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Abstract

Fine-tuning large language models (LLMs) is
computationally expensive because it requires
updating all model parameters. Low-Rank
Adaptation (LoRA) reduces this cost by mod-
ifying a subset of weights, but selecting the
appropriate rank introduces a trade-off: lower
ranks improve efficiency at the expense of ex-
pressivity, while higher ranks enhance perfor-
mance but increase computational burden. Ex-
isting adaptive LoRA methods lack a theo-
retical foundation to guide this trade-off opti-
mally. We propose Geometric Low-Rank Adap-
tation (GeLoRA), a principled approach that
estimates the intrinsic dimensionality of hidden
data representations to adaptively select LoORA
ranks. We show theoretically and empirically
that the intrinsic dimension serves as a lower
bound for the optimal rank of LoRA matrices,
enabling a balance between efficiency and ex-
pressivity. Extensive experiments on GLUE,
SQuAD (with DeBERTa), and MT-Bench (with
LLaMA) demonstrate that GeLoRA consis-
tently outperforms recent adaptive LoRA meth-
ods by up to +1.0%, while simultaneously re-
ducing computational time by 13.5% to 64.2%,
depending on the baseline, under the same pa-
rameter budget.

1 Introduction

LLMs excel in natural language processing (NLP)
tasks but require fine-tuning for effective person-
alization. However, fine-tuning the entire model
is computationally expensive in terms of time and
memory. Parameter-Efficient Fine-Tuning (PEFT)
offers a solution by adjusting only a subset of the
model parameters (Han et al., 2024). Among PEFT
methods, LoORA decomposes weight updates into
low-rank components, significantly reducing com-
putational costs while achieving performance com-
parable to full fine-tuning (Hu et al., 2021).

LoRA and its variants assume that pre-trained
models exhibit low “intrinsic dimensionality”
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(Aghajanyan et al., 2020; Li et al., 2018), imply-
ing that weight updates should similarly be low-
rank. However, a key challenge lies in determining
the optimal rank values, which involves balanc-
ing expressivity and computational efficiency. Ex-
pressivity refers to the model’s ability to capture
complex patterns in the data, while computational
efficiency pertains to the speed and resource re-
quirements for fine-tuning. Lower ranks reduce
expressivity but enhance memory efficiency and
speed, while higher ranks increase expressivity at
the cost of more resources and computation time.
The trade-off is evident: lower ranks reduce expres-
sivity but enhance memory efficiency and computa-
tional speed, whereas higher ranks increase expres-
sivity at the cost of greater memory usage, longer
computation times, and most likely more data to
learn weights reliably. Typically, ranks are set uni-
formly across all layers, with practitioners relying
on trial-and-error to achieve a balance between ex-
pressivity and efficiency. This is time-consuming
and may not always yield optimal results.

Recent studies (Valeriani et al., 2023) show that
hidden representations of transformer models ex-
hibit low intrinsic dimensionality, suggesting po-
tential connections between the manifold of data
representations and the manifold of model parame-
ters. This raises the question: Is there a connection
between the manifold of data representations and
the manifold of model parameters?

We theoretically examine the relationship be-
tween the dimensionality of data representations
and the ranks of weight updates, deriving a lower
bound for the optimal rank as a function of the in-
trinsic dimensionalities of each transformer block’s
input and output representations. These intrinsic
dimensionalities are specific to each transformer
block and depend on the underlying model and
dataset. Although determining the exact intrinsic
dimension of each hidden representation is imprac-
tical, reliable estimates can be obtained using ex-
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isting methods. In this work, we adopt the Two
Nearest Neighbors (TwoNN) method (Facco et al.,
2017), a robust and widely used estimator for es-
timating the intrinsic dimension of data represen-
tations in neural networks.(Ansuini et al., 2019;
Doimo et al., 2020; Valeriani et al., 2023; Cheng
etal., 2023; Kvinge et al., 2023; Basile et al., 2024).
Building on this, we develop a principled ap-
proach to improve LoRA methods. Specifically,
we introduce Geometric Low-Rank Adaptation
(GeLoRA), a method that dynamically adjusts the
rank of weight updates for each transformer block
as a function of the intrinsic dimensionalities of
its input and output data manifold representations,
achieving a more efficient and expressive trade-
off between model performance and computational
cost. Our work makes three key contributions:

1. We establish a theoretical framework to ex-
plain when LoRA works well. Specifically,
we derive a lower bound on the rank needed
for LoRA to be effective, showing that this
depends on the intrinsic dimensionalities of
data representation manifolds at the inputs and
outputs of transformer blocks.

2. Based on our framework, we introduce
GeLoRA, which adjusts the LoRA ranks
across model layers to align with the intrinsic
dimensionalities of data representations.

3. We evaluate GeLoRA on several bench-
marks, including GLUE, SQuAD, and MT-
Bench, using encoder-based models (De-
BERTa) and decoder-based large language
models (LLaMA). GeLoRA consistently out-
performs baselines such as standard LoRA
and AdaLoRA, while keeping the total num-
ber of tunable parameters fixed.

2 Related work

In this section, we review PEFT methods for LLMs,
examine their limitations and recent developments
in LoRA techniques. We then explore the concept
of intrinsic dimensionality, a key theoretical con-
cept that we leverage in our proposed methodology.

2.1 Parameter-efficient fine-tuning

LLMs, such as GPT (Brown et al., 2020) and BERT
(Devlin et al., 2019), have achieved state-of-the-art
performance in various NLP tasks like sentiment
analysis, machine translation, and question answer-
ing. However, while these models excel in general

tasks, developing personalized models requires ad-
ditional fine-tuning, which needs to be handled ef-
ficiently given the substantial computational costs
involved. PEFT (Han et al., 2024) addresses this
challenge by adjusting only a small subset of model
parameters, significantly reducing resource con-
sumption compared to full model fine-tuning.

Several approaches have emerged to optimize
fine-tuning efficiency. One such approach, BitFit
(Zaken et al., 2022), adjusts only the bias terms and
task-specific head, leaving the rest of the model
unchanged. Another approach uses adapter layers
(Houlsby et al., 2019), which add small trainable
layers, “adapters”, to adapt the model to new tasks
without modifying its weights. Context-based fine-
tuning methods (Petrov et al., 2024) modify the in-
put representation, such as in prefix tuning (Li and
Liang, 2021), where task-specific parameters are
appended to the input embedding to guide model re-
sponses. Finally, LoRA (Hu et al., 2021; Dettmers
et al., 2023; Hayou et al., 2024) reduces the num-
ber of trainable parameters by decomposing update
weight matrices into low-rank components. How-
ever, LoRA faces the challenge of determining an
appropriate rank for these matrices, typically set
uniformly across layers via a trial-and-error pro-
cess, which can be suboptimal.

More recently, several LoRA variants have been
developed to address the challenge of setting uni-
form rank values by dynamically adjusting the rank
for each layer. These variants optimize rank alloca-
tion by computing importance scores and pruning
unnecessary ranks, while ensuring that the total
number of parameters does not exceed a fixed bud-
get. Notable examples include AdaLoRA (Zhang
et al., 2023), SaLoRA (Hu et al., 2023), SoRA
(Ding et al., 2023), and ALoRA (Liu et al., 2024).

AdalLoRA adaptively distributes low-rank up-
dates across model weights by parameterizing the
update matrices via singular value decomposition
(SVD), and evaluates the importance of each direc-
tion using sensitivity scores. Important directions
receive higher ranks, while less significant ones are
pruned. To reduce noise from mini-batch variabil-
ity, it smooths the scores using moving averages
and applies orthogonality regularization to preserve
the SVD structure. However, the method increases
computational overhead and relies on heuristic sen-
sitivity scores without strong theoretical justifica-
tion. SaLLoRA instead learns the rank of each ma-
trix using a binary gating mechanism, where a diag-
onal gate matrix selectively deactivates less impor-
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tant components via a differentiable approximation
of the /p-norm. While this improves efficiency, it
may introduce training instability; orthogonality
regularization (Brock et al., 2017) is used to mit-
igate this, though it also adds computational cost.
Similarly, SORA dynamically adjusts ranks during
training using a sparse gating unit, optimized by
minimizing the /p-norm via the proximal gradient
method (Rockafellar, 1970). Although effective for
adaptation, this approach lacks strong theoretical
justification and may not generalize well. Lastly.
ALOoRA introduces AB-LoRA, a method that esti-
mates the importance of each rank by measuring
the performance impact of removing or isolating
specific ranks. This guides a gradual pruning strat-
egy that reallocates rank budgets from less impor-
tant to more critical transformer modules. How-
ever, ablation-based evaluation is computationally
expensive and may limit the method’s scalability.
In contrast, GeLoRA proposes a geometry-aware,
theoretically grounded criterion for adaptive rank
allocation. This enables efficient and effective fine-
tuning while addressing both the theoretical lim-
itations and computational inefficiencies of prior
adaptive LoRA methods.

2.2 Intrinsic dimensionality

Intrinsic dimensionality (ID) refers to the mini-
mum number of parameters or variables needed
to describe the data without significant loss of in-
formation. While the data may be embedded in a
high-dimensional space, it often lies near a much
lower-dimensional structure. Traditional methods
such as PCA (Fan et al., 2010) assume data lies
near a linear subspace, approximating it by a flat,
low-dimensional space within a high-dimensional
feature space. In contrast, modern techniques cap-
ture nonlinear structures by exploiting geometric or
statistical properties of local neighborhoods (Ceruti
etal., 2012; Campadelli et al., 2015; Johnsson et al.,
2015; Amsaleg et al., 2018; Albergante et al., 2019).
Among these, TwoNN (Facco et al., 2017) stands
out for its simplicity, efficiency, and minimal as-
sumptions. TwoNN estimates the intrinsic dimen-
sion (ID) using only local information from the
two nearest neighbors, avoiding the linearity as-
sumptions inherent in PCA. It scales well to high-
dimensional data and exhibits robustness to mod-
erate noise, though performance degrades under
severe noise conditions.

Its favorable trade-offs have led to broad adop-
tion in machine learning. TwoNN is applied to

analyze neural network latent spaces for model
compression and feature disentanglement (Valeri-
ani et al., 2023; Ansuini et al., 2019), detect non-
linear correlations in joint embeddings (e.g., text-
image) (Basile et al., 2025), and identify anomalies
by spotting deviations from expected ID in high-
dimensional data (Anderberg et al., 2024). How-
ever, TwoNN’s accuracy diminishes in regions with
highly nonuniform data density or near manifold
boundaries, where local uniformity and smoothness
assumptions break down. Despite these limitations,
TwoNN remains widely used due to its strong the-
oretical grounding and computational efficiency.
More details are provided in Appendix A.1.

3 Geometric LoRA

3.1 Intuition

Consider a linear map f : x — Wz, where the
matrix W has a low rank r. The low rank of W
implies that f compresses the semantic informa-
tion of z into a lower-dimensional space such that
dim Smf = r !. Although the functions approxi-
mated by transformer blocks are far more complex
than a linear map, we will later show that intrinsic
dimension profiles can provide insights for select-
ing appropriate ranks for each layer of a language
model. Specifically, we show that they provide a
lower bound on the number of parameters required
to effectively encode information. We develop a
formal theoretical framework to rigorously char-
acterize how the rank of hidden representations
relates to the number of parameters required for
effective fine-tuning within a transformer block.

3.2 Theoretical formulation

For consistency, we maintain the notation used in
the original LoRA paper (Hu et al., 2021). With-
out loss of generality, we will focus on the lan-
guage modeling problem, where the goal is to max-
imize conditional probabilities given a task-specific
prompt. Each task can be represented by a dataset
containing context-target pairs Z = {(z;,v:)},
where both z; and y; are sequences of tokens. The
primary objective is to accurately predict y; given
x;. For example, in a summarization task, x; rep-
resents the original content and y; its summary.
Mathematically, this can be modeled as follows:

maXeece Z(m,y)ez Z|ty:‘1 1Og(P¢(yt ‘ z, y<t))

'Smf denotes the range of the function f.
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Here, ® denotes the parameter set of the model,
and Py represents the conditional probability de-
scribing the relationship between context and target
pairs. This probability distribution can be viewed
as a point on a neuromanifold M = {NN | ¢ €
®}. The geometry of this manifold is characterized
by the Fisher Information Matrix (FIM) (Fisher,
1922) with respect to ¢, which is given by:

P . T
1(6) = Bavupertian | (5108 P0 | 550) (5 0xP | 050)) |

The FIM defines a Riemannian metric on the
learning parameter space (Amari, 2021; Cencov,
1982). However, learning models often exhibit sin-
gularities (Watanabe, 2009), meaning that the rank
of the FIM is less than its full dimensionality, typi-
cally due to parameter redundancy or degeneracies
in the model structure. This is particularly relevant
in transformer models, which contain millions or
even billions of parameters due to their deep and
wide architectures. Such high-dimensional param-
eter spaces are prone to redundancy and strong cor-
relations between parameters (Dalvi et al., 2020),
leading to linear dependencies among the gradi-
ents of the log-likelihood with respect to different
parameters. Moreover, optimization algorithms
such as Stochastic Gradient Descent (SGD) (Ruder,
2017) tend to favor flatter minima during training
(Jastrzgbski et al., 2018), often resulting in plateau
regions where gradient magnitudes are small. This
further contribute to the singular or near-singular
behavior of the FIM, as indicated by the presence
of eigenvalues approaching zero.
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Figure 1: Locally near ©(%), the loss £(6;,05) = 167
depends solely on 6, with 65 lying in the kernel of the
Hessian and thus not affecting the loss. Thus, the local
low-loss region has intrinsic dimension one.

In this context, the rank of Z(¢), defined by the
number of non-zero eigenvalues of the FIM, re-
flects the number of degrees of freedom (directions)
at a point ¢ that can modify the probabilistic model
Pg (- | -). This is referred to as the local dimension-
ality (Sun and Nielsen, 2024). Figure 1 illustrates

this concept, where the local dimensionality is 1,
while the dimension of the space is 2.

Definition 3.1 (Local Dimensionality). The local
dimensionality, denoted as d(¢), is defined as the
rank of the information matrix Z(¢). It represents
the number of parameters that need to be optimized
in the model, indicating the effective dimensional-
ity of the parameter space around the point ¢.

Ideally, we aim to compute the local dimension-
ality of the parameter space at each gradient step.
However, two primary challenges limit this ap-
proach. Firstly, the computational feasibility poses
a significant obstacle, as computing the FIM at each
step requires extensive computational resources.
Secondly, the FIM behaves as a random matrix, typ-
ically maintaining full rank with probability 1, and
it often has very small eigenvalues on the order of
¢ € R* (Feng and Zhang, 2007). According to the
Cramér-Rao bound, the variance of the parameter
estimates is greater than or equal to 1/e. Therefore,
parameters associated with such small eigenval-
ues provide negligible information about the model
and can be effectively considered uninformative.
Disregarding parameters with very small eigenval-
ues leads us to the concept of intrinsic dimension,
which can also be seen as the minimum number of
parameters required to capture the local variance
of the data points effectively. Thus, it represents a
lower bound on the local dimensionality.

Theorem 3.2 (Intrinsic Dimension as a Lower
Bound). The intrinsic dimension idim(¢) is a
lower bound to the local dimensionality d(¢).

d(¢) > idim(g).

There are still several major challenges that
make it difficult to apply geometry-based fine-
tuning methods in practice. First, calculating the
FIM and determining its rank is computationally in-
tensive, which becomes impractical for large mod-
els. Second, estimating the intrinsic dimensionality
of the model’s neuromanifold, defined by the space
of probability distributions induced by neural net-
work parameters, is intractable. In addition, the
number of parameters that need to be fine-tuned
(often guided by the rank of the FIM) is usually
considered at the level of the entire model. This
makes it difficult to adjust ranks locally for each
layer or matrix, limiting flexibility and precision.

To address these limitations, we shift focus from
the parameter space to the geometry of data repre-
sentations as they propagate through the network.
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Specifically, we leverage the fact that we have di-
rect access to both the input data and its hidden
representations across the transformer blocks of a
LLM. Each block performs a nonlinear transfor-
mation that may alter the intrinsic geometry of the
input manifold. By analyzing how the intrinsic di-
mensionality evolves across layers, we gain insight
into the complexity and information content pro-
cessed at each block. This perspective allows us
to guide the local selection of LoRA ranks based
on the intrinsic dimensions of the input and output
data representations at each block. To formalize
this idea, we introduce a theoretical rank-based
bound that connects the intrinsic geometry of the
data manifolds to the local structure of the model
parameter space, enabling principled, geometric
data-driven fine-tuning strategies.

Theorem 3.3 (Rank Bound of Transformer
Blocks). Let M denote a language model con-
sisting of N transformer blocks. For each i €
{1,2,..., N}, the i-th transformer block is repre-
sented by T; : R"=1 x RPi-1 — R™ which maps
the hidden representation H;_1 C R"~! and pa-
rameters 0;_1 € RPi-1 to the next hidden state
H,; C R™. Consider that the H;_1 lies on a data
manifold N;_1 with intrinsic dimension d; _| em-
bedded in R™-1, and H; lies on N; with intrinsic
dimension d; embedded in R™:. Let the param-
eter manifold ©;_1 C RPi-! be a submanifold
locally defined around 0;_1, with intrinsic dimen-
sion dg, |, representing the number of independent
parameters in the neighborhood. The rank of the
transformer block T;, defined as

max

K(T;) =
T ( Z) (,0)EH;—1xO;_1

rank(J(T;, z,0)),

where J(T;, x, ) is the Jacobian matrix of T; eval-
uated at (x,0), satisfies the following bound:

d; < rank(T;) < d;—1 + dy.

Based on Theorem 3.3, we derive Corollary 3.4,
which provides a bound on the contribution of the
parameter manifold to the model’s expressiveness.

Corollary 3.4 (Lower Bound on Parameter Di-
mensionality). Let dy, , denote the effective di-
mensionality of the parameter manifold, and let d;
and d;_1 represent the intrinsic dimensions of the
data manifold at layers © and i — 1, respectively.
The dimensionality of the parameter manifold sat-
isfies: dp, , > max(d; — d;—1,0).

Corollary 3.4 establishes a geometric constraint
on model expressivity: the parameter manifold
must have at least d; — d;_; effective degrees of
freedom to support an increase in the intrinsic
dimensionality of the data manifold across lay-
ers. When d; > d;—;, parameters must enable
expansion into higher-dimensional features; when
d; < d;—1, transformations are compressive or
dimension-preserving and perform operations like
filtering without increasing dimensionality.

Two important questions arise: (1) Is the bound
potentially loose, that is, does it become ineffec-
tive when there is no increase in intrinsic dimen-
sionality? (2) If the effective number of tunable
parameters changes during optimization, must it be
recomputed after each gradient step, and if so, does
this introduce significant computational overhead?

When the inequality is loose and the computed
lower bound is zero, certain LORA weights are
assigned a rank of zero. This typically occurs
when the corresponding layers already encode task-
relevant information, making fine-tuning unneces-
sary (Hartford et al., 2024). Freezing such layers
can reduce computational overhead without degrad-
ing performance. Although recomputing the opti-
mal number of parameters after each gradient step
is computationally costly, models actually tend to
compress data representations over time. Thus, ss
training progresses, fewer parameters are needed
to capture local variance in the hidden representa-
tions. This suggests that the number of parameters
required for effective adaptation may naturally de-
crease over the course of training (Theorem 3.5).

Theorem 3.5 (Transformer Rank Bound Dynam-
ics). Let T; denote the i-th transformer block in
a language model, and let d,? be the intrinsic di-
mension of the data manifold at its input at ini-
tialization. Define the initial parameter rank as
dgi := max(0,d) —d?_,), representing the number
of degrees of freedom needed to capture additional
information at layer 1. Let déi denote the effective
rank of the transformer block after t training steps.
Then, we have: dgi > dzi forallt > 0.

4 Methodology

Figure 2 provides a schematic overview of the
GeLoRA methodology, which begins by comput-
ing the hidden representations of the data using a
language model and determining the intrinsic di-
mensions of these hidden representations.

For each transformer block ¢, let d;_; represent
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Figure 2: Overview of the GeLoRA methodology. The approach consists of three main steps: (/) analyzing the
intrinsic dimensionality of data representations, (2) assigning minimal LoRA ranks based on these dimensions, and
(3) performing efficient fine-tuning to balance computational cost and model expressivity.

the intrinsic dimension of the data manifold at the
input and d; represent the intrinsic dimension at the
output. The minimum rank dy, , required for each
block is determined based on the condition we de-
rived in Corollary 3.4: dp, , > max(d; — d;—1,0),
where the difference max(d; — d;—_1,0) indicates
the necessary capacity to capture any dimensional
expansion of the data manifold between consecu-
tive layers. An adaptive scaling factor «; is then
applied across blocks to maintain a consistent ratio
«;/r; = const, preserving the proportion of adap-
tation strength relative to rank. This enables an
efficient fine-tuning process that balances expres-
sivity with computational efficiency.

To estimate the intrinsic dimension d of the
hidden representations, we employ the TwoNN
method (Facco et al., 2017). More details are pro-
vided in Appendix A.l. In high-dimensional set-
tings, the TwoNN method tends to provide a con-
servative estimate, often serving as a lower bound
for the true intrinsic dimension. To illustrate this,
we conducted experiments on established bench-
mark datasets comparing the estimated values to
the ground truth. The results of these experiments
are summarized in Appendix C.2. To mitigate
the risk of underestimating the intrinsic dimension,
sometimes resulting in an inaccurate value of zero
rank, we add a small offset of 1 to each rank lower
bound. Moreover, we compute a lower bound on
the rank of each transformer block, rather than for
the individual key, query, value and output projec-
tion matrices within the block. Since the distribu-
tion of effective tunable parameters across these
matrices is unknown, we adopt a uniform allocation
strategy: the rank of each matrix in the block is set
equal to the computed lower bound (i.e., the rank
of the transformer block). Although this approach
implicitly assumes equal contribution from each
component, it provides a tractable approximation

in the absence of a fine-grained estimation method.

dgKi_l = d9Q1—1 = dHVi—l = d001—1 = max(d; — di—1,0) + 1,
wherc'e dgKi_l,dei_l,dgvi_l, and d90¢_1 are, re-
spectively, the ranks of the key, query, value and
output matrices of the transformer block ¢. The
pseudocode of GeLoRA is in Appendix B.3.

S Experiments

5.1 Fine-tuning techniques and datasets

We evaluate GELORA on natural language un-
derstanding, question answering and instruction
following tasks. For understanding, we use the
GLUE benchmark (Wang et al., 2019). For ques-
tion answering, we use SQuAD (Rajpurkar et al.,
2016). Lastly, instruction following is trained on
Airoboros (Durbin, 2024) and evaluated on MT-
Bench (Zheng et al., 2023a). Dataset statistics
are in Appendix D. We conduct experiments on
both encoder-only and decoder-only models. For
the encoder-only family, we use DeBERTaV3 (He
et al., 2021), which is widely adopted in prior PEFT
benchmarks for natural language understanding
and question answering (Hu et al., 2021; Ding et al.,
2023; Qiang et al., 2024; Chang et al., 2025; Zhang
et al., 2023). For the decoder-only family, we use
LLaMA 3 (8B) (Grattafiori et al., 2024), a state-of-
the-art model designed for generative tasks.

We compare GELORA against various baselines,
including weight update tuning (Zaken et al., 2022),
adapter-based methods (Houlsby et al., 2019; Pfeif-
feretal.,2021), and LoRA variants (Hu et al., 2021;
Ding et al., 2023; Zhang et al., 2023). For LoRA-
based methods, the maximum rank is set to 4, that
is, four times the rank budget of GELORA, while
for adapters, the reduction factor is set to the maxi-
mum to ensure comparable parameter budgets.
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Table 1: Results with DeBERTaV3-base on SQuADv1.1 and SQuADv2.0. Here # Params is the number of trainable
parameters. The best results are shown in red bold, and second best results are shown in red bold.

# PARAMS SQUADVI.1 SQUADV2.0
EM F1 EM F1
FULL FT 183.83M 86.12+£0.28  92.68 +0.13 83.03 £0.49 86.21 £ 0.51
HADAPTER 647.45 x 107°M 84.58£0.20 91.57+0.13 80.79 £ 1.10 84.28 £1.13
PADAPTER 309.89 x 107°*M 83.00 £0.06  90.57 £0.10 78.17+£0.95 81.94 £0.94
LORA, -2 150.54 x 107* M 84.45+0.35 91.35+£0.25 83.15+0.77 86.16+0.74
LoRA,—; 75.27 x 107°M 86.23 £0.16  92.51 +£0.16 81.09 + 0.66 84.22 £0.63
ADALORA,—; 147.55 x 107°M  86.31+0.30  92.58 +0.21 81.12+0.35 84.23 £0.31
ADALORA,—,  221.33 x 107*M 86.27 £0.31 92.61+0.27 81.68+0.51 84.80+0.50
GELORA 80.34 x 107°M  86.72+0.27 92.84+0.20 83.15+0.22 86.25+0.24

5.2 Experimental setting

We implemented all algorithms using PYTORCH,
based on the publicly available HUGGINGFACE
TRANSFORMERS (Wolf et al., 2020) code-base.
For optimization, we used the ADAMW optimizer
(Loshchilov and Hutter, 2019), which features pa-
rameters set to e = 1076, 3; = 0.9, and By =
0.999, and we fixed the batch size to 32. The nu-
merical results were averaged over five runs with
random seeds and we report standard deviations
to ensure statistical robustness. The alpha rank ra-
tio for low-rank adaptation techniques was fixed
at 32, consistent with prior work (Hu et al., 2021;
Zhang et al., 2023), and was not fine-tuned fur-
ther. For estimating intrinsic dimension, we used
the SCIKIT-DIMENSION package (Bac et al., 2021).
All experiments were conducted on 8§ NVIDIA
A100-SXM4 GPUSs. Additional training details
can be found in Appendix F.

5.3 Numerical results

5.3.1 Question answering: SQuAD

Our experimental results demonstrate the effi-
ciency of GeLoRA against baseline approaches
on the SQuADvV1.1 and SQuADvV2.0 benchmarks.
GeLoRA achieves better performance with EM/F1
scores of 86.72/92.84 and 83.15/86.25, re-
spectively, surpassing other fine-tuning techniques
while using only a fraction of trainable parameters.
Table 1 reveals consistent performance improve-
ments over existing parameter-efficient methods.
GeLoRA outperforms LoRA variants by margins of
0.45 — 2.27 points in EM score on SQuADvl1.1,
with similar gains observed on SQuADv2.0. The
performance delta is more pronounced when com-
pared to adapter-based methods, showing improve-
ments of 2.14 and 3.72 points over HAdapter and
PAdapter, respectively, on the SQuADv1.1 dataset.

5.3.2 Instruction following: MT-Bench

We fine-tuned LLaMA 3 on the Airoboros dataset
(Durbin, 2024) and evaluated its performance us-
ing the MT-Bench dataset (Zheng et al., 2023a).
For evaluation, we used the LL.M-as-a-judge ap-
proach, where responses generated by the fine-
tuned LLaMA model were assessed by another
LLM (Zheng et al., 2023b). In our case, we used
the instruct version of Mistral (Jiang et al., 2023),
which assigned scores from 1 to 10, with 1 repre-
senting the lowest quality and 10 the highest quality.
To ensure consistency, we set the temperature to
0.1 and performed eight evaluation runs. The re-
sults remained unchanged across these runs, and
are summarized in Table 3.

Table 3: Comparison of fine-tuning techniques on in-
struction tuning task (MT-Bench) using LLaMA 3. The
average performance score across 8 evaluation runs is
reported for each configuration. The best results are
shown in red bold, and second best in blue bold..

METHOD PARAMS AVG SCORE
BASE MODEL - 8.04
LORA,—; 851.97 x 107°M 9.04
LORA, -2 1703.94 x 107*M 8.94
LORA,—4 3407.87 x 107°*M 8.97
ADALORA,—; 1704.19 x 107M 9.06
ADALORA,—2  2556.29 x 107*M 8.69
ADALORA,—;  7668.86 x 10~*M 9.06
GELORA 985.09 x 107°M 9.09

GeLora achieves the highest average score of
9.09, making it the best-performing fine-tuning
method for this task. LoRA-based methods per-
form similarly, with rank 1 scoring 9.04, while
higher ranks (2, 4, and 8) score slightly lower
(8.94-8.97). AdaLLoRA shows more variation, with
rank 1 and rank 4 both scoring 9.06, while rank 2
scores 8.69. BitFit records the lowest score among
fine-tuned models at 8.70, though it still surpasses
the base model, which scores 8.04.
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Table 2: Results with DeBERTaV3-base on GLUE test set. The best results for each dataset are highlighted in red
bold, while the second-best results are blue bold. We report the average correlation for STS-B. Full FT represent
full fine-tuning, HA Adapter represents Houlsby Adapters, and PF Adapter represents Pfeiffer Adapters.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE QQP MNLI Average
FULL FT 184.42M 68.28 +1.39 91.32+0.45 73.53 +3.25 93.81 +0.21 94.68 & 0.30 73.67+1.33 88.544+0.23  89.65£0.19 84.19
BITFIT 105.22 x 107°M 68.66 +1.87  89.40 + 0.57 85.20 & 1.56 92.10+0.13 94.54 +0.30 75.11 4+ 2.52 86.25+0.27  86.04 +0.58 84.66
HA ADAPTER | 647.45 x 107°M 68.46 + 1.08 91.26 +0.13 86.76 £ 0.44  93.524+0.40 95.32 + 0.35 80.43+2.78 89.08+0.06  89.07+0.19 86.74
PF ADAPTER 619.79 x 107°M 68.59 & 1.43 89.85 4 0.13 88.24+1.07  93.334+0.30 95.55 4 0.41 79.14 +2.95 88.60+0.14  88.8240.07 86.52
LORA,—; 75.27 x 107°M | 69.68 +0.92 88.29+3.28 88.43+1.37 93.83+0.13 95.04 +0.43 80.29+1.33 90.41 £0.05 89.64 +0.15 86.95
LORA, - 148.99 x 107°M 69.04 + 1.51 88.60 % 3.09 87.75 + 0.69 93.79+£0.17  95.04 £0.22 80.43 £ 1.60 90.78 £ 0.11 89.77 £0.39 86.90
SORA, =1 75.27 x 107°M 61.78 +2.37 78.88 £ 6.55 87.45 & 3.06 88.66 % 0.68 91.94+0.52 82.32+2.49 84.08 +0.66  82.0940.82 82.15
SORA ;-2 148.99 x 107°M 67.85+1.33 84.33 +3.90 88.04+2.00  89.76 4 0.41 91.40 +0.32 78.84 +3.74 83.80+0.46  83.50 £ 0.76 83.44
ADALORA,—; | 147.55 x 107°M 69.28 £0.33 92.08+0.15 84.61+0.91 93.84 £ 0.15 95.07 & 0.42 74.96 £ 3.82 89.924+0.10 90.12+0.20 86.23
ADALORA,—» | 221.33 x 107°M 64.76 & 1.49 91.56 +0.12 87.25+0.93 94.07+0.12 9544+0.34 81.87+0.95 90.124+0.08 90.13 +0.26 86.90
GELORA | TABLE 4 | 70.96 +£0.96 91.66 +0.48 89.9+0.79 93.87+0.23 95.05+0.24  81.294+1.64 90.81+0.12 89.84+0.22 | 87.92

5.3.3 Natural language understanding:
GLUE benchmark

Our experiments on the GLUE benchmark (Table
2) show that GeLoRA achieves the highest overall
performance, with an average score of 87.92, sur-
passing strong parameter-efficient baselines such as
HA Adapter (86.74), LoRA (86.95), and AdaLLoRA
(86.90). GeLoRA outperforms other techniques on
CoLA (70.96), STS-B (91.66), and MRPC (89.90),
while also remaining highly competitive on other
tasks such as SST-2 (95.05) and RTE (81.29). Com-
pared to full fine-tuning (84.19) and other adapter-
based methods, GeLoRA consistently yields supe-
rior or comparable results across diverse datasets.
A key advantage of GeLoRA lies in its adap-
tive parameter allocation strategy (Table 4), which
assigns only 0.09M-0.13M parameters depending
on task complexity. This is orders of magnitude
smaller than full fine-tuning (184.42M) and re-
mains within the efficiency range of other PEFT
approaches (0.08M—-0.22M). By allocating param-
eters selectively rather than uniformly, GeLoRA
avoids unnecessary overhead on tasks for which
pretrained representations already capture relevant
features. This design not only improves efficiency
but also better aligns with the intuition that tasks
vary in difficulty and benefit unevenly from addi-
tional adaptation. A natural question that arises

Table 4: GeLoRA parameters and mean ranks across
GLUE tasks. Values in parentheses show rounded ranks.

TASK | #PARAMS (x1e’) MEAN RANK
COLA 99.84M 1.33 (1)
STS-B 111.36M 1.50 (2)
MRPC 130.56M 1.75 (2)
QNLI 93.70M 1.25 (1)
SST-2 87.55M 1.17 (1)
RTE 130.56M 1.75 (2)
MNLI 100.61M 1.33 (1)
QQP 118.27TM 1.58 (2)

is: what happens if we simply increase the ranks in
LoRA, or introduce additional complexity in adap-
tive variants? To explore this, we evaluate these
methods in a high-rank setting by applying an off-
set to the GeLoRA lower bound. Concretely, the
ranks are defined as

Tk, =TQ, =TV, = T0, = max(d;y1 — d;,0) + o,

where o is the applied offset.

The results in Table 5 show that, on average,
GeLoRA still outperforms LoRA and its adap-
tive variants even in high-rank settings. Moreover,
methods such as SORA and AdaLLoRA benefit more
from the higher ranks than in the low-rank regime
since they are able to prune unnecessary capacity
during training. In contrast, GeLoRA already in-
corporates this inductive bias by design, estimating
task-appropriate ranks before fine-tuning without
relying on post-hoc adjustments. This observa-
tion highlights that simply increasing rank does not
guarantee better performance. Instead, principled
strategies for parameter allocation, as implemented
in GeLoRA, are more effective in balancing effi-
ciency and accuracy.

5.3.4 Computational Efficiency

Finally, we evaluate the efficiency of different tech-
niques under a fixed budget constraint. The re-
ported times cover only the fine-tuning stage. For
GeLoRA, there is also a one-time preprocessing
step to estimate the intrinsic dimension. Training
time was measured across eight datasets, with ex-
periments run for 20 epochs on all datasets except
RTE (50 epochs) and QQP and MNLI (10 epochs
each). All experiments were conducted on identi-
cal hardware, eight NVIDIA A100-SXM4 GPUs,
with a fixed batch size of 32, and the ranks of LoRA
and its variants were adjusted to match the rounded
mean rank of GeLoRA.
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Table 5: Results with DeBERTaV3-base on GLUE test set using higher ranks. The best results are shown in bold
red, while the second-best are bold blue.

Method # Params CoLA STS-B MRPC QNLI SST-2 RTE QQr MNLI Average
LORA—4 297.22 x 107°M 67.52 4 0.38 89.84+1.36  89.12+£2.09  93.77+£0.10 95.39 & 0.40 81.73 +1.55 91.06 + 0.08 89.71+0.37 87.26
LORA, g x107°M 68.92 4 0.84 89.024+1.41 68.81 4 34.87 79.42 4+ 2.83 94.84 £+ 0.55 93.53 +0.16 88.674+0.90 77.61 4 20.96 82.60
LORA,—16 x107*M 66.28 & 1.03 89.80£1.22  63.06 & 33.59 73.81 £7.46 93.97£1.05  91.79£0.22 68.09+9.82  55.79 + 24.52 75.32
LORA—61 x107°M 59.73 +£6.21 88.53 £1.18 62.15+ 35.88 69.06 + 7.24 94.01 £0.41 91.86 + 0.44 68.18 £5.00  64.25 +28.47 74.72
SORA =4 207.22 x 107°M 63.47 = 1.99 81.68£7.93  87.06£1.15 90.04+0.67  92.46+£0.59  86.09+£2.69  84.16 £0.46 85.14 +0.34 83.76
SORA,—3 X 107:3M 66.92 + 3.67 89.22 £+ 0.62 89.12 + 1.00 84.93 &+ 2.69 94.22 £ 0.47 91.36 + 0.20 84.04 +0.33 85.07 £ 0.37 85.61
SORA =16 x107*M 65.09 & 2.35 90.59 £2.37  81.69£9.15 84.934+1.97  93.99+0.45  91.88+£0.19  84.60 £0.73 85.91+0.51 84.84
SORA =64 x107*M 64.24 +1.03 90.98+0.73  85.66 £4.60  86.67 £1.92 94.40+0.42  9222£0.17  81.85+1.02 81.70 = 1.02 84.72
ADALORA,—; | 442.66 x 107°M 68.62 & 1.22 90.54+0.23  84.31+£145 94.11+£0.12 95.39 & 0.44 79.714+1.24  91.57£0.22 90.27 +0.18 86.81
ADALORA,—g x107°M 69.95 +0.92 87.94+1.14 91.93+0.10 82.64 +1.74 95.03+0.19 93.90+0.33 91.70+0.17 90.31+0.13 87.92
ADALORA,._6 x107°M | 70.73 +£1.58 86.96 £1.57 91.50+0.14 82.73+1.44 95.57+0.37 93.83+0.13 91.78+0.38 90.28+0.15 87.92
ADALORA—¢4 x107*M 69.07 + 1.63 87.94+1.01 91.93+0.34 82.73+1.70 95.44+0.20 93.83+0.14 81.70+1.02 90.07 £ 0.50 86.59
GELORA ‘ TABLE 4 ‘ 70.96 £0.96 91.66 +0.48 89.94+0.79 93.87+0.23 95.05 +£0.24 81.29 +1.64 90.81 +0.12 89.84 +£0.22 ‘ 87.92

Table 6: Training computational cost (runtime) in seconds for DeBERTaV3-base fine-tuning on GLUE tasks. The
runtime for each fine-tuning is indicated in seconds. The best results for each dataset are highlighted in bold.

Dataset GeLoRA LoRA AdaLoRA BitFit HAdapter PAdapter
CoLA 85.68 = 2.27 100.95 £ 10.53 165.43 £ 0.28 157.27 £1.07 117.98 £0.07 113.52 £ 0.11
STS-B 59.13 + 3.26 78.26 £ 6.92 157.50 £ 8.36 122.68 £ 0.40 84.51 £+ 0.06 81.27 £ 0.04
MRPC 40.42 £ 0.30 58.75 4+ 1.73 112.61 +1.36 94.93 + 0.34 57.4140.10 55.09 4+ 0.03
QNLI 736.57 £3.34 865.76 = 4.11  2328.60 £24.81  1341.47£21.03 1254.144+1.21 1205.86 &+ 1.83
SST-2 475.58 £ 5.10 482.38 £5.11 1140.65 £ 2.25 871.10 £ 5.05 807.91 £ 0.57 775.33 £ 0.56
RTE 75.62 + 0.29 116.28 + 7.30 207.89 + 4.42 80.5 +0.24 104.38 £ 0.06 100.40 +0.11
AVERAGE 245.5 283.73 685.45 444.66 404.39 388.58

Table 9 shows that GeLoRA requires less fine-  fewer trainable parameters.
tuning time than competing methods. By contrast,
AdaL.oRA incurs extra overhead from maintaining
moving averages of importance scores and com-
puting gradients for orthogonality regularization.
BitFit also requires training a task-specific head,
which adds complexity and increases training time.

On the other hand, the pre-processing step for
GeLoRA (estimating the intrinsic dimension) takes
between 7 minutes and 1 hour on a single A100
GPU with 8 CPU cores, depending on dataset size.
For very large datasets, this cost can be reduced
using principled subsampling strategies, which are
valid under the local uniformity assumption of the
ID estimator (Appendix A.1.2). We view this one-
time cost as reasonable, since it enables a more prin-
cipled approach to parameter-efficient fine-tuning
and gaining a deeper understanding of the underly-
ing mechanisms.

6 Conclusion

In this work, we introduced GeLoRA, a geometry-
aware method for adaptive low-rank fine-tuning.
By leveraging intrinsic dimensionality estimates
of hidden representations, GeLoRA assigns prin-
cipled LoRA ranks per layer, balancing expres-
sivity and efficiency. Our theoretical framework
connects data representation geometry to parameter
optimization needs, and our empirical results show
consistent gains over existing PEFT methods on
GLUE, SQuAD, and MT-Bench, with significantly
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Limitations

GeLoRA presents a theoretically motivated ap-
proach to adaptive low-rank fine-tuning by lever-
aging intrinsic dimensionality estimates of hid-
den representations. However, the method’s ef-
fectiveness depends heavily on the accuracy of
the Two Nearest Neighbors (TwoNN) estimator,
which is known to underestimate intrinsic dimen-
sions in high-dimensional or non-uniform settings
(Appendix A.1). Although we mitigate this with a
fixed offset, this correction is an ad hoc heuristic
and lacks theoretical justification. Additionally, the
derived theoretical bounds connecting intrinsic di-
mensionality to LoORA ranks are only lower bounds
and may be loose in practice. The tightness of these
bounds and whether they meaningfully constrain
the true optimal ranks remains an open question.
Another limitation lies in the scalability of
GeLoRA. Our proposed methodology has been
evaluated on benchmark datasets using DeBER-
TaV3 and LLaMA 3, leaving its behavior on larger
models, multilingual LLMs, and multi-modal ar-
chitectures untested. Moreover, although our ap-
proach reduces training cost, the preprocessing step
to estimate intrinsic dimensions might introduce a
nontrivial overhead, especially in larger-scale set-
tings. Online, parallel computing, or approximate
versions of this step could improve efficiency with-
out sacrificing accuracy.

Future work will explore more robust and scal-
able intrinsic dimension estimators, extend the
framework to multimodal and multilingual tasks,
and investigate dynamic or sample-specific rank
assignment.
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A Mathematical Formalism

In this section, we provide the mathematical defi-
nitions, theorems, and algorithms that serve as the
foundation for the methods and theorems presented
in this paper.

A.1 Intrinsic Dimensionality
A.1.1 Definition and Example

Definition A.1 (Intrinsic Dimensionality). Let
M C RP be a manifold embedded in a D-
dimensional ambient space. The intrinsic dimen-
sionality (idim) of M is defined as the small-
est number of coordinates d such that all data
points on M can be locally approximated by a
d-dimensional Euclidean space. Formally, for ev-
ery point x € M, there exists a neighborhood
N (x) and a smooth map ¢ : R? — R” such that
PR NN (x) = MNN(x).

In practical terms, the intrinsic dimensionality
d represents the number of degrees of freedom
required to describe the structure of M, regardless
of the ambient space’s dimensionality D.

Example. Consider a helical curve H embedded
in three-dimensional space (R3) (Figure 3) with the
parametric representation:

r cos(t)
rsin(t) |,
ct

x(t) = t eR,

where r > 0 is the radius and ¢ > 0 is the vertical
scaling factor.

Figure 3: A helical curve in 3D space with an intrinsic
dimension of 1, fully described by a single parameter
despite its 3D embedding.

Although the helix is embedded in R3, the pa-
rameter ¢ uniquely determines any point on the
curve. Hence, the helix is a one-dimensional
(d = 1) manifold, since it can be locally approxi-
mated by a one-dimensional Euclidean space (R1).

25186


https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2207.02628
https://arxiv.org/abs/2207.02628
https://arxiv.org/abs/2207.02628
https://arxiv.org/abs/2002.03495
https://arxiv.org/abs/2002.03495
https://arxiv.org/abs/2002.03495
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2303.10512
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685
https://arxiv.org/abs/2306.05685

A.1.2 Methodology: Two Nearest Neighbors
Estimator

Motivation. The Tivo Nearest Neighbor (TwoNN)
method (Facco et al., 2017), is a technique de-
signed to estimate the intrinsic dimension (idim)
of a dataset using local geometric properties. It
is particularly effective for NLP datasets due to
several advantages. First, it is highly scalable,
since it requires only the distances to the first two
nearest neighbors of each data point, making it
computationally efficient even for large datasets.
Second, the method is robust, consistently produc-
ing reliable results in datasets of varying sizes and
scales (Denti et al., 2022). Finally, the assump-
tion of locally constant density is valid for NLP
datasets. This has been empirically verified using
the Point Adaptive kNN (PAk) method (Rodriguez
et al., 2018; Valeriani et al., 2023).

Methodology. To estimate the intrinsic dimen-
sion, the TwoNN algorithm follows four key steps.
The first step involves calculating the distances
to the two nearest neighbors for each data point
x;: ri,, the distance to the first nearest neighbor,
and 7;,, the distance to the second nearest neigh-
bor. Once these distances are obtained, the method
computes the ratio p; = % for each data point.

Under the assumption olf constant local density,
the ratios u; follow a Pareto distribution, expressed
as follows

p(pi | d) = du; 1,

where d represents the intrinsic dimension. The cu-
mulative distribution function (CDF) of the Pareto
distribution is given by

To approximate this CDF empirically, the com-

puted ratios p; are sorted in ascending order, yield-

ing p,(;), where o(i) represents the index of the

i-th smallest value. The empirical CDF is then

defined as ]

i

N?

where NV is the total number of data points.
Finally, the intrinsic dimension d is estimated

using a linear regression. A logarithmic transfor-

mation of the Pareto CDF is applied, yielding the

relationship

Femp(ﬂo(i)) =

—log(1 — Femp(to(i))) = dlog(pis())-

By plotting log(uy(;)) against —log(l —
Femp(#o(i))), the slope of the resulting line
provides an estimate of d.

In summary, the TwoNN method offers a sim-
ple yet effective approach to estimate the intrin-
sic dimension of datasets. To ensure robust-
ness, the TwoNN estimator is applied to random
subsets of the dataset of decreasing sizes (e.g.,
N,N/2,N/4,...), and the ID is chosen where the
estimates stabilize.

Computational Complexity. The TwoNN esti-
mator requires finding the two nearest neighbors for
each data point in the dataset. This operation has
a computational complexity of O(n?) for a naive
approach or O(nlog(n)) when using optimized
nearest neighbor search methods (e.g., KD-trees or
ball trees). For a dataset with n points and a model
with L transformer blocks (e.g., where distances
need to be computed across L hidden representa-
tions), the overall complexity becomes:

O(L -nlog(n)) or O(L-n?),

depending on the algorithm used for nearest
neighbor computation.

Assumption Empirical Validation To empiri-
cally validate the local density assumption, we ap-
plied the Point Adaptive kNN (PAk) method, as im-
plemented in DADApy (Glielmo et al., 2022). We
determined that the probability density can be con-
sidered approximately constant within the first two
nearest neighbors of each data point. This supports
the validity of the local density assumption at the
scale used for intrinsic dimensionality estimation,
which is measured using the distances to the first
two nearest neighbors. Table 7 summarizes the ex-
tent of constant density in various datasets, where
this extent is defined as the minimum number of
neighbors observed across all hidden representa-
tions of each dataset.

Table 7: Extent to which the local density is considered
constant for each dataset.

DATASET COMPONENT EXTENT OF CONSTANT DENSITY (NEAREST NEIGHBORS)

GLUE CoLA
SST-2
MRPC
STS-B
QNLI
RTE

[CRIRIRIE N}

A.2 Transformer Architecture

Definition A.2 (Single-head Self-attention
Layer). Let k,d € N. Consider matrices
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Q,K,V € RF*Y  For any integer n € N
and vectors xi,...,T, € R<, self-attention
with parameters (Q, K,V) maps the sequence
(w1,...,2,) € R>*"to

. . _ n 3 ' zTQTKz, ) k
flx1,... x,) = <V Z]:l 5oftmax< T f) $]>1§i§n € (R¥)™,

Definition A.3 (Multi-head Self Attention Layer).
Let d € N and H be a divisor of d. For
1 < h < H, let Qh),K(h),V(h) €
RF*4 with k& := d/H, and W(h) €
Multi-head self-attention with parame-
ters (Q(h), K(h),V(h), W(h))1<h<mg maps any
sequence (z1,...,7,) € (R9)" to

Sxn) =S W) W (..

where f() denotes single-head self-attention with
parameters (Q(h), K(h),V(h)).

Rdxk

fvu (1, - . ,xy) € (RH,

A.3 Differential Topology

Definition A.4 (Manifold). A manifold is a topo-
logical space M that is locally homeomorphic to
Euclidean space R", where n is the dimension of
the manifold. More formally, for each point p € M,
there exists an open neighborhood U,, C M and a
homeomorphism ¢, : U, — R" that maps the lo-
cal neighborhood around p to an open subset of R™.
The pair (Up, p) is called a chart or coordinate
chart of the manifold at p. The function ¢, is called
a coordinate map or local coordinate system, and
its inverse ¢, Lis called a local parameterization.

Theorem A.5 (Sard’s Theorem). Ler f : M —
N be a smooth map between smooth manifolds
M and N, where dim(M) = m and dim(N) =
n. The set of critical values, f(Cy) C N, where
Cr={p € M :rank(Df,) < n}, has Lebesgue
measure zero in N. In other words, the image of
the critical set under a smooth map has measure
zero in the target space N.

Theorem A.6 (Rank Theorem). Let M, N
be smooth manifolds such that dimM =
m,dim N =n, and let f : M — N be a smooth
map with constant rank r. For each p € U, there

exists a chart (U, ) centered at p, and a chart
(V, %) centered at f(p), with f(U) C V such that

Fat,. et ey = o foyp M@l . o e a™) = (... ,27,0,...,0).

B GeLoRA: Framework and Theoretical
Proofs

In this section, we provide the pseudocode for the
GeLoRA framework along with detailed proofs of
the theorems presented in this paper.

B.1 Mathematical Proofs

B.1.1 Proof of Theorem 3.2 — Intrinsic
Dimension as a Lower Bound

Theorem B.1 (Intrinsic Dimension as a Lower
Bound). The intrinsic dimension idim(¢) is a
lower bound to the local dimensionality d(¢).

d(¢) > idim(g).

Proof. The local dimensionality d(¢) of a neuro-
manifold is defined as the rank of the Fisher In-
formation Matrix (FIM), which corresponds to the
number of non-zero eigenvalues of the FIM. How-
ever, in practice, while the FIM is almost surely of
full rank, many of its eigenvalues can be exceed-
ingly small, on the order of ¢ € RT, where € is a
small positive threshold.

According to the Cramér-Rao bound, the vari-
ance of parameter estimates is inversely propor-
tional to the eigenvalues of the FIM. Specifically,
for an eigenvalue on the order of e, the variance
of the corresponding parameter is at least 1/¢. Pa-
rameters associated with such small eigenvalues
contribute negligible information about the model
and can therefore be considered effectively unin-
formative.

By disregarding parameters associated with
small eigenvalues, we obtain the definition of the
intrinsic dimension idim(¢), which represents the
minimal number of parameters necessary to de-
scribe the structure of the manifold. The specific
value of the intrinsic dimension depends on the
threshold € used to exclude eigenvalues below a cer-
tain magnitude. This threshold determines the un-
informative directions that are discarded, yielding
an estimate of the ground truth intrinsic dimension.
Consequently, the estimated intrinsic dimension
idim(¢) is always less than or equal to the local
dimensionality d(¢):

idim(¢) < d(o).

Thus, the estimated intrinsic dimension idim(¢)
provides a lower bound for the local dimensionality
d(¢), completing the proof. O

B.1.2 Proof of Theorem 3.3 — Rank Bound of
Transformer Blocks

Theorem B.2 (Rank Bound of Transformer
Blocks). Let M denote a language model con-
sisting of N transformer blocks. For each i €
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{1,2,..., N}, the i-th transformer block is repre-
sented by

T; : Ri-1 x RPi-1 — R™,

which maps the hidden state H;—1 C R™~-1 and
parameters 0;_1 € RPi=1 to the next hidden state
H; C R™.

e Assume that the H;_1 lies on a data manifold
N;_1 with intrinsic dimension d;_, embed-
ded in R™—1, and H; lies on N; with intrinsic
dimension d; embedded in R™:.

¢ Let the parameter manifold ©; 1 C RPi-1
be a submanifold locally defined around 6;_,
with intrinsic dimension dy, |, representing
the number of independent parameters in the

neighborhood.
The rank of the transformer
block T;,  defined as  rank(T;) =

Max(; ), 1 x0,_, rank(J(Ti, z,0)), where
J(Ti,x,0) is the Jacobian matrix of T; evaluated
at (x,0), satisfies the following bound:

d; < rank(T;) < di—1 + dg,_,.

Proof. We aim to establish the rank bound for a
single transformer block 7;, which transforms the
hidden state H;_1 into H; using parameters ¢;_1.
The transformation is modeled by a function:

Ti : R x RPi-1 — R™

The rank of 7; is given by the rank of its Jacobian
matrix:

J(ﬁ) 1’7 0) c Rnix(nifl"rpi,l) )

We now prove both the upper and lower bounds.

Lower Bound. Leti € {1,2,..., N}, and con-
sider the map 7; : R™~1 x RPi-1 — R™ to be
the i-th transformer block, which maps the hidden
state H;_1 C R™-! and parameters 6;_; € RPi~1
to the next hidden state H; C R™. Assume that
idim(’Hi71) = difl and idim(?—li) = dl

Given that idim(H;—1) = d;—1 < n;_1, we
can define a smooth bijective parameterization
¢ : U — R™-1 from an open set Y C R%-1
to an open subset O C H,;_1.

Similarly, since ©;_1 is a submanifold of RPi-1
with intrinsic dimension dp, ,, we can define a
smooth bijective parameterization ¢ : Y — RPi-1

from an open set V C R%i-1 to an open subset
09 C 91‘—1-

We now extend these parameterizations by con-
sidering the map ¢ : U X V — R™i~1 x RPi~1 that
maps each point (z,1) € U x Vto (¢(z), ¢(n)).

Since 7; is smooth almost everywhere, we can
apply the constant rank ? theorem for manifolds
(Theorem A.6) to the composed map 7; o 1), obtain-
ing:

idim(7;(Hi—1 X ©;—1)) = rank(7; o v)
= rank(J7;0y),

where J7; . is the Jacobian matrix of the composi-
tion 7; o .

Using the chain rule, the rank of the composition
is bounded by the minimum rank of the individual
Jacobians:

rank(J7,oy) = rank(J7; - Jy) < rank(J7;).

Thus, the dimension of 7;(H;—1 x ©;_1), which
corresponds to the intrinsic dimension d; of the
hidden state H,, satisfies:

d; = idim(#H;) < rank(7;).
This completes the lower bound.

Upper Bound. By definition, J(7;,x,0) maps
perturbations in (x, §) to changes in ;. The rank
of this Jacobian is at most the sum of the intrinsic
dimensions of the data manifold and the parameter
manifold:

rank(J(7;,x,0)) < d;—1 + dy

i—17

because the effective degrees of freedom in the
input are constrained by d;_; (intrinsic dimension
of N;_1) and dp,_, (intrinsic dimension of ©;_1).
This establishes the upper bound:

rank(7§) <d;i_1+ d@iil.

Conclusion. Combining the upper and lower
bounds, we obtain the desired inequality:

d; <rank(7;) < d;_1 +dp,_,-

O]

2By Sard’s Theorem (Guillemin and Pollack, 2010) (The-
orem A.5), critical points, where the Jacobian rank is lower,
map to a set of measure zero. These regions of lower ranks
contribute negligibly to the representation manifolds. There-
fore, we can disregard them and focus only on regions where
the rank is constant and maximal.
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B.1.3 Proof of Corollary 3.4 — Lower Bound
on Parameter Dimensionality

Corollary B.3 (Lower Bound on Parameter Di-
mensionality). Let dy, , denote the effective di-
mensionality of the parameter manifold, and let d;
and d;_1 represent the intrinsic dimensions of the
data manifold at layers i and i — 1, respectively.
The dimensionality of the parameter manifold sat-
isfies:
d9i71 > max(di - dz’—l, 0).

Proof. From the established rank inequality:
d; < rank(T7) < d;_1 + d,_,.
we isolate:
di <di_1+dg,_, = di —d;i—1 < dy, .

Since the dimensionality cannot be negative, we
take the maximum with zero:

deFl Z max(di — dl'fl, 0).
This completes the proof. O

B.2 Proof of Theorem 3.5 — Transformer
Rank Bound Dynamics

Theorem B.4 (Transformer Rank Bound Dy-
namics). Leti € {1,2,..., N}, and consider the
process of fine-tuning a language model. The ini-
tial intrinsic dimensions d? of the data manifold
are computed at the beginning of the training. We
define dgiil = max(0,d) — dY_,) as the initial
rank of the parameters required for training, and
we fix it during training.

Let dé represent the evolving rank of the param-
eters of the transformer block T; after the t-th gra-
dient step. Then, for all t, the following inequality
holds:

dy > db).

Proof. Let 7T; denote the i-th transformer block.
We define the initial effective rank of the parameter
submanifold by

dy._, =max(0,d] —dj_,).

During fine-tuning, the parameters are updated
via SGD:

efir% = 0?—1 - 77V62-_1L(9§—1)a

where L(#) is the loss function. Empirical and the-
oretical analyses have shown that SGD prefers flat

minima (Xie et al., 2021; Wu et al., 2022; Mulayoff
and Michaeli, 2020). In a flat minimum, the local
Hessian has many small eigenvalues, indicating
that perturbations along the corresponding direc-
tions have little effect on the loss. This effectively
means that the learned parameters are constrained
to a subspace with fewer independent directions
than might be available in the full parameter space.

Thus, after each gradient update, the parameters
6%, evolve to lie in regions of the parameter space
where the effective degrees of freedom, quantified
by the effective rank dti,l’ are reduced. Hence, the
effective rank cannot increase beyond the initial
effective rank dgifl' In other words, the dynamics
of SGD ensure that

dy < dg,:_1 for all ¢.

i S
Therefore, we conclude that
dg > dé for all z,
which proves the theorem. O
B.3 GeLoRA: Pseudocode

B.3.1 Estimating Intrinsic Dimensions

Algorithm 1 EstimatelntrinsicDimension

Require: Hidden states matrix X = [z1,. .., 2]
Ensure: Estimated intrinsic dimension d

1: for each point z; in X do

2: r1(j) < distance to nearest neighbor of x;

3: r9(j) < distance to second nearest neigh-

bor of x;
pj <= r2(4)/r1(5)
5: end for
6: Fitempirical {11} to F(u|d) = 1 — ¢ using

regression or MLE
7. return d

B.3.2 Compute Intrinsic Dimensions of Data
Representations

Algorithm 2 ComputelntrinsicDimensions

Require: Model M with L layers, dataset D
Ensure: Array of intrinsic dimensions d of size
L+1
1: fori =0to L do
2: X; < GetHiddenStates(M, D, layer =
i
)
3: d; < EstimateIntrinsicDimension(X;)
4: end for
5: return d
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B.3.3 Setting LoRA Ranks and Scaling
Factors

Algorithm 3 ComputeLoRAHyperparameters

Require: Intrinsic dimensions d, constant ¢
Ensure: LoRA ranks r and scaling factors «
1: fori =0to L —1do

2 dim_difference <— max(d;11 — d;,0)

3 base_rank < dim_difference + 1

4: TK;»TQ,;»TV;,TO,; <+ base_rank

5 r; < base_rank > Assume shared rank
here

6: end for

7. fori =0to L — 1 do

8: Q; < C- 71y

9: end for

10: returnr, o

B.3.4 GeLoRA

Algorithm 4 GeLoRA (Geometry-aware Low-
Rank Adaptation)

Require: Model M with L layers, dataset D, con-
stant ¢
Ensure: LoRA ranks and scaling factors applied
to model
1 d —
SIONS(M, D)
2: r,o0 < COMPUTELORAHYPERPARAME-
TERS(d, ¢)
3: APPLYLORAPARAMETERS(M, 1, ¥)

COMPUTEINTRINSICDIMEN-

C Supplementary Experiments

In this section, we present supplementary experi-
ments that support our design decisions, offer fur-
ther validation of our approach under higher budget
constraints, and provide a more principled explana-
tion of the intermediate task tuning technique.

C.1 Efficiency-Performance Diagram —
GLUE Benchmark

To better understand how our method, GeLoRA,
compares to other approaches on the GLUE bench-
mark and balances computational efficiency with
expressivity, we present an efficiency-performance
diagram. In this diagram, the x-axis represents per-
formance metric, while the y-axis represents the
number of parameters, measured in millions of pa-
rameters multiplied by 1e~3. We have omitted full
fine-tuning from the plot for clarity, as the differ-
ence in scale is substantial. Additionally, since the

parameter size of GeLoRA is dataset-dependent,
we use the average parameter size to represent it in
the diagram.

Figure 4 offers a comparative analysis of
parameter-efficient fine-tuning methods evaluated
on the GLUE benchmark, illustrating the trade-
off between computational efficiency and model
performance. GeLoRA emerges as the leading ap-
proach, achieving a performance of approximately
88.0% while maintaining high parameter efficiency,
positioning it in the upper-left quadrant of the di-
agram. This placement indicates that GeLoRA
effectively balances performance and parameter us-
age. In contrast, traditional LoRA variants (repre-
sented by blue triangles) demonstrate consistent but
lower performance across different rank settings
(r=1, r=2). Adapter-based methods (yellow mark-
ers) tend to cluster in the right portion of the graph,
achieving competitive performance but requiring
more parameters. AdalLoRA variants (purple mark-
ers) show mixed results depending on rank settings,
while BitFit (green) has the smallest parameter
footprint but the lowest performance. Overall, the
diagram highlights how GeLoRA optimizes both
computational efficiency and model performance,
outperforming other methods in this balance.

aaaaaaaaaa

on GLUE (%)
g
2

Average Performance

‘‘‘‘‘

Number of Parameters (x1¢" Millions)

Figure 4: Comparison of parameter-efficient fine-tuning
methods on GLUE benchmark. GeLoRA achieves the
best performance (88.0%) with relatively few param-
eters compared to adapter-based alternatives, illustrat-
ing the efficiency-performance trade-off across different
techniques.

C.2 Intrinsic Dimension Estimation with
TwoNN in High Dimensions

In high-dimensional settings, the TwoNN method
often underestimates the ground truth intrinsic di-
mension. To demonstrate this, we conducted ex-
periments on benchmark datasets and compared
the estimated values with the ground truth. Us-
ing the SCIKIT-DIMENSION package, we generated
datasets representing different manifolds, each con-
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taining 2500 data points. We set the embedding
dimension to 4000 and the ground truth intrinsic
dimension to 1000. The intrinsic dimension was
then estimated using the TwoNN estimator with
a decimation factor of 10, which removes 10%
of the points identified as outliers. The results,
summarized in Table 8, show that the estimated
intrinsic dimension of around 200 is lower than
the true value of 1000. To mitigate this issue, we
introduced an offset when applying the GeLoRA
methodology, ensuring that no layer is overlooked
due to inaccurate intrinsic dimension estimates:

dgKPl = dekl = dgvzil = ngkl = max(d; — d;—1,0) + 1,

where dGK',l’dGQ',l’dQV',l’ and d@o;l are, re-
spectively, the LoRA ranks of the Key, Query,
Value and Output matrices of the transformer block
i

C.3 Computational Complexity of GeLoRA
Training

We evaluate the efficiency of different techniques
under the same budget constraint. We measured the
clock time for training across eight datasets, con-
ducting experiments for 20 epochs on all datasets
except for RTE, which was run for 50 epochs, and
QQP and MNLI, which were run for 10 epochs
each. To ensure a fair comparison between dif-
ferent techniques, we adjusted the ranks of LoRA
and its variants to match the rounded mean rank of
GeLoRA.

Table 9 shows GeL.oRA delivers superior per-
formance with lower computational overhead. In
contrast, AdaLoRA and BitFit incur extra costs
due to additional operations like importance score
computation and task-specific head training.

C.4 Mean Ranks for Shifted GeLoRA

Table 10: GeLoRA parameters and mean ranks across
GLUE tasks. Values in parentheses show rounded ranks.

TASK | #PARAMS (x1e®) MEAN RANK
COLA 321.03M 4.33 (4)
STS-B 258.82M 3.50 (4)
MRPC 278.02M 3.75 (4)
QNLI 314.88M 4.25 (4)
SST-2 308.74M 4.17 (4)
RTE 278.02M 3.75 (4)

C.5 Intermediate Task Tuning: A Plausible
Explanation

In our approach, the ranks used for fine-tuning are
dataset-specific, as demonstrated in Table 4. This
aligns with the widely adopted practice of interme-
diate task tuning, which is used to improve perfor-
mance during fine-tuning. Intermediate task tuning
involves fine-tuning a model on a different task
from the target task as a preliminary warm-up step.
Although this methodology is primarily intuitively
motivated, rooted in the idea of learning common
features and fostering common sense reasoning,
its theoretical justification remains less clear. In
this regard, our objective is to provide a plausible
explanation for the effectiveness of this approach.

We focus on three tasks: MRPC (Dolan and
Brockett, 2005), STS-B (Cer et al., 2017), and RTE
(Dagan et al., 2006; Bar-Haim et al., 2006; Gi-
ampiccolo et al., 2007). Although each dataset has
a specific focus, they all assess semantic relation-
ships between pairs of texts, presenting a strong
case for a sequential fine-tuning strategy. MRPC
targets the identification of paraphrases, where two
sentences convey the same idea using different
wording. STS-B evaluates the degree of seman-
tic similarity between sentences on a continuous
scale ranging from 0 to 5. RTE determines whether
one sentence entails another, reflecting a distinct
aspect of semantic relationships. These tasks re-
quire the model to comprehend nuanced semantic
properties, including synonyms, paraphrases, and
entailment.

As a result, the underlying language representa-
tions in these datasets exhibit significant similari-
ties. Consequently, we hypothesize that fine-tuning
on MRPC can facilitate subsequent fine-tuning pro-
cesses for STS-B and RTE.

We posit that the main reason for this improved
performance is data compression, as the model
learns features relevant to the target tasks during
intermediate training. To evaluate this hypothesis,
we theorize that the lower bound of the intrinsic
dimensions will become looser after compression.
Our experimental results support this hypothesis.
For example, we observe a decrease in the mean
intrinsic dimension for RTE (from 13.47 to 12.97),
whereas the mean intrinsic dimension for STS-B
remains consistent (from 13.19 to 13.01), albeit
with a change in their profiles, as shown in Figure
5.

Moreover, we note similarities in the behavior
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Table 8: Behavior of the TwoNN Estimator in High-Dimensional Data

DATASET INTRINSIC DIMENSION ~ ESTIMATED INTRINSIC DIMENSION ~ DESCRIPTION

M1_SPHERE 1000 208.31 SPHERE LINEARLY EMBEDDED

M4_NONLINEAR 1000 260.36 NONLINEAR MANIFOLD

MO6_NONLINEAR 1000 255.34 NONLINEAR MANIFOLD

MB8_NONLINEAR 1000 269.03 NONLINEAR (HIGHLY CURVED) MANIFOLD

M9 _AFFINE 1000 197.46 AFFINE SPACE

M10a_CuBIC 1000 192.97 HYPERCUBE

M10B_CUBIC 1000 190.91 HYPERCUBE

M10c_CuBIC 1000 196.75 HYPERCUBE

M10D_CUBIC 1000 195.61 HYPERCUBE

MI12_NORM 1000 184.12 ISOTROPIC MULTIVARIATE GAUSSIAN

MBETA 1000 133.12 MANIFOLD GENERATED WITH A SMOOTH NONUNIFORM PDF
MNI1_NONLINEAR 1000 193.82 NONLINEARLY EMBEDDED MANIFOLD OF HIGH ID
MN2_NONLINEAR 1000 187.39 NONLINEARLY EMBEDDED MANIFOLD OF HIGH ID

Table 9: Training computational cost (runtime) in seconds for DeBERTaV3-base fine-tuning on GLUE tasks. The
runtime for each fine-tuning is indicated in seconds. The best results for each dataset are highlighted in bold.

Dataset GeLoRA LoRA AdaLoRA BitFit HAdapter PAdapter
CoLA 85.68 +2.27 100.95 £ 10.53 165.43 £0.28 157.27 £1.07 117.98 £0.07 113.52+£0.11
STS-B 59.13 + 3.26 78.26 £+ 6.92 157.50 + 8.36 122.68 £0.40 84.51 4 0.06 81.27 +0.04
MRPC 40.42 + 0.30 58.75 + 1.73 112.61 £1.36 94.93 £+ 0.34 57.4140.10 55.09 4 0.03
QNLI 736.57 £ 3.34 865.76 +=4.11  2328.60 £24.81 1341.47+21.03 1254.14+1.21 1205.86 = 1.83
SST-2 475.58 £5.10 482.38 £5.11 1140.65 + 2.25 871.10 £ 5.05 807.91 £ 0.57 775.33 £ 0.56
RTE 75.62 + 0.29 116.28 £ 7.30 207.89 £ 4.42 80.5 +0.24 104.38 & 0.06 100.40 £ 0.11
AVERAGE 245.5 283.73 685.45 444.66 404.39 388.58
of different layers. The lower layers, responsible ~ Table 12.

for basic features (such as syntax and grammar),
remain largely unchanged. However, the higher
layers, which capture more complex features, ex-
hibit significant compression. The intermediate
layers, as indicated by recent studies on the ge-
ometry of hidden representations (Valeriani et al.,
2023), show a slight increase in their capacity due
to the model’s specialization in the semantics of
the intermediate task.

Thus, the decrease in the mean intrinsic di-
mensions corresponds to a reduction in the lower
bounds presented in Corollary 3.4. This loosen-
ing of the bounds indicates that the number of
parameters required for optimal performance has
decreased, leading to more efficient training.

D Datasets Statistics

D.1 GLUE Benchmark

We present the statistics for the GLUE (Wang et al.,
2019) datasets used in our experiments in Table 11.

Table 11: Summary of the GLUE benchmark datasets.

Corpus | Task | #Train | #Dev | #Test | #Label | Metrics

COLA | ACCEPTABILITY | 85k | 1k | 1k| 2

| MATTHEWS CORR.

SST-2 | SENTIMENT | 67k | 872 | 1.8k | 2 | ACCURACY

RTE | NLI | 2.5k | 276 | 3k | 2 | ACCURACY

MRPC | PARAPHRASE | 3.7k | 408 | 1.7k | 2 | ACCURACY

QNLI | QA/NLI | 108k | 57k | 5.7k | 2 | ACCURACY
\

STS-B | SIMILARITY 7K | 1.5k | 1.4k | - | PEARSON/SPEARMAN CORR.

D.2 SQUAD Datasets

We present the statistics for the SQUAD (Rajpurkar
et al., 2016) datasets used in our experiments in

Table 12: Statistics of the SQuAD dataset.

| # TRAIN  # VALIDATION
SQUAD v1.1 | 87,599 10,570
SQUAD v2.0 | 130,319 11,873

D.3 Airoboros Dataset

We present the statistics for the Airoboros (Durbin,
2024) dataset used in our experiments in Table 13.

Table 13: Statistics of the Airoboros dataset.

| # TRAIN
AIROBORS | 29,400

D.4 MT-BENCH Benchmark
We present the statistics for the MT-BENCH

(Zheng et al., 2023b) dataset used in our experi-
ments in Table 14.

Table 14: Statistics of the MT-BENCH dataset.

| # SAMPLES
MT-BENCH ‘ 80
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Figure 5: Intrinsic dimensions of hidden states before and after intermediate task tuning. Left: Results for RTE
dataset showing a decrease in mean intrinsic dimension from 13.47 to 12.97 after intermediate training. Right:
Results for STS-B dataset showing relatively consistent mean intrinsic dimensions (13.19 to 13.01) but with altered
dimensional profiles. Both panels demonstrate how intermediate task tuning affects the model’s representational
space across different hidden state sizes.
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Figure 11: GeLoRA rank pattern for STSB

¢ F Training Details

We employ OPTUNA to fine-tune the learning rates
of the techniques employed. In the following, we
summarize the optimal parameters identified in 10
trials, which were used in the fine-tuning process.
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F.1 Instruction Following

Table 15: Learning Rates for Different Fine-tuning

Methods on Instruction Tuning Dataset

Method Airoboros
GeLoRA 1x 106
LoRA 1x 106
AdaLoRA | 1x107°

F.2 Question Answering

Table 16: Learning Rates for Different Fine-tuning
Methods on SQuAD Datasets

Method | SQuUAD v1.1  SQuAD v2.0
GeLoRA 8¢ 8e
LoRA le 84
Full Finetuning 2¢7° 3e7?
BitFit 8e 4 8e 4
Houlsby Adapter le™3 le™3
Pfeiffer Adapter le™3 le™3
AdaLoRA le™? 8e 4

F.3 Natural Language Understanding
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Table 17: Learning Rates for Different Fine-tuning Methods across GLUE Tasks

Method | CoLA STS-B  MRPC  QNLI SST-2 RTE QQpP MNLI
GeLoRA 8x107° 2x107*% 8x107* 2x107* 2x107* 2x107* 2x107* 2x10°*
LoRA 4x107% 1x107* 4x107* 2x10* 1x10* 3x107* 1x107* 4x10*
Full Finetuning | 1x107% 1x107™* 7x107* 1x107* 1x10™* 9x10° 1x107* 1x10°*
BitFit 8x107% 6x107* 9x107* 8x107* 3x107* 1x1073 1x107* 1x107*
Houlsby Adapter | 3 x 107% 3x107% 3x 1073 3x107% 12x10% 3x10™* 3x107* 3x107*
Pfeiffer Adapter | 3 x 107 3x107* 3x107% 3x10™% 1.2x107% 3x107* 3x10™* 3x107*
AdaLoRA 5x 1074 2x107% 1x107% 1x1073 8x107* 12x107% 5x107* 5x 1074
SoRA 8x107% 8x107* 8x107* 8x107* 8x107* 12x107% 8x107* 8x10*
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