (Gou
et al., 2024), MATHSENSEI (Das et al., 2024), and
ReAct (Yao et al., 2023). Since the original ToRA
work only finetuned older models, such as LLaMA-
2 or CodeLLaMA, which are not used in our study,

we adapt its approach by prompting newer mod-
els to emulate the ToORA reasoning process, using
the few-shot prompt from the ToRA paper (which
was originally used to generate ToRA traces for
the training data). For MATHSENSEI, we use
the PG+WA+SG setting, which was reported to
achieve the highest accuracy on MATH in the orig-
inal work. For ReAct, we provide the same three
tools available to Multi-TAG and write a custom
prompt for using these tools.

For all non-majority voting baselines, LLM gen-
erations are conducted at temperature 0.0. For the
majority voting baselines, LLM generations are
conducted at temperature 0.7 and top_p 0.9. The
prompts used for all simple baselines are provided
in Appendix D.2. Prompts for the TALM baselines
are available in the Multi-TAG GitHub *.

4.4 Main Results

Table 1 presents the results of the baselines and
Multi-TAG and demonstrates the superior perfor-
mance of Multi-TAG at solving challenging math
reasoning problems. Over the three LLMs, the
TALM baselines consistently underperform even
the simple baselines, demonstrating the inability of
these frameworks to address complex math prob-
lems. In contrast, Multi-TAG outperforms all base-
lines on all four benchmarks and all three LLMs,
demonstrating the effectiveness of multi-tool aggre-
gation at improving the math reasoning abilities of
LLMs. When compared to the strongest baseline
for each LLM, Multi-TAG achieves an average ac-
curacy improvement of 6.6% with LLaMA-3-70B,
6.0% with LLaMA-3.3-70B, and 7.5% with GPT-
40. The improvements are even more substantial
when comparing only to the strongest TALM base-
lines, with improvements rising to 7.9%, 8.4%, and
13.7%, respectively. Furthermore, the consistent
improvements achieved by Multi-TAG over both
open-weight (LLaMA) and proprietary (GPT-40)
models demonstrate its generalizability to different
LLM backbones.

S Analysis

5.1 Multi-TAG Improvement Areas

To better understand where Multi-TAG improves
performance relative to baselines, we compared
the performances of the different methods across
different MATHS00 difficulty levels (ranging from

*Will be released soon

25269

Model Method MATHS00 AIME AMC OlympiadBench Average

CoT 52.2% 1.1% 26.5% 16.6% 24.1%

Python 45.2% 77% 27.7% 17.9% 24.6%

m WolframAlpha Query 23.4% 0.0% 8.4% 6.4% 9.6%
o CoT MV 58.8% 22% 27.7% 21.1% 27.5%
[\I Python MV 52.0% 10.0% 26.5% 21.4% 27.5%
c? WolframAlpha MV 25.2% 0.0% 12.0% 7.3% 11.1%
g CoT + Python + WolframAlpha MV 60.6% 56% 33.7% 23.6% 30.9%
< PAL 51.2% 122% 36.1% 18.7% 29.6%
j PoT 46.8% 89% 27.7% 18.6% 25.5%
ToRA 54.0% 44% 27.7% 21.2% 26.8%
MATHSENSEI 56.4% 33% 20.5% 14.5% 23.7%

ReAct 39.4% 1.1% 13.3% 10.4% 16.1%
Multi-TAG (Ours) 68.6 % 13.3% 39.8% 28.1% 37.5%

CoT 75.8% 26.7% 47.0% 32.4% 45.5%

Python 67.0% 289% 47.0% 30.0% 43.2%

M WolframAlpha 45.4% 189% 21.7% 12.6% 24.7%
[9 CoT MV 79.0% 289% 55.4% 36.6% 50.0%
Cflj Python MV 73.0% 35.6% 60.2% 32.6% 50.4%
(‘flﬁ' WolframAlpha MV 45.6% 20.0% 22.9% 13.2% 25.4%
<,j CoT + Python + WolframAlpha MV 79.0% 333% 60.2% 37.6% 52.5%
% PAL 65.8% 244% 47.0% 27.5% 41.2%
—_ PoT 70.2% 289% 48.2% 29.8% 44.3%
— ToRA 77.2% 30.0% 54.2% 38.8% 50.1%
MATHSENSEI 67.4% 15.6% 30.1% 24.8% 34.5%
ReAct 72.8% 17.8% 21.7% 35.4% 36.9%
Multi-TAG (Ours) 84.2% 389% 67.5% 43.5% 58.5%
CoT 79.6% 10.0% 47.0% 32.5% 42.3%
Python 66.2% 222% 50.6% 30.2% 42.3%
WolframAlpha Query 54.4% 44% 22.9% 16.6% 24.6%
CoT MV 81.8% 122% 49.4% 36.5% 45.0%
@) Python MV 74.2% 28.9% 59.0% 34.8% 49.2%
<|r WolframAlpha MV 56.2% 56% 22.9% 16.9% 25.4%
E CoT + Python + WolframAlpha MV 86.0% 222% 60.2% 38.2% 51.7%
O PAL 64.6% 20.0% 44.6% 28.8% 39.5%
PoT 51.2% 15.6% 36.1% 19.3% 30.6%
ToRA 73.0% 17.8% 42.2% 32.1% 41.3%
MATHSENSEI 73.4% 5.6% 43.4% 28.9% 37.8%
ReAct 75.2% 28.9% 45.8% 32.1% 45.5%
Multi-TAG (Ours) 87.0% 344% 71.1% 44.1% 59.2%

Table 1: Main results comparing Multi-TAG with various baselines. Best score in each category is bolded and second best
score is underlined. MV denotes majority voting.

1-5 where 5 is the hardest level) and across different ~ Multi-TAG over baselines are especially promi-
MATHS500 problem subjects. nent at higher difficulty levels. At level 5, Multi-

) TAG outperforms all baselines on LLaMA-3-70B
5.1.1 Problem Difficulty by 6.0%, on LLaMA-3.3-70B by 9.7%, and on

Figure 2 shows the performance of Multi-TAG GPT-40 by 7.5%. These improvements over pre-
and baseline methods on different MATHS00 dif- yjous single-tool TALM frameworks demonstrates

ficulty levels. As shown, the improvements from
25270

LLaMA-3-70B

80« \ 80 o
Do ¢

s TS R S
< 60 \X\ 5
> — % N " I
g N N g
S 40 \ . 9 40
< \ ; <

20 20

0 0

I 2 3 4 5 I 2

Level

—e— CoT maj@12 ——

——

WolframAlpha maj@]12

Python maj@12 CoT + Py + WA maj@12

LLaMA-3.3-70B

60

Accuracy (%)

40

20

3 4 5 1 2 3 4 5
Level Level

—+— PAL

—+— PoT

ToRA
—— MATHSENSEI

ReAct
Multi-TAG (ours)

Figure 2: Comparison of baseline methods and Multi-TAG on different MATH500 difficulty levels (higher levels contain more
difficult problems). As shown, Multi-TAG outperforms baselines most substantially on the more challenging problems.

the effectiveness of multi-tool aggregation as an
inference scaling technique for boosting complex
math reasoning performance.

5.1.2 Problem Subject

Figure 3 shows the performance of Multi-TAG and
baseline methods on different MATHS500 problem
subjects. Multi-TAG outperforms all baselines
in 12/21 subjects in total across the three models,
demonstrating its consistent effectiveness across a
diverse range of math domains. Moreover, com-
paring the four simple majority voting baselines,
the multi-tool majority voting baseline (CoT + Py
+ WA) outperformed all three single-tool majority
voting baselines in 12/21 subjects in total across
the three models. This highlights the synergistic
benefits of aggregating different tools together, im-
proving upon the performance of aggregating each
of the tools individually.

5.2 Hyperparameters Study

We investigated the influence of Multi-TAG’s two
primary hyperparameters-the maximum number
of executors and the consistency threshold value-
on its performance and computational cost. We
evaluate Multi-TAG with various hyperparameter
configurations and with all three backbone LLMs
on MATHS500. The results are reported in Table 2.

The results show a strong, statistically significant
positive correlation between performance and the
max executors value. The Spearman correlation co-
efficients were .832 (p < .01), .535 (p = .04), and
549 (p = .03) for LLaMA-3-70B, LLaMA-3.3-
70B, and GPT-4o0 results, respectively. In contrast,
the consistency threshold value showed no statisti-
cally significant correlation with performance, with

coefficients of .057 (p = .84), .028 (p = .92), and
.162 (p = .56). Thus, to increase performance, the
max executors value should be increased.

While increasing the max executors value boosts
performance, it also significantly increases com-
putational costs. The results demonstrate the cru-
cial role of the consistency threshold to mitigate
this increase. For instance, when increasing max
executors from 6 to 18, the average increase in to-
ken consumption cost across all models was only
49.3% with a consistency threshold of 1. This cost
increase was substantially higher for thresholds
of 2 (65.3%) and 3 (70.4%). This demonstrates
that lower consistency threshold values effectively
contain costs, especially for larger max executors
settings.

These findings suggest a simple heuristic for
setting Multi-TAG hyperparameters: the max ex-
ecutors value should be set as high as the compute
budget allows to maximize performance, then the
consistency threshold value should be set to a low
value, such as 1 or 2, to minimize the token con-
sumption cost.

6 Conclusion

In this paper, we present Multi-TAG , a novel tool-
augmented LLM framework for math reasoning.
Unlike previous TALM frameworks, Multi-TAG
scales up the inference-time compute allocated by
allowing the LLM to invoke and aggregate mul-
tiple tools at each reasoning step. As a result,
Multi-TAG achieves superior results on four com-
plex math reasoning benchmarks, outperforming
the strongest baselines by 6.0% to 7.5% over three
different backbone LLMs. Furthermore, Multi-
TAG is widely applicable, enabling the use of any

25271

GPT-40

Accuracy (%)

100 LLaMA-3-70B 100 LLaMA-3.3-70B 100
80 80 80
60 < 60 < 60
> >
Q Q
g g
=] =]
40 3 40 3 40
< <
) | ‘ ‘ ‘“) ‘ ‘ ‘)
0 | | 0 0
£ 5 5 £5 5 3 5 5 & 25 5 5 5 5 5 25 5 £
o o 5 = 9 1 o o o = = L o1 3 o o I~ = 2 o3 o3
= = =~ s § = 20 =0 =0 3 s § g <0 =0 20 3 s § =i <0
< s £ s 8 o < < g & s 8) < < g $ s 8 o <
< & £ ° £ ¢ < & £ ° £ 0% < & 5% F 8
N 5 ¥ & s 3 & s 3
5 5 H 5 H 5
O O O
Subject Subject Subject
B CoT maj@]12 B WolframAlpha maj@12 mm PAL [ToRA ReAct
B PoT s MATHSENSEI B Multi-TAG (ours)

s Python maj@12 BN CoT + Py + WAmaj@l2

Figure 3: Comparison of baseline methods and Multi-TAG on different MATH500 problem subjects. Multi-TAG consistently
performs well across subjects, outperforming all baselines on a majority of subjects. Furthermore, simple multi-tool aggregation
(CoT + Py + WA) also outperforms the three single-tool aggregation baselines on a majority of subjects.

Max Executors

Model Consistency
Threshold 6 9 12 15 18
m 1 63.0% 672% 662% 67.8% 69.2%
EI (4518) (5592) (6565) (7272) (7799)
o0) 67.0% 662% 68.6% 68.6% 67.8%
< (5361) (6746) (7916) (8891) (9918)
% 3 63.8% 66.6% 672% 68.0% 68.8%
= (5838) (7380) (9267) (10074) (11418)
g 1 84.0% 84.8% 83.6% 862% 85.0%
C‘I (5023) (5913) (6400) (6752) (6793)
e) 82.0% 85.8% 842% 86.0% 86.6%
< (5967) (7766) (7945) (9274) (9727)
% 3 83.8% 86.0% 84.6% 85.6% 84.4%
j (6460) (9061) (9289) (10497) (10555)
1 86.0% 85.0% 86.0% 862% 86.6%
2 (4711) (4822) (6098) (6297) (6594)
= ’ 82.6% 864% 81.0% 87.6% 86.2%
% (6090) (6157) (7952) (8214) (9008)
3 85.0% 87.0% 862% 85.6% 87.2%
(7064) (7352) (9253) (9556) (10753)

Table 2: MATHS500 scores and average token consumption cost (as defined in Appendix B.1) per problem of various max
executor, consistency threshold configurations of Multi-TAG. Token consumption costs are in (parentheses).

general instruction-tuned LLM and enabling com- reasoning capabilities.

putational costs to be tuned according to specific
cost/performance requirements. Our results demon-
strate that multi-tool aggregation is a promising
avenue for future work on advancing LLM math

25272

7 Limitations

There are a few limitations of our work that can be
resolved in future work. First, we only propose a

framework to aggregate multiple tools’ outputs for
the math reasoning domain. Future work could in-
vestigate generalizing Multi-TAG to work on other
domains. Also, we only experiment with a fixed
set of three tools. Future work could investigate
adding more domain specialized tools.

8 Ethical Consideration

This study is restricted to the domain of mathemat-
ical problem solving, which inherently limits the
likelihood of generating harmful or biased content.
Our proposed method, Multi-TAG , is evaluated
using publicly available models—LLaMA-3-70B,
LLaMA-3.3-70B, and GPT-40—without any addi-
tional fine-tuning or model training. Consequently,
no new artifacts were introduced. Any potential
biases in model outputs are attributable to the under-
lying models or the phrasing of the input prompts.
We did not observe any instances of harmful or
inappropriate content during our evaluations.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Com-
putational Linguistics: Student Research Workshop,
pages 225-237.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021a. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021b. Training verifiers to solve math word prob-
lems. Preprint, arXiv:2110.14168.

Debrup Das, Debopriyo Banerjee, Somak Aditya,
and Ashish Kulkarni. 2024. Mathsensei: A tool-
augmented large language model for mathematical
reasoning. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 942-966.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,

25273

https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168

T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.7Z.Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764—10799. PMLR.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang,
Minlie Huang, Nan Duan, Weizhu Chen, et al. 2024.
Tora: A tool-integrated reasoning agent for mathemat-
ical problem solving. In The Twelfth International
Conference on Learning Representations.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math rea-
soning with self-evolved deep thinking. Preprint,
arXiv:2501.04519.

Masoud Hashemi, Oluwanifemi Bamgbose, Sathwik Te-
jaswi Madhusudhan, Jishnu Sethumadhavan Nair,
Aman Tiwari, and Vikas Yadav. 2025. Dna
bench: When silence is smarter-benchmarking over-
reasoning in reasoning llms. CoRR.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. In The 62nd Annual Meeting of the Association
for Computational Linguistics.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. In Workshop on Reasoning and Planning for
Large Language Models.

OpenAl 2022. Chatgpt: Optimizing language models
for dialogue. Accessed: 2025-05-20.

OpenAl 2023. Gpt-4 technical report. Accessed: 2025-
05-20.

OpenAl. 2024. Openai ol system card.

Bhargavi Paranjape, Scott Lundberg, Sameer Singh,
Hannaneh Hajishirzi, Luke Zettlemoyer, and
Marco Tulio Ribeiro. 2023. Art: Automatic multi-
step reasoning and tool-use for large language mod-
els. arXiv preprint arXiv:2303.09014.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080-2094, Online.
Association for Computational Linguistics.

Meghana Rajeev, Rajkumar Ramamurthy, Prapti
Trivedi, Vikas Yadav, Oluwanifemi Bamgbose, Sath-
wik Tejaswi Madhusudan, James Zou, and Nazneen
Rajani. 2025. Cats confuse reasoning llm: Query
agnostic adversarial triggers for reasoning models.
arXiv preprint arXiv:2503.01781.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
Preprint, arXiv:2302.04761.

Parshin Shojaee, Iman Mirzadeh, Keivan Alizadeh,
Maxwell Horton, Samy Bengio, and Mehrdad Fara-
jtabar. 2025. The illusion of thinking: Understand-
ing the strengths and limitations of reasoning mod-
els via the lens of problem complexity. Preprint,
arXiv:2506.06941.

25274

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2310.06825
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/research/gpt-4
https://openai.com/index/openai-o1-system-card/
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2302.04761
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941
https://arxiv.org/abs/2506.06941

Zayne Rea Sprague, Fangcong Yin, Juan Diego Ro-
driguez, Dongwei Jiang, Manya Wadhwa, Prasann
Singhal, Xinyu Zhao, Xi Ye, Kyle Mahowald, and
Greg Durrett. 2025. To cot or not to cot? chain-of-
thought helps mainly on math and symbolic reason-
ing. In The Thirteenth International Conference on
Learning Representations.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, et al.
2025. Stop overthinking: A survey on efficient rea-
soning for large language models. arXiv preprint
arXiv:2503.16419.

Llama Team. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun
Luo, Weikang Shi, Renrui Zhang, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2024a. Mathcoder:
Seamless code integration in llms for enhanced math-
ematical reasoning. In ICLR.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai
Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. Preprint,
arXiv:2312.08935.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Yuanzhen Xie, Tao Xie, Mingxiong Lin, WenTao Wei,
Chenglin Li, Beibei Kong, Lei Chen, Chengxiang
Zhuo, Bo Hu, and Zang Li. 2023. Olagpt: Empower-
ing llms with human-like problem-solving abilities.
arXiv preprint arXiv:2305.16334.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, Keming Lu,
Mingfeng Xue, Runji Lin, Tianyu Liu, Xingzhang
Ren, and Zhenru Zhang. 2024. Qwen2.5-math tech-
nical report: Toward mathematical expert model via
self-improvement. arXiv preprint arXiv:2409.12122.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In /CLR.

Shuo Yin, Weihao You, Zhilong Ji, Guoqgiang Zhong,
and Jinfeng Bai. 2024. Mumath-code: Combin-
ing tool-use large language models with multi-
perspective data augmentation for mathematical rea-
soning. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 4770-4785.

Tong Yu, Yongcheng Jing, Xikun Zhang, Wentao Jiang,
Wenjie Wu, Yingjie Wang, Wenbin Hu, Bo Du, and

Dacheng Tao. 2025. Benchmarking reasoning ro-
bustness in large language models. arXiv preprint
arXiv:2503.04550.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wen-
hao Huang, Huan Sun, Yu Su, and Wenhu Chen.
2023. Mammoth: Building math generalist models
through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. Preprint,
arXiv:2503.18892.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun
Luo, Zipeng Qin, Shaoqing Lu, Anya Jia, Lingi Song,
Mingjie Zhan, and Hongsheng Li. 2023. Solving
challenging math word problems using gpt-4 code in-
terpreter with code-based self-verification. Preprint,
arXiv:2308.07921.

25275

https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2308.07921
https://arxiv.org/abs/2308.07921

A Multi-TAG Algorithm Pseudocode

Algorithm 1 Pseudocode for Multi-TAG algo-
rithm
Require: Problem 7P, Toolset 7T =
{Th,T>,...,T;}, Max executors value
m X t, Consistency threshold value thresh
Ensure: Step-by-step solution S, =
[S1,82,...,8,] to P
Initialize current partial solution Sp < |]
forp=0ton —1do
Initialize candidate pool C < |]
for k =1tom x tdo
Invoke k’th executor to generate candi-
date CI;H using t00l T{(x_1) mod)+1> given P
and S,
Append c’; 41 toC

A A

Form candidate partial solution
candy, < [Sp, c’;H]

8: Use completer to generate natural lan-
guage solution completion comp,, given P and
candy,

9: Extract final answer estimate est from
compy,

10 if Consistency gap > thresh then

11: break

12: end if

13: end for

14: Identify most frequent final answer esti-
mate maxest among all est;

15: Shortlist candidates Cgportlist = {c’; 1 |
esty, = maxest}

16: Select ¢, 1 from Cgportlist Whose comp, is
shortest

17: Append ¢, to current partial solution:
SP+1 - [Sp> C;;—i-l]

18: end for

19: return S,, = [s1, S2,. .., Sp)

B Ablation Study

B.1 Token Consumption Cost

We verify that the improvements from Multi-TAG
over baselines are not simply a result of Multi-
TAG utilizing more LLM inference compute (i.e.
using more tokens). To do so, for each of our
simple majority voting baselines, we modify the
number of sampled LLM traces per problem so
that each baseline and Multi-TAG have matching
token consumption costs. Similarly, for each of

our TALM baselines, to increase the amount of to-
kens used to match Multi-TAG, we simply sample
multiple TALM traces for each problem and apply
majority voting over the final answers reached by
the traces.

Token consumption cost is defined as 0.25P+O,
where P is the number of prompt tokens and O
is the number of generated output tokens. The
0.25 weighting of prompt token cost is based on
OpenAl’s GPT-40 API pricing, which as of time of
writing is $2.50 per million prompt tokens and $10
per million output tokens.

We evaluated Multi-TAG and our token
consumption-matched baselines and report the re-
sults in Table 3. For cost-related reasons, we only
evaluate GPT-40 as the backbone LLM for these
experiments. Multi-TAG continues to outperform
the token-matched baselines, achieving superior re-
sults on all four benchmarks and achieving a 7.7%
average accuracy improvement over the strongest
baseline.

B.2 Consistency Threshold

To verify that Multi-TAG’s consistency thresh-
old effectively reduces the token consumption cost
while incurring minimal performance degradation,
we compare the results of running Multi-TAG with
a congistency threshold of 2 and the results of run-
ning Multi-TAG without a consistency threshold.
We also vary the max executors parameter and the
backbone LLM to ensure the effectiveness of the
consistency threshold for all settings. We report the
MATHS500 accuracy and average token consump-
tion cost (as defined in Appendix B.1) per problem
for each of the settings in Table 4.

As shown, the accuracy degradation incurred
by applying the consistency threshold is minimal,
with a maximum degradation of 2.0% and an av-
erage degradation of 0.1%. Meanwhile, the to-
ken consumption cost is significantly reduced in
all settings, with relative reductions ranging from
14.7% to 63.6% and an average relative reduction
of 43.8%. Thus, the consistency threshold effec-
tively reduces the computational cost of Multi-
TAG without compromising its performance.

B.3 Candidate Step Selection

To verify the efficacy of the candidate step selection
algorithm, we study the effects of simplifying the
procedure on performance and token consumption
cost (as defined in Appendix B.1). Recall that the
procedure consists of the following two steps:

25276

Method MATHS500 AIME AMC OlympiadBench Average
CoT (maj@19) 84.2% 10.0% 51.8% 37.7% 45.9%
Python (maj@35) 75.2% 30.0% 63.9% 35.4% 51.1%
WolframAlpha (maj@70) 55.6% 7.8% 22.9% 15.5% 25.5%
CoT + Python + WolframAlpha (maj@33) 84.2% 222% 60.2% 39.0% 51.4%
PAL (maj@34) 71.8% 27.8% 57.8% 32.5% 47.5%
PoT (maj@14) 75.4% 322% 61.4% 35.8% 51.2%
ToRA (maj@6) 82.2% 27.8% 55.4% 40.7% 51.5%
MATHSENSEI (maj@3) 78.4% 13.3% 44.6% 29.2% 41.4%
ReAct (maj@6) 81.0% 222% 62.7% 38.2% 51.0%
Multi-TAG (Ours) 87.0% 344% 71.1% 44.1% 59.2%

Table 3: Results of Multi-TAG and token consumption-matched baselines. The number of sampled traces per problem used
for each token consumption-matched baseline is given as maj@x. For simple multi-tool majority voting (CoT + Python +
WolframAlpha), the 33 traces are split evenly between CoT, Python, and WolframAlpha traces. Best score in each category is

bolded and second best score is underlined. GPT-40 is used as the LLM for these experiments.

LLaMA-3-70B LLaMA-3.3-70B GPT-40
Max Executors With Threshold Without Threshold With Threshold Without Threshold With Threshold Without Threshold
6 67.0% 1 0.2% 66.8% 82.0% | 1.8% 83.8% 82.6% | 1.4% 84.0%
(5361 | 14.7%) (6286) (5967 | 37.6%) (9559) (6090 | 23.8%) (7989)
9 66.2% | 0.4% 66.6% 85.8% 1 1.4% 84.4% 86.4% 1 1.4% 85.0%
(6746 | 25.8%) (9091) (7766 | 44.0%) (13859) (6157 | 40.9%) (10425)
12 68.6% 1 0.2% 68.4% 84.2% | 2.0% 86.2% 87.0% 1 0.8% 86.2%
(7916 | 34.7%) (12124) (7945 | 56.3%) (18190) (7952 | 48.3%) (15376)
15 68.6% | 1.2% 69.8% 86.0% 7 ()7.(}7% 85.4% 87.6% 1 1.2'4 86.4%
(8891 | 40.4%) (14922) (9274 | 58.8%) (22501) (8214 | 52.0%) (17127)
18 67.8% | 1.2% 69.0% 86.6% 1 1.0% 85.6% 85.6% | 0.4% 86.0%
(9918 | 56.7%) (17507) (9727 | 63.6%) (26743) (9005 | 58.8%) (21883)

Table 4: MATH500 scores and average token consumption costs (as defined in Appendix B.1) per problem of Multi-TAG with
and without the consistency threshold. Token consumption costs are in (parentheses).

(1) Identify the most frequent candidate final an-
swer and mark all candidate steps reaching this
final answer.

(2) From the marked candidates, select the candi-
date with the shortest solution completion.

We compare four approaches: Full (the unmodi-
fied algorithm from Multi-TAG with both (1) and
(2)), Answer Only (replacing (2) with randomly se-
lecting a marked candidate), Length Only (replac-
ing (1) with marking all candidates), and Random
(select a random candidate without using either
(1) or (2)). We evaluate Multi-TAG with each
of the modified candidate selection procedures on
MATHS500 and report the results in Table 5.

As shown, all of the simplified candidate selec-
tion procedures significantly underperform the Full
procedure. On average, the performance degrada-
tion is 2.6% for Answer Only, 5.5% for Length
Only, and 7.9% for Random. This demonstrates
the necessity of both steps of the algorithm to max-
imize performance. Furthermore, the results show
the isolated contribution of (2) to computational ef-

ficiency. The only difference between Full and
Answer Only is the inclusion of (2) in the for-
mer, which reduces the token consumption cost by
27.9% on average. Similarly, the only difference
between Length Only and Random is the inclu-
sion of (2) in the former, which reduces the token
consumption cost by 25.5% on average. These re-
sults demonstrate that (2) additionally improves the
computational efficiency of Multi-TAG.

C Costs Analysis

C.1 Main Results Token Consumption Cost

Table 6 reports the average token consumption cost
(as defined in Appendix B.1) per problem for all
results in the main results (Table 1).

C.2 Multi-TAG API Calls Consumption

Table 7 reports the average number of LLM API
calls per step, average number of steps used per
problem, and average number of LLM API calls
per problem for Multi-TAG results in Table 1.

252717

Next Step Selection Procedure = LLaMA-3-70B LLaMA-3.3-70B GPT-40
Full 68.6% 84.2% 87.0%
u (7916) (7945) (7952)
A onl 64.8% | 3.8% 832% | 1.0% 84.0% | 3.0%
nswer Uty (94921 19.9%) (115381 45.2%) (94201 18.5%)
Leneth Onl 56.8% | 11.8% 82.0%] 2.2% 84.6%] 2.4%
ength nly (7548 | 4.6%) (93251 17.4%) (7412] 6.8%)
Randorn 54.8%) 13.8% 78.8%) 54% 82.4% | 4.6%

(10023 1 26.6%)

(12635 1 59.0%) (9976 1 25.5%)

Table 5: MATHS00 scores and average token consumption cost (as defined in Appendix B.1) per problem of Multi-TAG with
the proposed and simplified candidate step selection procedures. Token consumption costs are in (parentheses).

D LLM Prompts

We provide the LLLM prompts used for all com-
ponents of Multi-TAG in Appendix D.1 and the
prompts used for all simple baselines in Appendix
D.2. Prompts used for TALM baselines can be
found in the Multi-TAG GitHub °.

D.1 Multi-TAG Prompts

CoT Executor System Prompt

Format the answer by enclosing the answer
within <final_answer></final_answer> and

putting the answer within \boxed{{}}. For
example:

<final_answer>

The final answer is \boxed{{[final answer
formatted using LaTeX]}}

</ final_answer >

Python Executor System Prompt

You are a math problem solving agent working
on solving a problem iteratively . The
problem and the current progress will be
given below. The current progress consists
of a sequence of steps separated by "——-"
which may consist of natural language
reasoning , Python scripts , and WolframAlpha
queries. Python script execution outputs are
given at the bottom of a step within “‘f
output ‘*‘, and WolframAlpha query results
are given at the bottom of a step within
result “‘‘. Your task is to write the next
step in the solution in the form of natural
language reasoning .

X33

If the solution is complete, you may give
the final answer (NOTE: you may not give the
final answer if you also write a step. Only
give the final answer if the solution is
complete without you writing an additional
step). Express the answer using LaTeX
formatting and do not include units or other
unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for
example expressed as a decimal. Do not round
final answers that are decimals. Make sure
to read the question carefully and answer
exactly what the problem is asking for.

SWill be released soon

You are a math problem solving agent working
on solving a problem iteratively . The
problem and the current progress will be
given below. The current progress consists
of a sequence of steps separated by "———"
which may consist of natural language
reasoning , Python scripts , and WolframAlpha
queries. Python script execution outputs are
given at the bottom of a step within ‘¢
output ‘*‘, and WolframAlpha query results
are given at the bottom of a step within
result ““‘. Your task is to write the next
step in the solution in the form of a Python
script and a brief explanation of what your
script calculates .

33

If the solution is complete, you may give
the final answer (NOTE: you may not give the
final answer if you also write a step. Only
give the final answer if the solution is
complete without you writing an additional
step). Express the answer using LaTeX
formatting and do not include units or other
unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for
example expressed as a decimal. Do not round
final answers that are decimals. Make sure
to read the question carefully and answer
exactly what the problem is asking for.
Format the answer by enclosing the answer

25278

Model Method MATHS500 AIME AMC OlympiadBench Average

CoT 348 790 583 521 561
Python 97 153 128 135 128
WolframAlpha Query 130 194 158 168 163
g CoT MV 3757 6220 5127 5922 5257
o Python MV 1160 1832 1629 1644 1566
o« WolframAlpha MV 1584 2318 1939 2049 1973
é CoT + Python + WolframAlpha MV 2236 3928 2868 3203 3059
3 PAL 280 355 379 318 333
—~ PoT 566 621 610 613 603
ToRA 1261 1437 1299 1420 1354
MATHSENSEI 2730 3298 3049 3139 3054
ReAct 1386 2242 1784 1883 1824
Multi-TAG (Ours) 7916 14448 12125 12567 11764
CoT 610 929 885 886 828
Python 206 457 319 250 308
WolframAlpha 148 231 184 197 190
g CoT MV 7303 11813 10877 10558 10138
C[I Python MV 2448 4326 3946 3049 3442
e WolframAlpha MV 1808 3167 2329 2330 2409
<IC CoT + Python + WolframAlpha MV 3845 6381 5572 5286 5271
czcs PAL 386 677 585 475 531
j PoT 609 817 753 697 719
ToRA 2149 3824 2610 2913 2874
MATHSENSEI 3974 5247 5174 5099 4874
ReAct 1436 2627 3181 2295 2385
Multi-TAG (Ours) 7945 17809 11756 14186 12924
CoT 582 992 909 837 830
Python 287 521 353 390 388
WolframAlpha Query 129 234 233 197 198
CoT MV 6485 9889 9306 8885 8641
o Python MV 3195 5375 5142 4373 4521
~ WolframAlpha MV 1614 2847 2466 2205 2283
E CoT + Python + WolframAlpha MV 3519 5854 5096 5193 4916
© PAL 328 442 426 394 398
PoT 837 1140 1013 1006 999
ToRA 1520 3801 2686 2329 2584
MATHSENSEI 3915 5579 4948 5009 4863
ReAct 1518 3355 2857 2496 2557
Multi-TAG (Ours) 7952 18650 12285 13823 13178
Table 6: Average token consumption cost (as defined in Appendix B.1) per problem for all results in Table 1
within <final_answer></final_answer> and The final answer is \boxed{{[final answer
putting the answer within \boxed{{}}. For formatted using LaTeX]}}
example: </ final_answer >

<final_answer>

25279

Model MATH500 AIME AMC OlympiadBench
Calls Steps Calls Calls Steps Calls Calls Steps Calls Calls Steps Calls
per per per per per per per per per per per per
Step Problem Problem Step Problem Problem Step Problem Problem Step Problem Problem
LLaMA-3-70B 9.99 2.85 28.49 | 13.56 2.79 37.82 | 11.86 2.93 3472 | 12.09 2.96 35.79
LLaMA-3.3-70B 7.31 2.52 18.41 9.67 2.72 26.31 8.21 2.58 21.16 9.20 2.66 24.52
GPT-40 7.98 2.39 19.11 11.47 2.69 30.84 9.44 2.47 2333 | 10.25 2.56 26.25

Table 7: Average number of LLM API calls per step, average number of steps per problem, and average number of LLM API

calls per problem for Multi-TAG results in Table 1.

To write the next step, you must follow the
following format:

“““ python

[Python script , assigning the desired output
to the ‘result © global variable]

[Brief explanation of what your script
calculates]

WolframAlpha Executor System Prompt

You are a math problem solving agent working
on solving a problem iteratively . The
problem and the current progress will be
given below. The current progress consists
of a sequence of steps separated by "———"
which may consist of natural language
reasoning , Python scripts , and WolframAlpha
queries. Python script execution outputs are
given at the bottom of a step within “‘f
output ‘*‘, and WolframAlpha query results
are given at the bottom of a step within
result ““‘. Your task is to write the next
step in the solution in the form of a
WolframAlpha query and a brief explanation
of what your query calculates .

X3

If the solution is complete, you may give
the final answer (NOTE: you may not give the
final answer if you also write a step. Only
give the final answer if the solution is
complete without you writing an additional
step). Express the answer using LaTeX
formatting and do not include units or other
unnecessary text in the answer. It’s okay to
leave the final answer unsimplified , for
example expressed as a decimal. Do not round
final answers that are decimals. Make sure
to read the question carefully and answer
exactly what the problem is asking for.
Format the answer by enclosing the answer

within <final answer></final_answer> and
putting the answer within \boxed{{}}. For
example:

<final_answer>

The final answer is \boxed{{[final answer
formatted using LaTeX]}}

</ final_answer >

To write the next step, you must follow the
following format:

*““ wolfram

[WolframAlpha query]

[Brief explanation of what your query
calculates]

Executor User Prompt

Problem
{problem}

Partial Solution
{ progress }

Final Instructions

Above are the problem and potentially
incomplete solution . Note that the partial
solution has already been verified for
accuracy, so you should assume it is correct
. Write the next step or give the final
answer if the partial solution is complete.
Remember that you must write a step of the
specified form above (or give the final
answer using the specific format above).
You must write a single logical step (or
give the final answer), and stop after
completing a single step.

Solution Completion System Prompt

You are a math problem solver working on
completing a partial solution to a problem.

25280

solution will be
solution consists

"

The problem and partial
given below. The partial
of a sequence of steps separated by "—-—
which may consist of natural language
reasoning , Python scripts , and WolframAlpha
queries. Python script execution outputs are
given at the bottom of a step within *‘f
output ‘*‘, and WolframAlpha query results
are given at the bottom of a step within
result ‘. Your task is to continue the
partial solution to finish solving the
problem. You may only use natural language
reasoning in your response (you may not use
Python or WolframAlpha). Enclose the final
answer within \boxed{}. Express the answer
using LaTeX formatting and do not include
units or other unnecessary text in the
answer. It’s okay to leave the final answer
unsimplified , for example expressed as a
decimal. Do not round final answers that are
decimals. Make sure to read the question
carefully and answer exactly what the
problem is asking for.

X33

Python User Prompt

Solve the following problem by writing a
single Python script . Your script should be
enclosed within ““‘python ‘‘‘. You may only
write a single Python script in your
response. Do not include units or other
unnecessary text in the answer. Your answer
should be submitted by assigning the answer
to the "result" global wvariable .

X33

{problem}

WolframAlpha User Prompt

Solve the following problem by writing a
single WolframAlpha query. Your
WolframAlpha query must be enclosed within
““wolfram ‘‘‘. You may only write a single
WolframAlpha query in your response.

X33

{problem}

Convert WolframAlpha Output to LaTeX User Prompt

Solution Completion User Prompt

Problem
{problem }

Partial
{ progress }

Solution

Final Instructions

Above are the problem and partial solution
to continue. Note that the partial solution
has already been verified for accuracy, so
you should assume it is correct . Continue
the partial solution to finish solving the
problem. You don’t need to follow any
specific format like the step—by-step format
of the partial solution .

Here is the output from your query:
“““ result
{output }

xX3

Now, give the final answer to the problem.
Express the final answer using LaTeX
formatting and enclose it within \boxed{{}}.
Do not include units or other unnecessary
text in the answer. Your response must only
contain the final answer and nothing else.

D.2 Baseline Prompts

CoT User Prompt

Solve the following problem step by step.
Express the final answer using LaTeX
formatting and enclose it within \boxed{{}}.
Do not include units or other unnecessary
text in the answer.

{problem}

E Full Multi-TAG Trace

Below is a full Multi-TAG solution trace demon-
strating Multi-TAG’s ability to effectively leverage
different tools to solve a challenging math problem.
This solution trace is extracted from the GPT-40
MATHS500 main results.

Problem:

Find the maximum value of

flz,y) =21 -y +yV1—22

where —1 < z,y < 1.
Step 1 (CoT):
To find the maximum value of the function

flx,y) =21 —y2 +yvV1—2a?

25281

we can start by using the method of Lagrange mul-
tipliers. We will define a new function

g(z,y) =a* +y* — 1

to represent the constraint 2 4 y? = 1.
The method of Lagrange multipliers states that
we need to solve the system of equations given by

Vf=AVyg

and the constraint equation g(x,y) = 0.
First, we will compute the gradients of f and g.
The gradient of f is:

_(of of
V= <8x 8y>

The gradient of g is:

9g Oy
Vg=|=,=—].
g (895 ay>
Let’s find these partial derivatives.

Step 2 (Python):

Python Code

Step 3 (WolframAlpha):

WolframAlpha Query

solve [—xxy/sqrt(l — x#%2) + sqrt(l — y*x2)
= 2xx lambda, —x=y/sqrt(l — y=x2) + sqrt(l —
x#%2) = 2%y lambda, x"2 + y*2 = 1]

This query solves the system of equations de-
rived from the gradients of f and g using the
method of Lagrange multipliers, along with the
constraint equation z2 + y? = 1.

import sympy as sp

Define the variables
X, y = sp.symbolsCx y’)

Define the function f and the constraint g
f =x % sp.sqrt(l — y#x2) +y = sp.sqrt (1 —
X#%2)

g = X#%2 4+ y#x2 — 1

Calculate the gradient of f
grad_f = [sp. diff (f, var) for var in (X, y)]

Calculate the gradient of g
grad_g = [sp. diff (g, var) for var in (x, y)]

result = (grad_f, grad_g)

This script calculates the gradients of the func-
tions f and g. The gradients are essential for setting
up the system of equations for the method of La-
grange multipliers.

Python Code Output

([-x=xy/sqrt (1 — x#x2) + sqrt (1 — y*x2), —
y/sqrt(1 — y=x2) + sqrt (1 — x*%2)], [2%x, 2x
yD

WolframAlpha Result
y = —sqrt(1 —x\"2), lambda=0, y = sqrt(1
- x\"2), lambda =0
Step 4 (CoT):

Given the solutions y = 1 —22 and y =
—+/1 — 22 from the Lagrange multipliers method,
we need to evaluate the function f(x,y) at these
points to find the maximum value.

First, consider y = v/1 — 22
fl@,V1-a2)
= w\/l —

V1222 4122122
=xy/1—(1—22)+ (1 —-2?
:a:\/p+(1—a;2)

= z|z| + (1 — 2?)

Since —1 <z < 1, z|z| = 2%

flz,vV/1—22) =22+ (1 —2?)
=1

—V1—z2:
flz,—V1—2?)

—x\/l— —V/1-22 224 (=V1 — 22)y/1 — 22

Next, consider y =

=21 - (1—22)—(1—2?
= 2Vz? — (1 —2?)
el — (1 - 2?)

Again, since —1 < z < 1, z|z| = 2%

fla,—V1-a?) =2~ (1-a?)
=22 —1+2?
=227 — 1

The maximum value of 22:2 — 1 over the interval
—1 <z <1is1, which occurs at z = +1.
Thus, the maximum value of f(x,y) is[1]

25282

