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Abstract

As Natural Language Generation (NLG) con-
tinues to be widely adopted, properly assessing
it has become quite difficult. Lately, using large
language models (LLMs) for evaluating these
generations has gained traction, as they tend
to align more closely with human preferences
than conventional n-gram or embedding-based
metrics. In our experiments, we show that LLM
judges have low intra-rater reliability in their
assigned scores across different runs. This vari-
ance makes their ratings inconsistent, almost
arbitrary in the worst case, making it difficult to
measure how good their judgments actually are.
We quantify this inconsistency across different
NLG tasks and benchmarks and see if judicious
use of LLM judges can still be useful following
proper guidelines.

1 Introduction

As Natural Language Generation (NLG) becomes
more prevalent in a wide variety of applications like
automated journalism, customer service chatbots,
language translation and content summarization,
proper evaluation and measurement of alignment
with human preference are critical to improve user
trust and system utility. Although traditionally used
automatic metrics like BLEU (Papineni et al., 2002)
and BERTScore (Zhang* et al., 2020) work well
with tasks like translation when multiple references
are available, they fail to work in more open-ended
tasks like summarization or general chatbot set-
tings.

To automatically evaluate LLMs in these set-
tings, LLLM-as-a-judge (Li et al., 2024; Gu et al.,
2025) has emerged as an automatic, scalable alter-
native to manual evaluation. The common practice
is to prompt an LLM to evaluate natural language
generations. The ratings obtained are then veri-
fied by comparing with ratings assigned by human
judges, which are taken as the gold standard. This
comparison is commonly done through computing

exact match for categorical labels or correlation for
numeric or ordinal scales (Liu et al., 2023; Thakur
et al., 2025a).

However, what is often missing from these stud-
ies is any measure of self-reliability or intra-rater
reliability of both LLM and human judges. We
define self-reliability as the agreement of a judge
with itself over multiple runs with the same settings
(prompt and hyperparameters in case of LLMs).

Meanwhile, self-reliability data is completely
missing from human annotations in existing bench-
marks. In some cases, annotations from multiple
human judges exist, but they only give us informa-
tion about the inter-rater reliability instead, which
is also frequently lower than the conventionally
agreed upon agreement thresholds (Falke et al.,
2019; Fabbri et al., 2021; Pagnoni et al., 2021).
Meanwhile, agreement between LLM and human
judges is usually computed using metrics like corre-
lation and accuracy, instead of using metrics specif-
ically designed for measuring agreement like Krip-
pendorff’s Alpha. This can often lead to an over-
estimation of agreement since those metrics do
not account for chance agreement (Thakur et al.,
2025b).

NLG can be evaluated using different metrics
on a variety of tasks such as machine translation,
dialog generation and summarization. In our ex-
periments, we first study the simplest case of eval-
uating summarization — assigning a binary label
to a summary in the SummaC benchmark (Laban
et al.,, 2022). Next, we look at evaluating sum-
maries in more complex scenarios, using a Likert
rating scale of 1 to 5 to rate a summary on several
metrics like coherence, consistency, fluency and
relevance. We can use the SummEval benchmark
for this purpose. Finally, we look at evaluating a
different task of NLG, where we use a judge LLM
to rank multi-turn conversations from two com-
peting LLMs in the MT-bench benchmark (Zheng
et al., 2023).
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In this work, we make several key contributions
to understanding the reliability of LLM-generated
ratings in NLG evaluation. First, show that ratings
output by LLMs have low agreement over multiple
runs with the same prompt. Second, we show that
turning off any sampling to make an LLM always
output the same rating hurts performance measured
by agreement with human judgment. Third, we
find that this phenomenon persists across multiple
tasks and benchmarks related to NLG, indicating
that this is a widespread problem that needs to be
addressed. Finally, we discuss some recommenda-
tions to conduct more robust NLG evaluations.

2 Background

Evaluating Natural Language Generation The
gold standard for NLG evaluation has relied on
human-centric evaluations, where human judges
assess generated text. However, this is time
and cost-intensive, prone to unreliability and bi-
ases (Thomson et al., 2024), and existing stud-
ies report low inter-annotator agreement or omit
them altogether. For example, Celikyilmaz et al.
(2021) found that only 18% of 135 surveyed
papers included agreement analysis. Further-
more, leaderboards like Chatbot Arena (Chiang
et al.,, 2024) employing crowdsourced evalua-
tions have inequities leading to an uneven play-
ing field (Singh et al., 2025). Unlike human
evaluations, automatic metrics like BLEU (Pap-
ineni et al., 2002), ROUGE (Lin, 2004), and ME-
TEOR (Banerjee and Lavie, 2005), and model-
based metrics like BERTScore (Zhang* et al.,
2020) and BLEURT (Sellam et al., 2020) are faster,
less subjective and more scalable. However, these
metrics often fail to fully capture human notions of
quality, especially for subjective tasks.

LLM-as-a-judge Large language models can
serve as judges by assigning scores, rankings,
or labels to generated outputs, a paradigm sur-
veyed in recent works (Li et al., 2024; Gu et al.,
2025). LLM judges have been applied across
20 NLP tasks (Bavaresco et al., 2024) and inte-
grated into Al-assisted human evaluation (Ashk-
torab et al., 2024). Notably, GPT-4 with chain-
of-thought prompts aligns more closely with hu-
man judgments than conventional automatic met-
rics on NLG tasks (Liu et al., 2023; OpenAl et al.,
2024; Wei et al., 2022). Evaluation typically in-
volves comparing LLM outputs to human judg-
ments via correlation (Liu et al., 2023; Xiao et al.,

2023; Bavaresco et al., 2024) or percentage agree-
ment (Zheng et al., 2023) on benchmarks such as
JudgeBench (Tan et al., 2024). Challenges include
bias (Zheng et al., 2023; Li et al., 2025), uncer-
tainity in judgments (Wagner et al., 2024), adver-
sarial vulnerability (Gu et al., 2025), and domain-
specific performance gaps (Tseng et al., 2024), in
addition to existing problems of LLM generations
like prompt sensitivity (Mizrahi et al., 2024). To
enhance reliability, methods like panel-based eval-
uation (PoLL) (Verga et al., 2024) and compara-
tive studies of fine-tuning versus GPT-4 prompt-
ing (Huang et al., 2024; OpenAl et al., 2024) have
been proposed. There is another challenge, high
variability in LLM outputs leading to inconsisten-
cies in LLM judges.

Variability in LLM Judgments Due to the
stochastic nature of LLMs, they give different out-
puts when run on the same prompt multiple times.
While this is by design, it should not alter the rat-
ings assigned by an LLM judge to the same rating.
Chiang and Lee (2023) observed some variability
in ratings produced by LLM judges on the Writing-
Prompts (Fan et al., 2018) dataset. Liu et al. (2023)
took advantage of this variability in GPT-4 by set-
ting temperature to 1 and sampling 20 times to get
multiple scores and then getting the final rating by
normalizing all the scores by their probabilities. In
our work, we go further to analyze the implications
of high variability in assigned judgments, discuss
metrics to measure this variability, study the extent
of this issue across different tasks and benchmarks,
and explore whether we would get better results by
turning off the variability by setting the temperature
to zero. We frame this variability as self-reliability
or intra-rater reliability.

Self-reliability Also called intra-rater reliability,
this measures the consistency of a single evaluator’s
judgments across repeated assessments, as opposed
to inter-rater reliability. Common metrics include
the intraclass correlation coefficient (ICC) for con-
tinuous scales (Koo and Li, 2016; Bent et al., 2014),
Cohen’s Kappa for categorical ratings, and Krip-
pendorff’s Alpha for ordinal, interval, or ratio data
with missing values (Krippendorft, 2011; Wiethol-
ter et al., 2023). Reporting intra-rater reliability
is standard in domains like essay grading (Cohen,
2017), physical therapy (Mischiati et al., 2015), and
clinical diagnostics (Krélikowska et al., 2023), and
its joint consideration with inter-rater reliability is
urged by Harvey (2021). Yet, NLP annotation
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and LLM-evaluation studies frequently omit self-
reliability metrics (Abercrombie et al., 2023a,b),
a deficiency we confirm in our LLM-as-a-judge
experiments, where models exhibit unstable self-
judgments.

3 Experiments

We first consider a simple framework for NLG eval-
uation, binary classification of machine-generated
summaries. A good candidate for this is SummacC,
a factual consistency detection benchmark.

Following this, we make a deeper dive into the
performance of LLM judges on the SummEval
benchmark (Fabbri et al., 2021). Compared to the
binary labels in the SummaC benchmark, the sum-
maries in this benchmark are evaluated by multiple
human raters on a Likert scale across multiple met-
rics.

Zheng et al. (2023) introduced the MT-bench
benchmark, which evaluates an LLM’s multi-turn
conversational and instruction-following ability.
While related to NLG, it is a very different task
compared to summarization.

3.1 Datasets

Evaluating A Summary From SummaC

Migaloo is known for his distinctive colouring and for many years was the
only documented all-white humpback whale in the world. He has been
sighted off the coast of New South Wales state, including the resort town
of Byron Bay. Migaloo’s journey up Australia’s east coast has attracted
large numbers of whale enthusiasts. The 14m-long mammal was spotted
with a companion during his venture north but now appears to be travelling
solo. A Twitter account run by the White Whale Research Centre provides
real-time updates of the whale’s whereabouts.

A humpback whale spotted off the coast of Australia has been captured off
the coast of Western Isles, scientists have said.

l 1 (inconsistent) |

Figure 1: Annotating a summary of an article in Sum-
maC with 1 (inconsistent).

SummaC The SummaC benchmark (Laban et al.,
2022) evaluates factual consistency in text summa-
rization by requiring judges to label summaries as
either consistent or inconsistent with their source
documents (example in Figure 1). It unifies six
datasets, CoGenSumm (Falke et al., 2019), XSum-
Faith (Maynez et al., 2020), Polytope (Huang et al.,
2020), FactCC (Kryscinski et al., 2020), Sum-
mkEval (Fabbri et al., 2021), and FRANK (Pagnoni

et al., 2021), into a binary classification task. Stan-
dard validation/test splits are used where avail-
able; otherwise, splits are created as needed. It
is licensed under the Apache License Version 2.0.
Dataset statistics are provided in Table 4 in Ap-
pendix C.1.

Evaluating a Summary from
SummEval on Four Metrics

Article

Manchester City are keen to sign Anderlecht teenager Evangelos Patoulidis.
The 14-year-old playmaker is regarded as one of the best talents to emerge
from Anderlecht’s youth set-up and has also attracted attention from Ar-
senal and Barcelona. The Belgian starlet rejected a move to Barcelona’s
La Masia academy when he was 12 as his family wanted him to continue
his studies. He has continued to impress and City have held discussions
with Anderlecht chairman Roger Vanden Stock in the hope of agreeing a
compensation package. Manuel Pellegrini is looked to build for the future
by snapping up hot property Evangelos Patoulidis.

Summary

Evangelos Patoulidis is regarded as one of the best players to emerge
from Anderlecht youth. He has also attracted attention from Arsenal
and Barcelona. The Belgian starlet rejected a move to Barcelona’s La
Masia academy. The 14-year-old has attracted interest from Barcelona to
| Barcelona. )

Annotation Scores

Coherence: 3
Consistency: 5
Fluency: 4
Relevance: 3

Figure 2: Annotating a summary from the SummEval
benchmark with scores ranging from 1 to 5 on the met-
rics: coherence, consistency, fluency and relevance.

SummEval This is a summarization benchmark
with 1700 examples where judges rate model-
generated summaries of source documents on a
1-5 scale across four metrics: coherence (how well
the sentences in the summary fit together), consis-
tency (the factual accuracy of the summary), flu-
ency (grammatical correctness and stylistic quality
of each sentence in the summary), and relevance
(whether the summary accurately captures the ar-
ticle’s main points without including unnecessary
details). It is licensed under the MIT license. Each
example includes scores from both 3 expert and 5
crowd-sourced annotators. The authors presenting
this benchmark reported some agreement metrics.
They found the inter-annotator interval kappa to
be below an acceptable range, 0.492 and 0.413
for the crowd-sourced workers and the first round
of expert annotations accordingly. However, the
second round of expert annotations improved the
inter-annotator agreement achieving a kappa coef-
ficient of 0.7127.

MT-Bench In a multi-turn conversation from this
benchmark, a user prompts two LLMs with a ques-
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Ranking Two Conversations From MT-Bench

| What is the capital of France? I
Model A Response
The capital of France is Paris.

User Follow-up

Model B Response
Paris is the capital and most pop-
ulous city of France.

Can you give a brief history of the city?

Model B Follow-up Response

Model A Follow-up Response

Paris has a long history dating
back to ancient times. It became
the capital of France in the 10th
century.

Rater Evaluation
model_b

Figure 3: Ranking conversations from MT-bench with
by indicating model_a, model_b or tie.

Paris was founded in the 3rd cen-
tury BC and became an important
center during the Roman Empire.

tion, and after receiving their responses, asks a
follow-up question, to which a second pair of re-
sponses is generated. A rater (human or LLM) is
shown this conversation and has to assign a label
(model_a, model_b, tie) indicating model prefer-
ence. Figure 3 shows an example of a conversation
from this dataset getting rated.

There are 80 questions that require an LLM to
perform multi-turn conversations and follow in-
structions on topics including reasoning and math.
There are 30 examples for each question, where
each example in the dataset comprises a question
followed by responses from two models, model_a
and model_b, for a total of 2.4k examples. Each
example also contains a judgment assigned by GPT-
4 and judgments from zero to five human raters.
Since we cannot perform any agreement analysis
between human raters for fewer than 2 raters, we
create a smaller filtered subset of the data contain-
ing 761 examples where each example contains two
or more human ratings. Table 7 in Appendix E.1
shows the distribution of the number of human rat-
ings in the dataset that we use in our experiments.

3.2 Experimental Settings

For all three benchmarks, three Large Language
Models (LLMs) are used as judges. We use the fol-
lowing models across all benchmarks: Llama-3.1-
70B-Instruct (Grattafiori et al., 2024), DeepSeek-
R1-Distill-Qwen (DeepSeek-Al et al., 2025), and
Qwen3-32B (Yang et al., 2025). Details of the hy-
perparameter configurations and prompt templates
are available in Appendix A.

For all three benchmarks, we ran each judge
LLM on the same set of generations independently

for three runs. We used the same prompts and set-
tings for each run to measure intra-rater variance
under fixed conditions. For SummaC, we added
the articles and the corresponding generated sum-
maries from the test set to be rated by each model
to the prompt. Once we had three sets of scores for
a benchmark and for an LLM judge we computed
intra-rater reliability using Krippendorff’s Alpha.
In our initial experiments, we also tried running
our LLM judges on additional runs (up to 10) but
found no significant effect of the number of runs on
self-reliability so ultimately, we kept the number
of runs to 3.

SummEval allows reliability analysis along spe-
cific evaluation metrics: Coherence, Consistency,
Fluency, and Relevance. We prompted each LLM
judge to evaluate each metric on a scale of 1 to
5 independently per run. That means for each of
the three runs we prompted the LLM four times,
once for each metric. To better align with ordinal
rating behavior, we replace SummEval’s default
interval-based distance metric with ordinal distance
for computing agreement, as the ratings are on a
1-5 Likert scale. This allows a more principled
estimate of intra-rater reliability by accounting for
ordinal semantics.

For MTBench, we closely follow the setup
from Zheng et al. (2023), with the addition of mea-
suring judge consistency when evaluating chatbot
responses over three runs per LLM judge. Each
LLM judge scores the same prompts using the
same interface scripts as the original benchmark.
In addition to intra-rater reliability, we also analyze
human-human and human-LLM agreement using
the expert and crowd-sourced annotations provided
in the benchmark, with human judgments from
GPT-4 used as a reference point for LLM-human
comparisons.

The prompts used in each of these benchmarks
are in Appendix.

3.3 Agreement Metric

As we have multiple independent ratings from an
LLM judge on a single item, we can adapt existing
agreement metrics to measure self-reliability of an
LLM judge. For both self-reliability of an LLM
judge and its agreement with other judges, we pri-
marily use Krippendorff’s Alpha. We describe
this metric and the choice of distance functions in
Appendix B. Additionally, we also use this metric
to report inter-rater agreement across categories of
judges (e.g., LLM vs. human, or expert vs. crowd).
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Why Krippendorff’s Alpha Other works study-
ing LLM-as-a-judge typically use different metrics
for computing agreement between LLLM and hu-
man judges. For example, G-Eval (Liu et al., 2023)
used correlation and MTBench (Zheng et al., 2023)
used accuracy. So why go with a different metric?
Artstein and Poesio (2008) discussed several draw-
backs when metrics without chance-correction like
accuracy and correlation. Despite being intuitive to
understand, their values cannot be compared across
studies, because some of the agreement will be due
to chance, and that chance is affected by factors that
vary from one study to another. One factor is that
chance agreement is higher when there are fewer
categories or labels. For example, in binary classifi-
cation with uniformly distributed labels, the chance
agreement will be 50%, whereas when we have
three labels it will be 33%. Another reason these
metrics cannot be trusted is that they do not correct
for for the distribution of items across categories.
For example, in binary classification, if one label
appears 95% of the time, the chance agreement for
that label will be 0.95 x 0.95 = 0.9025, and it will
be 0.05 x 0.05 = 0.0025 for the other label. This
would mean that two raters would be expected to
agree 90.5% of the time, and an observed agree-
ment of 90% may look high but is actually worse
than what we would expect to get by chance. A
chance-corrected metric like Krippendorff’s Alpha
addresses these drawbacks. It also has advantages
over other chance-corrected metrics like Cohen’s
Kappa (Cohen, 1960) and Fleiss’ Kappa (Fleiss,
1971) with more flexibility supporting varying num-
bers of annotators, handling missing data, and ac-
commodating different distance functions suited to
the rating scale of each benchmark. Due to these
reasons, we believe Krippendorff’s Alpha is appro-
priate for measuring both self-reliability in LLM
judges and their agreement with human judges.

We adapt the underlying distance function for
Krippendorff’s Alpha based on the nature of the
ratings in each benchmark. In SummacC, labels
are binary and categorical, so we use nominal
distance, which treats all disagreements equally
without assuming an ordering. We also report
Balanced Accuracy—the mean of sensitivity and
specificity—when comparing LLM and human
judgments, following the benchmark’s original
evaluation setup and accounting for class imbal-
ance.

In SummEval, ratings are ordinal, so we use
ordinal distance to reflect varying degrees of dis-

Model Self-Reliability
Llama 3.1 0.3263
Deepseek-R1  0.6278
Qwen-3 0.7883

Table 1: Self-reliability of different LLM judges on
the SummaC benchmark across 3 runs measured by
Krippendorff’s Alpha.

agreement (e.g., a 1-point difference counts less
than a 3-point difference). Agreement is computed
between cross-category judge pairs only, excluding
intra-category comparisons.

For MTBench, we use two metrics: (1) Accu-
racy, matching the original benchmark, measures
agreement with the gold standard (majority human
vote); (2) Krippendorft’s Alpha with ordinal dis-
tance captures gradations in pairwise disagreement
(e.g., model_a vs. tie vs. model_b). Both inter-rater
(e.g., LLM vs. human) and intra-rater (across LLM
runs) agreement are reported.

4 Intra-Rater Reliability Results

SummaC Table 1 shows the Krippendorft’s Al-
pha computed for LLM judges over 3 runs. We
see that the agreement value is low for all models
for all runs, though it gets better for newer and
larger models, with Qwen 3 getting close to 0.8,
which is the commonly accepted threshold of good
agreement. We tried repeating these experiments
for up to 5 runs but found no significant difference
in self-reliability, suggesting that this value is fairly
static for a model on a specific test set, independent
of the number of runs.

SummEval In Figure 4, we see that compared to
human evaluators, the different runs in Deepseek-
R1 and Qwen 3 show a high self-reliability on
Coherence and Consistency, with very low self-
reliability on Fluency. Not only does Fluency have
low reliability for all our LLM judges, but it is also
the only metric where Llama performs best. This
suggests that an LLLM judge’s ability to reliably
produce ratings depends heavily on the metric.

MTBench We found that the self-reliability of
LLM raters is much lower on this benchmark com-
pared to SummaC and SummEval. Llama 3.1 had
a Krippendorff’s Alpha of 0.265 across its 3 runs,
while for Deepseek-R1 it was 0.507. Qwen 3 was
the most reliable with a Krippendorff’s Alpha of
0.563. Even in the best case, these numbers are
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Intra-Rater Reliability of LLM Judges
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Figure 4: Self-reliability of LLM judges on SummEval.

much lower than the desired threshold of 0.8, show-
ing that LLM raters are extremely volatile on this
task, even more so than summarization. In fact,
Qwen 3 gave the same judgment on all 3 runs for
only 61.3% of cases.

5 Are LLM Judges a Reliable Substitute
for Human Judges?

Our next set of experiments studies what this lack
of self-reliability implies in terms of real-world
performance, which for benchmarks usually means
comparing with human annotations. In Summac,
we measure the agreement of LLM judgments with
human annotations, while in SummEval and MT-
Bench, we have multiple human labels available
per example, allowing us to compare the agree-
ment between LLM judges and human judges with
human-human agreement.

5.1 SummaC

B SummaC_ZS
= SummaC_CONV
I Llama 3.1

I Deepseek-R1
3 Qwen 3

Balanced Accuracy

\ \
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Datasets

Figure 5: Balanced Accuracies of different LLM judges
against human judgments on the datasets in SummacC.

In Figure 5, we report the balanced accuracies
of our three LLM judges on the different datasets
within SummaC, along with the two baselines,
SummaCyzg and SummaCgoony that were intro-
duced by Laban et al. (2022). Since we had 3 runs
for each LLM judge, we compute the consensus rat-
ing between the 3 runs by taking a simple majority

Model Single Run (Mean + Std) Majority No Sampling
Llama 3.1 59.1 £2.06 61.4 58.4
Deepseek-R1  69.8 £ 0.50 72.3 69.3
QOwen 3 79.4 £0.32 80.6 79.2

Table 2: Balanced accuracies of LLM judgments against
human judgments under different experimental settings.

vote and then find the agreement between it and the
human label. We see that while Llama 3.1 has very
low performance, Deepseek-R1 is competitive with
the baselines and Qwen 3 significantly outperforms
the baseline models overall. It is to be noted that the
baselines SummaCzs and SummaCeoony were
fine-tuned on this task whereas in our experiments
we prompted the instruction-tuned models off-the-
shelf.

Despite performing best overall, Qwen 3 is
not the best at all datasets in the benchmark.
Deepseek-R1 performs the best at XSumFaith.
SummaCoony performs the best at FactCC,
which is unsurprising since that baseline was specif-
ically fine-tuned on training examples from that
dataset (Laban et al., 2022). Therefore, how well
an LLM can substitute a human judge varies greatly
on the dataset in question, though in general, newer
and larger models perform better.

In Table 2, we see that accuracy varies between
runs much more for Llama 3.1, while it is relatively
stable for Deepseek-R1 and Qwen 3.

Does Taking Majority Vote Help Performance?
In Table 2, for each LLM, we report the balanced
accuracy of a single run, the accuracy we get if we
take the consensus rating of the three runs instead,
as well as the accuracy if we turn off sampling to
ensure we get the same output every time. We see
that accuracy is higher when computed via major-
ity vote than the expected accuracy for a single
run. In fact, for Deepseek-R1 and Qwen 3, taking
the majority vote gives a higher balanced accu-
racy than the maximum accuracy achieved by a sin-
gle run. Not only does running the LLM multiple
runs accounts for this variance between runs, but
it also gives higher performance in terms of accu-
racy against human judgments. This performance
is also competitive with the baselines SummaCzg
and SummaCcony (Laban et al., 2022), which
were fine-tuned specifically for this task.

Does disabling temperature sampling reduce
variance without degrading performance? The
main reason this issue exists is that these LLMs are
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designed to perform sampling to generate slightly
different responses to the same prompt. Therefore,
to remove variance in ratings, the most obvious
answer is to run inference without any sampling
to get the same output every time. However, in
Table 2, we see that for both models, there is a
degradation in performance if run without sam-
pling. This shows that there is a trade-off between
self-reliability and performance, and it is not trivial
to address both issues simultaneously. We also ran
additional experiments in Appendix C.2 to see if
incorporating few-shot or chain-of-thought prompt-
ing led to any reliability or agreement gains and
found that to not be the case.

Krippendorff's Alpha Between Human Raters
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Figure 6: Inter-rater reliability within and across both
categories of human judges on SummEval.

5.2 SummkEval

Figure 6 presents Krippendorff’s Alpha agreement
scores among human annotators. Experts show the
highest agreement on consistency (0.798), moder-
ate agreement on fluency (0.588), and the lowest
on relevance (0.398), suggesting subjectivity in as-
sessing relevance. In contrast, crowdworkers (Turk-
ers) display uniformly lower agreement across all
metrics (0.48-0.51), indicating more limited task
comprehension. Agreement between experts and
Turkers is drastically lower (maximum 0.247 for
relevance), highlighting fundamental differences in
the evaluation approaches of different populations
of raters.

While LLM judges show higher agreement with
themselves than human judges do with each other,
this does not guarantee they can fully replace hu-
man judges. In Figure 7, we see that LLMs’ agree-
ment with human experts varies significantly de-
pending on the metric, dataset, and the expertise of
the human judge.

Agreement Between Different Categories of Judges
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Figure 7: Inter-rater reliability of LLM judges against
both types of human judgments on SummEval.

For instance, Turker ratings diverge from both
experts and LLMs, indicating they use conflicting
evaluation criteria. Experts and LLMs show some-
what higher, but still modest agreement, especially
on metrics like consistency and coherence, while
agreement drops or even turns negative for subjec-
tive metrics such as fluency.

Model scaling (e.g., using larger models like
Qwen 3) can improve agreement with experts for
some metrics, but even the best observed agreement
(0.726 for consistency) remains below the com-
monly accepted threshold for substitution. More-
over, score distributions differ across judge types
and metrics, as reported in Appendix D.1, further
complicating direct replacement.

5.3 MTBench

We observe a fairly low Krippendorff’s Alpha of
0.478 between human judges. This follows from
our results under SummEval, where we find that
crowdsourced judges tend to have very lower agree-
ment. However, accuracy is comparatively much
higher at 0.827, suggesting that it may be a mis-
leading metric when showing agreement between
multiple judges, since it does not take the proba-
bility of chance agreement into account, leading to
inflated scores. A complete breakdown of agree-
ments of different judges against humans is shown
in Table 3.

Table 3 shows the agreement between different
judge types on the MT-bench benchmark.

Agreement between LLMs and humans Simi-
lar to agreement between humans, we see that when
we use Krippendorff’s alpha, we get much lower
values of agreement than accuracy. We see that
GPT-4 has higher values of agreement across both
metrics, though it is still much lower than between
humans. However, even for humans this is far lower
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Judges (Human vs.) Accuracy Krippendorft’s Alpha
Human 0.827 0.478
GPT-4 0.671 0.396
Llama 3.1 0.556 0.239
Deepseek-R1 0.668 0.385
Qwen 3 0.719 0.426

Table 3: Agreement of different judges against humans.

than the accepted threshold of 0.8, and is much
lower than the agreement we saw for SummEval,
suggesting this task is even harder to consistently
than summarization.

6 Discussion

6.1 Takeaways

SummaC Even though simply prompting an
LLM to score a generation can perform comparable
to models specifically fine-tuned for this task (La-
ban et al., 2022), it calls into question what high per-
formance means in this context when there is high
variance between runs. For example, what does an
agreement of 0.8 between LLMs and human judges
mean when the LLLM has low agreement with it-
self? We also do not know if this phenomenon
was due to the limitations of the benchmark itself
(e.g. noisy examples or a poorly defined task) or
is more widespread across other benchmarks or
tasks. More importantly, we do not know if human
judgments, which are taken as the gold standard,
suffer from the same consistency issues as LLMs,
which should prompt further investigations. How-
ever, SummaC contains only one human judgment
per example, making such investigations impossi-
ble, so we must look to other benchmarks and tasks.
We saw the LLM judges struggle particularly with
one of the datasets within this benchmark, Sum-
mEval (Fabbri et al., 2021). In this dataset, we also
have multiple human judgments for each example
across multiple metrics, which would allow us to
address a lot of these questions that so far remained
unanswered.

SummEval We see that the problem of low intra-
rater reliability of LLM judges is not just due to
binary labels in the SummaC benchmark but also
persists across other metrics and scoring scales.
Not only does it make LL.M judges unreliable, but
it also makes meta-evaluation of different evalua-
tion frameworks difficult when the scores assigned
by the same judge fluctuate over time. This raises

another important question, is the low intra-rater re-
liability due to limitations of the LLM:s or is the task
of summarization not well-defined even with dif-
ferent metrics? It is possible that scoring the sum-
maries in the SummEval benchmark along metrics
like coherence or consistency is not a well-defined
task, which causes the scores to fluctuate for both
human and LLM judges. We need to study whether
this phenomenon persists for benchmarks in other
tasks.

MT-Bench This confirms that it is not just single-
turn tasks like summarization where intra-rater re-
liability is an issue. It is a widespread phenomenon
across benchmarks as well as tasks that involve text
generation. We also observe that metrics like accu-
racy inflate agreement values compared to metrics
like Krippendorff’s Alpha.

6.2 Recommendations

Based on these findings, we can make the follow-
ing recommendations to improve the state of NLG
evaluation with LLM as well as human judges.

Account For Possible Self-Reliability Issues
Future work should incorporate intra-rater relia-
bility information into evaluation frameworks and
explore methods to improve LLM self-reliability
without sacrificing agreement with human judg-
ments. Existing NLG research already uses metrics
like Cohen’s Kappa and Krippendorff’s Alpha
for measuring inter-rater reliability, and these met-
rics can be adapted to measure self-reliability as
well. They should be preferred over metrics like
accuracy, since as we saw in Table 3 that accuracy
inflates agreement numbers because it does not take
chance agreement into account.

Reduce Variance in LLM Outputs We saw in
Section 5.1 that taking an aggregate of the results
of multiple runs, like a simple majority vote, can
improve agreement with human judgment. On the
other hand, trying to eliminate variance entirely by
turning off variance hurts performance.

Collect Data on Self-Reliability of Human
Judges When collecting human evaluations on
NLG tasks, it is important to also measure self-
reliability data on those evaluations. This is be-
cause although we saw self-reliability is a problem
in LLM judges, we did not explore how prevalent
this problem is in human judges. As we consider
human judgments the gold standard in NLG eval-
uation, the self-reliability of human judges would
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serve as an upper bound of the self-reliability we
should reasonably expect from LLM judges. It is
also important to explore how much of an effect
training or expertise has on self-reliability, since
we saw in Section 5.2 that expert and crowdsourced
workers assign very different ratings.

7 Conclusion

We present a comprehensive analysis of intra-rater
reliability in LLM-as-a-judge frameworks, reveal-
ing key challenges for evaluation in this domain.
Our experiments show that LLMs display low self-
reliability when evaluating the same content across
multiple runs, even with identical prompts and hy-
perparameters. This inconsistency persists across
various tasks and metrics. Although newer, larger
models like Qwen 3 are more consistent than mod-
els such as Llama 3.1, they still often fall short of
standard reliability thresholds.

Our work carries some potential risks. We have
measured the performance of LLM judges by their
agreement with human judges, which can be noisy
depending on the inter-annotator agreement of the
human labels. LLM judgments could also poten-
tially have biases for certain linguistic styles which
could influence the scores presented in this paper.
Despite these risks, our findings have important
implications for LLM-as-a-judge research. Report-
ing single-run LLM judgments without consistency
metrics can be misleading, and certain aspects of
text quality, such as fluency, remain difficult to as-
sess reliably for both humans and machines. Also,
the pronounced disagreement between expert and
crowdsourced judges highlights the need to clarify
which human preferences LLMs should model.

While LL.M-as-a-judge approaches offer scala-
bility, they face significant reliability challenges.
Addressing these issues is essential for developing
evaluation frameworks that meaningfully capture
distinctions in text quality.

Limitations

Recent research has looked at analyzing reasoning
traces of LLM judges (Wang et al., 2023), whether
these reasoning traces are useful and how their per-
formance is affected by supervised fine-tuning or
reinforcement learning (Chen et al., 2025). While
we leveraged reasoning models like Deepseek R1
and Qwen 3 in our experiments, we have not ex-
plored any relationships between their reasoning
traces and their self-reliability. And while prompt-

ing LLM judges on benchmarks like SummacC sur-
passes baselines in terms of agreement with human
judgments, we have not looked at the effect of fine-
tuning on further improving performance as that is
beyond the scope of the paper. Beyond fine-tuning,
there are other potential avenues worth exploring
like investigating the impact of prompt structure on
reliability and applying probing the model internals
to study if a specific layer leads to the divergence in
assigned scores in conflicting runs. Finally, though
we identified that the subjectivity of summarization
or multi-turn conversation evaluation potentially ex-
acerbates the self-reliability issue of LLM judges,
we have not quantified this subjectivity through
comparison with self-reliability on other, more ob-
jective tasks. Nevertheless, this work highlights
an important issue in evaluating generation tasks
and discusses different experimental methods and
data collection principles that would allow us to
conduct more robust evaluations.

Finally, we limited our choice of models to those
with open weights, as this gave us the freedom to
run our experiments locally and with full access to
the model weights. However, the latest proprietary
models such as GPT-5 (OpenAl, 2025) and Claude-
4 (Anthropic, 2025) have made great strides in vari-
ous reasoning and agentic benchmarks. Along with
the aforementioned future directions suggested, a
comparison of the self-reliability in these models
with the models in our study would give additional
insights into the prevalence of this phenomenon.
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A More Details About Experimental
Setup

For all three benchmarks and all three LLMs in
our experiments, we used a 4xA100 GPU server
and the transformers library (Wolf et al., 2020) to
run our experiments. Unless specified otherwise,
we used the recommended defaults for each model.
This means that for Llama 3.1 and DeepSeek-R1,
we used a temperature of 0.6 and top_p of 0.9. For
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Qwen 3, we used a temperature of 0.6 and top_p of
0.95.

For the SummaC benchmark, we used the fol-
lowing prompt to get a binary label representing
whether the article is consistent or inconsistent. Fig-
ure 8 shows the prompt used for evaluating items
in this benchmark.

Task: Analyze the summary for factual incon-
sistencies against the source document. Incon-
sistencies can be due to:
1. Hallucinations: Information added not in
the source.
2. Contradictions:
source content.
3. Entity Errors:
names/roles/locations.
4. Omissions: Key points missing from the
summary.
5. Temporal Errors:
quence/timeframe of events.
Output: A single number 0 for consistent sum-
mary and 1 for inconsistent summary.
Document: {{Full source text}}
Summary: {{Generated Summary} }

Statements opposing

Incorrect

Wrong  se-

Figure 8: Prompt used for each run in SummacC bench-
mark.

For SummEval, there are four different metrics,
coherence, consistency, fluency and relevance. For
each run, we prompted the LLM judge four times
independently, once for each metric. The prompts
are in Figure 9.

For MTBench, we used a single prompt that
asked an LLM judge to choose between two gen-
erations, or assign the label tie if it was unable to
choose a clear favorite. Items in this datasets are
divided into two types, math and general, with the
difference being that conversations labeled math
also contain reference answers to the user query.
Figure 10 shows the prompt used for items labeled
math, while Figure 11 shows the prompt used for
items labeled general.

B Agreement Metric: Krippendorff’s
Alpha

Krippendorff’s alpha («) is a chance-corrected re-
liability coefficient used to quantify agreement
among two or more coders (observers, raters) as-
signing values to a set of units. In other words,

it measures how consistently multiple annotators
code the same items. Developed by Klaus Krip-
pendorff in the context of content analysis, o gen-
eralizes many classical agreement statistics (such
as Cohen’s (Cohen, 1960) or Fleiss’ (Fleiss, 1971)
Kappa) and applies to any number of coders, any
number of categories or scale values, and any mea-
surement level (nominal, ordinal, interval, ratio,
etc.)

Krippendorft’s alpha accommodates any num-
ber of raters (two or more) and any measurement
level, from nominal categories up through interval
(or ratio) scales. It can handle missing data (by sim-
ply omitting those cases when counting pairwise
judgments), and it yields comparable reliability co-
efficients even for unequal sample sizes or many
categories. This flexibility allows it to remain valid
for more than two raters or for ordered categories
where partial agreements matter. Overall, Krippen-
dorff’s alpha is valued for its broad applicability
and its principled treatment of chance agreement,
making it suitable for diverse rating and annotation
tasks.

B.1 Mathematical Notation

Mathematically, Krippendorff’s Alpha follows the
general form:

D,
a=1-— D—e (D)
Here, D, = ) 6(v;, v;j) sums the pairwise dis-
tances between raters’ values v;, v; on each item.
The denominator D, is computed by summing
& over all possible pairs of values (weighted by
the frequency of each value) as if the assignments
were randomly permuted among raters. In other
words, D, reflects the average disagreement ex-
pected purely by chance given the observed distri-
bution of categories. The expected disagreement
D, is what separates Krippendorff’s Alpha from
other metrics like correlation for percentage agree-
ment, since it accounts for chance agreement to pre-
vent inflation of agreement values. To understand
how D, is calculated, let us take the following ex-
ample where we have

1. V which is the set of all possible values that
coders can assign (e.g., V = {1,2,3,4,5}
for a 5-point scale).

2. n, which is the number of times value v € V'
was assigned, across all units and coders.
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Instructions: You will be given one summary written for a news article.
Your task is to rate the summary on one metric.
Evaluation Criteria: Coherence (1-5) — how well the summary is structured and
logically organized.
Evaluation Steps:
1. Read article and identify key points.
2. Check if summary presents them clearly and logically.
3. Score 1-5.
Example:
News Article:
{{Source Text}}
Summary:
{{Summary}}
Evaluation Form (scores ONLY):
Coherence:

Instructions: You will be given one summary written for a news article.
Your task is to rate the summary on one metric.
Evaluation Criteria: Consistency (1-5) — the summary should not contradict the
source; penalize hallucinated facts.
Evaluation Steps:
1. Read article and summary.
2. Identify any factual errors.
3. Score 1-5.
Example:
News Article:
{{Source Text}}
Summary:
{{Summary}}
Evaluation Form (scores ONLY):
Consistency:

(a) Coherence

(b) Consistency

Instructions: You will be given one summary written for a news article.
Your task is to rate the summary on one metric.
Evaluation Criteria: Fluency (1-5) — grammar, spelling, punctuation, word choice,
and sentence structure.
Evaluation Steps:
1. Read the summary.
2. Identify language issues affecting readability.
3. Score 1-5.
Example:
Summary:
{{Summary} }
Evaluation Form (scores ONLY):
Fluency:

Instructions: You will be given one summary written for a news article.
Your task is to rate the summary on one metric.
Evaluation Criteria: Relevance (1-5) — includes only important information from the
source; penalize redundancy.
Evaluation Steps:
1. Read summary and article.
2. Assess coverage of key points.
3. Score 1-5.
Example:
News Article:
{{Source Text} }
Summary:
{{Summary}}
Evaluation Form (scores ONLY):
Relevance:

(c) Fluency

(d) Relevance

Figure 9: Prompts For Evaluating Generated Summaries From SummEval Using Four Metrics

Please act as an impartial judge and evaluate the quality of the responses provided by two Al assistants to the user questions. Your evaluation should consider correctness and helpfulness.
You will be given reference answers, the assistant A’s answers, the assistant B’s answers. Your job is to determine which assistant provides correct and helpful answers to the second user
question. Begin your evaluation by comparing both assistants’ answers with the reference answers. Identify and correct any mistakes. Avoid any position biases and ensure that the order in
which the responses were presented does not influence your decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be
as objective as possible. After providing your explanation, output your final verdict by strictly following this format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and
"[[C]]" for a tie.

<|The Start of Reference Answer|>

User:
{{question_1}}
Reference answer:
{{ref_answer_1}}
User:
{{question_2}}
Reference answer:
{{ref_answer_2}}

<|The End of Reference Answer|>
<|The Start of Assistant A’s Conversation with User|>

User:
{{question_1}}
Assistant A:
{{answer_a_1}}
User:
{{question_2}}
Assistant A:
{{answer_a_2}}

<|The End of Assistant A’s Conversation with User|>
<|The Start of Assistant B’s Conversation with User|>

User:
{{question_1}}
Assistant B:
{{answer_b_1}}
User:
{{question_2}}
Assistant B:
{{answer_b_2}}

<|The End of Assistant B’s Conversation with User|>

Figure 10: Prompt for Evaluating Two Generated Responses to Queries Labeled math in MTBench Dataset
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Please act as an impartial judge and evaluate the quality of the responses provided by two Al assistants to the user questions. You should choose the assistant that follows the user’s
instructions and answers the user’s questions better. Your evaluation should consider factors such as the helpfulness, relevance, accuracy, depth, creativity, and level of detail of their
responses. You should focus on who provides a better answer to the second user question. Begin your evaluation by comparing the responses of the two assistants and provide a short
explanation. Avoid any position biases and ensure that the order in which the responses were presented does not influence your decision. Do not allow the length of the responses to
influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible. After providing your explanation, output your final verdict by strictly following this

format: "[[A]]" if assistant A is better, "[[B]]" if assistant B is better, and "[[C]]" for a tie.
<|The Start of Assistant A’s Conversation with User|>

User:
{{question_1}}
Assistant A:
{{answer_a_1}}
User:
{{question_2}}
Assistant A:
{{answer_a_2}}

<|The End of Assistant A’s Conversation with User|>
<|The Start of Assistant B’s Conversation with User|>

User:
{{question_1}}
Assistant B:
{{answer_b_1}}
User:
{{question_2}}
Assistant B:
{{answer_b_2}}

<|The End of Assistant B’s Conversation with User|>

Figure 11: Prompt for Evaluating Two Generated Responses to Queries Labeled general in MTBench Dataset

3. N =} ,cy o Which is the total number of
value assignments.

From this, we can compute the relative frequen-
cies (probabilities):

s

Po =% @)

Now we compute the expected disagreement
by summing over all unordered pairs of values
(v,v") € V x V, weighted by how frequently those
value pairs would co-occur by chance if coder as-
signments were independent.

We define a weighting term:

e If v # v/, the probability of randomly drawing
the pair (v,v") is 2 - p, - p,s. The factor of 2
ensures we’re counting both (v, v’) and (v, v)
as one unordered pair.

o If v = ¢/, the probability of drawing (v, v) is
2
py

Using a distance function 6 (v, v"), the expected
disagreement is:

De - Z Z DPoDy! 5(”77},) (3)

veV v eV

Conceptually, this represents the expected value
of the disagreement between two randomly se-
lected values from the overall distribution.

When observers agree perfectly, D, = 0 and
a = 1, indicating perfect reliability. When ob-
servers agree only by chance, D, = D, and o = 0,
indicating absence of reliability.

B.2 Distance Functions

A crucial aspect of Krippendorff’s alpha is the dis-
tance function §(v, v’), which quantifies how much
two coded values disagree. The choice of § reflects
the measurement level of the data and fundamen-
tally affects the computation of disagreement. In
general § must satisfy §(v,v’) = 0 when two raters
agree and 0(v,v’) > 0 otherwise. Different stan-
dard choices of § are used for nominal, ordinal, and
interval data. Each distance function changes how
disagreement is accumulated in D, and D..

B.2.1 Nominal Distance

For nominal (categorical) data with no inherent or-
der, the standard distance function is the discrete
(binary) metric. In this case, any two different cate-
gories are simply considered maximally different.
Formally, one sets

—
5nominal('Uy ’U,) = 07 v v, (4)

1, v#w
Therefore, exact matches incur zero distance and
any mismatch contributes a distance of 1. Using
this 6 means the observed disagreement D, is effec-
tively the count (or weighted count) of all pairwise

coding disagreements among raters.
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To calculate D, using nominal distance,

Do = Z 5n0minal(via Uj) (5)

pairs

So D, is essentially the count of mismatches.

Nominal distance is appropriate when values
are simply labels or categories (e.g. color names,
types of object, or coding categories like “yes/no”,
“red/green/blue” etc.). Here there is no notion of
“how different” two distinct categories are, only
that they are different. In effect, & with nominal §
reduces to a chance-corrected proportion of exact-
agreement (similar in spirit to kappa). All disagree-
ments are weighted equally, so a mild coding error
(“cat” vs “dog”) counts the same as a gross one
(“cat” vs “car”) in D,,. This is the metric we used
in the SummaC benchmark, since the items there
have binary labels.

B.2.2 Ordinal Distance

For ordinal data (ranked categories, e.g. survey re-
sponses “low/medium/high” or Likert scales), the
distance function must respect the ordering of val-
ues. A common choice is to use the squared dif-
ference in ranks (or a formula based on cumulative
frequencies of ranks). Krippendorft’s original for-
mulation defines the ordinal distance as

2

5ordinal(U7 ’U/) -
g=min(v,v’)

(6)

Here, n, is the frequency of category v. In sim-

pler terms, this usually reduces to the squared dif-

ference in rank position between vv and v’v’, pos-

sibly standardized by category frequencies. The

key effect is that 0 ,pginq (v, v') increases as the cat-

egories are farther apart in rank.

For ordinal 6, if /N units are coded and unit j

has m; coders giving values vy, ..., Um,;, then
the total number of coder-pairs is

N m;
SN
j=1

Using the ordinal distance d,,4, Krippendorft’s
D, can be written as

N
Do == %Zzéord<vijavi’j) (8)

Jj=1i<i!

Here each inner sum runs over all (W; ) dis-
tinct pairs of coders (i,4") within unit j. Equiv-
alently (and as shown by Krippendorff), this is the
weighted average of within-unit disagreements. In
other words, D, is the mean of all squared ordinal
distances between pairs of ratings of the same unit.

Each category has arank (e.g. 1,2, 3,...). The
standard ordinal distance (squared) between two
categories ¢ and k is defined by how far apart their
ranks lie in the observed data distribution. Specifi-
cally

2
max(c,k) Mo + 1
507’(1(67 k) = Z ng — . 9 ©)
g=min(c,k)

where n, is the frequency of category g in the
pooled data. Intuitively, do.q(c, k) counts the total
number of cases between c and k (plus half-counts
of the endpoints), then squares that gap. Plugging
this into D, means each pair of ratings contributes
the square of the rank-gap between their categories.

Ordinal distance is appropriate when categories
are ordered but not equally spaced (e.g. ratings
like "good, better, best" or "strongly agree, agree,
neutral, disagree, strongly disagree"). Using this
distance in o means that two raters who give ad-
jacent ranks (e.g. 2 vs. 3 on a five-point scale)
incur less disagreement than two raters who give
opposite ends (e.g. 1 vs. 5). In formula terms,
D, will sum the squared rank differences for each
pair. Thus o will penalize large rank disagreements
more heavily. In practice, this often yields a larger
D, (hence smaller «) than the nominal distance
would, because it encodes more information about
how coders differ, not just that they differ. (One can
also standardize ordinal distances to lie between
0 and 1, but the relative weighting is what mat-
ters for «.) This is the distance we used in the
SummEval and MTBench benchmarks, since the
former has labels on a Likert Scale, and the latter
has three labels, model,, model, and tie, allowing
us to distinguish between disagreements where get
(model,, tie) versus (model,, modely).

B.2.3 Interval Distance

For interval data (quantitative values on a scale with
equal intervals), the usual choice is the squared-
difference distance. That is, one sets

57jnte7’val(va UI) = (U - U,)Q (10)
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This simply treats the numerical values as points
on the real line and measures squared distance be-
tween them.

To calculate D, from interval distance,

Do = Z(U’L - Uj)2

pairs

1D

So D, is the sum of squared deviations across
all coder pairs.

Interval distance is used when the data are mea-
sured on an interval scale (e.g. temperature in Cel-
sius, or any numeric rating where differences are
meaningful). For example, if raters assign values
3.0 and 4.5 to an item, § = (3.0 — 4.5)? = 2.25.
In o’s computation, each such pairwise difference
contributes to the total disagreement. The squared
form makes o analogous to a variance-based agree-
ment measure: larger numerical discrepancies in-
flate D,. In effect, with interval §, Krippendorff’s
alpha becomes sensitive to the magnitude of dis-
agreements. Two coders who differ by 1 unit vs.
two coders who differ by 5 units will have drasti-
cally different contributions to D,. This is appro-
priate when numerical differences carry substantive
meaning. We do not use this metric in this paper,
since none of the datasets in our studies contain
numerical labels, however, we are still including
this distance function in our explanation for the
sake of completeness.

C More Details on SummaC Benchmark

C.1 Dataset Statistics of SummaC Benchmark

Table 4 shows the number of test examples in each
of the six datasets in the SummaC benchmark.

Dataset

CoGenSumm (Falke et al., 2019) 400
XSumFaith (Maynez et al., 2020) 1250
Polytope (Huang et al., 2020) 634
FactCC (Kryscinski et al., 2020) 503
SummEval (Fabbri et al., 2021) 850
FRANK (Pagnoni et al., 2021) 1575

Test Examples

Table 4: Number of Test Examples in Each Dataset in
the SummaC Benchmark

C.2 Impact of CoT and Few-shot Prompting
on Intra-Rater Reliability and Accuracy
on SummaC

Two breakthrough advances in the use of language
models are few-shot prompting (Brown et al., 2020)
and chain-of-thought (CoT) prompting (Wei et al.,

Setting Llama 3.1 Deepseek-R1  Qwen 3
Default 0.3263 0.6278 0.7883
w/ Few-shot  0.3245 0.6166 0.7804
w/ CoT 0.3219 0.6132 0.7796
w/ Both 0.3206 0.6134 0.7801

Table 5: Self-Reliability of LLM judges on SummacC for
the default setting, as well as when few-shot and chain-
of-thought prompting are used together and separately.

Setting Llama 3.1 Deepseek-R1 ~ Qwen 3
Default 61.4 72.3 80.6
w/ Few-shot  62.9 72.8 80.6
w/ CoT 60.8 71.6 80.4
w/ Both 60.1 72.1 80.3

Table 6: Balanced Accuracy (majority-vote) between
the LLM and human judgments for the default setting, as
well as when few-shot and chain-of-thought prompting
are used together and separately.

2022). Few-shot prompting refers to providing the
model with a few labeled examples demonstrating
how to perform a desired task with higher accuracy.
On the other hand, CoT prompting enables lan-
guage models to generate intermediate reasoning
steps that lead to the desired answer. They repre-
sent different facets of in-context learning, and can
be combined or used independently.

In our next set of experiments, we investigate
whether leveraging these techniques addresses self-
reliability. In the few-shot setting, we add 5 pos-
itive and 5 negative examples in the prompt. In
the chain-of-thought setting, we prompt the model
to think step by step before answering. Under the
Both setting, we employ both few-shot and chain-
of-thought prompting.

Table 5 shows the self-reliability of LLM judges
measured by Krippendorff’s Alpha over 3 runs. We
see that few-shot prompting does not appreciably
change the self-reliability of the models, and leads
to a slight decrease in consistency. This change
is not significant and shows that one cannot eas-
ily address the self-reliability issue with different
prompting strategies.

Table 6 shows the accuracy of LLM judges
against human judgments. While few-shot prompt-
ing does lead to a small improvement in Llama 3.1
and Deepseek-R1, there is no significant jump in
performance for either prompting strategy. This
could be because, as previously observed, few-
shot prompting does not always work well with
reasoning models like Deepseek-R1, Qwen 3 and
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ol (DeepSeek-Al et al., 2025; Nori et al., 2024),
while chain-of-thought prompting does not neces-
sarily improve the accuracy of a reasoning model
since it already performs chain-of-thought implic-
itly (Eliot, 2025). Interestingly, Qwen 3 shows the
least change under these new settings, suggesting
newer reasoning models are fairly robust to differ-
ent prompts.

D Additional Analysis of Agreement
Between Judges in SummEval

D.1 Distributions of Scores in SummEval
From Different Populations of Raters

In Figure 12, we see the distributions of scores as-
signed by different categories of raters across all
four metrics on the SummEval benchmark. We
see that for Turkers the distributions do not change
appreciably across metrics, indicating that human
judges without proper expertise do a poor job of
differentiating between different metrics. While
the other four categories of judges do discern be-
tween metrics, they all have very different distribu-
tions of scores for a specific metric. Even though
Deepseek R1 and Qwen 3 showed much higher
agreement with experts compared to LLama 3.1
and Turkers, we see that their distributions are very
different. This implies that each category of judge
follows their own internal definition of a given met-
ric, which puts a strict cap on how high their agree-
ment can be.

E Additional Details on MT-Bench
Benchmark

E.1 Breakdown of Examples in MT-Bench

2 3 45
599 132 24 6

Table 7: Number of examples with 2, 3, 4, or 5 judg-
ments from human annotators in MT-bench.

Table 7 shows how many examples had 2, 3, 4,
or 5 human judgments in the MT-Bench dataset.
These are the examples we used in our experiments
since we filtered out examples that had only one
human judgment.
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Figure 12: Distributions of scores assigned by different raters across all metrics in the SummEval dataset.
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