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Abstract

Large language models (LLMs) have shown
strong capabilities, enabling concise, context-
aware answers in question answering (QA)
tasks. The lack of transparency in complex
LLMs has inspired extensive research aimed at
developing methods to explain large language
behaviors. Among existing explanation meth-
ods, natural language explanations stand out
due to their ability to explain LLMs in a self-
explanatory manner and enable the understand-
ing of model behaviors even when the mod-
els are closed-source. However, despite these
promising advancements, there is no existing
work studying how to provide valid uncertainty
guarantees for these generated natural language
explanations. Such uncertainty quantification
is critical in understanding the confidence be-
hind these explanations. Notably, generating
valid uncertainty estimates for natural language
explanations is particularly challenging due to
the auto-regressive generation process of LLMs
and the presence of noise in medical inquiries.
To bridge this gap, in this work, we first propose
a novel uncertainty estimation framework for
these generated natural language explanations,
which provides valid uncertainty guarantees in
a post-hoc and model-agnostic manner. Addi-
tionally, we also design a novel robust uncer-
tainty estimation method that maintains valid
uncertainty guarantees even under noise. Ex-
tensive experiments on QA tasks demonstrate
the desired performance of our methods.

1 Introduction

Large language models (LLMs) such as GPT-
4 have recently achieved impressive gains in
natural-language understanding and generation,
demonstrating near-human fluency across a wide
range of tasks (Achiam et al., 2023). When adapted
for open-domain question answering (QA), these
models exploit their vast parametric knowledge to
deliver concise, context-aware answers that surpass
traditional retrieval pipelines in reasoning depth

and coverage (Kwiatkowski et al., 2019; Chen et al.,
2025b). However, in LLM-based QA systems, the
underlying LLMs are complex models where their
inner working mechanisms are not yet fully un-
derstood. This lack of interpretability poses a sig-
nificant barrier to their deployment in high-stakes
decision-making applications, where inappropriate
guidance can have severe consequences.

Given the importance of explaining LLMs’ be-
haviors, many interpretation methods have been
proposed (Zhu et al., 2024). Among them, natural
language explanations (Kumar and Talukdar, 2020;
Camburu et al., 2018; Wadhwa et al., 2024) are ap-
pealing for their self-contained insights, even when
the models are closed-source. However, there is no
work studying rigorous uncertainties behind these
explanations, making it difficult to understand the
confidence level associated with them. Traditional
uncertainty estimation methods (e.g., perturbation
and Bayesian-based methods) (Tanneru et al., 2024;
Xiong et al., 2023; Liu et al., 2024) face significant
limitations when applied to natural language ex-
planations. Specifically, they either fail to provide
valid uncertainty guarantees, or require the access
of model logits and extensive model retraining.

In this work, we aim to provide rigorous,
post-hoc, and model-agnostic uncertainty guaran-
tees for natural-language explanations in QA. Con-
formal prediction offers a distribution-free frame-
work with provably valid coverage (Shafer and
Vovk, 2008; Su et al., 2024; Campos et al., 2024;
Qian et al., 2024b; Li et al., 2024; Lidder et al.,
2025; Zhao et al., 2025; Angelopoulos et al., 2024).
However, traditional conformal prediction meth-
ods cannot be directly applied to natural language
explanations. The reason is that in conformal pre-
diction, the underlying models are typically trained
in a supervised manner, where the uncertainty sets
correspond to predefined class labels. In contrast,
LLMs are trained in an auto-regressive fashion,
generating text one token at a time, with each token
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conditioned on the previously generated tokens.
Additionally, real-world QA queries often con-

tain noise, such as ambiguous phrasing and typo-
graphical errors. Such noise can violate the under-
lying exchangeability assumption required by con-
formal prediction (Shafer and Vovk, 2008). There-
fore, these generated uncertainties could become
invalid, posing substantial challenges for generat-
ing reliable uncertainty estimates of natural lan-
guage explanations. Although several robust con-
formal methods have been proposed (Yan et al.,
2024; Ghosh et al., 2023; Wang et al., 2024; Jeary
et al., 2024), they typically assume well-structured
datasets and fail to account for discrete and token-
level noise that is inherent in natural language ex-
planations generated by LLMs. Such noise com-
plicates valid uncertainty guarantees for natural
language explanations in QA.

To address the above challenges, in this work, we
propose ULXMQA, a novel uncertainty method
for natural language explanations for medical
question answering, which can generate valid
uncertainty guarantees in a post-hoc and model-
agonistic way. Specifically, in our method, we
first design prompts, which can assign each input
token an importance score. Then, we design an
uncertainty set construction function, which se-
lects explanation tokens based on their assigned
importance scores. For the constructed uncertainty
sets, we provide theoretical guarantees by prov-
ing that the expected fraction of ground-truth to-
kens included in these uncertainty sets is theoret-
ically guaranteed. Additionally, to address noisy
data that may undermine the validity of the gen-
erated uncertainty sets, we also design a robust
uncertain estimation method for these generated
natural language explanations (RULX), which can
provide robust valid uncertainty guarantees under
discrete and token-level noise in questions. We fur-
ther conduct extensive experiments to verify the de-
sired performance of our proposed methods across
different question answering tasks.

2 Methodology

Here, we first introduce our valid uncertainty
method for natural language explanations in LLM-
based QA systems. Then, we present the proposed
robust uncertainty method, designed to mitigate the
effects of noise.

Without loss of generality, in this paper, we con-
sider a vision-language model based QA system,

which can output accurate answers to medical ques-
tions about the input medical image. Let Q rep-
resent the question space and A the answer space.
We denote a language model as M : Q → A,
which takes a sequence of k question tokens Q =
(q1, q2, . . . , qk), and produces a sequence of m an-
swer tokens A = (a1, a2, . . . , am). A designed
prompt P augments the input and instructsM to
emit a natural language explanation E, which we
model as a subset of question tokens deemed essen-
tial for predicting A.

Modeling uncertainty in natural language
explanations. Here, we propose a post-hoc,
model-agnostic method that assigns provably valid
uncertainty to natural language explanations E.
Let Dcal = {(Pi, Qi, E

∗
i , Ai)}ni=1 denote the cali-

bration data, and Qn+1 denote the test-time ques-
tion. Here, E∗

i denotes the ground-truth explana-
tion supplied by human annotators. Each example
comes with a gold explanation sentence, and an-
notators mark the question tokens they judge es-
sential in light of that sentence (Aggarwal et al.,
2021). Specifically, we construct an uncertainty
set of Qn+1 that provides theoretical guarantees
on the inclusion ratio of ground-truth natural lan-
guage explanations. The challenge in providing
guarantees is that the language modelM generates
text auto-regressively. To address this, for each
question Qi ∈ {Qi}n+1

i=1 , we propose a confidence-
aware prompt Pi, which enablesM to output an
importance score S(Pi, qi,j ;M) ∈ [0, 1] for each
word in Qi and simultaneously obtain the final an-
swer. These scores reflect how essential each token
is for predicting the final answer. Then, for Qi, we
construct its uncertainty explanation set as follows

Cλ(Qi;M) =

{qi,j ∈ Qi : S(Pi, qi,j ;M) ≥ 1− λ}, (1)

where λ is a parameter that increases the size of
the prediction sets as its value grows. To obtain the
importance score, we concatenate a prompt Pi to
the given question Qi using the template:“ Read
the question and assign each word an importance
score...”. Crucially, our method preserves its cov-
erage guarantee regardless of the quality of these
scores. Such prompt-based explanations can ef-
fectively reveal the underlying reasoning process
behind model predictions (Parcalabescu and Frank,
2024; He et al., 2024; Sudhi et al., 2024). No-
tably, our method ensures valid coverage guaran-
tees regardless of variations in the quality of these
prompt-based results across different LLMs.
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Figure 1: Validity of our ULXQA at desired risks.
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Figure 2: Efficiency of our ULXQA at desired risks.

To quantify the quality of the constructed uncer-
tainty set Cλ(Qi;M) of Qi from the calibration
data Dcal, we measure the proportion of ground-
truth token explanations that appear in this set rel-
ative to the total ground-truth token explanations,
and then define

ℓ(Cλ(Qi;M), E∗
i , λ)

= 1− |E∗
i ∩ Cλ(Qi;M)|/|E∗

i |. (2)

The above loss ℓ(Cλ(Qi;M), E∗
i , λ) decreases

when the set Cλ(Qi;M) includes a larger frac-
tion of true tokens. Then, we calculate the av-
erage empirical loss at level λ on the calibration
set as R̂n(λ) = (ℓ(Cλ(Q1;M), E∗

1 , λ) + . . . +
ℓ(Cλ(Qn;M), E∗

n, λ))/n. Given any desired risk
level α ∈ (0, 1), we set

λ̂ = inf{λ : R̂n(λ) ≤ α− 1− α

n
}. (3)

Since R̂n(λ) is monotone, we can efficiently search
for λ̂ using binary search to arbitrary precision and
construct the uncertainty set Cλ̂(Qn+1;M) with
uncertainty guarantees for the test-time question
Qn+1 based on Eq. (1) and (3). The full algorithm
is deferred to Algorithm 1 in the Appendix B.

Theorem 1. Assume that the calibration set Dcal

and the test data are exchangeable. For any desired
α ∈ (0, 1), let R̂n(λ) = (ℓ(Cλ(Q1;M), E∗

1 , λ) +
. . . + ℓ(Cλ(Qn;M), E∗

n, λ))/n and choose λ̂ ac-
cording to Eq. (3). Then, for the constructed uncer-
tainty set Cλ̂(Qn+1;M), we have

E[ℓ(Cλ̂(Qn+1;M), E∗
n+1, λ̂)] ≤ α. (4)

Theorem 1 guarantees that, on average, the un-
certainty set Cλ̂(Qn+1;M) contains at least a 1−α
fraction of the true tokens, providing a valid cover-
age guarantee for the generated natural language ex-
planations. Note that Theorem 1 is stated under the

exchangeability assumption, which is weaker than
independence and identical distribution (i.i.d.). The
proof of Theorem 1 is provided in the Appendix A.

Robust uncertainty guarantees under noisy
data. Note that the uncertainty guarantee of
Cλ̂(Qn+1;M) relies on the exchangeability of the
data, which can be violated by noise such as am-
biguous phrasing or typographical errors. Our goal
is to provide robust uncertainty guarantees under
noise. Let Q′

n+1 represent the noisy test question
derived from a clean version Q∗

n+1. To model po-
tential noise, we define BQ∗

n+1
as the set of candi-

date noisy questions associated with Q∗
n+1. As pre-

viously discussed, discrete and token-level noise
inherent in natural language explanations poses
significant challenges for robust uncertainties. To
address this, for each word q∗n+1,j ∈ Q∗

n+1, we
define a synonym set Bq∗n+1,j

, which contains the
synonyms of q∗n+1,j (including q∗n+1,j itself). Con-
sequently, if noise affects at most d ≤ k words in
Q∗

n+1, replacing them with elements from their re-
spective synonym sets, the observed noisy question
Q′

n+1 = {q′n+1,1, · · · , q′n+1,k} emerges as follows

BQ∗
n+1

={Q′
n+1 : ∥Q′

n+1 −Q∗
n+1∥0 ≤ d, (5)

q′n+1,j ∈ Bq∗n+1,j
,∀j},

where ∥Q′
n+1 − Q∗

n+1∥0 :=
∑k

j=1 1{q′n+1,j ̸=
q∗n+1,j}. For the noisy test question Q′

n+1 ∈
BQ∗

n+1
, note that BQ′

n+1
also contains the clean test

question Q∗
n+1 because noise affects at most d ≤ k

words in Q∗
n+1. To construct its robust uncertainty

set, for each word q̃n+1,j ∈ Bq′n+1.j
we compute

R(Pn+1, q̃n+1,j ;BQ′
n+1

,M) (6)

= sup
Q̃n+1∈BQ′

n+1
,q̃n+1,j∈Q̃n+1

S(Pn+1, q̃n+1,j ;M),

where the supremum is taken over all noisy ques-
tions Q̃n+1 ∈ BQ′

n+1
that still contain q̃n+1,j . In-
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Figure 3: Validity of our RULX on MedMCQA under
noisy data.
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Figure 4: Efficiency of our RULX on MedMCQA under
noisy data.

tuitively, this ensures we capture the maximum
importance score of q̃n+1,j across all relevant per-
turbations. With λ̂ defined as in Eq. (3), we can
construct the robust uncertainty set as follows

CR
λ̂
(Q′

n+1;M) = {q̃n+1,j ∈ Bq′n+1
: (7)

R(Pn+1, q̃n+1,j ;BQ′
n+1

,M) ≥ 1− λ̂}.

Here, robust uncertainty set CR
λ̂
(Q′

n+1;M) in-
cludes all tokens whose maximum importance
scores exceed the threshold 1− λ̂.

Theorem 2. Let Q′
n+1 ∈ BQ∗

n+1
be a noisy test

question near the clean test question Q∗
n+1 such

that ∥Q′
n+1 − Q∗

n+1∥0 ≤ d. For the above con-
structed uncertainty set CR

λ̂
(Q′

n+1;M), it satisfies

E[ℓ(CR
λ̂
(Q′

n+1;M), E∗
n+1, λ̂)] ≤ α. (8)

According to Theorem 2, for the noisy question
Q′

n+1, the expected proportion of true tokens in-
cluded in the uncertainty set CR

λ̂
(Q′

n+1;M) is guar-
anteed to be at least 1−α. Due to the space limita-
tions, the proof of Theorem 2 and the full algorithm
for RULX are provided in the Appendix A&B. Our
framework could be generalized to the full confor-
mal prediction setting (Martinez et al., 2023; Chen
et al., 2024; Blot et al., 2025), where machine un-
learning techniques (Zhao et al., 2023, 2024; Qian
et al., 2023, 2024a, 2025; Chen et al., 2025a) could
be explored to mitigate the associated high compu-
tational costs of retraining.

3 Experiments

3.1 Experimental Setup
Datasets and models. We evaluate our ap-
proaches on two real-world QA datasets: MedM-
CQA (Pal et al., 2022), a large-scale dataset
of 194k multiple-choice questions, and MedEx-
pQA (Alonso et al., 2024), a multilingual set of

622 clinical-case questions. Note that both datasets
include ground-truth explanations. Additionally,
we adopt two advanced LLMs, GPT-4o (OpenAI,
2024) and Gemini 2.0 Flash (Google, 2024), to
ensure a thorough evaluation. Our code will be
publicly released upon acceptance.

Implementation details. For our experiments,
we utilize LLMs with a temperature setting of 1.
For each adopted QA dataset, we use its validation
data as the test data, and partition its training data
into 70% fine-tuning data and 30% calibration data.
All experiments are run for 10 trials, and we report
the averaged experimental results.

3.2 Experimental Results

Validity. We evaluate ULXQA’s validity on MedM-
CQA and MedExpQA across both LLMs, reporting
empirical loss in Eq. (2) at risk levels α = 0.45 and
α = 0.8. Note that these LLMs are fine-tuned on
the adopted QA datasets. In Fig. 1, the dashed line
marks the desired risk, while the horizontal line in
each box shows the average empirical loss. Our
proposed ULXQA consistently maintains loss be-
low or equal to α, ensuring compliance with Eq. (4).
For instance, with α = 0.45, our proposed ULXQA
achieves an empirical loss of 0.44 on MedExpQA
using Gemini 2.0 Flash. These results confirm that
ULXQA can provide valid uncertainty guarantees
on these generated explanations.

Efficiency. In Fig. 2, we explore the efficiency
of our proposed ULXQA across various LLMs. We
report the average set size at the desired risk lev-
els α = 0.45 and α = 0.8, ensuring consistency
with the validity experiments. As depicted, our pro-
posed ULXQA consistently provides explanation
uncertainty sets with small sizes, so that it remains
efficient when doctors use these explanation uncer-
tainty sets to make decisions. For instance, on the
adopted MedMCQA dataset, the average set size
of our ULXQA using Gemini 2.0 Flash is approxi-
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Generated ExplanationsQuestion

While playing football, a 19-year-old college student 
receives a twisting injury to his knee when being 
tackled from the lateral side. Which of the following 
conditions most likely has occurred?

Word: While, Importance: 0.01
…
Word: occurred, Importance: 0.05
Final Answer: A

{‘lateral’, ‘knee’, ‘tackled’, ‘from’, 
‘twisting’, ‘occurred’ }

Ground truth explanations

{‘football’, ‘injury’, ‘knee’,
‘twisting’, ‘tackled’, ‘lateral’}

Prediction Set 

Figure 5: Visualization results of our ULXQA on
MedMCQA.

mately 2.99 at α = 0.45. It shows that, on average,
fewer than three words can provide correct expla-
nations for users with valid coverage guarantees.
This indicates that ULXQA can efficiently output
uncertainty quantification of natural language ex-
planations for QA tasks.

Visualization. We visualize uncertainty quantifi-
cation for explanations on the MedMCQA dataset.
In Fig. 5, the uncertainty set for a target im-
age and question shows strong overlap with the
ground truth, containing four correct words (‘lat-
eral’, ‘knee’, ‘tackled’, and ‘twisting’) in the pre-
diction set. The prediction set size is six, which is
close to the size of the ground truth. These results
demonstrate our method’s ability to capture truly
influential explanations with modest redundancy.

Robust uncertainty under noisy data. We eval-
uate RULX’s validity and efficiency under varying
risk levels using Gemini 2.0 Flash with noisy test
data on MedMCQA. In Fig. 3, the non-robust ap-
proach often exceeds desired risk levels, lacking
formal guarantees, while RULX consistently stays
within bounds, satisfying Eq. (8). Fig. 4 shows
that although robust RULX slightly enlarges pre-
diction sets to ensure validity, their sizes remain
comparable to the non-robust method. Together,
these figures confirm that RULX maintains valid
uncertainty guarantees, while keeping prediction
set sizes effectively comparable.

4 Conclusion
To the best of our knowledge, this work is the
first to introduce a rigorous uncertainty estima-
tion framework for natural language explana-
tions in LLM-based QA systems. The post-hoc,
model-agnostic method guarantees coverage by en-
suring the expected fraction of non-ground-truth
explanation tokens below a threshold. Building
upon this, we further propose a robust extension
that maintains reliable and valid uncertainty guar-
antees in the presence of noise. We also conduct
extensive experiments across various QA tasks to
comprehensively evaluate the effectiveness of our

proposed methods.
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Limitations

Our experiments show that ULXQA and its ro-
bust variant RULX achieve reliable coverage guar-
antees on challenging QA tasks, confirming the
practical value of our framework. However, our
current study has several limitations. First, the ex-
perimental results focus on the limited datasets, so
additional experiments on other types of QA (e.g.,
legal or open-domain) are needed to verify gen-
erality. Second, the present study considers only
single-modal textual inputs. An important next
step is to extend ULXQA/RULX to multimodal set-
tings, such as visual or audio question answering,
and maintain uncertainty guarantees when multiple
modalities are involved.
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A Proofs of Theorems

Theorem 1. Assume that the calibration set Dcal

and the test data are exchangeable. For any desired
α ∈ (0, 1), let R̂n(λ) = (ℓ(Cλ(Q1;M), E∗

1 , λ) +
. . . + ℓ(Cλ(Qn;M), E∗

n, λ))/n and choose λ̂ ac-
cording to Eq. (3). Then, for the constructed uncer-
tainty set Cλ̂(Qn+1;M), we have

E[ℓ(Cλ̂(Qn+1;M), E∗
n+1, λ̂)] ≤ α. (9)

Proof. Consider a sequence of exchangeable ran-
dom loss functions, {ℓ(Cλ(Qi;M), Ei, λ)}n+1

i=1 ,
where ℓ(·, ·, λ) defined in Eq. (2) is non-
increasing in λ, right-continuous, and satisfying
ℓ(Cλmax(Q1;M), ·, λmax) ≤ α when λmax = 1.
We define

R̂n+1(λ) = (ℓ(Cλ(Q1;M), E1, λ) + . . .

+ ℓ(Cλ(Qn+1;M), En+1, λ))/(n+ 1),

λ̂′ = inf{λ ∈ Λ : R̂n+1(λ) ≤ α}. (10)

Since infλ ℓ = ℓ(Cλmax(Q1;M), ·, λmax) ≤
α, λ̂′ is well-defined almost surely. Since
ℓ(Cλ(Qn+1;M), En+1, λ) ≤ supλ ℓ = 1, we get

R̂n+1(λ)

=
n

n+ 1
R̂n(λ) +

ℓ(Cλ(Qn+1;M), En+1, λ)

n+ 1

≤ n

n+ 1
R̂n(λ) +

1

n+ 1
. (11)
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Thus, we can have

n

n+ 1
R̂n(λ) +

1

n+ 1
≤ α⇒ R̂n+1(λ) ≤ α.

This implies λ̂′ ≤ λ̂ when the LHS holds for
some λ ∈ [0, 1]. When the LHS is above α for
all λ ∈ [0, 1], by definition, λ̂ = λmax ≥ λ̂′.
Thus, λ̂′ ≤ λ̂ almost surely. Since ℓ(·, ·, λ) is non-
increasing in λ,

E[ℓ(Cλ̂(Qn+1;M), En+1, λ̂)]

≤E[ℓ(Cλ̂′(Qn+1;M), En+1, λ̂
′)]. (12)

Let E be the multiset of loss functions
{ℓ(Cλ(Qi;M), Ei, λ)}n+1

i=1 . Then λ̂′ is a function
of E , or equivalently, λ̂′ is a constant conditional on
E . Additionally, ℓ(Cλ(Qn+1;M), En+1, λ)|E ∼
Uniform({ℓ(Cλ(Qi;M), Ei, λ)}n+1

i=1 ) by ex-
changeability. These facts combined with the
right-continuity of Li imply

E[ℓ(Cλ̂′(Qn+1;M), En+1, λ̂
′) | E ]

=
1

n+ 1

n+1∑

i=1

Li(λ̂
′) ≤ α. (13)

The proof is completed by the law of total expec-
tation and Eq. (12).

Theorem 2. Let Q′
n+1 ∈ BQ∗

n+1
be a noisy test

question near the clean test question Q∗
n+1 such

that ∥Q′
n+1 − Q∗

n+1∥0 ≤ d. For the above con-
structed uncertainty set CR

λ̂
(Q′

n+1;M), it satisfies

E[ℓ(CR
λ̂
(Q′

n+1;M), E∗
n+1, λ̂)] ≤ α. (14)

Proof. According to the definition of robust score
in Eq. (6), we have

R(Pn+1, q
∗
n+1,j ;BQ′

n+1
,M)

≥S(Pn+1, q
∗
n+1,j ;M), (15)

for any clean token q∗n+1,j , which means

q∗n+1,j ∈ Cλ̂(Q∗
n+1;M)

⇒q∗n+1,j ∈ CRλ̂ (Q′
n+1;M). (16)

Consequently, we have

E[ℓ(CR
λ̂
(Q′

n+1;M), En+1, λ̂)]

≤E[ℓ(Cλ̂(Q∗
n+1;M), En+1, λ̂)] ≤ α, (17)

which directly implies the result stated in Eq. (14).

Algorithm 1 ULXQA
Input: A language model M, importance score
S(Pi, qi,j ;M), calibration data Dcal, test sam-
ple Qn+1, Candidate threshold grid Λ =
{λ1 < λ2 < · · · < λK}, desired risk level
α ∈ (0, 1)

Output: Uncertainty set Cλ̂(Qn+1;M)
1: for i← 1 to n do
2: for k ← 1 to K do
3: Construct Cλ(Qi;M) = {qi,j ∈ Qi :
S(Pi, qi,j ;M) ≥ 1− λ}

4: Compute ℓ(Cλ(Qi;M), E∗
i , λk)

5: end for
6: end for
7: low ← 1, high← K
8: while low < high do
9: mid←

⌊ low+high
2

⌋

10: R̂n(λmid)←
∑n

i=1
ℓ(Cλ(Qi;M),E∗

i ,λmid)
n

11: if R̂n(λmid) ≤ α then
12: high← mid
13: else
14: low ← mid+ 1
15: end if
16: end while
17: λ̂← λlow

18: Construct the uncertainty set Cλ̂(Qn+1;M) =
{qn+1,j ∈ Qn+1 : S(Pn+1, qn+1,j ;M) ≥ 1−
λ̂} that satisfies Eq. (4)

B Algorithms

B.1 Algorithm for ULXQA

Algorithm 1 describes how to construct the uncer-
tainty set Cλ̂(Qn+1;M) with the valid uncertainty
guarantees for the test-time question Qn+1. Specif-
ically, this set ensures that, on average, it contains
at least a 1−α fraction of the ground-truth explana-
tion tokens. This yields a provably valid coverage
guarantee for the natural language explanations
generated by the model.

B.2 Algorithm for RULX

Algorithm 2 outlines the construction of the uncer-
tainty set Cλ̂(Qn+1;M). This method provides a
robust coverage guarantee that the expected frac-
tion of ground-truth explanation tokens included in
the uncertainty set remains at least 1− α, even in
the presence of input noise. As a result, it offers
reliable uncertainty quantification for natural lan-
guage explanations under possible perturbations.
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Algorithm 2 RULX
Input: A language model M, importance score
S(Pi, qi,j ;M), calibration data Dcal, test sam-
ple Qn+1, Candidate threshold grid Λ =
{λ1 < λ2 < · · · < λK}, desired risk level
α ∈ (0, 1)

Output: Uncertainty set CR
λ̂
(Q′

n+1;M)
1: for i← 1 to n do
2: for k ← 1 to K do
3: Construct Cλ(Qi;M) = {qi,j ∈ Qi :
S(Pi, qi,j ;M) ≥ 1− λ}

4: Compute ℓ(Cλ(Qi;M), E∗
i , λk)

5: end for
6: end for
7: low ← 1, high← K
8: while low < high do
9: mid←

⌊ low+high
2

⌋

10: R̂n(λmid)←
∑n

i=1
ℓ(Cλ(Qi;M),E∗

i ,λmid)
n

11: if R̂n(λmid) ≤ α then
12: high← mid
13: else
14: low ← mid+ 1
15: end if
16: end while
17: λ̂← λlow

18: Compute the robust importance score
R(Pn+1, q̃n+1,j ;BQ′

n+1
,M) based on Eq. (6)

19: Construct the robust uncertainty set
CR
λ̂
(Q′

n+1;M) = {q̃n+1,j ∈ Bq′n+1
:

R(Pn+1, q̃n+1,j ;BQ′
n+1

,M) ≥ 1 − λ̂} that
satisifies Eq. (8)

C Datasets

We adopt the following datasets:

• MedMCQA. Released under the MIT Li-
cense for research use, this large-scale bench-
mark provides expert-verified multiple-choice
questions spanning cardiology, oncology, pe-
diatrics, neurology, infectious diseases, and
other medical specialties. The dataset is
publicly available and contains no person-
ally identifiable information. It is entirely
in English, which facilitates evaluation of
English-language medical QA systems. Al-
though questions center on clinical scenarios,
demographic attributes of the underlying pa-
tient groups are not specified because such
information is absent from the source data.

• MedExpQA. Distributed under the CC

BY-NC 4.0 license for non-commercial
research, MedExpQA contains 622
clinician-authored multiple-choice questions,
each paired with gold-standard explanations
written by medical professionals. The
corpus covers four languages (English,
Spanish, French, and Italian) and supports
cross-lingual assessment of answer correct-
ness and explanation quality. It is publicly
released and free of personally identifiable
information. While items focus on clinical
reasoning, demographic details of the repre-
sented populations are not included due to the
nature of the data.

D AI Assistance in Writing

During manuscript preparation, we employed an
AI language assistant like GPT-o3 for copy-editing
tasks—namely, correcting grammar, smoothing
phrasing, and improving overall readability. The
model was not used to generate scientific ideas,
analyses, or conclusions, and it played no role in
shaping the study’s methodology or results. Its con-
tribution was limited to language polishing, with
all substantive content and final editorial decisions
made exclusively by the human authors.
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