
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 25197–25211
November 4-9, 2025 ©2025 Association for Computational Linguistics

Uncovering Scaling Laws for Large Language Models via Inverse Problems
Arun Verma1, Zhaoxuan Wu1, Zijian Zhou1,2, Xiaoqiang Lin2,

Zhiliang Chen2,3, Rachael Hwee Ling Sim2, Rui Qiao1,2, Jingtan Wang2,3, Nhung Bui2,
Xinyuan Niu2,3, Wenyang Hu2,5, Gregory Kang Ruey Lau2,6, Zi-Yu Khoo2,7, Zitong Zhao2,

Xinyi Xu2,3, Apivich Hemachandra2, See-Kiong Ng4, Bryan Kian Hsiang Low1,2

1Singapore-MIT Alliance for Research and Technology 2Dept. of Computer Science, National University of Singapore
3Agency for Science, Technology and Research 4Institute of Data Science, National University of Singapore

5SAP 6CNRS@CREATE 7AI Singapore Correspondence: lowkh@comp.nus.edu.sg

Abstract

Large Language Models (LLMs) are
large-scale pretrained models that have
achieved remarkable success across diverse
domains. These successes have been driven by
unprecedented complexity and scale in both
data and computations. However, due to the
high costs of training such models, brute-force
trial-and-error approaches to improve LLMs
are not feasible. Inspired by the success of
inverse problems in uncovering fundamental
scientific laws, this position paper advocates
that inverse problems can also efficiently
uncover scaling laws that guide the building
of LLMs to achieve the desirable performance
with significantly better cost-effectiveness.

1 Introduction

LLMs represent a paradigm shift in artificial
intelligence, embodied by their unprecedented
levels of complexity and scale in both data
and computations, and their demonstrated
generalization capabilities across a wide array
of tasks and domains, such as natural language
processing, computer vision, coding, gaming,
among many others (Bommasani et al., 2021;
Anthropic, 2023; OpenAI, 2023; Nijkamp et al.,
2023; Dubey et al., 2024; Reid et al., 2024). These
remarkable successes result from the amalgamation
of several input ingredients, including high-quality
and diverse training data, advanced modeling
techniques, skillfully designed training procedures,
and effective inference schemes (Wei et al., 2022b;
Antropic, 2024b; Davis, 2024). The intricate
interactions among these ingredients are not fully
understood, yet they collectively influence the
overall performance of large language models. To
advance the development of high-performance
and cost-effective models further, it is essential to
uncover the underlying scaling laws that govern
these interactions. More importantly, designing
an LLM that achieves desirable performance

under resource constraint is an inherently complex
challenge, as it requires the careful selection and
combination of data, model architecture, training
procedures, and inference strategies.

As an example, when building an LLM
specifically for GSM8K (Cobbe et al., 2021) (i.e.,
grade school math benchmark), several design
principles must be considered: (i) The training
data should contain ample examples that foster
language understanding and reasoning capabilities
to ensure that the LLM can learn the nuances of
math problems presented in natural language; (ii)
the model architecture should be complex enough
to process sequential inputs (since each question
in GSM8K is described in natural language)
and generate the required output formats, such
as multiple-choice questions or detailed natural
language explanations; (iii) the training procedure
should be designed to allow the model to effectively
acquire task-specific knowledge from the data
(e.g., suitably defined loss functions tailored for
solving math problems); and (iv) the inference
scheme should guide the LLM toward generating
accurate and desired outputs, as demonstrated by
techniques like Chain of Thought (CoT) (Wei et al.,
2022b), ReAct (Yao et al., 2023b), and Tree of
Thoughts (Yao et al., 2023a).

Due to the scale of the required data and
modern model architectures, creating an LLM
instance is an extremely costly process, e.g., GPT-4
costs over $100 million (Knight, 2023) while the
cost for Gemini Ultra is estimated at over $191
million (HAI, 2024). This high expense makes
building better LLMs through brute-force trial and
error prohibitively costly. In contrast, DeepSeek
V3 achieved state-of-the-art performance with just
$5.6 million by optimizing training protocols and
architecture (Liu et al., 2024a; ApX, 2025). Thus,
it becomes necessary to uncover underlying scaling
laws (e.g., the required composition and minimum
size of training data or model architecture) that
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Figure 1: Forward processes in large language models. The forward process generates an LLM from key input
ingredients and components: datasets, model architecture, and the training procedure. During inference time, other
ingredients such as the prompt examples would affect the desired performance metric C.

help build LLMs with the desired performance and
significantly better cost-effectiveness.

To this end, we advocate examining the
class of inverse problems for LLMs. Inverse
problems involve determining unknown parameters
of an underlying model from observational data,
a concept crucial in scientific and engineering
domains (Groetsch and Groetsch, 1993; Vogel,
2002; Chadan and Sabatier, 2012; Gazzola et al.,
2018; Lau et al., 2024a; Hemachandra et al.,
2025). Tackling the inverse problems is a
tried-and-true methodology for inferring and
uncovering fundamental scientific laws from
observations. For example, Kepler’s laws of
planetary motion were derived from the observed
motion of Mars and its elliptical orbit; Newton’s
law of universal gravitation was based on the
empirical effects of Kepler’s laws; and in modern
quantum mechanics, Schrödinger’s wave equation
was inferred from electron diffraction experiments.
Inspired by these successes, inverse problems offer
a powerful approach for uncovering the underlying
scaling laws behind the behavior of LLMs.

A typical approach to tackle an inverse problem
involves using a forward process to obtain
observation data given some specified input and
latent parameter values. However, this forward
process is often costly. The inverse problem,
which involves identifying the latent parameter
values that are consistent with a given set of
observation data, is inherently very challenging

due to the complexity of the search space and the
lack of solution uniqueness. In the LLM context,
the inverse problem requires finding the optimal
combination of input ingredients (i.e., data, model
architecture, training procedures, and inference
schemes) to build the LLMs that achieve desirable
performance, while forward processes refer to
the costly training of LLMs and running model
inference for task execution and evaluation.

Formally, let T denote the training ingredients,
such as the dataset, model architecture, and training
procedure, and let I represent the ingredients of the
inference scheme (e.g., prompting method). Note
that T includes both pretraining and fine-tuning,
and it affects the LLM’s model parameters,
whereas I typically does not alter these parameters.
Let F (T ) → LLM denote the process of creating
an LLM by executing the computation following
the specified ingredients T (i.e., forward process).
Let T (LLM, I) → C represent the evaluation of
the LLM on a task using the inference scheme I,
resulting in a performance metric C. Therefore, we
have the following two forward processes:

F (T ) → LLM , (1a)

T (F (T ) , I) → C . (1b)

These two forward processes are illustrated in
Fig. 1. To understand how these forward processes
function, consider the above example of building an
LLM for the GSM8K task, which assesses various
design principles related to data (i.e., pretraining
and fine-tuning datasets), model architecture, and
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training procedure. These ingredients are included
within T and used in the creation process of an
LLM as F (T ) → LLM. Subsequently, the trained
LLM, along with the inference ingredients I, is
evaluated on the GSM8K task as T (LLM, I) → C.
Here, T (·) includes both the evaluation metric (e.g.,
accuracy) and the evaluation dataset (i.e., GSM8K
questions), and C is thus representing the accuracy
of the trained LLM on the GSM8K benchmark.

Given practical constraints such as limited data
and computational resources, tackling the inverse
problems to uncover end-to-end scaling laws may
be overly ambitious. Therefore, as a first step,
we consider simplified inverse problems by fixing
certain ingredients or focusing on a manageable
subset of the problem space. Specifically, this
position paper frames the following classes of
inverse problems in the context of LLMs:

• In Section 2, we frame Data Selection as
an inverse problem, focusing on integrating
multiple data modalities, exploiting
commonly used yet non-differentiable
metrics, and enhancing selection efficiency.
Solving this problem is expected to improve
downstream performance while reducing the
need for extensive human feedback.

• In Section 3, we frame Inference
Optimization as an inverse problem
and focus on the inference scheme used in
conjunction with trained models. Solving
this problem ensures trained models are
adapted to underlying downstream tasks
using minimal resources, without needing to
modify their parameters.

• In Section 4, we frame Machine Unlearning
(MU) verification and MU for LLMs to
achieve desired performance metrics as
inverse problems. Solving these problems
ensures data owners that their deletion
requests are fulfilled and assures model
owners that harmful data are removed.

2 Data Selection

The recent successes of LLMs have been driven by
training on massive and heterogeneous datasets (Xu
et al., 2024b). For example, LLaMA 3 was
trained on 15 trillion multilingual tokens (Dubey
et al., 2024). Previous works have established
scaling laws that link data quantity to model
performance (Kaplan et al., 2020; Hoffmann et al.,
2022; Zhai et al., 2022; Wu et al., 2024a; Chen

et al., 2025). However, more recent studies (Xia
et al., 2024; Wang et al., 2024b; Chen et al., 2025;
Qiao et al., 2025; Wang et al., 2025) demonstrate
that strategically selecting data subsets can improve
the performance of both LLMs and multi-modal
LLMs (MLLMs) in a way even surpassing the
conventional scaling laws, particularly in domains
like computer vision (Sorscher et al., 2022).
This naturally raises key questions: How does
model performance scale with data quantity when
data selection methods are used for MLLMs?
Furthermore, how do the scaling laws vary across
different stages of MLLM training, such as
pretraining, fine-tuning, and alignment?

We formulate data selection as an inverse
problem of T (F (T ) , I) → C. The goal
is to understand how the quantity of selected
training data (in T ) scales with the desired
MLLM performance (C). For example, we might
want to identify the minimal dataset required to
train an MLLM to achieve specific performance
metrics under optimal data selection. Therefore,
efficient data selection can significantly reduce
computational costs by prioritizing informative
and representative data, thereby improving
training efficiency without sacrificing performance.
Furthermore, these scaling laws should be general
enough so that they are applicable to a family
of data selection methods instead of specific
implementations (e.g., the family of influence
functions (Koh and Liang, 2017) versus its
implementation DataInf (Kwon et al., 2024)).

2.1 Data Selection for Multi-Model LLMs
The remarkable successes of LLMs have led
to the development of MLLMs that integrate
advanced visual understanding and reasoning
capabilities (Dai et al., 2023; Liu et al., 2023; Zhu
et al., 2024; Lau et al., 2025a,b). However, the
rapid growth of the MLLMs and their multi-modal
nature have led to instruction-tuning datasets that
often rely on automated or template-based content,
resulting in relatively poor-quality and redundant
datasets (Liu et al., 2024d), as illustrated in Fig. 2.
To address this challenge, introducing smaller
yet high-quality datasets can potentially maintain
or even improve the performance of MLLMs.
Traditional data pruning methods often require
repeated gradients retrieval (Park et al., 2023)
or extensive memory for storage (Yang et al.,
2023), both of which become impractical for
MLLMs due to their massive model sizes and data
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volumes. Conventional attribution methods, such
as semivalues (Ghorbani and Zou, 2019; Zhou
et al., 2023b), the influence function (Koh and
Liang, 2017; Kwon et al., 2024), and TracIn (Pruthi
et al., 2020) have not been widely adapted for
MLLMs. This naturally raises a question: How to
perform effective data selection for MLLMs while
considering both image and text features?

Q: What language is the sign in?
A: The sign is in a foreign language. However, 
given the available descriptions, I cannot 
determine the exact language of the sign.

Q: Have you ever been 
to a tennis match?
A: No

Figure 2: Examples of low-quality samples include
instances where the question-answer pair fails to capture
the key elements of the image or has limited relevance.

Previous efforts have approached the problem as
a large-scale data selection challenge, focusing on
external evaluators such as established criteria (Wei
et al., 2023) or intrinsic features (Chen et al.,
2024a; Liu et al., 2024d). For example, Xia
et al. (2024) demonstrated using a small subset
of textual training data can achieve the same
performance as the full dataset. The next step is to
propose relatively more compute-friendly methods
and generalize them to the large-scale domain
of MLLMs, improving upon the standard power
law scaling. The core objective of data selection
research is to identify the techniques that enable
training to scale efficiently and effectively with
increasing amounts of data (Albalak et al., 2024).

In addition, some training data points may rely
primarily on a single modality (e.g., cases where
images alone suffice to answer the questions).
Would the scaling laws of data selection differ
across different modalities, and would any
particular modality have a stronger impact on the
performance? To address these inquiries, one can
potentially employ feature attribution methods like
Integrated Gradients (Sundararajan et al., 2017)
to attribute the score of each training data point
to specific modalities. The multi-modal nature of
data introduces an additional layer of complexity,
rendering the adaptation more challenging than its
conventional application in computer vision tasks.
Analyzing these modality-specific scores will help
better understand the relative importance of each
modality and how these modalities influence

the overall performance, ultimately uncovering a
universal scaling law for all modalities.

2.2 Data Selection for LLM Fine-tuning with
Non-differentiable Performance Metrics

Commonly used data selection methods in LLMs
are often the gradient-based data attribution
methods (Han et al., 2020; Schioppa et al., 2022;
Yeh et al., 2022; Grosse et al., 2023; Wang et al.,
2024a; Zhou et al., 2024c), such as influence
functions (Kwon et al., 2024) and TracIn (Xia et al.,
2024), which quantify the impact of each data point
on model parameters and next-token prediction
loss. However, non-differentiable metrics C, such
as semantic similarity with the ground truth (Cer
et al., 2017), BLEU score (Papineni et al., 2002;
Sellam et al., 2020), reward models (Ouyang
et al., 2022), and LLM-as-a-judge (Zheng et al.,
2023), are commonly used to evaluate the LLM
performance in practice. This discrepancy between
the metrics used for data selection and the metrics
employed for evaluating the LLM performance
can result in sub-optimal performance. Therefore,
we advocate for research on how to select
data for LLM fine-tuning when optimizing for
commonly used but non-differentiable evaluation
metrics. This problem is non-trivial because, unlike
influence functions, there is no straightforward
way to compute the effect or gradient of the
non-differentiable evaluation metric with respect
to the model parameters and training data.

One promising approach is the integration of
non-differentiable evaluation metrics into the data
selection method using reinforcement learning
techniques, for instance, the policy gradients
from the REINFORCE algorithm (Williams, 1992;
Wang et al., 2025). By serving as a surrogate
for “gradients” of the non-differentiable evaluation
metrics with respect to model parameters, these
methods can lead to a novel data selection method
that directly optimizes desired (non-differentiable)
evaluation criteria, thereby directly uncovering the
underlying scaling laws that link the amount of
training data to model performance.

2.3 Data Selection for LLM Alignment
Existing works have shown that LLM responses
often do not immediately align with user intent
after pretraining or fine-tuning, as LLMs can
generate untruthful, unuseful, and even harmful
contents (Bai et al., 2022). However, recent
successes (Stiennon et al., 2020; Ouyang et al.,
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2022) in training LLMs using human feedback
has improved alignment between user intent
and LLM responses (i.e., achieving the desired
alignment performance metric C) via methods like
Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022) and Direct
Preference Optimization (DPO) (Rafailov et al.,
2024). Achieving the desired alignment depends
heavily on obtaining high-quality human feedback
(i.e., human labeling), which is costly and
requires a large amount of feedback to ensure
effective alignment training (i.e., RLHF/DPO).
This challenge has motivated the development
of a heuristic-based approach (Muldrew et al.,
2024) that aimed at efficiently selecting a subset
of LLM responses for human feedback. However,
this heuristic-based approach lacks a principled
foundation, leading to the following question:
How to actively select the LLM responses for
human feedback in a principled way to minimize
the amount of feedback required while ensuring
effective RLHF/DPO alignment training?

To address this problem, one can consider
designing theoretically grounded acquisition
functions specifically tailored for efficient LLM
alignment (Verma et al., 2025a,b). Such acquisition
functions should explicitly account for variations
in pretrained data and model architecture, which
can lead to potentially different preferences for
responses depending on these factors. Specifically,
the acquisition functions need to incorporate the
DPO process and quantify the uncertainty for
the difference between the latent scores of two
prompt-response pairs, where the latent scoring
function is defined using the LLM itself (Rafailov
et al., 2024; Lin et al., 2025). Uncovering scaling
laws to efficiently acquire high-quality and diverse
training data from LLM users can significantly
reduce the budget required for data collection.

2.4 Joint Optimization for Data Selection
Previous discussions focus on data selection for
a single training stage. However, different
training stages improve different aspects of the
model capability, and combining them can further
improve the performance (Ke et al., 2023).
Specifically, continued pretraining can be used
to keep the knowledge of the model updated (Ke
et al., 2023; Jindal et al., 2024) while instruction
fine-tuning can improve its ability to follow
natural language instructions (Wei et al., 2022a).
Thus, a question naturally arises: How to decide

the ratio of data points used in different stages
under a fixed number of data points? A joint
optimization approach can be plausible to find the
optimal ratio (Jindal et al., 2024). Finding this
optimal ratio helps uncover the underlying scaling
laws of optimal data selection across different
training stages, changing the scaling law of model
performance C with respect to the dataset size.

Recent results from training LLMs
for low-resource languages such as
SEA-LION (Singapore, 2024) demonstrate that
combining continued pretraining with instruction
fine-tuning achieves superior performance. On
the other hand, selecting the best training data
also depends on the LLM/MLLM architecture.
Existing model selection works (Raschka, 2018;
Wang et al., 2021; Xia et al., 2024) typically seek
to find the optimal model architecture given fixed
training data or the other way around. Therefore,
producing the best-performing LLM/MLLM
requires us to jointly select the most appropriate
data and model architecture. Hence, an important
research direction will be to develop algorithms
that jointly select data and model architecture
(Hemachandra et al., 2023) in order to optimize an
LLM/MLLM’s performance metric C. By doing
so, deeper insights into the underlying scaling
laws governing how model architecture and data
selection jointly influence the LLM/MLLM’s
performance metric C can be developed.

3 Inference Optimization

Optimizations carried out at the inference stage
significantly affect the performance of LLMs. For
example, given a trained LLM, it is common
practice to provide a prompt (i.e., a snippet of
text) that the LLM uses to generate further text
conditioned on the snippet. This represents a
forward process T (F (T ) , I) → C in Eq. (1b),
where the prompt is a component of inference
ingredient I, and inverting the process to carefully
construct prompts that can instruct the LLM
to perform a specific downstream task, hence
achieving a desired performance measured by
the metric C, is challenging. Thus, inference
optimization can be viewed as an inverse problem
of T (F (T ) , I) → C in Eq. (1b), where the goal
is to design inference schemes in I that, when
combined with a model trained on T , achieves the
desired performance metric C. Furthermore, one
can also aim to uncover the underlying scaling laws
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at inference time with respect to optimized data,
model architecture, and computational resources.

3.1 Data Optimization at Inference Time
Prompts serve as fundamental components of I
during the LLM inference. A widely adopted and
popular prompting structure consists of instructions
and few-shot demonstrations (data samples), also
known as exemplars. This approach leverages
LLMs’ ability for in-context learning, which has
emerged with the rapid scaling of LLMs in terms
of the number of parameters, particularly since the
advent of GPT-3 (Brown et al., 2020). Specifically,
the LLMs can understand and perform tasks based
on exemplars and instructions provided only in
the context of the prompt, without relying on
conventional training methods like fine-tuning on
specific datasets (Liu et al., 2022). It is widely
observed that the careful design of instructions
and the selection of exemplars in the prompt
significantly influence the LLM performance
across diverse tasks (Rubin et al., 2022; Albalak
et al., 2024; Lau et al., 2024b; Wu et al., 2024b).

Prompting techniques have been introduced to
steer the LLM responses towards better accuracy,
tailored tone, improved focus (Antropic, 2024b,a),
and reduced hallucinations (Davis, 2024; Xu et al.,
2024c). In short, prompting is a tool to achieve the
desired performance metric C. Despite its benefits,
designing instructions and selecting exemplars for
prompts typically requires a human-intensive and
costly trial-and-error approach (Mishra et al., 2021;
Reynolds and McDonell, 2021). Recent works
have explored heuristic local search methods (Zhou
et al., 2023a) and evolutionary strategies (Prasad
et al., 2023; Guo et al., 2024) to identify the best
instructions and retrieval-based methods to find
the most relevant exemplars (Liu et al., 2022;
Rubin et al., 2022). However, these methods
can still be costly and sub-optimal, raising the
important question: How can prompts be efficiently
optimized under resource constraints, such as
limited computational resources or fewer queries?

Viewing the research question as an inverse
problem, one can formulate the prompt
optimization problem as a black-box optimization
problem where the inputs are the prompts
(comprising instructions and exemplars) and
the output is the prompt’s performance. Then,
optimization techniques such as the NeuralUCB
algorithm can be applied to optimize the
prompt for the best performance under resource

constraints (Zhou et al., 2020; Dai et al., 2022).
Specifically, in the NeuralUCB algorithm, a neural
network is trained on past observations to predict
the LLM performance for different combinations
of instructions and exemplars. This approach
will help uncover underlying scaling laws and
understand the effect of instructions and exemplars
on LLM performance. Moreover, finding the
exemplars (given a fixed budget) and instructions
to achieve the best LLM performance helps to
uncover the scaling law of LLM performance with
respect to the number of exemplars used in I.
This scaling law will allow the real applications
to choose the minimal number of exemplars to
achieve a target performance metric C.

Since both the data in T and the data in I
affect the final LLM performance, optimizing an
LLM’s performance requires the joint optimization
of in-context data in I and training data in T .
To efficiently solve this optimization problem,
we further advocate for research into developing
algorithms that automatically select the optimal
combination of in-context and training data for
an LLM. This approach will help us to uncover
fundamental scaling laws governing the combined
impact of both training T ’s and inference I’s
ingredients on the performance metric C.

Additionally, we can consider the problem
of prompt optimization with human feedback,
aiming to minimize the amount of human feedback
required to find the best prompt that maximizes
LLM performance. Specifically, we consider the
inverse problem in which the performance metric
C is defined as the alignment of LLM responses
with human values, such as helpfulness. The goal
is to optimize the prompt to improve the alignment.
Recent works have shown that humans are better
at providing preference feedback than giving a
score, which has been the focus of prior prompt
optimization works (Lin et al., 2024b; Hu et al.,
2024; Wu et al., 2024b; Zhou et al., 2024b). To
address this, recent works propose a framework of
prompt optimization that relies solely on human
preference feedback on the LLM responses (Lin
et al., 2024a), demonstrating superior performance
compared to prior results on prompt optimization.

3.2 Model Optimization at Inference Time
When deploying resource-efficient LLMs,
understanding the scaling laws for determining
optimal model configurations is crucial for
effective and efficient usage (Devvrit et al., 2024).
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Selecting the best model configuration during
inference is a critical inverse problem that aims to
identify an LLM setup capable of achieving a target
performance metric C with minimal computational
resources. Formally, the inference-time model
configuration should be considered as part of the
inference ingredients I in Eq. (1b). The goal is
to identify a model configuration that minimizes
computational requirements while achieving
the desired performance metric C. As model
sizes increase, they require proportionately more
compute and memory per generation, making
them impractical in resource-constrained settings.
Furthermore, simply scaling model parameters
does not guarantee better performance, especially
in scenarios constrained by the variety and quality
of available data (Allen-Zhu and Li, 2020).

This challenge can be addressed from two
perspectives: (1) selecting the optimal model at
inference time from LLMs of varying sizes and
capacities using methods like model valuation
and selection (Xu et al., 2024a), and (2)
determining the optimal number of activated
routes in Mixture-of-Experts (MoE) LLMs during
inference to balance efficiency and performance.
By systematically exploring model size scaling,
one can determine how to adjust the model size to
meet the demands of specific tasks during inference.
Ultimately, uncovering the scaling laws for model
scaling at inference allows trade off between
computational efficiency and performance.

3.3 Compute Optimization at Inference Time
The introduction of OpenAI’s o1 model and
DeepSeek R1, which are designed to facilitate CoT
reasoning during inference, has induced increasing
interest in scaling computational resources at
inference to improve model performance (Snell
et al., 2024; Wu et al., 2024a; Zhou et al.,
2025). Existing work (Chen et al., 2024b) has
demonstrated a scaling law that characterizes the
relationship between model performance and the
computational resources used during inference.
But it focuses only on a single inference scheme,
where the inference scheme (e.g., CoT) is an
inference ingredient I in Eq. (1b). Besides
CoT, other inference schemes, such as prompt
optimization, optimization with human feedback,
retrieval-augmented generation (Gao et al., 2024;
Shao et al., 2024, 2025), repeated sampling (Brown
et al., 2024; Gui et al., 2024), and ensemble
models (Allen-Zhu and Li, 2020; Lau et al., 2024b),

have also been explored to scale inference-time
compute for improving LLM performance.

An exciting area of research is to optimize
a mix of these inference schemes within a
fixed computational budget, uncovering more
effective model scaling behavior. Specifically,
computational resources can be quantified by
the number of responses generated by each of
these inference schemes. By optimally allocating
resources across schemes and then strategically
selecting and merging these responses improves
LLM performance. Studying how the scaling law
changes when inference schemes are optimally
combined will provide deeper insight into the
computational requirements necessary to achieve a
target performance C.

Apart from performance optimization, another
area of research where inverse problem formulation
can be utilized is inference time optimization.
Existing research (Leviathan et al., 2023;
Spector and Re, 2023; Wu et al., 2025) has
leveraged inverse methods to identify the optimal
configuration of speculative decoding. These
applications demonstrate the potential of applying
scaling laws to improve model inference speed.

3.4 Joint Optimization at Inference Time

LLM performance is influenced by a complex
interplay between data, model, and compute.
Given a fixed computational cost specified by the
performance metric C, it is crucial to identify
the optimal combination of model configuration
and inference schemes when user prompts (i.e.,
data) are fixed. Thus, jointly optimizing the model
configuration and inference schemes can help to
approach optimal LLM performance. Specifically,
exploring how to allocate computational resources
across different inference schemes and models
should be a key focus. This approach will
help uncover the underlying scaling laws that
characterize how models, inference schemes, and
computational budgets collectively impact LLM
performance. These scaling laws can help to decide
minimal model parameters and computational
resources needed for LLMs to achieve desired
performance, reducing the serving cost of these
models in real-life applications.

4 Unlearning

Machine unlearning (MU) is the process of
removing the influence of a set of training data (i.e.,
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erased data) from a trained model to either comply
with data owners’ deletion requests (GDPR, 2016;
CCPA, 2018) or erase harmful data to improve
the model performance (Fore et al., 2024; Liu
et al., 2024c; Zhou et al., 2024a). We consider
two inverse problems. Verification of MU is
an inverse problem of F (T ) → LLM as given
any “unlearned” model, aiming to identify if the
erased data is present in the training ingredients
T . MU techniques can also be viewed as an
inverse problem of T (F (T ) , I) → C. Given
certain performance metrics (e.g., poor knowledge
on weapons of mass destruction (Li et al., 2024),
similar performance on the retained data as before
unlearning), the goal is to design the inference
ingredients (e.g., unlearning prompts) in I, or to
adjust the datasets and training procedure (e.g., use
of training checkpoints, model architecture that
facilitates unlearning without retraining) in T to
achieve the desired performance metrics.

4.1 MU Verification

Despite the growing interest in MU for
LLMs (Eldan and Russinovich, 2023; Chen
and Yang, 2023; Liu et al., 2024b), one major
challenge remains: How to efficiently verify
whether the requested data is not present in
an unlearned LLM? At first glance, we can
compare the similarity of an unlearned LLM
with the model trained only on the retained data
(without the erased data) (Nguyen et al., 2022;
Maini et al., 2024). However, such an approach
requires obtaining the LLMs retrained only
on the retained data, which is computationally
expensive (Yao et al., 2024) or infeasible when
there are computational hardware constraints.
Other MU metrics try to address the challenge
empirically. For example, the Membership
Inference Attack (MIA) metric (Shokri et al.,
2017) expects low accuracy on the erased data
when assessed by an adversarial model trained
to classify whether data points were members
of the training dataset. These metrics fall short
as they either require white-box access to the
LLM (Duan et al., 2024), which is often unfeasible,
or require training shadow models, which are
computationally expensive (Shokri et al., 2017).
Furthermore, the MIA metric depends on the
adversarial model’s ability to distinguish between
membership and non-membership (Duan et al.,
2024), which can be limited when similar data
points are present in both erased and retained data

(e.g., multiple news sources reporting on the same
event). Thus, such a situation raises the following
question: How can an efficient MU verification
metric for LLMs not requiring model retraining be
designed? Can the metric be intuitive and effective
despite the presence of similar data?

Answering these open questions is non-trivial.
One potential approach is to leverage related
work on scalable and robust watermarking (Lau
et al., 2024c) for text data, by embedding unique
watermarks into each data owner’s text content
before LLM training (Lu et al., 2025). Such
watermarks should remain detectable and verifiable
in LLM predictions after fine-tuning and, hence,
be used to test the effectiveness of unlearning.
An overall evaluation framework is illustrated
in Fig. 3. Research on this metric could help
support the scaling law that retraining-free metrics
require data attribution to trace the impact of
individual data points during initial training,
thereby improving unlearning procedures without
the need for complete retraining.

Figure 3: Watermarking as an unlearning metric.

MU metrics can help define scaling laws
governing the difficulty of unlearning erased data.
Previous work (Zhao et al., 2024) explored how
the tug-of-war (ToW) verification metric, which
compares the accuracies of the unlearned and
retrained models, is influenced by the properties
of erased and retained data. It also examined
how certain properties of erased data, like high
memorization score, may require different MU
techniques to achieve a better ToW score. Building
on these works, one can further explore how this
new retraining-free metric and other MU metrics
are influenced by dataset properties, such as size,
watermark count, and the similarity between erased
and retained data. These insights will uncover
underlying scaling law that guides the selection
of MU techniques and improve the reliability of
metrics used for evaluating unlearning techniques.
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4.2 MU Techniques

Many existing MU techniques modify model
weights (Chen and Yang, 2023; Yao et al., 2023c;
Jang et al., 2023), making them unsuitable for
black-box LLMs or when fine-tuning is expensive
due to computational constraints. While recent
approaches such as offset unlearning (Huang et al.,
2024) can be applied to black-box models but often
cause an unacceptable performance drop on the
retained data (Huang et al., 2024). Prior LLM
work on in-context unlearning (Pawelczyk et al.,
2023) is further limited to sentiment classification
and does not scale to generative tasks. Existing
MU techniques may perform well on metrics like
MIA but risk unlearning some retained data that
are similar to the erased data (Jin et al., 2024). This
raises a critical question: Is post-hoc unlearning
(i.e., only modifying I) feasible for text generation
without compromising the performance of the
retained data or introducing unintended biases?

The target performance C of an LLM is defined
as minimizing the generation of harmful data
or weak watermark strength, measured by the
watermarking-based MU metric while retaining
its performance on other metrics, such as the
validation loss. A key question is how to achieve
C efficiently by modifying the inference process I .
We advocate for research that identifies the private
or harmful data (e.g., by detecting the watermarks
present in generated text) and adaptively modifies
I during inference to suppress their influence and
prevent such data from being generated.

Alternatively, can C be achieved efficiently by
modifying the model architecture in T such that it
is easier to unlearn? One possible approach is using
the intrinsic sparsity of MoE transformer paradigm
(Shazeer et al., 2017; Lepikhin et al., 2020; Fedus
et al., 2022) to isolate the influence of data to a
few experts and thereby perform unlearning more
efficiently on fewer model parameters. Overall,
the goal is to improve LLM performance on the
given metric C and uncover underlying scaling
laws for unlearning during inference. Specifically,
this involves identifying how the metric C, such as
the loss on the erased and retained data, varies with
the size of these datasets, computation cost, and
model’s ability to unlearn during inference. These
scaling laws can help identify the most suitable
MU techniques for removing harmful knowledge
from LLMs and determine how much data can be
erased before performance metrics drop below a

predefined threshold that necessitates retraining.

5 Conclusion and Future Outlook

This position paper highlights the importance of
understanding of the scaling laws that govern the
behavior of LLMs, such as data requirements
and compute scaling laws. To uncover the
underlying scaling laws, we advocate for research
exploring two classes of inverse problems for
LLMs (i.e., Eq. (1a) and Eq. (1b)): Identifying
optimal input ingredients and achieving desired
performance metrics by adjusting both training
and inference ingredients. Specifically, we frame
data selection, inference optimization, and machine
unlearning as inverse problems, each presenting
unique challenges to solve. Yet, jointly optimizing
them (including data, model architecture, training
procedures, inference scheme, and unlearning
techniques) holds great potential for advancing the
development and deployment of LLMs.

Instead of iterating over the engineering efforts
to further improve the empirical performance, we
advocate to uncover the underlying fundamental
scaling laws governing the training and inference
of LLMs via inverse problems, which can lay
the foundations for building better LLMs. These
scaling laws can improve specific applications by
providing better selection methods for training
data and model architectures, flexible unlearning
techniques, methods with improved inference
efficiency, and optimized inference schemes.

Looking ahead, future research should
explore these scaling laws and investigate
how the interplay among various components
and ingredients impacts overall performance.
Emerging technologies and methodologies from
fields like optimization theory can provide
novel tools for tackling inverse problems in
LLMs. Additionally, advancements in machine
unlearning will be crucial as models become
more complex, ensuring they can adapt without
compromising functionality or privacy standards.
By integrating these approaches, we may uncover
innovative solutions that improve the efficiency
and cost-effectiveness of LLM development.

Limitations

While the inverse problem formulation offers a
promising perspective for studying large language
models (LLMs), it is important to recognize that
not all problems in LLMs have lend themselves
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to well-defined inverse formulations. Analogous
to how the inverse for a many-to-one function
is ill-defined mathematically, many forward
problems in LLMs, such as data aggregation
or input-to-output mappings, are inherently
many-to-one. This leads to potential ambiguity
or ill-posedness in their inverse counterparts.
Addressing these challenges will require further
theoretical and methodological advancements.

Additionally, this paper focuses on a limited
set of illustrative problems, such as data selection,
inference optimization, and machine unlearning for
LLMs, to demonstrate the potential of the inverse
problem framework. A comprehensive exploration
of its applicability across the broader and rapidly
evolving landscape of LLM research remains an
open direction. We encourage future work to
uncover additional problem domains where inverse
formulations may offer meaningful insights.

Ethic Statement

LLMs are largely trained on data scraped from
the Internet, which may include dangerous, unsafe,
biased, or inaccurate content. As a result, LLMs
risk reproducing these harmful patterns in their
generated outputs. Moreover, the use of scraped
data raises both legal and ethical issues. The
data may be copyrighted or include sensitive
personal information without the consent of the
data subjects. In response, we aim to mitigate these
risks by improving data selection and developing
machine unlearning techniques that support the
removal of harmful or sensitive data and machine
unlearning verification metrics to verify removal.
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