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Abstract

Large Language Models (LLMs) inevitably ac-
quire harmful information during training on
massive datasets. LLM unlearning aims to elim-
inate the influence of such harmful information
while maintaining the model’s overall perfor-
mance. Existing unlearning methods, repre-
sented by gradient ascent-based approaches,
primarily focus on forgetting target data while
overlooking the crucial impact of logically re-
lated knowledge on the effectiveness of unlearn-
ing. In this paper, through both theoretical and
experimental analyses, we first demonstrate
that a key reason for the suboptimal unlearn-
ing performance is that models can reconstruct
the target content through reasoning with logi-
cally related knowledge. To address this issue,
we propose Unlearning Improvement via Pa-
rameter Extrapolation (UIPE), a method that
removes knowledge highly correlated with the
forgetting targets. Experimental results show
that UIPE significantly enhances the perfor-
mance of GA-based method and its variants
on the TOFU and WMDP benchmarks.

1 Introduction

Large language models (LLMs) trained on mas-
sive datasets show exceptional capabilities (Kaplan
et al., 2020; Wei et al., 2022). However, such ex-
tensive datasets inevitably contain harmful infor-
mation, which diminishes model performance and
may cause societal challenges (Yao et al., 2024). To
mitigate such issues, LLM unlearning has emerged
as a critical research direction. LLM unlearning
aims to mitigate the influence of undesired data
(Cao and Yang, 2015; Liu et al., 2025; Wang et al.,
2023; Eldan and Russinovich, 2023; Liu et al.,
2024c). Gradient ascent-based (GA) LLM unlearn-
ing has emerged as one of the predominant method-
ologies in this field (Jang et al., 2022).
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Figure 1: UIPE is motivated by the observation that after
gradient ascent unlearning of John’s private data, the
model still retains logically related knowledge, allowing
it to infer the forgotten information.

Recent work has increasingly focused on enhanc-
ing GA-based unlearning method. A prevalent ap-
proach regularizes the objective by combining for-
getting and utility losses, aiming to forget specific
data while preserving performance, such as Grad.
Diff. (Yao et al., 2023) and KL Min. (Chen and
Yang, 2023). Additionally, inspired by Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2024),
negative preference optimization (NPO) alleviates
catastrophic collapse during the forgetting process
(Zhang et al., 2024b). Despite these advancements,
effective unlearning techniques for LLMs remain
an open challenge (Maini et al., 2024; Choi et al.,
2024; Shumailov et al., 2024).

We hypothesize that a key factor contributing to
the suboptimal unlearning performance of LLMs
is their ability to infer knowledge that should have
been forgotten by leveraging logically related infor-
mation. For instance, as shown in Figure 1, even
if a model forgets the knowledge “Patient John
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is diagnosed with diabetes” from the target forget
set, it may still reconstruct this knowledge through
related knowledge outside the target forget dataset,
such as “Patient John requires regular insulin ad-
ministration” and “Insulin is a standard treatment
for diabetes management”.

To validate our hypothesis, we conduct a prelim-
inary experiment using a virtual character dataset,
which contains both a target forget set and a re-
lated knowledge set (§4). Our results reveal that
when a model is trained on both sets, unlearning
only the target forgetting set is insufficient for com-
plete knowledge removal. However, when related
knowledge is included in the unlearning process,
the model demonstrates significantly improved for-
getting effectiveness on the target forget set. These
findings suggest that LLMs can reconstruct target
knowledge that should be forgotten by related in-
formation.

Given that LLMs are trained on massive datasets,
and their training data is often inaccessible, con-
structing complete related knowledge sets remains
a major challenge. This raises a crucial question:
Can related knowledge unlearning be achieved
without requiring additional training data? To ad-
dress this, we propose UIPE (Unlearning Improve-
ment via Parameter Extrapolation), a plug-and-play
auxiliary unlearning method (§5). This method is
founded on a crucial observation: the unlearning of
target knowledge triggers the forgetting of related
knowledge. This phenomenon stems from the fact
that related knowledge exhibits similar distribu-
tion characteristics in the parameter space, leading
to highly correlated gradient changes (Qin et al.,
2024; Xie et al., 2024). By amplifying the gradient
ascent updates on the target forget set, we extend
its gradient update effects to the related knowledge
set, significantly enhancing the model’s capability
to forget related knowledge. Experimental evalua-
tions on the TOFU and WMDP benchmarks, con-
ducted across models such as Llama2-7B-chat and
Zephyr-7B-beta, demonstrate that our method en-
ables diverse unlearning approaches to achieve an
optimal trade-off between forget quality and model
utility preservation.

We summarize our contributions below.

• We identify the limitation of the GA method
in unlearning related knowledge, which we
found to be a key factor behind the unsatisfac-
tory unlearning performance of models.

• We introduce the UIPE method, which uti-

lizes parameter extrapolation to enhance the
model’s ability to forget related knowledge.

• We conduct experiments on various GA-based
unlearning methods using the TOFU and
WMDP benchmarks. The results demon-
strate that UIPE facilitates a more optimal
balance between model utility and forget qual-
ity across these methods.

2 Related Work

2.1 Machine unlearning
Machine unlearning, a concept rooted in data pro-
tection regulations like the ‘right to be forgotten’
(Rosen, 2011), has evolved beyond its initial scope
of general data protection frameworks (Cao and
Yang, 2015; Hoofnagle et al., 2019; Bourtoule et al.,
2021; Nguyen et al., 2022). The field has experi-
enced rapid expansion, with applications now span-
ning multiple domains, including image classifi-
cation (Ginart et al., 2019; Golatkar et al., 2020;
Kurmanji et al., 2024; Jia et al., 2023), genera-
tive AI tasks such as text-to-image and image-to-
image synthesis (Zhang et al., 2024a; Kumari et al.,
2023; Gandikota et al., 2023; Fan et al., 2024b;
Li et al., 2024a), and federated learning systems
(Wang et al., 2022; Liu et al., 2024d).

In the research literature, ‘exact’ unlearning
refers to the complete retraining of a model while
excluding the designated forgotten data points
(Nguyen et al., 2022; Jia et al., 2023; Fan et al.,
2024a). However, this approach has practical lim-
itations due to high computational costs and data
access requirements, leading to the development
of more efficient ‘approximate’ unlearning meth-
ods (Golatkar et al., 2020; Graves et al., 2021;
Chen et al., 2023; Kurmanji et al., 2024; Jia et al.,
2023). Furthermore, several methodologies now
offer provable and certified data removal guaran-
tees (Guo et al., 2019; Ullah et al., 2021; Sekhari
et al., 2021).

2.2 LLM unlearning
The importance of unlearning in LLMs has increas-
ingly emerged, attracting more and more attention
(Liu et al., 2025; Zhang et al., 2023; Ye et al., 2025).
Several research efforts have focused on employ-
ing gradient ascent techniques to achieve forget-
ting in target datasets (Jang et al., 2022; Yao et al.,
2023; Chen and Yang, 2023; Maini et al., 2024;
Zhang et al., 2024b). Meanwhile, WHP and its
improved variant construct the teacher distribution
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through a name replacement strategy to achieve
the goal of forgetting target knowledge (Eldan and
Russinovich, 2023; Liu et al., 2024b). SOUL in-
vestigated the impact of second-order optimizers
on unlearning effectiveness (Jia et al., 2024). Some
unlearning methods have explored the data-model
interactions that could influence LLM unlearning,
such as weight localization-based unlearning (Yu
et al., 2023; Jia et al., 2025), achieving forgetting
through modifications to LLMs’ hidden represen-
tations (Li et al., 2024b) or perturbations to the
model’s embedding layer (Liu et al., 2024a). Ad-
ditionally, ULD achieved unlearning through an
auxiliary smaller model (Ji et al., 2024). Finally,
researchers have developed several benchmarks for
evaluating LLM unlearning effectiveness, such as
TOFU for fictitious unlearning (Maini et al., 2024),
WMDP for unlearning hazardous knowledge in
LLMs (Li et al., 2024b) and RWKU for zero-shot
konwledge unlearning (Jin et al., 2024).

3 Preliminaries

3.1 Unlearning

LLM unlearning strives to eliminate undesired
data without significantly compromising the over-
all performance of large language models. We rep-
resent question-answer pairs derived from specific
factual knowledge ki as (xi, yi), where xi denotes
the question and yi represents the corresponding
answer. Given a dataset D = {(xi, yi)}ni=1 con-
taining n question-answer pairs, let Pθ be a model
trained on D. The goal of LLM unlearning is to en-
sure that Pθ completely forgets the knowledge con-
tained in the target forget set Df = {(xi, yi)}mi=1

(m < n). After unlearning, the model’s perfor-
mance should be indistinguishable from a model
trained exclusively on the retained dataset Dr =
D\Df .
Evaluation of LLM unlearning effectiveness is typ-
ically assessed along two key dimensions (Maini
et al., 2024): model utility, which measure the gen-
eral capabilities of the unlearned model, and forget
quality, which quantifies the extent to which the
targeted knowledge has been successfully removed.
Gradient ascent is an important method for LLM
unlearning, designed to reverse the optimization
process on a designated forget set. The method
builds upon the standard training paradigm of the
Pθ, which minimizes the prediction loss over the
full dataset D. To enforce forgetting, gradient as-
cent maximizes the prediction loss on the target

forget subset Df , effectively approximating the re-
versal of the original optimization process. This
procedure can be equivalently interpreted as per-
forming gradient descent on the negative prediction
loss (Zhang et al., 2024b). The gradient ascent ob-
jective, denoted as LGA, is formulated as:

LGA(θ) = EDf
[log (Pθ (y|x))] . (1)

3.2 Similar Parameter Distribution of Related
Knowledge

In this paper, related knowledge refers to knowl-
edge that is logically connected to a target piece
of knowledge and can be used to infer or recon-
struct it. Even after direct unlearning, an LLM
may still recall forgotten information by leveraging
related knowledge. Formally, given a knowledge
instance ki in the target forget set, another knowl-
edge instance k′i is considered related knowledge
if the model can logically derive ki from k′i using
its internal reasoning mechanisms.

In LLMs, related knowledge typically exhibits
similar storage distribution patterns, leading to cor-
related parameter updates during model training
(Qin et al., 2024).When modeling the storage char-
acteristics of ki and k′i in the model through gra-
dients, these related knowledge instances often
demonstrate high cosine similarity in their gradi-
ents. For example, consider two related question-
answer pairs: based on knowledge ki, the pair
(xi, yi) consists of "What is patient John’s condi-
tion?" and "Patient John has been diagnosed with
diabetes.", while based on knowledge k′i, the pair
(x′i, y

′
i) consists of "What treatment did John re-

ceive?" and "Patient John requires regular insulin
injections.". When modeling the storage distribu-
tion of ki and k′i using gradients, their respective
gradients ∇θPθ (yi|xi) and ∇θPθ (y′i|x′i) exhibit
high cosine similarity, indicating their interdepen-
dence. This similarity is quantified as:

Rθ(ki, k
′
i) = cos

(
∇θPθ (yi|xi) ,∇θPθ

(
y′i|x′i

))

(2)

4 Preliminary Experiments

To validate this hypothesis that LLMs can leverage
related knowledge to reconstruct forgotten knowl-
edge, we first construct a target forget set along
with a corresponding related knowledge set, and
then conduct a series of comparative experiments
to systematically evaluate this phenomenon.
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4.1 Data Construction and Evaluation
Metrics

We construct a comprehensive synthetic personal
dataset comprising two subsets: a target forget set
and a related knowledge set. Specifically, we uti-
lize GPT-4 to generate experimental data for 12
fictional individuals, each characterized by 10 spe-
cific attributes (e.g., biometric features, address,
etc.). For each attribute, we meticulously design
two corresponding question-answer pairs: (xi, yi)
explicitly describes the personal information asso-
ciated with the attribute, while (x′i, y

′
i) is logically

related to (xi, yi), and can be inferred from it based
on the model’s inherent common-sense reasoning
capabilities. Detailed prompts and data samples
are provided in Appendix A.

To assess the effectiveness of unlearning, we
evaluate model utility using ROUGE-L (Lin, 2004)
scores on the TruthfulQA (Lin et al., 2022) dataset.
Meanwhile, we measure forget quality by comput-
ing ROUGE-L scores on the target forget set.

4.2 Impact of Related Knowledge on LLM
Unlearning

In this experiment, we investigate the influence of
related knoweldge on the effectiveness of unlearn-
ing in LLMs, using LLaMA-2-7b-chat (Touvron
et al., 2023) as the research subject. By applying
different combinations of training data and unlearn-
ing operations, we construct multiple model vari-
ants to systematically analyze how related knowl-
edge affects the unlearning process. Table 1 pro-
vides the detailed experimental configurations.

• We first fine-tune the LLaMA-2-7b-chat on both
the target forget set and related knowledge set, al-
lowing it internalize all relevant knowledge. We
then apply the GA method to unlearn only the
target forget set, resulting in model Pθ1 . It simu-
lates the unlearning process in real scenarios.

• We fine-tune the LLaMA-2-7b-chat exclusively
on the target forget set, ensuring it has no prior
exposure to related knowledge. We then apply
the GA method to unlearn the target forget set,
yielding model Pθ2 .

From Figure 2, we can draw the following
conclusions: Models can reconstruct forgotten
knowledge by leveraging related knowledge.
Compared to Pθ2 , Pθ1 exhibits poorer model util-
ity and lower forget quality. The key difference

Table 1: Variant Models with their corresponding train-
ing data and unlearning operations.

Model Fine-Tune Dataset Unlearning Dataset

Pθ1
target forget set

related knowledge set
target forget set

Pθ2 target forget set target forget set

0 1 2 3 4 5 6 7 8 9 1 00 . 2 2
0 . 2 4
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0 . 2 8
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Figure 2: Model unlearning performance over 10
epochs. Left: Model utility (higher Rouge-L score
indicates better utility). Right: Forget quality (lower
Rouge-L score indicates unlearning effectiveness).

between these models is Pθ1 was trained on both
the target forget set and the related knowledge set,
whereas Pθ2 was trained only ont the target forget
set. Consequently, even after unlearning the target
forget set, Pθ1 can still reconstruct the forgotten
knowledge by leveraging related knowledge, lead-
ing to suboptimal forgetting performance. This
finding validates our hypothesis.

Despite this finding, an intuitive solution is to
introduce a relevant knowledge set for training dur-
ing the unlearning phase. However, real-world
applications remain challenging. The vast scale of
LLM training data and the difficulty of identify-
ing internal knowledge make constructing a com-
prehensive related knowledge set infeasible. This
raises a critical question: Can related knowledge
be unlearned without additional training data?

5 Methodology

5.1 Rethinking the Effectiveness of GA

Inspired by the theory of Similar Parameter Distri-
bution of Related Knowledge (§3.2), in the LLM
unlearning, we propose that forgetting the target
knowledge may inadvertently lead to the forgetting
of the associated knowledge. To verify this, we
design the following experiment. We introduce an
irrelevant dataset (containing information about vir-
tual place names, Examples in Appendix A) to the
synthetic personal dataset described in Section 4.1.
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This results in three distinct dataset categories: a
target forget set, a related knowledge set, and an
irrelevant knowledge set. We fine-tune Llama-2-
7B-chat on the combined data to obtain a fine-tuned
model. Based on this model, we perform two un-
learning procedures: (1) remove only the target
forget set from the fine-tuned model, and (2) re-
move only the irrelevant knowledge set from the
fine-tuned model. We then evaluate the model’s
performance on the related knowledge set in both
cases. The results are shown in Figure 3.
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Figure 3: Forget quality on the related knowledge set
over 10 unlearning epochs (lower Rouge-L score indi-
cates better quality).

From Figure 3, we find that when forgetting the
target knowledge, the model significantly forget
the related knowledge compared with forgetting
the irrelevant knowledge.

We first analyze how the GA method facili-
tates the forgetting of target knowledge. For-
mally, we use Pθini

denote the initial model cor-
responding to Pθ1 that has only undergone fine-
tune without unlearning training. For any example
ki = (xi, yi) in the target forget set (its correspond-
ing example k′i = (x′i, y

′
i) in the related knowledge

set), the GA method performs gradient ascent on
model Pθini

, with the parameter update expressed
as:

θ1 = θini + η · ∇θLGA (θini)

= θini + η · ∇θPθini
(yi|xi)

Pθini
(yi|xi)︸ ︷︷ ︸

v

(3)

where vector v represents the parameter update
of model Pθini

on ki, ∇θPθini
(yi|xi) is the gra-

dient of ki in the model and η is the learning
rate. Namely, θini is updated in the direction of

∇θPθini
(yi|xi). Therefore, when the model up-

dates its parameters along the gradient direction of
the knowledge in the model, it leads to the forget-
ting of this knowledge.

GA

Figure 4: The parameter update vector v in the gradient
direction of ki also induces a projected update v′ in the
gradient direction of k′i.

Furthermore, we analyze how GA is capa-
ble of forgetting related knowledge. Based
on the theory of related knowledge sharing sim-
ilar parameter distributions, we model the stor-
age distributions of knowledge ki and k′i using
the gradients ∇θPθini

(yi|xi) and ∇θPθini
(y′i|x′i)

in the model Pθini
. Since v and ∇θPθini

(yi|xi)
share the same direction, the cosine similar-
ity Rθini

(ki, k
′
i) between ∇θPθini

(yi|xi) and
∇θPθini

(y′i|x′i) is also the cosine similarity be-
tween v and ∇θPθini

(y′i|x′i). This results in v
having a projection component in the direction of
∇θPθini

(y′i|x′i), as illustrated in Figure 4, denoted
as v′. The expression for v′ can be derived using
the projection formula as follows:

v′ = |v| · Rθini
(ki, k

′
i) · v′o (4)

where v′o is the unit vector of ∇θPθini
(y′i|x′i).

Therefore, the update of the model parameters also
generates a projection component in the direction
of the gradient of the related knowledge, leading to
the forgetting of that knowledge.

However, updates through the projection rela-
tionship are limited. Once the model Pθini

has com-
pletely forgotten knowledge ki,∇θPθini

(yi|xi) no
longer represents the storage of ki in Pθini

. Conse-
quently,Rθini

(ki, k
′
i) becomes meaningless, caus-

ing the projection relationship in Equation 4 to fail.
This prevents parameter updates in the gradient di-
rection of knowledge k′i, thus making it impossible
to continue forgetting knowledge k′i. Therefore,
GA training on the target forget set (regardless of
how large the learning rate is) cannot effectively
address the forgetting of related knowledge.
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UIPE

Figure 5: UIPE amplifies the existing parameter update
v through linear extrapolation, correspondingly ampli-
fying the projection v′.

5.2 UIPE
Based on the observations and analyses in Section
5.1 demonstrating that model unlearning on the tar-
get forget triggers unlearning effects in the related
knowledge, we leverage the projection relationship
between v and v′ to achieve related knowledge un-
learning without additional data, thereby proposing
the UIPE method.

Specifically, we aim to extrapolate the existing
parameter update v made on ki. Correspondingly,
the existing update of the projection v′ in the di-
rection of ∇θPθini

(y′i|x′i) is also extrapolated to
achieve more thorough forgetting of the related
knowledge. In this paper, we utilize linear extrapo-
lation (as illustrated in Figure 5, simply amplifying
the existing updates). The UIPE method can be
expressed as:

θuipe = θini + (1 + α) · v (5)

where α is an amplify coefficient controlling the
amplification magnitude of v. This formula shows
that compared to the original gradient ascent up-
date 3, the UIPE method adds an amplified update
vector (1 + α) · v to the initial model parameters
θini, with the amplification degree controlled by
the scalar α. Based on Equation 4, the projection
of the amplified update vector (1 + α) · v in the
direction of∇θPθini

(y′i|x′i) can be expressed as:

(1 + α) · v′ = |(1 + α) · v| · Rθini
(ki, k

′
i) · v′o

(6)

UIPE increases the model’s parameter updates
in the direction of ∇θPθini

(y′i|x′i) by amplify-
ing v. More importantly, due to the presence of
Rθini

(ki, k
′
i), when the update vector v is ampli-

fied by a fixed coefficient α, UIPE performs larger
parameter updates in the corresponding direction

for knowledge k′i that exhibits stronger correlation
with knowledge ki (higher values ofRθini

(ki, k
′
i)).

Notably, simply increasing the learning rate can-
not replace UIPE. During the GA, increasing the
learning rate aims to accelerate the forgetting of
target knowledge. However, as can be seen from
Section 5.1, even in the most ideal scenario—where
the model completely forgets the target knowledge
—the unlearning performance on related knowledge
remains poor.

The detailed algorithm flow and practical opera-
tions of UIPE are provided in Appendix C.

6 Experiments

6.1 Experimental setup

Datasets and Models. To evaluate the effective-
ness of UIPE, we conduct experiments on two LLM
unlearning benchmarks: ① Fictional forgetting on
the TOFU dataset, which targets removal of fabri-
cated knowledge; ② Real-world forgetting on the
WMDP (Li et al., 2024b) dataset, which contains
factual knowledge and does not require additional
fine-tuning. For the TOFU benchmark, we use the
LLaMA2-7B-chat model, while for WMDP, we
adopt the Zephyr-7B-beta (Tunstall et al., 2023)
model to maintain consistency with the original
benchmark. See Appendix D.1 for further details.
Evaluation setup. For TOFU, we adopt the offi-
cial metrics provided by the benchmark to eval-
uate both forget quality and model utility. For
WMDP, following previous work, forget quality
is assessed on the benchmark-provided WMDP-
Bio and WMDP-Cyber subsets, while model utility
is evaluated via zero-shot accuracy on the MMLU
dataset (Hendrycks et al., 2020).
Baselines. We evaluate the effectiveness of UIPE
by applying it to several baselines. In addition to
the basic GA method, we include Grad. Diff. (Yao
et al., 2023), KL Min. (Chen and Yang, 2023), and
NPO (Zhang et al., 2024b). See Appendix D.2 and
D.3 for more details.

6.2 Forgetting Performance

LLM unlearning on TOFU. As shown in Figure 6,
continuing unlearning with existing baselines fails
to substantially improve forgetting performance.
In contrast, incorporating UIPE into these meth-
ods yields significant gains. Notably, on Forget01
subset, UIPE not only helps KL Min. achieve
near-ideal forget quality (1.0) with minimal loss
in model utility but also enables NPO to reach a
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Figure 6: Performance overview of LLM unlearning on the TOFU task under the LLaMA2-7B-chat model. For the
1% and 5% target forget datasets, dual-scale plots are employed (linear scale above and logarithmic scale below the
black line), while the 10% dataset uses a uniform logarithmic scale throughout. Gray lines illustrate the baseline
method trajectories (black dots indicate initial metrics, gray dots show metrics after five unlearning epochs), while
orange lines represent metric changes after UIPE application.

Table 2: Performance overview of LLM unlearning
on the WMDP using Zephyr-7B-beta. The WMDP-
AVG. metric denotes the average forgetting performance
across all subsets.

Method WMDP-
Bio

↓ WMDP-
Cyber ↓

WMDP-
Avg. ↓ MMLU ↑

Original 0.6245 0.4097 0.5171 0.5885

GA 0.458 0.2023 0.3302 0.5449
+ UIPE 0.2459 0.1077 0.1768 0.5339

Grad.Diff 0.6169 0.3558 0.4864 0.5809
+ UIPE 0.6135 0.3044 0.4590 0.5763

KL Min. 0.6033 0.3005 0.4519 0.5773
+ UIPE 0.6001 0.2748 0.4375 0.5779

NPO 0.6119 0.3518 0.4819 0.5784
+ UIPE 0.5954 0.3435 0.4695 0.5750

new optimal forget quality while effectively reduc-
ing model utility loss. On Forget05 and Forget10,
although UIPE does not surpass NPO’s best for-
get quality, it maintains high forget quality while
significantly reducing model utility loss.
LLM unlearning on WMDP. Table 2 shows that
UIPE significantly reduces test accuracy on the
WMDP dataset, indicating improved forgetting ef-

fectiveness. For model utility, measured by MMLU
zero-shot accuracy, UIPE causes only a 1% drop
for the GA baseline, while having negligible im-
pact on other methods, highlighting UIPE’s ability
to enhance forgetting with minimal trade-offs.

6.3 Amplify Coefficient

In UIPE, the amplify coefficient α controls addi-
tional parameter updates. We analyze the effect of
different α on four unlearning methods using For-
get01 dataset. For each method, we select an epoch
as the base unlearning model and apply UIPE with
varying α values. We then compare the forget qual-
ity of these UIPE models with that of the base
model. When α = 0, we measure the forget quality
difference between the next epoch and base model.

As shown in Figure 7, in the Grad. Diff. method,
larger α values improve forget quality. In the KL
Min. method, forget quality consistently increases
with rising α values. In the NPO method, forget
quality exhibits relatively low sensitivity to changes
in α. For GA, forget quality first improves and
then deteriorates as α increases, with the deteriora-
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Figure 7: Performance of UIPE with different amplify
coefficient α.

tion likely due to over-forgetting. As analyzed in
Section 5.2, large α values may affect knowledge
with low storage similarity, leading to a decline in
model performance. However, the negative impact
of UIPE on GA is still less severe than the decline
observed in the original GA method.

6.4 Forgetting Related Knowledge
In this subsection, we investigate weather UIPE
can effectively enhance the forgetting of related
knowledge? As shown in Figure 3, after the 8th
epoch, GA fails to further improve the forget qual-
ity of Pθ1 . Therefore, we apply UIPE starting from
this checkpoint.
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Figure 8: Effect of UIPE on the GA-trained model
Pθ1 . Higher ROUGE-L score on TruthfulQA indicates
better model utility, while lower ROUGE-L scores on
the target forget set and related knowledge set indicate
better forget quality.

As illustrated in Figure 8, while UIPE introduces
only a minor reduction in model utility, it signifi-
cantly improves forget quality for both the target
forget set and the related knowledge set. These

Table 3: Performance comparison on GSM8K, ARC-
Easy and ARC-Challenge

Model GSM8K ARC-Easy ARC-Challenge Avg.

Fine-tuned 0.2040 0.7066 0.5623 0.4910

GA 0.1700 0.7036 0.5591 0.4775
+ UIPE 0.1610 0.7033 0.5589 0.4744

Grad.Diff 0.1820 0.7045 0.5538 0.4801
+ UIPE 0.1880 0.7054 0.5503 0.4812

KL Min. 0.1940 0.7079 0.5648 0.4889
+ UIPE 0.1880 0.7100 0.5680 0.4887

NPO 0.1909 0.7033 0.5648 0.4863
+ UIPE 0.1980 0.7034 0.5614 0.4876

results validate that UIPE effectively facilitates the
unlearning of related knowledge and strengthens
the overall forgetting performance.

6.5 Downstream Tasks Performance
To further assess the impact of UIPE on gen-
eral model capabilities, we evaluate performance
on several downstream tasks, including GSM8K
(Cobbe et al., 2021), ARC-Easy, and ARC-
Challenge (Clark et al., 2018). Details are provided
in Appendix D.4.

As shown in Table 3, applying UIPE to the
baseline model has minimal impact on the over-
all downstream task metrics (Avg.). However, as
demonstrated in previous experiments, UIPE de-
livers substantial improvements in the unlearning
quality of baseline models, making these marginal
performance trade-off entirely justifiable.

7 Conclusion

In this paper, we investigate the impact of knowl-
edge related to forgetting targets on the effective-
ness of target knowledge elimination. Building
on this insight, we propose UIPE (Unlearning Im-
provement via Parameter Extrapolation), a tech-
nique for enhancing the unlearning of target harm-
ful knowledge without additional training. Exten-
sive experiments across multiple unlearning meth-
ods demonstrate that UIPE consistently enhances
their ability to remove target knowledge, improving
forget quality while maintaining model utility.

Limitations

Despite the effectiveness of our approach, there
are two main limitations to be addressed in future
work. First, The optimal amplify coefficient α re-
quires manual selection across different baseline
methods, necessitating further research to establish
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automated selection strategies for α. Second, Our
experiments are conducted on 7B-scale models.
Further research is required to assess the effective-
ness of UIPE on such larger-scale models.

Ethics Statement

Our work aims to mitigate privacy and security
concerns inherent in LLMs. However, users should
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cordance with their intended purposes. For newly
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verification to ensure no real information is dis-
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research and access.
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A Prompt and Data Sample

Table 4 illustrates the data construction prompt used in our preliminary experiments, which requests
GPT-4o to generate information for 12 virtual individuals. The information for each virtual individual
consists of 10 specific attributes, with each attribute containing two question-answer pairs: K1 and K2.
Based on the K2 question-answer pairs and the general common-sense knowledge of the large model, it is
possible to infer the K1 question-answer pairs, indicating a logical relationship between them. Table 5
presents a specific example of one generated virtual individual. After generating the 12 virtual individuals,
we compile all K1 question-answer pairs into the target forget set, while all K2 question-answer pairs
form the related knowledge set. Notably, all data in this dataset are entirely synthetic, ensuring that the
model has not been exposed to this information during pre-training.

Table 4: The prompt for generating fictional individuals data using GPT-4o.

Prompt - One Shot

Please provide 12 sample in JSON format, each sample containing information about a person,
including 10 Q&A pairs K1 and K2, with the following requirements:

1. Each question and answer pair is about personal privacy (biometric features, occupational
information, address, health and medical information, personal property information, track of
when, network activity information, family, marriage, personal communication information), and
all information presented here is fictional.

2. Based on K2, K1 can be inferred through common sense.

3. Strictly follow the privacy type of each question and answer in the example, but the questions
should have diversity.

Here is an example about John:

......

Table 6 presents sample instances from the irrelevant dataset introduced in Section 4.1. This dataset
consists of question-answer pairs about fictional locations, which ensures its complete irrelevant from the
synthetic persona dataset.

B Training Details for Preliminary Experiments

We select LLaMA-2-7b-chat as our base model and employ Low-Rank Adaptation (LoRA) for both
fine-tuning and unlearning processes. During the fine-tuning phase, we set the learning rate to 1e-4,
batch size to 4, and LoRA rank to 4, conducting training on a single NVIDIA RTX 4090 GPU. For the
unlearning phase, we adjust the learning rate to 5e-5 while maintaining the batch size of 4 and LoRA
rank of 4, also training on a single NVIDIA RTX 4090 GPU. In both phases, we exclusively update the
parameters of two target modules: "q_proj" and "v_proj".
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Table 5: Sample of fictional individual generated based on 10 specific attributes.

Sample Data

{
"name": "john",
"Biometric features ": [

{
"type": "k1",
"question ": "What is John ’s blood type?",
"answer ": "John has type A positive blood."

},
{

"type": "k2",
"question ": "What blood types can John donate to?",
"answer ": "John can donate blood to type A, AB, and O positive

↪→ individuals ."
}

],
"Occupational information ": [

{
"type": "k1",
"question ": "What is John ’s profession ?",
"answer ": "John works as a software engineer at a tech company ."

},
{

"type": "k2",
"question ": "What programming languages does John use at work?",
"answer ": "John primarily uses Python , Java , and JavaScript in his

↪→ daily work."
}

],
"Address ": [

{
"type": "k1",
"question ": "Where does John live?",
"answer ": "John lives in a townhouse in a suburban neighborhood ."

},
{

"type": "k2",
"question ": "How is John ’s living environment ?",
"answer ": "John ’s home has good air quality away from the bustle

↪→ of downtown , with a small yard and terrace ."
}

],
"Health and medical information ": [

{
"type": "k1",
"question ": "Does John have any chronic conditions ?",
"answer ": "John has been diagnosed with asthma ."

},
{

"type": "k2",
"question ": "What medication does John use?",
"answer ": "John uses an inhaler with a steroid medication ."

}
]
...

}
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Table 6: Sample from the Irrelevant Dataset.

Sample Data

[
{

"question ": "Where is the Phantom Glow Forest located?",
"answer ": "The Phantom Glow Forest lies in the eastern part of the

↪→ continent of Elruria , famous for its bioluminescent plants and
↪→ floating spectral creatures ."

},
{

"question ": "How does the sky city ’Seraphien ’ stay afloat?",
"answer ": "Seraphien is powered by a core ’Levitation Stone ,’ keeping the

↪→ city suspended above the sea of clouds , accessible only by
↪→ designated airship routes ."

},
{

"question ": "What is stored in the Abyssal Library?",
"answer ": "The Abyssal Library , located in the underground world , houses

↪→ countless forbidden texts and lost civilizations ’ archives , guarded
↪→ by faceless keepers ."

},
...

]

C Algorithm and Practical operations

Algorithm 1 UIPE
Require:

Initial model parameters θini
Target forget dataset Df

Training epochs T
Extrapolation coefficient α

Ensure:
Enhanced unlearned model θuipe

1: procedure UNLEARNING PHASE

2: for t = 1 to T do
3: θt ← θt−1 + η∇θ[LGA(θ)] ▷ Initial forgetting training
4: Ut ← EvalUtility(θt,Dr)
5: Ft ← EvalQuality(θt,Df )
6: end for
7: θun ← selectθt [Ft, Ut] ▷ Select a model that balances forget quality and model utility
8: end procedure
9: Update Vector Calculation:

10: v ← θun − θini ▷ Calculate update vector
11: Knowledge Extrapolation:
12: θuipe ← θun + α · v ▷ Parameter extrapolation
13: return θuipe

In practical applications, UIPE can be implemented through three core steps: First, based on the target
forget dataset Df , the initial model Pθini is trained for multiple rounds using gradient ascent algorithm
or its variants. The unlearning model Pθun from the optimal round is selected based on forget quality
and model utility, ensuring effective forgetting of target knowledge while maintaining general model
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capabilities. Next, we compute the parameter update vector v = θun− θini generated during the unlearning
process. Finally, by introducing a hyperparameter α to directionally amplify v, we add the extrapolated
update α · v to θun, enhancing the model’s ability to forget knowledge highly related with the target
knowledge, ultimately outputting the optimized model Pθuipe .

D Experimental details

D.1 Datasets
• TOFU. We assess the performance of UIPE on the TOFU benchmark (Maini et al., 2024), which

includes 200 fictional author profiles, each containing 20 question-answer pairs. TOFU defines three
forgetting levels: Forget01, Forget05, and Forget10, which correspond to the forgetting of 1%, 5%,
and 10% of the data, respectively. The effectiveness of the unlearning methods is evaluated on the
LLaMA-2-7B-chat model using two metrics: Forget Quality and Model Utility, as described in Maini
et al. (2024).

• WMDP. The Weapons of Mass Destruction Proxy (WMDP) benchmark (Li et al., 2024b) comprises
3,668 multiple-choice questions assessing hazardous knowledge across three critical security domains:
biosecurity, cybersecurity, and chemical security. This comprehensive dataset from the real-world
serves a dual purpose: it functions both as an evaluation metric for measuring hazardous knowledge
retention in LLMs and as a standardized benchmark for assessing the effectiveness of unlearning
techniques aimed at eliminating such sensitive information. In our experiments, WMDP serves as the
evaluation metric for assessing UIPE’s effectiveness in eliminating real-world hazardous knowledge.

D.2 Baseline LLM unlearning methods
In addition to the basic Gradient Ascent (GA) method, we also conduct experiments on three other
unlearning techniques using the TOFU benchmark

• Grad. Diff. This approach not only aims to increase the loss on the forget dataset Df but also strives
to maintain performance on the retain dataset Dr.

• KL Min. This approach not only seeks to increase the loss on the forget dataset Df but also
minimizes the Kullback-Leibler (KL) divergence between the fine-tune model and the unlearning
model on the retain dataset Dr.

• NPO Inspired by preference optimization, this approach can be regarded as a variant that focuses
solely on negative samples.

D.3 Training Details
In the TOFU benchmark, the authors provide the tofu_ft_llama2-7b model, which is fine-tuned on the
TOFU dataset using LLaMA-2-7b-chat as the base model. We use this model for our experiments. We
refer to the experimental details of TOFU and NPO for full fine-tuning. Specifically, we employ a learning
rate of 1e-5 for the Forget01 and Forget05 datasets, and a learning rate of 1e-6 for the Forget10 dataset,
aiming to maximize the performance of these baseline methods. During training, the batch size is set to 1,
and the process is conducted on two NVIDIA A800 80GB GPUs.

The WMDP benchmark evaluates real-world hazardous knowledge retained in models. Unlike TOFU,
this evaluation does not require fine-tuning models with additional datasets. Follow previous work (Jia
et al., 2025; Ji et al., 2024), we implement unlearning procedures on Zephyr-7B-beta. For all baseline
methods, we maintain consistent hyperparameters: a learning rate of 1e-7 with 3 training epochs. The
training configuration employs a batch size of 1, executed on dual NVIDIA A800 80GB GPUs.

As a plug-and-play method, UIPE introduces only linear complexity through its additional operations
(parameter extrapolation) on top of the baseline, resulting in minimal impact on the overall computation.

In the TOFU dataset, to maximize the performance of the baseline methods, we conduct multi-epoch
training (5 epochs) on the base model using the training set, and determine the optimal balance between
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forget quality and model utility using the validation set. Traditionally, the epoch with the highest forgetting
quality is given priority for applying UIPE. However, if such an epoch exhibits a significant drop in model
utility, its practical value is compromised. Therefore, we select the model corresponding to the epoch
with suboptimal forgetting quality but superior model utility as the model for extrapolation application.

We selected the hyperparameter alpha for a certain baseline on the reserved validation set. We found
that setting alpha to 0.4 or 0.6 effectively balances the model’s forget quality and model utility.

D.4 Downstream Tasks
• GSM8K constitutes a carefully curated collection of 8,500 linguistically diverse, high-quality grade

school mathematics word problems, professionally developed by human experts (Cobbe et al., 2021).
The dataset is systematically divided into 7,500 training problems and 1,000 test problems. Each
problem requires multi-step reasoning, typically involving 2 to 8 sequential operations, with solutions
fundamentally relying on basic arithmetic computations to derive final answers. In our evaluation
framework, we employ GSM8K to assess the model’s mathematical reasoning capabilities and
computational proficiency.

• The AI2 Reasoning Challenge (ARC) constitutes a comprehensive resource for advancing AI
question-answering research, comprising a curated question set, supporting text corpus, and bench-
mark baselines (Clark et al., 2018). The dataset features a rigorous partition into two distinct subsets:
the ARC-Challenge set, containing exclusively those questions that stumped both retrieval-based
and word co-occurrence algorithms, and the more accessible ARC-Easy subset. All 7,787 questions
are authentic, human-authored grade-school science items originally developed for educational
assessments, making ARC the largest publicly available collection of its kind. In our evaluation
framework, we leverage both ARC-Challenge and ARC-Easy to systematically assess the model’s
commonsense reasoning capabilities.
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