P1-SQL: Enhancing Text-to-SQL with Fine-Grained Guidance from
Pivot Programming Languages

Yongdong Chi'*, Hanqing Wang'*, Yun Chen', Yan Yang!
Jian Yang®, Zonghan Yang?, Xiao Yan!, Guanhua Chen®’
1Shanghai University of Finance and Economics, 2Tsinghua University,
3Beihang University, *Wuhan University, °Southern University of Science and Technology

Abstract

Text-to-SQL transforms the user queries from
natural language to executable SQL programs,
enabling non-experts to interact with complex
databases. Existing prompt-based methods
craft meticulous text guidelines and examples
to facilitate SQL generation, but their accuracy
is hindered by the large semantic gap between
the texts and the low-resource SQL programs.
In this work, we propose PI-SQL, which in-
corporates the high-resource Python program
as a pivot to bridge between the natural lan-
guage query and SQL program. In particular,
P1-SQL first generates Python programs that
provide fine-grained step-by-step guidelines in
their code blocks or comments, and then pro-
duces an SQL program following the guidance
of each Python program. The final SQL pro-
gram matches the reference Python program’s
query results and, through selection from candi-
dates generated by different strategies, achieves
superior execution speed, with a reward-based
valid efficiency score up to 4.55 higher than
the best-performing baseline. Extensive ex-
periments demonstrate the effectiveness of PI-
SQL, which improves the execution accuracy
of the best-performing baseline by up to 3.20.

1 Introduction

SQL is a standard programming language designed
for managing and manipulating relational databases
(Website, 2023). Although popular and general,
SQL programs can be challenging for non-experts
to write, particularly when it comes to complex data
querying tasks. Text-to-SQL models convert natu-
ral language queries into executable SQL programs
(Androutsopoulos et al., 1995; Li and Jagadish,
2014; Li et al., 2024c; Yu et al., 2018), enabling
non-experts to interact with complex databases and
extract insights from big data (Cai et al., 2018;
Wang et al., 2020; Cao et al., 2021).

* Equal Contribution.
 Corresponding Author.

Baselines: DIN-SQL, DAIL-SOL, etc. SQL Program

SELECT,
((t2.balance

ﬁ Query

For the client 1,

increase rate of
his/her account
balance from

202 2 to
2024/12/272
ﬁ—;% Schema

Table: client # Load CSV files
i client_df =
{ﬁ?;‘ggﬁ pd.read_csv('client.csv')

Primary Key, # Step 1: Find the loan =)
approved first on or
before 2023-07-05

tl.ba
100 A
FROM

SQL Program

WITH Balances AS (
SELECT

a Python Program

MAX(CASE WHEN date =
2022-03-22" THEN "balance”
END) AS balance_start,

MAX(CASE WHEN date =
€2024-12-27' THEN "balance”
END) AS balance_end

1
Table: loan

PI-SQL

Figure 1: Given the database schema and a user query,
text-to-SQL models generate an executable SQL pro-
gram. Different from the text guidance produced by
chain-of-thought, P1-SQL resorts to the granular guid-
ance from a pivot programming language.

Recently, many text-to-SQL models have been
proposed based on large language models (LLMs),
using either prompt engineering (Pourreza and
Rafiei, 2024; Qu et al., 2024; Dong et al., 2023;
Gao et al., 2024a; Talaei et al., 2024; Pourreza
et al., 2025) or supervised fine-tuning (Gao et al.,
2024a; Li et al., 2023a, 2024b; Gao et al., 2024b).
The prompt-based methods require meticulously
crafted guidelines (Pourreza and Rafiei, 2024; Qu
et al., 2024; Dong et al., 2023; Gao et al., 2024a;
Talaei et al., 2024; Pourreza et al., 2025) as well
as curated few-shot in-domain examples (Pourreza
and Rafiei, 2024; Gao et al., 2024a; Talaei et al.,
2024). The fine-tuning-based methods rely on high-
quality training data, which is expensive to obtain.
Moreover, tailored to the training data domain, they
may not generalize in other domains (Dong et al.,
2023; Hong et al., 2024).

In this paper, we propose PI-SQL, a novel
prompt-based method that enhances text-to-SQL
by incorporating a high-resource PIvot program-
ming language to provide fine-grained guidance.
Motivated by multilingual pretraining (Xue, 2020;
Lample, 2019; Huang et al., 2019) and triangu-
lar machine translation (Kim et al., 2019; Zhang
et al., 2022), P1-SQL adopts a Python program as a

25120

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 25120-25144
November 4-9, 2025 ©2025 Association for Computational Linguistics

pivot to bridge natural language and SQL programs.
As shown in Figure 1, compared with text-based
guidance generated using chain-of-thought reason-
ing (Pourreza and Rafiei, 2024; Dong et al., 2023;
Gao et al., 2024a; Talaei et al., 2024), P1-SQL uti-
lizes Python programs to provide more detailed
step-by-step reasoning through code blocks, com-
ments. Existing program-of-thought-based text-to-
SQL methods (Xia et al., 2024; Xu et al., 2024)
overlooked the considerable structure gap between
the Python and SQL programs, while P1-SQL con-
tains approaches to mitigate the intrinsic difference
between Python and SQL.

Specifically, PI-SQL consists of an intermedi-
ate guidance preparation stage and an SQL gen-
eration stage guided by the generated Python. In
the first stage, to enhance subsequent SQL gener-
ation guided by Python, PI-SQL employs three
strategies to generate Python programs tailored for
diverse SQL application scenarios, and also steers
this Python generation by incorporating SQL adap-
tation instructions into the prompt. In the second
stage, each Python program serves as guidance
for generating SQL programs. SQL programs that
produce results consistent with the majority out-
put of the Python programs are retained, and the
one with the best execution efficiency is chosen.
As aresult, PI-SQL fully leverages high-resource
programming languages like Python to generate
highly accurate and efficient SQL programs, with-
out requiring few-shot examples or supervised fine-
tuning with labeled data.

We compare PI-SQL with ten state-of-the-art
(SOTA) baselines on the famous BIRD (Li et al.,
2024d) and Archer (Zheng et al., 2024) bench-
marks. The results show that PI-SQL outper-
forms the baselines in both execution accuracy
(EX) and reward-based valid efficiency score (R-
VES), which are two popular metrics for text-to-
SQL. Compared with the best-performing baseline,
the EX improvement of PI-SQL is 3.20 on the
BIRD dev set.!

2 Related Work

Prompt-Based Text-to-SQL Methods Given
the strong generalization ability of LL.Ms, recent
mainstream research has shifted towards leverag-
ing their powerful few-shot and zero-shot capabil-
ities through prompt-based approaches. Numer-

'Our code is publicly available at https://github.com/
sustech-nlp/Pi-SQL.

ous research efforts have focused on enhancing
text-to-SQL performance from various aspects, in-
cluding improved schema linking (Pourreza and
Rafiei, 2024; Gao et al., 2024a; Dong et al., 2023),
the selection of more effective few-shot demonstra-
tions (Pourreza and Rafiei, 2024; Sun et al., 2023;
Chen et al., 2023; Gao et al., 2024a; Qu et al.,
2024; Talaei et al., 2024; Pourreza et al., 2025),
incorporating natural language chain-of-thought
reasoning (Pourreza and Rafiei, 2024; Gao et al.,
2024a; Talaei et al., 2024; Pourreza et al., 2025),
and using the self-consistency method to boost per-
formance with additional test-time computing (Sun
et al., 2023; Gao et al., 2024a; Lee et al., 2024;
Talaei et al., 2024; Maamari et al., 2024; Pourreza
et al., 2025). Different from these works, PI-SQL
achieves better text-to-SQL performance by lever-
aging the fine-grained guidance from high-resource
programming languages in a zero-shot setting.

Program of Thoughts Program of Thoughts
(PoT) is an extension of the Chain of Thought
(CoT) prompting strategy, aiming to mitigate errors
in intermediate reasoning by executing intermedi-
ate steps as Python programs. PoT has been widely
adopted in various tasks (Payoungkhamdee et al.,
2025; Sahu et al., 2024; Sarch et al., 2024; Zhang
et al., 2024), due to its improved reliability of nu-
merical and logical inference. However, its applica-
tion to text-to-SQL remains limited. R? (Xia et al.,
2024) directly employs PoT to generate Python
code before SQL to guide the SQL generation,
while Xu et al. (2024) incorporates PoT into the
text-to-SQL training process. These approaches
overlook the semantic and structural gap between
Python and SQL. In contrast, PI-SQL’s design pro-
vides better SQL generation guidance with Python,
which mitigates the intrinsic difference between
Python and SQL.

3 Method
3.1 Motivation and Insights

Previous works (Pourreza et al., 2025; Talaei et al.,
2024; Pourreza and Rafiei, 2024) apply text-based
reasoning as the guidance to generate SQL re-
sponses. However, they still struggle with various
hard-level queries and database schemas, primarily
due to the limited SQL corpus encountered dur-
ing pretraining. Unlike these approaches, we pro-
pose to leverage fine-grained guidance from high-
resource programming languages (PI-SQL). High-
resource programming languages such as Python

25121

https://github.com/sustech-nlp/Pi-SQL
https://github.com/sustech-nlp/Pi-SQL

/(a) PI-SQL Framework

@ Predicted SQL

g High Resource Code Generation

/ > Query — [

SELECT
CASE

You are an expert in database querying... Using python]
WHEN total_drivers.count > @ THEN

code, answer questions

7.2 Schema|Linking @

END AS percentage

...First merge relate tables then compute ...]

SELECT COUNT(DISTINCT r."driverId")

A 4
Related —
= Information [...Prior calculations the data then merge them ...]) .AS total_drivers;
. l @ ggg Vote Result] @
(b) Conceptual Paradigm P)
R SQL Generation « Verify and Select
Text-based CoT & [SELECT NULLIF(...) AS ... WHERE ...
Text ------- > SQL

WHERE]

v
& Lo
g g
o
& 4

FROM ...

SELECT ... FROM ...
g ON ... JOIN ... ON ...
[NITH... AS (...) SELECT ...]

-

J

Figure 2: Overview of our PI-SQL method. (a) The workflow of P1-SQL. It incorporates high-resource program-
ming languages like Python to provide step-by-step fine-grained guidance and verification to enhance LLM-based
text-to-SQL. (b) The difference between P1-SQL and existing text-based CoT approaches.

serve as pivot languages, bridging the gap between
SQL and natural language, akin to the triangular
neural machine translation model (Zhang et al.,
2022).

The P1-SQL framework is motivated by the
advancements achieved through multilingual pre-
training (Xue, 2020; Lample, 2019; Huang et al.,
2019) and triangular neural machine translation
(Kim et al., 2019; Zhang et al., 2022). (1) The low-
resource languages (LRL) share similar syntaxes
and lexemes with the high-resource languages from
the same language family. During multilingual pre-
training, the shared information serves as anchor
points to better align the representation space of
these languages, improving the performance on
LRL via cross-lingual transfer. (2) In the case of tri-
angular machine translation, a high-resource pivot
language is incorporated to improve the translation
from the source language to the target language.
For example, instead of directly translating from
English to Estonian, Finnish is used as a pivot lan-
guage, as it belongs to the same language family
as Estonian, and the translation from Finnish to Es-
tonian is easier. The English text is first translated
into Finnish, and then the Finnish translation is fur-
ther translated into Estonian. The triangular trans-
lation improves the performance of low-resource
language pairs.

The situation is similar for SQL and its cor-
responding high-resource programming language,
Python. Both programs are widely applied in the
field of data analysis and share similar logic and

keywords. During code pretraining, SQL aligns
with the representation space of Python and ben-
efits from the large-scale Python data, similar to
the case in multilingual pretraining. Meanwhile,
Python and natural language are well aligned in
a shared representation space, as both are high-
resource and are jointly pretrained with shared an-
chor points like comments in Python code.

In this way, the PI-SQL invites Python as a pivot
language to bridge user queries in natural language
and the low-resource SQL programs for better text-
to-SQL performance, as shown in Figure 2.

When compared with direct SQL generation,
guidance with the corresponding Python program
has several advantages, illustrated as follows.

* Proficient. Large-scale Python data contributes
to the proficiency and accuracy of data analysis
with Python for LLMs.

* Fine-Grained. Different from the nested opera-
tions in SQL, Python programs decompose com-
plex data query tasks into verifiable code blocks
as well as comments to form step-by-step rea-
soning trajectories. The execution results, such
as exceptions or errors, also serve as fine-grained
feedback and self-reminders for SQL generation.

* Modular. Various Python packages abstract the
reasoning process and facilitate the generation
of corresponding code blocks.

Specifically, given a complex user query g, the
LLM first responds with a high-resource program-
ming language C? with different data analysis

25122

strategies (G;. The LLM then generates the SQL
program C? with the guidance of the Python pro-
gram C? and its execution results EY. PI-SQL
consists of two stages: Intermediate Guidance
Preparation (Section 3.2) and SQL Generation (Sec-
tion 3.3).

3.2 Intermediate Guidance Preparation

The Intermediate Guidance Preparation stage aims
to generate diverse fine-grained Python programs
as guidance for text-to-SQL tasks. Following previ-
ous works (Talaei et al., 2024; Caferoglu and Ozgiir
Ulusoy, 2024; Cao et al., 2024), we incorporate a
schema-linking module to retrieve relevant tables
and columns from a schema with the user query.
The retrieved data is further converted to csv files
for interaction with the Python program.” However,
the transformation from Python to SQL cannot be
directly applied due to the fundamental differences
between Python and SQL. While Python is a pro-
cedural language, SQL is a declarative, structured
query language. This distinction may pose chal-
lenges in using Python to guide SQL generation.
The result of B3 in Table 1 demonstrates this. To
bridge this gap, we introduce SQL-specific strate-
gies as shown in Algorithm 1 along with a set of
Python-to-SQL adaptation rules. These compo-
nents help mitigate the mismatch between the two
languages and allow us to more effectively lever-
age Python’s execution signals in the SQL selection
process.

Diverse Python Generation Strategies. The P1-
SQL framework crafts three different strategies to
guide the reasoning trajectories of Python program
generation. As a high-level, interpreted scripting
programming language, Python has different rea-
soning paths compared to SQL in the data anal-
ysis task. The Python program analyzes data se-
quentially, where the relevant data is first filtered
and then combined for further analysis. The SQL
program benefits from the efficient data analysis
engine that SQL users are accustomed to first com-
bining all relevant data and then further analyzing.
To better generate Python programs that can guide
SQL generation across different application sce-
narios, we design three distinct strategies: merge,
filter, and direct.

These strategies are illustrated below, encourag-

*We measured that constructing the csv files takes only
about 0.024 seconds per question on average, which is negli-
gible compared to the inference time.

ing intermediate guidance to incorporate diverse
reasoning trajectories:

e Merge-First Strategy. This strategy asks the
LLM to merge and join the relevant columns
first based on the input information. Then fil-
ter and extract the required data. This strategy
aligns with the design philosophy of relational
databases. As different data are decomposed and
stored separately, they are first reconstructed with
the foreign keys and then analyzed.

* Filter-First Strategy. This prompt guideline
suggests the LLM filter and prepare the rele-
vant columns first based on the input information.
Then the model directly generates further analy-
sis code based on the filtered data. This strategy
follows the vanilla practice of Python programs
in data analysis tasks.

* Vanilla Direct Generation. This strategy
does not impose any suggestion on the LLM.
The model generates the Python program in a
freestyle learned during pretraining.

With the guidance of different strategies, the LLM
is expected to generate Python programs with
different reasoning trajectories. Moreover, Python
offers a richer set of libraries and functions for data
analysis that are not supported by SQL engines. To
enhance Python-to-SQL adaptation and improve
the quality of guidance, we also explicitly prompt
LLMs to use APIs and functions that closely
resemble valid SQL operations.

Verification of Python Program. The diverse
generations of Python programs are verified with
execution with the csv files.> The self-consistency
method (Wang et al., 2023) is employed to deter-
mine the reference query result for the user’s query
from all Python execution outcomes. This refer-
ence result is then used to select the final SQL
response in a subsequent stage. We contend that
selecting the SQL based on Python results effec-
tively serves as a double-check mechanism, further
ensuring the faithfulness of the chosen SQL.

3.3 SQL Generation with Python Guidance

In the second stage, the SQL responses are gen-
erated with guidance from the corresponding fine-
grained Python program, as shown in Algorithm 1.
Subsequently, the PI-SQL framework verifies
these generated SQL programs by executing them

3We discuss the execution time in Appendix B.6.

25123

Method Zero-shot Few-shot Archer BIRD B-Simple B-Moderate B-Challenging

Fixed Dynamic EX R-VES EX R-VES EX R-VES EX R-VES EX R-VES
Vanilla v 1058 10.19 5430 5594 61.84 6496 43.10 42.16 42.07 42.55
C3 v 1635 23.04 5737 53.65 6551 6140 4698 43.66 38.62 36.19
DIN-SQL v 8.65 1356 50.07 46.80 58.16 5429 39.44 37.08 3241 30.10
DAIL-SQL v 1635 18.07 55.02 51.02 62.16 57.67 4698 4340 35.17 33.04
TA-SQL v 8.65 10.06 55.15 52.06 6335 59.79 44.18 4133 3793 37.08
R? v 20.19 21.27 52,67 47.72 5795 5323 4483 3987 4414 3771
CHESS v 21.15 2581 61.02 5691 68.54 6420 49.78 46.15 4897 44.81
CHASE-SQL v 2596 28.70 6134 59.16 68.54 6435 5280 52.11 4897 48.69
E-SQL v 1635 17.13 5847 5480 65.08 61.05 51.29 47.89 3931 37.00
RSL-SQL v 1346 1487 61.34 5676 67.89 63.13 52.80 48.38 44.18 42.96
PI1-SQL v 25.00 3010 6454 63.71 70.92 70.06 5647 55.63 49.66 49.06
A - - - -096 +1.40 +3.20 +4.55 4238 +45.10 +3.67 +3.52 +0.69 +0.37

Table 1: Execution Accuracy (EX) and Valid Efficiency Score (VES) on the Archer and BIRD datasets. BIRD
provides the results for different query difficulty levels. We indicate whether a method is zero-shot or few-shot, and
if few-shot, whether it uses fixed or dynamic shots. The best and runner-up results for each case are marked with
bold and underline, respectively. ‘A’ is the performance gain of PI-SQL over the best-performing baseline.

in the database. An SQL program is deemed a
valid candidate if its execution result matches the
reference query result. Finally, among all valid can-
didates, the highest execution efficiency is selected
as the final SQL response, R;. This entire stage,
including the SQL generation process and the final
selection, is detailed in Algorithm 1, and the spe-
cific prompt template used for SQL generation can
be found in Appendix C.2.

Algorithm 1 Algorithm for PI-SQL framework

Data: LLM 06, user query q.,, relational database D associ-
ated with the query, and strategy of Python program
generation C.

Result: Model predicted SQL program R}

Rp = GeneratePython (0, C, qu, D)

Rs = 0
for each Python program RY in R, do

E? = Execute(RY) // Execute the code and get

results

R; = GenerateSQL(0, qu, D, R?) // Generate SQL

for the code

Rs =RsUR;

end

Rse = 0

for each SQL program R; in R do

E; = ExecuteSQL(R;{, D) // Execute SQL and get
database results

Rse = Rse U{(RE, E7)}

end

MajorityResult = FindMostFrequent(RR,) // Find the
most frequent execution result among Python
codes

ValidSQL = SelectValidSQL(Rse, MajorityResult, D)
// Select valid SQL that matches majority
result

R} = argmin,cvanasqL ExecutionTime(r) // Select
SQL with the least execution time

return R}

4 [Experiments

4.1 Experiment Settings

Benchmarks We conduct experiments on two
widely recognized text-to-SQL datasets: BIRD (Li

etal., 2024d) and Archer (Zheng et al., 2024). They
are designed to encompass various real-world sce-
narios, featuring simple and complex query struc-
tures. Spider (Yu et al., 2018) is not selected
for evaluation for the following reasons: 1) Our
method focuses on more challenging text-to-SQL
queries, whereas the queries in Spider are rela-
tively easy; 2) We have found that the ground-
truth SQL programs in Spider are noisy (Zhong
et al., 2023), which makes the evaluation results
unreliable. More details about the benchmarks are
available in Appendix A.1.

Metrics We utilize Execution Accuracy (EX) (Yu
et al., 2018) and Reward-based Valid Efficiency
Score (R-VES) (Li et al., 2024d) as evaluation met-
rics to assess the methods’ performance.

¢ Execution Accuracy (EX): EX measures the ra-
tio of correctly predicted SQL programs by compar-
ing their execution results with those of the ground-
truth SQL programs on the same database instance.
o Reward-based Valid Efficiency Score (R-VES):
R-VES evaluates the performance of models that
generate SQL queries, considering their accuracy
and runtime performance. As an improvement over
the previous Valid Efficiency Score (VES), R-VES
incorporates the execution time of correct queries
into the evaluation while mitigating the influence
of abnormal or outlier execution times.

Implementation Details To ensure a fair com-
parison in a unified setting, we use the same LLM
backbone with a temperature of 0 and a maxi-
mum token limit of 4096 for P1-SQL and all base-
lines. We choose GPT-40-mini (OpenAl, 2024) as
the backbone for the computational constraints.*

*For example, performing CHESS on the BIRD dev set
with GPT-4o (Hurst et al., 2024) costs approximately $ 800.

25124

And to compare with advanced performance, we
also perform PI-SQL with Qwen2.5-Coder-32B-
Instruct (Hui et al., 2024) in section 5.1. We adopt
the schema linking module from RSL-SQL (Cao
et al., 2024), as schema linking is not the primary
focus of this work. Furthermore, we evaluate PI-
SQL using various backbone models in Section 5.3
and on models of varying scales in Appendix B.8.

Baselines We compare PI-SQL with ten base-
lines: Vanilla, C3 (Dong et al., 2023), DIN-
SQL (Pourreza and Rafiei, 2024), DAIL-
SQL (Gao et al., 2024a), TA-SQL (Qu et al.,
2024), R3 (Xia et al., 2024) CHESS (Talaei et al.,
2024), CHASE-SQL (Pourreza et al., 2025), E-
SQL (Caferoglu and Ozgiir Ulusoy, 2024), and
RSL-SQL (Cao et al., 2024). The vanilla method
is the same as P1-SQL, except for the absence of
Python guidance. We introduce each baseline in
detail in the Appendix A.2.

4.2 Main Results

Table 1 shows the comparison results of PI-SQL
against the baselines. Overall, PI-SQL outper-
forms all other baselines on both BIRD and Archer
in terms of execution accuracy and efficiency. This
is impressive because our zero-shot approach out-
performs the zero-shot baseline vanilla, C3, and the
few-shot baselines, specifically DIN-SQL, DAIL-
SQL, TA-SQL, and CHESS.

When comparing PI-SQL with baselines across
different query difficulty levels on BIRD, we find
that PI-SQL shows consistent improvements over
the baselines on different difficulty levels. Specifi-
cally, it improves over baselines by 2.38 to 12.97
EX on simple-level queries, 3.67 to 17.03 EX on
moderate queries, and 0.69 to 17.25 EX on chal-
lenging queries. This may be attributed to the rich
data processing capabilities of Python, which en-
able large language models (LLMs) to handle a
wide range of queries more effectively. PI-SQL
also achieves consistent improvements on the R-
VES benchmark over the baselines by 4.55 to 16.91,
further validating its effectiveness. These results
highlight the strong potential of our method in real-
world scenarios, as it: (1) can handle queries of
varying difficulty across diverse contexts, and (2)
generates SQL queries that are both accurate and
efficient.

Table 8 and 9 in Appendix B.1 compare the in-
ference token usage and inference cost of PI-SQL
with the baselines. PI-SQL has a lower inference

Setup Overall Simple Moderate Challenging
EX R-VES EX R-VES EX R-VES EX R-VES
Vanilla 5430 5594 61.84 6496 43.10 4216 4207 4255
Vanilla+SC 5971 5777 6627 6419 5237 5099 4138 38.57
Ablation on code generation mode
Merge 6193 59.83 68.11 66.08 5345 5134 49.66 47.13
Filter 6199 60.19 67.89 66.01 5409 5248 49.66 47.74
Direct 6258 61.09 6897 6741 5388 52.69 49.66 47.67
Ours(Mixed) 64.54 63.71 7092 70.06 5647 55.63 49.66 49.06
Ablation on SQL selection method
Mixed+SC 63.62 61.53 70.05 67.88 5474 5277 51.03 49.09

6371 7092 70.06 5647 55.63 49.66 49.06
Ablation on Python-SQL adaptation

‘W/O adaptation 6336 6197 70.16 6883 5431 5286 4897 47.34
Ours 64.54 6371 7092 70.06 5647 55.63 49.66 49.06

Ours(Mixed+CV) 64.54

Table 2: Ablation study on BIRD dataset. We perform
ablation for the Python generation strategy and SQL
selection method. ‘SC’ means self-consistency, while
‘CV’ means cross verification. The best result for each
case is highlighted in bold.

cost than the best-performing baseline CHESS, a
higher cost than vanilla and C3, and a compara-
ble cost to the other baselines. We believe this
test-time cost is justifiable for two reasons: 1) It
substantially enhances performance over vanilla
and C3, especially for challenging queries; 2) The
generated SQL programs can be executed by users
multiple times in practice, making the significant
R-VES improvement achieved by P1-SQL partic-
ularly valuable. In Section 4.3, we provide addi-
tional evidence that the improvement of PI-SQL
over the vanilla method is not solely due to the
increased test time computing.

4.3 Ablation Study

In this section, we conduct an ablation study on 3
key components of PI-SQL using the BIRD bench-
mark: the Python generation strategy, the SQL se-
lection method, and the Python-SQL adaptation.
For the Python generation strategy, we evaluate
four variants: using merge, filter, or direct individ-
ually, or using a combination of all three. For the
SQL selection method, we either select by referring
to the Python execution result (cross-verification)
or by taking a majority vote from the SQL execu-
tion results. Regarding the Python-SQL adaptation,
we compare the performance of PI-SQL with and
without this adaptation. We also add a vanilla+self-
consistency baseline, for which we directly gener-
ate V SQLs for each query and select the final SQL
program using self-consistency of the SQL execu-
tion results. We set the value of NV to 11 to ensure
that the token cost of this baseline matches that of
P1-SQL, and the temperature to 0.5 is determined
on a validation set.

Table 2 shows the ablation results. When us-

25125

ing the same inference token cost, PI-SQL out-
performs the vanilla method by 4.83 EX and 5.94
R-VES. This indicates that our performance im-
provement is not solely attributable to the test time
scaling law but rather to the effective guidance pro-
vided by high-resource programming languages.

For ablation on Python generation strategies, we
observe that using any single Python generation
strategy substantially improves upon vanilla GPT-
40-mini, achieving an improvement of over 7.63
EX and 3.89 R-VES. However, mixing all strate-
gies yields the best performance across all difficulty
levels, surpassing the best single method by 1.96
EX and 2.62 R-VES. This indicates that different
strategies are complementary, highlighting the im-
portance of using a mixed approach.

Our cross-verification approach for SQL selec-
tion consistently outperforms the self-consistency
method across all difficulty levels and evaluation
metrics. This could be attributed to the diversity of
errors made by Python and SQL, which contrasts
with the more similar errors produced by different
SQLs.

Python-SQL adaptation consistently improves
the performance of PI-SQL, achieving an over-
all gain of 1.18 in EX score and 1.74 in R-VES,
with particularly notable improvements on moder-
ate and challenging queries. This may be attributed
to the fact that more complex problems benefit
from clearer and more relevant guidance.

Consequently, the mixed generation strategies,
cross verification method, and Python-SQL adap-
tation collectively enhance the generation quality
of P1-SQL, distinguishing it from previous, direct
PoT-based methods such as R3.

5 Analyses

5.1 Comparison with SOTA Results

Due to computational constraints, We could not
perform a direct comparison with other methods
using SOTA LLMs such as GPT-40 under the same
experimental setting. Instead, we evaluate P1-SQL
with Qwen2.5-Coder-32B-Instruct and compare
its performance against the SOTA methods such
as Distillery (Maamari et al., 2024), OpenSearch-
SQL (Xie et al., 2025), and XiYan-SQL (Gao et al.,
2024b) reported on the BIRD leaderboard’ in Ta-
ble 3. The results show that PI-SQL, as a zero-shot
approach, can achieve performance comparable to

Shttps://bird-bench.github.io

or even surpassing SOTA methods that rely on fine-
tuning, refinement, or powerful proprietary models,
using only a 32B open-source model. As shown
in Appendix B.7, a naive refinement method en-
hances P1-SQL by 0.58 in EX score and 3.14 in
R-VES score, underscoring its compatibility with
refinement strategies.

Method Backbone Finetuned With Refinement ~ EX

R} GPT-4 v 61.80
CHESS' GPT-40 v 65.00
E-SQL' GPT-40 v 65.58
Distillery® GPT-40 v 67.21
OpenSearch-SQLT GPT-40 v 69.30
CHASE-SQLf Gemini 1.5 pro v v 73.01
XiYan-SQL' UNK v v 73.34
XiYan-SQLF Qwen2.5-Coder-32B v v 67.01
Ours Qwen2.5-Coder-32B 67.40

Table 3: Comparison with state-of-the-art (SOTA) meth-
ods on the BIRD dev set. Due to computational cost,
P1-SQL was evaluated using a 32B open-source model.
TResults are taken from the BIRD leaderboard. R® re-
sults are from Xia et al. (2024).

5.2 Comparison with Zero-shot Methods

To ensure fair comparison with the zero-shot P1-
SQL, all baselines were evaluated in a zero-shot
setting. Although methods like DIN-SQL are not
zero-shot, we include them to assess performance
changes without in-context examples, thereby re-
vealing the dependency of such methods on few-
shot demonstrations. Table 4 shows P1-SQL sig-
nificantly outperforms baselines under these con-
ditions, achieving 5.09-27.97 higher EX and 3.97-
29.26 higher R-VES scores. This underscores P1-
SQL’s advantages: no need for complex shot de-
sign and superior generalization. While most few-
shot baselines decline without examples, DIN-SQL,
DAIL-SQL, RSL-SQL, and CHASE-SQL show rel-
ative stability. In contrast, TA-SQL, CHESS, R?,
and E-SQL experience substantial drops (EX score
reductions of 18.58, 24.00, 4.10, and 4.23, respec-
tively), as their rule-based SQL generation heavily
relies on few-shot examples for effective LLM rule
interpretation and application.

5.3 Using Different LLM Backbones

In this section, we further investigate the perfor-
mance of PI-SQL on open-sourced LLM back-
bones, including Qwen2.5-Coder-32B-Instruct,
QwQ-32B (Team, 2025b), and Gemma-3-27B-
IT (Team, 2025a).

As shown in Table 5, P1-SQL consistently en-
hances the performance of vanilla methods across

25126

https://bird-bench.github.io

Overall Simple Moderate
EX R-VES AEX AR-VEX EX R-VES EX R-VES EX R-VES

Vanilla 5430 5594 - - 61.84 6496 4310 4216 4207 4255

Method Challenging

Cc3 57.37 53.65 - - 6551 6140 4698 43.66 3862 36.19
DIN-SQL 50.85 4751 +0.78 +0.71 5870 5504 41.16 3844 3172 2845
DAIL-SQL 5345 4880 -1.57 =222 59.56 54.88 4741 4486 3379 3349
TA-SQL 36.57 3445 -1858 -17.61 4292 4043 28.02 2623 2345 22.60
CHESS 37.02 3746 2400 -1945 4475 4519 2607 2633 2275 2379
R} 4857 49.13 410 +1.41 54.05 5433 42.67 4389 3241 3277
RSL-SQL 59.45 5895 -1.89 +2.19 66.27 66.52 5108 49.76 4276 40.11
E-SQL 54.24 49.13 -4.23 -5.67 6091 6126 50.00 5049 3478 33.64
CHASE-SQL 5925 59.74 -0.79 +0.58 63.67 6472 53.66 5329 4896 48.62
P1-SQL 64.54 63.71 - - 7092 70.06 5647 5563 49.66 49.06

Table 4: Comparing P1-SQL with zero-shot baselines
on the BIRD dataset. AEX/VES denotes the zero-shot
EX/R-VES minus the few-shot EX/R-VES. The best
result for each case is highlighted in bold.

Moderate
EX R-VES

Overall Simple
EX R-VES EX R-VES

Challenging
EX R-VES

Model

Vanilla method

Qwen-Coder 59.97 5861 6476 63.64 5517 5340 4483 43.12
QwQ 55.08 54.06 6249 61.78 4634 4498 3586 33.87
Gemma3 5887 5751 6432 6296 5172 5071 4690 44.49
GPT-4o-mini 54.30 5594 61.84 6496 43.10 4216 4207 4255

With P1-SQL

Qwen-Coder 67.40 6554 72.86 71.14 5991 57.89 56.55 54.29
QwQ 6434 6279 71.14 6941 5690 5552 44.83 43.80
Gemma3 6642 65.62 7286 72.08 5625 5563 5793 56.41
GPT-40-mini 64.54 63.71 7092 70.06 5647 55.63 49.66 49.06

Table 5: Performance of P1-SQL with different LLM
backbones on the BIRD dev set. The best result for each
case is highlighted in bold.

all backbones, irrespective of their architectures
and model types. This demonstrates the versatil-
ity and robustness of our method, which requires
no additional training and can be applied to a
wide range of backbones. To further demonstrate
the effectiveness of PI-SQL, we compare it with
fine-tuned methods (Appendix B.5), evaluate its
scalability on the Qwen-Coder-Instruct series (Ap-
pendix B.8), provide case studies (Section 5.5 and
Appendix B.2), and conduct experiments on a more
advanced LLM, DeepSeek-V3 (Liu et al., 2024)
(Appendix B.9).

5.4 Analyzing Python Generation Results

To better understand how the pivot program im-
proves SQL generation, we analyze the interme-
diate results from Python. Table 6 shows the
EX of the final Python result, selected with self-
consistency after executing all Python candidate
programs. We can conclude that: 1) PIS could
significantly outperform VanS, demonstrating the
effectiveness of Python guidance. 2) Second, we
observe that PIP shows advantages over PIS on the
challenging subsets. This suggests that there is still
room for improvement in our method, and using
Python as guidance for SQL generation remains a
promising direction worth exploring. On the other

Model Overall Challenging
VanS PIS PIP VanS PIS PIP
Qwen-Coder 59.97 6740 6642 4482 56.55 61.37
QwQ 55.08 64.34 6558 35.86 44.82 62.06
Gemma3 58.86 6642 62.12 46.89 5793 5448
GPT-40-mini 54.30 64.54 6544 42.07 49.66 59.31

Table 6: Performance (EX) of Python program on the
BIRD dev set. VanS and PIS denote SQL performance
without and with Python guidance, while PIP denotes
Python performance.

Model Overall Challenging
Merge Filter Direct Merge Filter Direct
Qwen-Coder 3449 3527 3025 31.72 33.10 35.17
QwQ 3449 3142 34.09 33.10 22.07 44.83
Gemma3 3129 33.64 3507 29.66 3379 36.55
GPT-40-mini 31.94 34.15 3389 35.17 31.03 33.79

Table 7: Distribution of Python selection rates across
different Python generation strategies.

hand, Python is often not supported for data queries
in numerous real-world database applications. In
such instances, SQL code is essential, rendering
the PIP approach inapplicable. 3) As detailed in Ta-
ble 11, the R-VES results underscore the superior
efficiency of PIS compared to PIP, indicating its
significant potential for practical application. 4) By
also considering the complementary results from
Table 10, we note that on simple and moderate
tasks, PIS outperforms PIP. This indicates that SQL
may have certain advantages over Python in han-
dling straightforward data query tasks. We believe
that combining the respective strengths of SQL and
Python is a promising future research direction.

To analyze the contribution of different Python
generation strategies to the final SQL program, we
present the distribution of Python strategy selec-
tion rates in Table 7. A strategy is considered se-
lected when the final SQL program is guided by
the Python program generated in that specific strat-
egy. We find that all three strategies contribute
to the final SQL program, with the merge strat-
egy accounting for the largest share. Addition-
ally, higher-performing backbones tend to exhibit
a more balanced contribution across various strate-
gies, possibly because they can generate effectively
across various strategies, whereas weaker LLMs
rely more on appropriate prompt guidance.

5.5 Case Study

We conduct a case study in Figure 3, comparing
the SQL program generated by P1-SQL with both
the gold SQL program and the one generated by

25127

& Gota sQL:
SELECT

CAST(SUM(CASE WHEN T1.gender = 'M' THEN
1 ELSE @ END) AS REAL) * 100 /
COUNT(T1.client_id) AS percentage_male
FROM

client AS T1 INNER JOIN district AS T2
ON T1.district_id = T2.district_id
WHERE T2.A3 = ‘south Bohemia'
GROUP BY T2.A4
ORDER BY T2.A4 DESC LIMIT 1;

A Query:

For the branch which located in
the south Bohemia with biggest
number of inhabitants, what is

the percentage of the male clients?

= Evidence:

Percentage of the male clients =
DIVIDE(COUNT(male clients),
COUNT(clients)) * 100; Male
refers to gender ='M', A3 is the
region name. A4 contains the
information about inhabitants.

f;'\)
@
WITH max_inhabitants_district AS (

SELECT “district_id” FROM district

SELECT
(COUNT (CASE WHEN

c.gender = 'M' THEN 1 WHERE "A3" = 'south Bohemia'

END) * 100.0 / ORDER BY CAST("A4" AS INTEGER) DESC
COUNT(c.client_id)) AS LIMIT 1

male_percentage)

FROM client c SELECT

JOIN CASE

district d ON
c.district_id =

WHEN COUNT("client"."gender") > @ THEN
(CAST(SUM(CASE WHEN “client"."gender"

d.district_id = 'M' THEN 1 ELSE © END) AS FLOAT) /
WHERE COUNT("client”."gender")) * 100

d.A3 = 'South Bohemia’ ESE @

AND d.A4 = (END AS male_percentage

SELECT MAX(A4)

FROM district

WHERE A3 = 'South
Bohemia');

FROM “client” WHERE “district_id” = (SELECT
"district_id" FROM
max_inhabitants_district);

L J

Figure 3: Case study of a specific query and its corre-
sponding evidence, showcasing the gold SQL and the
SQL generated by the vanilla method and P1-SQL.

the vanilla method. Both the gold SQL and vanilla
return incorrect SQL programs as they directly sort
by A4, which is of text type. In contrast, PI-SQL
generates the correct SQL program by casting A4 to
an integer type before sorting. The SQL program
generated by P1-SQL is also superior to the other
two in terms of robustness, execution efficiency,
and readability. PI-SQL is more robust as it in-
corporates comprehensive considerations in case
statements, such as avoiding division-by-zero er-
rors by checking COUNT("client"”."gender"”) >
0. It is more efficient and readable as it structurally
decouples the identification of the target district
(the most populous district in South Bohemia) from
the subsequent calculation of male client percent-
ages. In contrast, the gold SQL and the vanilla SQL
combine filtering, table joins, grouping, and calcu-
lations into a single monolithic block, resulting in
low execution efficiency and poor readability.

5.6 Discussion for Scope of Supported SQL
Features

Despite our method’s strong performance on vari-
ous benchmarks, a key consideration is its under-
lying assumption that Python execution over CSV
files can fully simulate a database environment.
This assumption may not hold for more advanced
SQL constructs like window functions or recursive
queries. Therefore, it is necessary to discuss the
scope of SQL features our method supports.

We have investigated this issue and found that

while Python’s representation of certain advanced
SQL constructs may differ in style and native effi-
ciency, it is fully capable of expressing the neces-
sary logic:

e Window Functions: Pandas offers a rich set
of analogous APIs, such as groupby().rank() and
shift(), to achieve similar results.

o Recursive Queries: These can be expressed pro-
cedurally using native Python loops.

e Complex Joins and Subqueries: The logic can
be replicated by first computing intermediate re-
sults and then combining them.

Crucially, we argue that the goal of the Python
generation step is not a direct, one-to-one transla-
tion into SQL. Instead, it serves as a high-level log-
ical blueprint to formulate a sound overall strategy
in P1-SQL. For this purpose, Python’s expressive
power is entirely sufficient.

To demonstrate this empirically, we designed
a new test case for recursive queries, which are
arguably the most challenging for Python to repre-
sent. The full details of this case study are provided
in Appendix B.10, including the schema descrip-
tions, the natural language question, the intermedi-
ate Python program, and the final SQL generated
by both the vanilla method and P1-SQL.

We compared the SQL generated by our method
against the vanilla approach. Our findings show
that while both methods produced correct results,
the SQL generated by PI-SQL is superior. It exe-
cutes significantly faster on our machine (280ms
vs. 406ms) and is more robust and readable due
to its dynamic parsing logic and ordered output.
This validates that our Python-guided approach can
produce higher-quality SQL even for complex con-
structs.

6 Conclusion

In this paper, we present PI-SQL, a high-resource
programming language-guided SQL generation
system with two key stages: intermediate guidance
preparation and guided SQL generation. Exper-
iments across various benchmarks and difficulty
levels prove that our zero-shot method, PI-SQL,
significantly outperforms all baselines, including
those with few-shot examples or requiring fine-
tuning. The success of PI-SQL underscores the
potential of leveraging programming languages as
an intermediate step in guiding code generation, of-
fering new insights for future text-to-SQL research.

25128

Limitations

P1-SQL depends on multiple generated Python
codes to guide the LLM in generating SQL pro-
grams. This process introduces additional infer-
ence tokens, leading to higher computational costs
during test time. One potential solution to alleviate
this issue is to introduce a router that selectively
schedules text queries for either direct generation
or Python-guided generation. We plan to explore
this approach in future work.

Acknowledgements

This project was supported by National Natural
Science Foundation of China (No. 62306132),
Guangdong Basic and Applied Basic Research
Foundation (No. 2025A1515011564), Natural Sci-
ence Foundation of Shanghai (No. 25ZR1402136)
and the Fundamental Research Funds for the Cen-
tral Universities (CXJJ-2024-463). This work was
done during Yongdong’s internship at Southern
University of Science and Technology. We thank
the anonymous reviewers for their insightful feed-
back on this work.

References

Ion Androutsopoulos, Graeme D Ritchie, and Peter
Thanisch. 1995. Natural language interfaces to
databases—an introduction. Natural language engi-
neering, 1(1):29-81.

Hasan Alp Caferoglu and Ozgiir Ulusoy. 2024. E-sql:
Direct schema linking via question enrichment in
text-to-sql. Preprint, arXiv:2409.16751.

Ruichu Cai, Boyan Xu, Zhenjie Zhang, Xiaoyan Yang,
Zijian Li, and Zhihao Liang. 2018. An encoder-
decoder framework translating natural language to
database queries. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stock-
holm, Sweden.

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao,
Su Zhu, and Kai Yu. 2021. Lgesql: line graph en-
hanced text-to-sql model with mixed local and non-
local relations. arXiv preprint arXiv:2106.01093.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin
Zhang, Wei Chen, and Xiang Bai. 2024. Rsl-sql: Ro-
bust schema linking in text-to-sql generation. arXiv
preprint arXiv:2411.00073.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2024a.
Text-to-sql empowered by large language models: A
benchmark evaluation. Proceedings of the VLDB
Endowment, 17(5):1132-1145.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi,
Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yun-
tao Hong, Zhiling Luo, Jinyang Gao, Liyu Mou,
and Yu Li. 2024b. Xiyan-sql: A multi-generator
ensemble framework for text-to-sql. Preprint,
arXiv:2411.08599.

Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen,
Junnan Dong, Feiran Huang, and Xiao Huang. 2024.
Next-generation database interfaces: A survey of llm-
based text-to-sql. arXiv preprint arXiv:2406.08426.

Haoyang Huang, Yaobo Liang, Nan Duan, Ming Gong,
Linjun Shou, Daxin Jiang, and M. Zhou. 2019. Uni-
coder: A universal language encoder by pre-training
with multiple cross-lingual tasks. In Conference on
Empirical Methods in Natural Language Processing.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Yunsu Kim, Petre Petrov, Pavel Petrushkov, Shahram
Khadivi, and Hermann Ney. 2019. Pivot-based
transfer learning for neural machine translation be-
tween non-English languages. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Process-
ing (EMNLP-IJCNLP), pages 866—876, Hong Kong,
China.

G Lample. 2019. Cross-lingual language model pre-
training. arXiv preprint arXiv:1901.07291.

Dongjun Lee, Choongwon Park, Jachyuk Kim, and
Heesoo Park. 2024. Mcs-sql: Leveraging multiple
prompts and multiple-choice selection for text-to-sql
generation. arXiv preprint arXiv:2405.07467.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li,
and Nan Tang. 2024a. The dawn of natural lan-
guage to sql: Are we fully ready? arXiv preprint
arXiv:2406.01265.

Fei Li and Hosagrahar V Jagadish. 2014. Constructing
an interactive natural language interface for relational
databases. Proceedings of the VLDB Endowment,
8(1):73-84.

25129

https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2409.16751
https://arxiv.org/abs/2411.08599
https://arxiv.org/abs/2411.08599
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545
https://api.semanticscholar.org/CorpusID:202541545

Haoyang Li, Jing Zhang, Cuiping Li, and Hong
Chen. 2023a. Resdsql: Decoupling schema link-
ing and skeleton parsing for text-to-sql. Preprint,
arXiv:2302.05965.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023b. RESDSQL: decoupling schema linking and
skeleton parsing for text-to-sql. In Thirty-Seventh
AAAI Conference on Artificial Intelligence, AAAI
2023, Thirty-Fifth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2023, Thirteenth
Symposium on Educational Advances in Artificial In-
telligence, EAAI 2023, Washington, DC, USA, Febru-
ary 7-14, 2023, pages 13067-13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024b. CODES: to-
wards building open-source language models for text-
to-sql. Proceedings of the ACM on Management of
Data, 2(3):1-28.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024¢c. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024d. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Karime Maamari, Fadhil Abubaker, Daniel Jaroslawicz,
and Amine Mhedhbi. 2024. The death of schema
linking? text-to-SQL in the age of well-reasoned
language models. In NeurIPS 2024 Third Table Rep-
resentation Learning Workshop.

OpenAl. 2024. Models Documentation: GPT-
40 mini. https://platform.openai.com/docs/
models#gpt-40-mini. Accessed: 2025-02-10.

Patomporn Payoungkhamdee, Pume Tuchinda, Jin-
heon Baek, Samuel Cahyawijaya, Can Udomcharoen-
chaikit, Potsawee Manakul, Peerat Limkonchoti-
wat, Ekapol Chuangsuwanich, and Sarana Nutanong.
2025. Towards better understanding of program-of-
thought reasoning in cross-lingual and multilingual
environments. arXiv preprint arXiv:2502.17956.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun,
Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and
Sercan O Arik. 2025. CHASE-SQL: Multi-path rea-
soning and preference optimized candidate selection
in text-to-SQL. In The Thirteenth International Con-
ference on Learning Representations.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-SQL: decomposed in-context learning of text-
to-sql with self-correction. In Advances in Neural
Information Processing Systems, volume 36.

Ge Qu, Jinyang Li, Bowen Li, Bowen Qin, Nan Huo,
Chenhao Ma, and Reynold Cheng. 2024. Before
generation, align it! a novel and effective strategy for
mitigating hallucinations in text-to-sql generation. In
ACL (Findings), pages 5456-5471.

Pritish Sahu, Karan Sikka, and Ajay Divakaran. 2024.
Pelican: Correcting hallucination in vision-LLMs via
claim decomposition and program of thought verifi-
cation. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pages 8228-8248, Miami, Florida, USA. Association
for Computational Linguistics.

Gabriel Sarch, Lawrence Jang, Michael Tarr, William W
Cohen, Kenneth Marino, and Katerina Fragkiadaki.
2024. VIm agents generate their own memories: Dis-
tilling experience into embodied programs of thought.

Advances in Neural Information Processing Systems,
37:75942-75985.

Ruoxi Sun, Sercan O Arik, Alex Muzio, Lesly Miculi-
cich, Satya Gundabathula, Pengcheng Yin, Hanjun
Dai, Hootan Nakhost, Rajarishi Sinha, Zifeng Wang,
et al. 2023. Sql-palm: Improved large language
model adaptation for text-to-sql (extended). arXiv
preprint arXiv:2306.00739.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen
Chang, Azalia Mirhoseini, and Amin Saberi. 2024.
Chess: Contextual harnessing for efficient sql synthe-
sis. Preprint, arXiv:2405.16755.

Gemma Team. 2025a. Gemma 3.

Qwen Team. 2025b. Qwq-32b: Embracing the power
of reinforcement learning.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. RAT-SQL.:
relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2020, Online, July 5-10, 2020.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Website. 2023. Iso/iec 9075-1:2023 information tech-
nology — database languages sql.

Hanchen Xia, Feng Jiang, Naihao Deng, Cunxiang
Wang, Guojiang Zhao, Rada Mihalcea, and Yue
Zhang. 2024. r3: "this is my sql, are you with me?"
a consensus-based multi-agent system for text-to-sql
tasks. arXiv preprint arXiv:2402.14851.

25130

https://arxiv.org/abs/2302.05965
https://arxiv.org/abs/2302.05965
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://openreview.net/forum?id=fglyh5pa7d
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://platform.openai.com/docs/models#gpt-4o-mini
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://openreview.net/forum?id=CvGqMD5OtX
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.findings-acl.324
https://doi.org/10.18653/v1/2024.emnlp-main.470
https://doi.org/10.18653/v1/2024.emnlp-main.470
https://doi.org/10.18653/v1/2024.emnlp-main.470
https://arxiv.org/abs/2405.16755
https://arxiv.org/abs/2405.16755
https://goo.gle/Gemma3Report
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://www.iso.org/standard/76583.html
https://www.iso.org/standard/76583.html

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie
Guo. 2025. Opensearch-sql: Enhancing text-to-sql
with dynamic few-shot and consistency alignment.
arXiv preprint arXiv:2502.14913.

Bo Xu, Shufei Li, Yifei Wu, Shouang Wei, Ming
Du, Hongya Wang, and Hui Song. 2024. Chain-of-
program prompting with open-source large language
models for text-to-sql. In 2024 International Joint
Conference on Neural Networks (IJCNN), pages 1-8.
IEEE.

L Xue. 2020. mt5: A massively multilingual pre-
trained text-to-text transformer. arXiv preprint
arXiv:2010.11934.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Liang Zhang, Anwen Hu, Haiyang Xu, Ming Yan,
Yichen Xu, Qin Jin, Ji Zhang, and Fei Huang.
2024. TinyChart: Efficient chart understanding with
program-of-thoughts learning and visual token merg-
ing. In Proceedings of the 2024 Conference on Em-
pirical Methods in Natural Language Processing,
pages 1882-1898, Miami, Florida, USA. Association
for Computational Linguistics.

Meng Zhang, Liangyou Li, and Qun Liu. 2022. Triangu-
lar transfer: Freezing the pivot for triangular machine
translation. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 644—650, Dublin,
Ireland.

Danna Zheng, Mirella Lapata, and Jeff Pan. 2024.
Archer: A human-labeled text-to-SQL dataset with
arithmetic, commonsense and hypothetical reasoning.
In Proceedings of the 18th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 94-111,
St. Julian’s, Malta. Association for Computational
Linguistics.

Ruiqi Zhong, Charlie Snell, Dan Klein, and Jason Eis-
ner. 2023. Non-programmers can label programs
indirectly via active examples: A case study with
text-to-SQL. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 5126-5152, Singapore.

A More Experiment Details

A.1 Benchmark Details

We conduct experiments on two widely recognized
open-sourced text-to-SQL datasets: BIRD (Li et al.,
2024d) and Archer (Zheng et al., 2024). BIRD
contains over 12,751 unique question-SQL pairs
derived from 95 large-scale databases spanning

over 37 professional domains. The databases are
designed to mimic real-world scenarios, featuring
messy data rows and complex schemas. Archer is
a human-labeled dataset focused on text-to-SQL
queries involving Arithmetic, Commonsense, and
Hypothetical Reasoning. We use its English sub-
set with 1,042 question-SQL pairs, spanning 20
English-language databases across 20 distinct do-
mains.

A.2 Baselines

We compare PI-SQL with ten baselines.

e Vanilla: This method is the same as PI-SQL,
except without Python guidance.

e C3 (Dong et al., 2023): C3 is a zero-shot text-
to-SQL method that incorporates Clear Prompting,
Calibration with Hints, and Consistent Output to
optimize model input, mitigate biases, and maintain
output consistency, respectively.

e DIN-SQL (Pourreza and Rafiei, 2024): DIN-
SQL tackles the text-to-SQL task by decomposing
it into smaller, manageable sub-tasks, solving them
in an adaptive in-context learning framework that
adjusts based on the task at hand.

e DAIL-SQL (Gao et al., 2024a): DAIL-SQL uses
code prompts to represent the query and selects
in-context learning examples based on the query
and its pre-generated SQL.

e TA-SQL (Qu et al., 2024): TA-SQL leverages
schema linking and logical synthesis alignment
modules, in conjunction with in-context learning,
to mitigate hallucinations.

e R3 (Xiaetal., 2024): R3 establishes a framework
with direct Python guidance and consensus-based
refinement for text-to-SQL tasks.

e CHESS (Talaei et al., 2024): CHESS is a multi-
agent framework for text-to-SQL using in-context
learning, consisting of agents such as the Informa-
tion Retriever, Schema Selector, Candidate Gener-
ator, and Unit Tester. For a fair comparison, we
exclude the Unit Tester agent.

e CHASE-SQL (Pourreza et al., 2025): CHASE-
SQL enhances text-to-SQL performance by uti-
lizing a divide-and-conquer generation approach,
chain-of-thought reasoning for refinement, and
instance-aware synthetic few-shot example gener-
ation. Additionally, it trains a candidate selection
model using the BIRD training set.

e E-SQL (Caferoglu and Ozgiir Ulusoy, 2024): E-
SQL leverages direct schema linking via question
enrichment and incorporates candidate predicates
to address key challenges in text-to-SQL, including

25131

https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://doi.org/10.18653/v1/2024.emnlp-main.112
https://aclanthology.org/2024.eacl-long.6/
https://aclanthology.org/2024.eacl-long.6/

complex schemas, query ambiguity, and intricate
SQL generation.

e RSL-SQL (Cao et al., 2024): RSL-SQL com-
bines techniques including bidirectional schema
linking, contextual information augmentation,
binary selection strategy, and multi-turn self-
correction, achieving robust schema linking and
thus improving text-to-SQL performance.

A.3 Data License and Usage

The BIRD dataset is licensed under CC BY-SA
4.0, and the Archer dataset is licensed under CC
BY 4.0. Both datasets are used exclusively for aca-
demic research purposes following their respective
licenses.

B More Experiment Results

B.1 Inference Cost Comparision

Table 8 and Table 9 quantify the average inference
cost per query on the BIRD dev set across differ-
ent methods. While PI-SQL incurs higher com-
putational costs on the BIRD dev set overall than
vanilla (by 6.136%$), C3 (by 6.485%), DAIL-SQL
(by 3.300%), TA-SQL (by 4.178$), and RSL-SQL
(by 2.025%), it remains less than DIN-SQL (by
4.421%), CHESS (by 10.608$), R? (by 2.966$), E-
SQL (by 2.854%), and CHASE-SQL (by 1.108$).
Critically, this modest cost increase is justified by
P1-SQL’s significant performance gains over all
baselines (see Table 1), demonstrating its practical
efficiency for real-world deployment.

B.2 Case Study for Code Generation

We present a comparative analysis in Figure 4, Fig-
ure 5, and Figure 6 to further demonstrate the neces-
sity of incorporating these code generation meth-
ods. These figures illustrate query execution strate-
gies and code generation outputs across three meth-
ods: direct, merge, and filter. Direct code employs
sequential task execution without table merging,
instead explicitly linking data through foreign keys.
This method prioritizes simplicity and transparency.
Merge code first consolidates tables into a joined
dataset before computing metrics, favoring holistic
data integration. Filter code optimizes efficiency
by eliminating irrelevant data at the early stages of
processing. These approaches exhibit distinct char-
acteristics, with each proving optimal under spe-
cific problem constraints. For instance, direct code
excels in straightforward scenarios requiring trace-
ability, while merge code suits complex multi-table

analyses, and filter code benefits resource-intensive
tasks. This observation aligns with the conclusions
in Section 5.3, where we analyze method selection
patterns across varying difficulty levels and LLM
backbones.

B.3 Complementary Python Programs
performance

We provide additional performance results of the
Python programs on the BIRD dev set at various
difficulty levels in Table 10.

To provide a deeper insight into the performance
of PIP and PIS, Table 11 presents the R-VES scores
corresponding to the results in Table 6. The re-
sults reveal that executing the logic directly in
Python is less efficient than executing the final gen-
erated SQL. This finding is crucial: it underscores
the importance of our Python-to-SQL approach.
While Python serves as an excellent intermediate
language for logical reasoning and planning, gen-
erating native SQL is vital for achieving the high
performance required in real-world data processing
tasks.

B.4 Complementary Contribution of
Different Python Generation Strategies

We present the distribution of Python strategy selec-
tions on the BIRD dev set across various difficulty
levels in Table 12.

B.5 Comparison with Fine-tuned Methods

In this section, we compare PI-SQL to methods
that are explicitly fine-tuned on the text-to-SQL
task. Specifically, we compare with CodeS (Li
et al., 2024b) and RESD-SQL (Li et al., 2023b).
CodeS are state-of-the-art, fully open-source lan-
guage models (1B-15B parameters) designed for
the text-to-SQL task. It employs incremental pre-
training on a curated SQL-centric corpus, enhanc-
ing SQL generation, schema linking, and domain
adaptation via strategic prompt construction and bi-
directional data augmentation. RESD-SQL is fine-
tuned from T5 series models on the Spider training
set, with an explicitly designed model structure to
decouple schema linking from skeleton parsing.
We find in Table 13 that P1-SQL consistently
outperforms the fine-tuned baselines by 6.04 to
31.44 EX and 19.59 to 47.08 VES overall, demon-
strating its superiority in terms of both accuracy
and efficiency. The performance gap is more pro-
nounced in the moderate and challenging level sub-
sets, indicating that guiding with a high-resource

25132

Overall Simple Moderate Challenging

Method
Input Avg. Output Avg. Input Avg. Output Avg. Input Avg. Output Avg. Input Avg. Output Avg.

Vanilla 1005 272 950 244 1085 306 1094 341
C3 529 138 524 111 536 161 537 235
DIN-SQL 28185 1124 23555 905 37073 1422 29275 1569
DAIL-SQL 3153 1789 2988 1686 3364 1939 3530 1968
TA-SQL 6917 212 7446 195 6192 221 5859 288
CHESS 42573 2008 41256 1683 44623 2397 44416 2837
R? 14578 3472 12970 3656 16687 3109 18092 3465
E-SQL 25335 702 25996 816 24003 886 25409 754
CHASE-SQL 12878 2551 12080 1225 13745 1244 15202 1752
RSL-SQL 12207 450 12518 454 11849 434 11461 470
P1-SQL 8117 2938 7666 2734 8744 3191 8987 3431

Table 8: Inference token usage of different methods in average on the BIRD dev set.

Method Overall Simple Moderate Challenging
Input ($§) Output ($) Input($) Output($) Input($) Output($) Input($) Output($)

Vanilla 0.347 0.376 0.198 0.204 0.113 0.128 0.036 0.045
C3 0.183 0.191 0.109 0.093 0.056 0.067 0.018 0.031
DIN-SQL 9.728 1.552 4.902 0.754 3.870 0.594 0.955 0.205
DAIL-SQL 1.088 2.471 0.622 1.404 0.351 0.810 0.115 0.257
TA-SQL 2.388 0.293 1.550 0.163 0.647 0.093 0.191 0.038
CHESS 14.694 2.773 8.586 1.401 4.659 1.001 1.449 0.370
R3 5.032 4.793 2.699 3.044 1.742 1.298 0.590 0.452
E-SQL 8.744 0.969 5.410 0.679 2.506 0.370 0.829 0.098
CHASE-SQL 4.445 3.522 2.514 1.020 1.435 0.519 0.496 0.229
RSL-SQL 4213 0.621 2.605 0.378 1.237 0.181 0.374 0.061
P1-SQL 2.802 4.057 1.596 2.277 0.913 1.333 0.293 0.448

Table 9: Inference cost (GPT-40-mini) of different methods for solving all queries of the BIRD dev set ($).

-
Merge Approach

Merge tables based on foreign key relationships
merged_df = district_df.add_prefix('district_")\

.merge(client_df.add_prefix('client_"'), left_on='district_district_id',
right_on="'client_district_id')\

.merge(disp_df.add_prefix('disp_'), left_on='client_client_id', right_on="disp_client_id")

Filter for districts in south Bohemia
south_bohemia_df = merged_df[merged_df['district_A3'] == 'south Bohemia']

Find the district with the maximum number of inhabitants

south_bohemia_df['district_A4'] = south_bohemia_df['district_A4'].astype(int) # Ensure A4
(inhabitants) is treated as integer

max_inhabitants_district = south_bohemia_df.loc[south_bohemia_df['district_A4'].idxmax()]

Get client data from the district with maximum inhabitants
filtered_clients = client_df[client_df['district_id'] ==
max_inhabitants_district['district_district_id']]

Calculate the percentage of male clients
male_clients_count = filtered_clients[filtered_clients['gender'] == 'M'].shape[0@]
total_clients_count = filtered_clients.shape[0]

To avoid division by zero if there are no clients, set result to @ if total_clients_count is zero
if total_clients_count > 0:

male_percentage = (male_clients_count / total_clients_count) * 100
else:

male_percentage = @ # No clients means no percentage

Store the result

result = male_percentage
. J

Figure 4: A merge code generation case. The merge code merges all tables first, filters districts in "South Bohemia,"
and calculates metrics from the joined dataset.

25133

s A
Filter Approach
Filter the district for 'south Bohemia' and find the max inhabitants
south_bohemia_districts = district_df[district_df['A3'] == 'south Bohemia'].copy()
south_bohemia_districts['A4'] = south_bohemia_districts['A4'].astype(int) # Ensure A4 is integer
for comparison
max_inhabitants_district = south_bohemia_districts.loc[south_bohemia_districts['A4'].idxmax()]
Retrieve the district_id of the district with the most inhabitants
district_id_max = max_inhabitants_district['district_id']
Now, filter the client data for this district_id
clients_in_district = client_df[client_df['district_id'] == district_id_max]
Calculate the percentage of male clients (gender = 'M')
male_client_count = clients_in_district[clients_in_district['gender'] == 'M'].shape[0]
total_client_count = clients_in_district.shape[0]
Handling division by zero
if total_client_count > @:
male_percentage = (male_client_count / total_client_count) * 100
else:
male_percentage = @ # If there are no clients, percentage is ©
Store the result
result = male_percentage
L J

Figure 5: A filter code generation case. The filter code filters districts and isolates the target district, and then filters
clients, emphasizing modularity and memory efficiency.

-
Direct Approach

Filter for districts in the 'south Bohemia' region
south_bohemia_df = district_df[district_df['A3'] == 'south Bohemia']

Convert the A4 column (inhabitants) to integers for calculation
south_bohemia_df['A4'] = south_bohemia_df['A4'].astype(int)

Find the district with the maximum inhabitants
max_inhabitants_district = south_bohemia_df.loc[south_bohemia_df['A4'].idxmax()]

Get the district_id for the district with the biggest number of inhabitants
district_id_max = max_inhabitants_district['district_id']

Now filter clients in the identified district
clients_in_district = client_df[client_df['district_id'] == district_id_max]

Count total clients and male clients
total_clients = len(clients_in_district)
male_clients_count = len(clients_in_district[clients_in_district['gender'] == 'M'])

Calculate the percentage of male clients
percentage_male_clients = (male_clients_count / total_clients) * 100 if total_clients > @ else ©

Store the result

result = percentage_male_clients
_ J

Figure 6: A direct code generation case. The direct code filters districts in "South Bohemia," identifies the most
populous district, and then queries client data using the retrieved district_id.

Overall Simple Moderate Challenging
VanS PIS PIP VanS PIS PIP VanS PIS PIP VanS PIS PIP
Qwen-Coder 59.97 6740 6642 6475 72.86 70.70 55.17 5991 5948 4482 56.55 61.37
QwQ 55.08 64.34 6558 6248 71.13 69.08 46.33 56.89 5538 3586 44.82 62.06

Gemma3 58.86 66.55 62.12 6432 7275 6724 51.72 57.11 5431 4689 5724 5448
GPT-40-mini 5535 64.54 6544 60.86 70.92 7027 4828 5647 57.75 4276 49.66 59.31

Model

Table 10: Performance of Python program on the BIRD dev set. VanS and P1S denote SQL performance without
and with Python guidance, while PIP denotes Python performance.

25134

Model Overall Challenging
VanS PIS PIP VanS PIS PIP
Qwen-Coder 58.61 65.54 4539 43.12 5429 41.68
QwQ 54.06 6279 52.18 33.87 43.80 46.30
Gemma3 57.51 65.62 5196 44.49 5641 4448
GPT-4o0-mini 55.94 63.71 57.83 4255 49.06 47.80

Table 11: Efficiency (R-VES) of Python program on the
BIRD dev set. VanS and P1S denote SQL performance
without and with Python guidance, while PIP denotes
Python performance.

programming language is more effective than fine-
tuning for solving difficult text-to-SQL problems.
The performance of fine-tuned models heavily de-
pends on the quality and quantity of the fine-tuning
data. However, creating a large-scale dataset with
challenging text-to-SQL pairs is costly and difficult.
Conversely, PI-SQL leverages Python to guide
LLMs in handling challenging SQL programs with-
out the need for a high-quality fine-tuning dataset.

B.6 Execution Time of Generated Code

This section details the average execution time for
the Python and SQL code generated by PI-SQL (as
shown in Table 14). At approximately 1 second per
query, this execution time is negligible compared
to the inference cost.

B.7 Combination with Refinement

To demonstrate that PI-SQL can be readily inte-
grated with refinement techniques, we present its
performance in Table 15 using a simple refinement
strategy. Specifically, if no generated SQL query
produces results that align with the Python-voted
outcome, the SQL query is regenerated.

B.8 Scaling Experiments

To evaluate the generality and robustness of P1-
SQL across models of different scales, we also
conducted experiments using the Qwen2.5-Coder-
Instruct series across different model sizes in Ta-
ble 16. We observe that PI-SQL consistently im-
proves both EX and R-VES scores across models.
Overall, the performance gains become more pro-
nounced with larger models, likely due to their
stronger Python reasoning and generalization capa-
bilities. This reveals the potential of our method
when applied to more powerful language models.
These results further demonstrate the effectiveness
of our approach.

B.9 Experiments on More Advanced
Open-source Models

We conduct additional experiments using the ad-
vanced open-source model, DeepSeek-V3, on the
BIRD development set in Table 17. Due to budget
constraints, we benchmarked our method against
the vanilla approach and CHASE-SQL, which was
the top-performing baseline in our main experi-
ments. The results clearly show our method con-
sistently outperforming both baselines, achieving
gains of over 3.13 in overall EX and 5.73 in R-VES.
This confirms the effectiveness of our approach
when applied to more powerful language models.
These new findings, when considered alongside
our existing results on various open-source back-
bones (Section 5.3), further underscore the practi-
cal significance of our approach. The consistent
performance gains across models of different scales
highlight our method’s utility for a wide range of
real-world scenarios, including local or private de-
ployments where capable open-source LLMs are
increasingly preferred.

B.10 Details of Recursive Query Case Study

The full details of this case study are presented be-
low. Figure 7 shows the database schema and the
natural language question. One of the intermediate
Python programs generated by our method is de-
tailed in Figure 8. Finally, Figure 9 and Figure 10
present the final SQL generated by both the vanilla
method and PI-SQL for comparison.

C Prompt Templates

C.1 Prompt Templates for Intermediate
Guidance Preparation

The prompt used for the generation of Python pro-
gram guidance in three different strategies(merge,
filter, and direct) is available in Figure 11, Fig-
ure 12, and Figure 13, respectively.

C.2 Prompt Template for SQL Generation

The prompt template used to generate the SQL re-
sponse at the second stage is available in Figure 14.

D Broader Impacts

Our P1-SQL method allows non-technical users to
generate SQL queries using natural language, im-
proving productivity and making data more acces-
sible. It can benefit fields like healthcare, finance,
and education by enabling faster, data-driven deci-
sions without requiring SQL expertise. However,

25135

Model Overall Simple Moderate Challenging

Merge Filter Direct | Merge Filter Direct | Merge Filter Direct | Merge Filter Direct

Qwen-Coder 34.49 3527 3025 | 3535 3449 30.16 | 33.62 37.50 2888 | 31.72 33.10 35.17
QwQ 3449 3142 34.09 | 35.03 3232 32.65 | 33.84 3254 33.62 | 33.10 22.07 44.83
Gemma3 31.68 3390 3442 | 31.57 3492 33.51 | 32.54 3147 3599 | 29.66 3517 35.17
GPT-40-mini 3194 34.16 3390 | 31.14 3546 3341 | 3254 3254 3491 | 3517 31.03 33.79

Table 12: Distribution of Python selection rates across different Python generation strategies. The percentages
represent the proportion of SQL outputs generated by each strategy (merge, filter, or direct) that are selected as the
final answer, summing to 100% for each model across all strategies.

()

Schema:
Table: atom

(molecule_id:TEXT, ColumnComment: #The molecule id column in the atom table is used to identify the
molecule to which the atom belongs. Commonsense evidence: TRXXX_i represents ith atom of molecule
TRXXX. Example values include TR186, TR447, and TRO40., Example: [TRO0O©, TReQ1l, TRe02]),
(atom_id:TEXT, Primary Key, ColumnComment: #The atom id column in the atom table is used to store
the unique id of atoms. Example values include TR238_12, TR296_49, and TRe®7_21., Example: [TRO@o_1,
TROOO_2, TROGO_3])

]

Table: bond

[

(bond_id:TEXT, Primary Key, ColumnComment: #bond_id is a unique id representing bonds within the
bond table. The value of bond_id is a string of the format TRxxx_Al_A2, where TRXXX refers to which
molecule, Al and A2 refers to which atom. For example, bond_id can be TR301_28 32, TRe47_2 4,
TR181_18_34., Example: [TRO@0_1_2, TRee0_2_3, TReee_2_4]),

(molecule_id:TEXT, ColumnComment: #This column identifies the molecule in which the bond appears.
For example, TR@94, TR475, and TR438 are some of the values that appear in this column., Example:
[TReo0, TROO1, TREO2]),

(bond_type:TEXT, ColumnComment: #bond_type is a text column in the bond table. It represents the
type of the bond. The possible values are ['#', '=', '-']. The commonsense evidence is:

#'-': single bond

#'=": double bond

#'#': triple bond, Example: [-, =, #])

]

#

Table: molecule

(molecule_id:TEXT, Primary Key, ColumnComment: # 'molecule id is a unique identifier of a molecule
in the molecule table. The values in this column are text. The possible values in this column are
TR398, TR158, and TR134. The value description for this column is as follows: '+' indicates that
the molecule is carcinogenic, while '-' indicates that the molecule is not carcinogenic. For
example, TR398 is carcinogenic, while TR158 and TR134 are not carcinogenic.', Example: [TRoe®o,
TROG1, TREO2]),

(label:TEXT, ColumnComment: #This column is called label and is of type text. It is a column in the
molecule table of the toxicology database. The column describes whether this molecule is
carcinogenic or not. The possible values for this column are + and -., Example: [+])

]

Foreign keys:
atom.molecule_id=molecule.molecule_id
bond.molecule_id=molecule.molecule_id

Question:
For molecule_id = 'TRO@O' and start_atom_id = 'TR@OO_1', which atoms should be included in the
output?

- J

Figure 7: Schema descriptions and the natural language question of the recursive query case study.

25136

('An intermediate Python program:
import pandas as pd
from collections import defaultdict, deque

Read CSV files
atoms_df = pd.read_csv('atom.csv')
bonds_df = pd.read_csv('bond.csv"')

def get_connected_atoms(molecule_id, start_atom_id):
Step 1: Filter bonds that belong to the current molecule
mol_bonds = bonds_df[bonds_df['molecule_id'] == molecule_id]

Step 2: Build the graph (adjacency list)
graph = defaultdict(list)

for _, row in mol_bonds.iterrows():
bond_id = row['bond_id"]
Format like TRO@O_1_2 - split out the atom indices
parts = bond_id.split('_")
atoml = f"{molecule_id} {parts[1]}"
atom2 = f"{molecule_id} {parts[2]}"
graph[atoml].append(atom2)
graph[atom2].append(atoml) # Undirected edge

Step 3: Breadth-First Search (BFS) traversal
visited = set()
queue = deque()

queue.append(start_atom_id)
visited.add(start_atom_id)

while queue:
current = queue.popleft()
for neighbor in graph[current]:
if neighbor not in visited:
visited.add(neighbor)
queue.append(neighbor)

return list(visited)
Test the function
molecule_id = 'TRe©O'
start_atom_id = 'TReee_1'

result = get_connected_atoms(molecule_id, start_atom_id)
print("Connected atoms:", result)

Figure 8: An intermediate Python program of the recursive query case study.

25137

(Vanilla SQL:)

WITH RECURSIVE BondAtoms AS (
SELECT
bond_id,
molecule_id,

-- Extract atoml and atom2; e.g., from bond_id = 'TR@@0_1_2' build TRE©O_1 and TROOO_2
molecule_id || '_' ||
SUBSTR(bond_id, LENGTH(molecule_id) + 2,
INSTR(SUBSTR(bond_id, LENGTH(molecule id) + 2), '_') - 1
) AS atomi,

molecule_id || '_" ||
SUBSTR(

bond_id,

LENGTH(molecule_id) + 2 + INSTR(SUBSTR(bond_id, LENGTH(molecule_id) + 2), '_")
) AS atom2

FROM bond
WHERE molecule_id = 'TR0@Q'

))

AtomGraph AS (
-- Starting atom (root)
SELECT atom_id FROM atom
WHERE atom_id = 'TR@@@_1' AND molecule_id = 'TRO@0@'

UNION

-- Recursively find other atoms connected through bonds
SELECT
CASE
WHEN ag.atom_id = ba.atoml THEN ba.atom2
ELSE ba.atoml
END AS atom_id
FROM AtomGraph ag
JOIN BondAtoms ba
ON ag.atom_id = ba.atoml OR ag.atom_id = ba.atom2
)

-- Final output: all connected atom_id values
SELECT DISTINCT atom_id FROM AtomGraph;

Figure 9: The final SQL generated by the vanilla method of the recursive query case study.

25138

(PI—SQL:
WITH RECURSIVE BondAtoms AS (
SELECT
bond_id,
molecule_id,

-- Replace bond_id with TR@@©_1 and TRO@O_2 (the two atoms)
molecule_id || '_' |
substr(
replace(bond_id, molecule_id || '_', ''),
1)
instr(replace(bond_id, molecule_id || '_', ''), '_') - 1
) AS atomi,

molecule_id || '_' |
substr(
replace(bond_id, molecule_id || '_', ''),
instr(replace(bond_id, molecule_id || '_", "') , '_') +1
) AS atom2

FROM bond
WHERE molecule_id = 'TRe@0'

)s

AtomGraph AS (
-- Starting atom
SELECT 'TR@@@_1' AS atom_id

UNION

-- Recursively find connected atoms
SELECT
CASE
WHEN ag.atom_id = ba.atoml THEN ba.atom2
ELSE ba.atoml
END AS atom_id
FROM AtomGraph ag
JOIN BondAtoms ba
ON ag.atom_id = ba.atoml OR ag.atom_id = ba.atom2

)

SELECT DISTINCT atom_id
FROM AtomGraph
ORDER BY atom_id;

Figure 10: The final SQL generated by PI-SQL of the recursive query case study.

25139

Overall Moderate

EX VES EX VES EX VES EX VES

SFT CodeS-1B 50.30 5245 5870 61.11 37.60 39.89 36.80 37.38
SFT CodeS-3B 5490 5828 62.80 64.96 4430 50.98 3820 38.99
SFT CodeS-7B 57.00 60.83 64.60 66.88 4690 49.53 4030 5842
SFT CodeS-15B 58.50 61.54 6580 67.87 4880 51.69 4240 52.71
RESDSQL-Base 33.10 34.05 4230 4275 2020 22.16 16.00 16.54
RESDSQL-Large 38.60 4081 46.50 47.21 27.70 30.00 2290 34.67
RESDSQL-3B 4390 4564 53.50 5335 3330 3549 1670 28.84

P1-SQL 64.54 81.13 70.92 88.88 56.47 71.06 49.66 63.92

Simple Challenging

Method

Table 13: Comparison with fine-tuned models on the
BIRD dev set. The baseline results are cited from Li
et al. (2024a). Since the baselines exclusively report
VES, this table presents VES scores rather than R-VES.
The best result for each case is highlighted in bold.

Overall Simple Moderate
Python SQL Python SQL Python SQL Python SQL

P1-SQL 0961 0.166 0.905 0.170 1.036 0.170 1.082 0.124

Method Challenging

Table 14: Execution time (s) of the generated code
(average per query).

the method could also be misused to query leaked
or unauthorized databases, risking privacy breaches.
To address this, robust access controls and privacy
safeguards must be implemented to ensure respon-
sible use.

Challenging
EX R-VES

Overall Simple Moderate
EX R-VES EX R-VES EX R-VES

Method

P1-SQL 64.54 6371 7092 70.06 56.47 5563 49.66 49.06
+refinement 65.12 66.85 71.03 73.01 5690 58.17 53.79 5540

Table 15: The results of PI-SQL with a simple refine-
ment strategy.

Overall Simple Moderate

EX R-VES EX R-VES EX R-VES

Challenging
EX R-VES

Model

Vanilla method

Qwen2.5-Coder-7B 51.63 49.76 60.97 59.10 39.66 37.55 3034 2927
Qwen2.5-Coder-14B 61.21 5820 6843 6495 51.94 4972 44.83 4231
Qwen2.5-Coder-32B 59.97 58.61 64.76 63.64 5517 5340 44.83 43.12
With P1-SQL

Qwen2.5-Coder-7B 54.24 56.02 62.81 64.93 4224 4346 3793 3933

Qwen2.5-Coder-14B 6545 67.77 71.78 7441 5647 58.19 53.79 56.07
Qwen2.5-Coder-32B 67.40 65.54 72.86 71.14 5991 57.89 56.55 54.29

Table 16: Performance of PI-SQL with LLMs of differ-
ent scales on the BIRD dev set.

Model Overall Simple Moderate Challenging
EX R-VES EX R-VES EX R-VES EX R-VES
Vanilla 59.58 5574 6692 63.00 50.65 4694 4138 37.66

CHASE-SQL 6291 62.65 67.57 6756 57.11 5641 5172 51.29
P1-SQL 66.04 6838 7135 7422 6099 6247 4828 50.08

Table 17: Performance of P1-SQL with DeepSeek-V3
on the BIRD dev set. The best results for each case are
highlighted in bold.

25140

You are an expert in database querying and proficient in handling data stored in CSV files, treating them as database
tables. The current database has been exported to corresponding CSV files. Your task is to answer user queries by
writing Python code that queries these CSV files. You will be provided with examples of past queries in the database
and their SQL solutions. Use the SQL logic as a reference to formulate Python code solutions for the CSV files.
Focus on providing accurate and efficient Python code that directly queries the CSV files and produces the desired result.

you should answer what csv file to use and what columns to use, and what messages you will answer before you write the
code. When answering, carefully distinguish the following four elements:

The content mentioned in the question.

The content mentioned in the evidence.

The description provided in the ValueComment.

The data format provided in the Example.

Before proceeding with any computations, you need to first merge the relevant tables.

Before merge data, use .add_prefix(’tablename’) to avoid the name conflicts.

Pay attention to the foreign key relationship between tables and you should merge the tables based on the foreign key
relationship like SQL does before you answer the question.

You should only use the columns in the schema and the foreign key given you. Don’t use other columns.

When filtering data, pay close attention to the format of the data in the Example field, as it represents the actual
data stored in the database. Be especially cautious with strings and dates to ensure their format matches exactly,
including time zones and separators.

Given a question and evidence, extract relevant information or make a judgment. However, please note that case
sensitivity may exist between the question and evidence. To avoid issues caused by mismatched casing, always refer to
the examples provided in Example: []. Use them as guidance to handle case sensitivity properly.

When answering the question, ensure the result directly addresses the query. Specifically:

1. If the question asks for a field name, return the corresponding column values.

2. If the question asks for an ID or code, ensure the correct ID or code column is used.

3. For questions about details, identity codes, or similar information, prioritize inspecting the column names to
locate the relevant field.

4. For comparison questions, directly state the answer (e.g., the item or option) without restating the context or
providing explanations.

5. The result order should be same as the question. For example, "what is the name and id of the one with the most
students registered?” you should return [(name), (id)] not [(id), (name)].

When you process data, you should follow:

1. Unless the question requires it, directly return the relevant data without any additional processing, such as
string concatenation, truncation, etc.

2. The result should match question, exactly without other info.

3. x between a and b means a <= x <= b, or equivalently, x >= a and x <= b.

4. You should follow evidence.

Please answer the following question based on the given data structure. The CSV file contains the following columns:
{csv_schema}

Using python code, answer the following questions for the csv file provided above.

Question: {question}

Extral knowledge: {evidence}

Use the the following csv path to read the csv file: {csv_path}

Here is some tables, columns you should pay attention: {tentative_schema}

After filtering and processing the data, use print(result) in the end. The final answer should be stored in the
variable result, and it should be either:

1. An array (list).

2. A number (integer or float).

3. A string.

Your code should be \\\python and \\\and the code should be valid python code.

Figure 11: Template for CSV-based Code Generation

25141

You are an expert in database querying and proficient in handling data stored in CSV files, treating them as database
tables. The current database has been exported to corresponding CSV files. Your task is to answer user queries by
writing Python code that queries these CSV files. You will be provided with examples of past queries in the database
and their SQL solutions. Use the SQL logic as a reference to formulate Python code solutions for the CSV files.
Focus on providing accurate and efficient Python code that directly queries the CSV files and produces the desired result.

you should answer what csv file to use and what columns to use, and what messages you will answer before you write the
code. When answering, carefully distinguish the following four elements:

The content mentioned in the question.

The content mentioned in the evidence.

The description provided in the ValueComment.

The data format provided in the Example.

Prior to performing any calculations, avoid aggregating tables unless absolutely necessary. Focus first on filtering
out the relevant data, then use that filtered data to derive the correct answer. This approach ensures that you’re
working with only the necessary information before performing any complex operations.

Before merge data, use .add_prefix(’tablename’) to avoid the name conflicts.

Pay attention to the foreign key relationship between tables and you should merge the tables based on the foreign key
relationship like SQL does before you answer the question.

You should only use the columns in the schema and the foreign key given you. Don’t use other columns.

When filtering data, pay close attention to the format of the data in the Example field, as it represents the actual
data stored in the database. Be especially cautious with strings and dates to ensure their format matches exactly,
including time zones and separators.

Given a question and evidence, extract relevant information or make a judgment. However, please note that case
sensitivity may exist between the question and evidence. To avoid issues caused by mismatched casing, always refer to
the examples provided in Example: []. Use them as guidance to handle case sensitivity properly.

When answering the question, ensure the result directly addresses the query. Specifically:

1. If the question asks for a field name, return the corresponding column values.

2. If the question asks for an ID or code, ensure the correct ID or code column is used.

3. For questions about details, identity codes, or similar information, prioritize inspecting the column names to
locate the relevant field.

4. For comparison questions, directly state the answer (e.g., the item or option) without restating the context or
providing explanations.

5. The result order should be same as the question. For example, "what is the name and id of the one with the most
students registered?” you should return [(name), (id)] not [(id), (name)].

When you process data, you should follow:

1. Unless the question requires it, directly return the relevant data without any additional processing, such as
string concatenation, truncation, etc.

2. The result should match question, exactly without other info.

3. x between a and b means a <= x <= b, or equivalently, x >= a and x <= b.

4. You should follow evidence.

Please answer the following question based on the given data structure. The CSV file contains the following columns:
{csv_schema}

Using python code, answer the following questions for the csv file provided above.

Question: {question}

Extral knowledge: {evidence}

Use the the following csv path to read the csv file: {csv_path}

Here is some tables, columns you should pay attention: {tentative_schema}

After filtering and processing the data, use print(result) in the end. The final answer should be stored in the
variable result, and it should be either:

1. An array (list).

2. A number (integer or float).

3. A string.

Your code should be \\\python and \\\and the code should be valid python code.

Figure 12: Template for code generate merge

25142

You are an expert in database querying and proficient in handling data stored in CSV files, treating them as database
tables. The current database has been exported to corresponding CSV files. Your task is to answer user queries by
writing Python code that queries these CSV files. You will be provided with examples of past queries in the database
and their SQL solutions. Use the SQL logic as a reference to formulate Python code solutions for the CSV files
Focus on providing accurate and efficient Python code that directly queries the CSV files and produces the desired result.

you should answer what csv file to use and what columns to use, and what messages you will answer before you write the
code. When answering, carefully distinguish the following four elements:

The content mentioned in the question.

The content mentioned in the evidence.

The description provided in the ValueComment.

The data format provided in the Example.

Before merge data, use .add_prefix(’tablename’) to avoid the name conflicts.

Pay attention to the foreign key relationship between tables and you should merge the tables based on the foreign key
relationship like SQL does before you answer the question.

You should only use the columns in the schema and the foreign key given you. Don’t use other columns.

When filtering data, pay close attention to the format of the data in the Example field, as it represents the actual
data stored in the database. Be especially cautious with strings and dates to ensure their format matches exactly,
including time zones and separators.

Given a question and evidence, extract relevant information or make a judgment. However, please note that case
sensitivity may exist between the question and evidence. To avoid issues caused by mismatched casing, always refer to
the examples provided in Example: []. Use them as guidance to handle case sensitivity properly.

When answering the question, ensure the result directly addresses the query. Specifically:

1. If the question asks for a field name, return the corresponding column values.

2. If the question asks for an ID or code, ensure the correct ID or code column is used.

3. For questions about details, identity codes, or similar information, prioritize inspecting the column names to
locate the relevant field.

4. For comparison questions, directly state the answer (e.g., the item or option) without restating the context or
providing explanations.

5. The result order should be same as the question. For example, "what is the name and id of the one with the most
students registered?” you should return [(name), (id)] not [(id), (name)].

When you process data, you should follow:

1. Unless the question requires it, directly return the relevant data without any additional processing, such as
string concatenation, truncation, etc.

2. The result should match question, exactly without other info.

3. x between a and b means a <= x <= b, or equivalently, x >= a and x <= b.

4. You should follow evidence.

Please answer the following question based on the given data structure. The CSV file contains the following columns:
{csv_schema}

Using python code, answer the following questions for the csv file provided above.

Question: {question}

Extral knowledge: {evidence}

Use the the following csv path to read the csv file: {csv_path}

Here is some tables, columns you should pay attention: {tentative_schema}

After filtering and processing the data, use print(result) in the end. The final answer should be stored in the
variable result, and it should be either:

1. An array (list).

2. A number (integer or float).

3. A string.

Your code should be \\\python and \\\and the code should be valid python code.

Figure 13: Template for code generate direct

25143

You are an expert Python developer specializing in data analysis and database
management. Your role is to assist users in transforming data queries
originally written for CSV files into SQL queries for SQLite databases. Your
solutions should be precise, efficient, and easy to understand.

1. Understanding the Original Code Logic:

* Analyze the provided Python code or logic written for CSV files.

* Determine the user’s intent and interpret the expected functionality based on the original
question.

2. Writing Precise SQL Queries:

* Write SQL queries that replicate the same functionality or results when executed on the
SQLite database.

* Pay attention to:

- Spaces in the column name: use double quotes to quote the column name.

- Calculations on columns: ensure column types are correct, using the CAST function for type
conversion.

* Strictly follow the user’s requirements:

- Select only the columns explicitly mentioned in the user’s question. Avoid including
unnecessary columns or values.

* Use SQLite functions only: for example, use STRFTIME() for date manipulation
(e.g., STRFTIME(’%Y’, SOMETIME) to extract the year).For non-standard formats (e.g.,
’YYYYMM’), use SUBSTR() to manually extract parts (e.g., SUBSTR(date_column, 1, 4) to
extract the year).

3. Ensuring Accuracy of Results:

* Validate that the logic in the query matches the user’s intent.

* Pay attention to the output to ensure it fulfills the question’s requirements. Even if the original
code logic is correct, ensure the result aligns precisely with the user’s request.

4. Optimizing for SQLite:
* Translate Python or CSV-based operations into efficient SQL syntax suitable for SQLite.
* Use GROUP BY, DISTINCT, and other SQLite-specific functionalities where applicable.

Question: {question}

Extral knowledge: {evidence}

Database structure: {db_schema}

Original Python code to solve the question: {python_code}
Return: “‘{sqgl}“‘ and the code should be valid SQL code.

Figure 14: Template for code guide SQL

25144

