Embedding-Free RAG

Jessica Maghakian, Raunak Sinha*, Gunkirat Kaur*, Max Schettewi*
Goldman Sachs
{jessica.maghakian, raunak.sinha, gunkirat.x.kaur, max.j.schettewi}@gs.com

Abstract

Retrieval-Augmented Generation (RAG) is the
current state-of-the-art method for mitigating
the shortcomings of large language models
(LLMs) by incorporating external knowledge
sources to provide more relevant and accurate
responses to user queries. However building
performant RAG systems for real use-cases typ-
ically requires heavy investment from NLP ex-
perts, such as fine-tuning embedding models
for specialized domains, experimenting with
text chunking strategies and other niche hyper-
parameter tunings. We propose Embedding-
Free RAG, a model-agnostic approach that
enables the deployment of a one-size-fits-all
RAG pipeline for user-provided grounding doc-
uments. Unlike traditional RAG, which re-
lies on embedding models for information re-
trieval, Embedding-Free RAG leverages the
generalized reasoning abilities of LLMs in a
novel algorithmic framework during the re-
trieval stage. Extensive experiments demon-
strate that Embedding-Free RAG outperforms
existing state-of-the-art methods, achieving up
to 4.6x higher F1 scores and up to 2x bet-
ter question answering accuracy across a wide
range of challenging domains.

1 Introduction

Large Language Models (LLMs) have made re-
markable strides since the release of ChatGPT in
late 2022 (Minaee et al., 2024). Despite advance-
ments like multimodality (Li et al., 2024), large
context windows (Team et al., 2023), and improved
reasoning (OpenAl, 2024), the newest generation
of LLMs still face challenges first noted during
their rise to popularity. Issues like factual halluci-
nation (Huang et al., 2023; Bai et al., 2024), knowl-
edge staleness (Wang et al., 2024b), limited access
to proprietary data (Ahmed et al., 2024), and poor
answer attribution (Li et al., 2023) continue to af-
fect even the most advanced models.

“These authors contributed equally.

Query Grounding Document

" VWhat information does the Fiverr Privacy Policy

company store about me?

LLM Reference Quotation Generation

[“Technical information that is gathered by our systems, or third party systems,
automatically may be used for Site operation, optimization, analytics, content
promotion and enhancement of user experience”,

Anchor
Creation “In addition, we collect information w};/e;/au]a/:cess, browse, view or otherwise use
the Site']

G ing D Index

ing Using Fuzzy Matching

[405, ..., 692]

Chunk Creation Around Sentence Anchors

Chunk
Creation

[“Information that you choose to publish on the Site (photos, videos, text, music,
reviews, deliveries) - is no longer private, just like any information you publish
online. Technical information that is gathered by our systems, or third party

systems, automatically may be used for Site operation, optimization, analytics,
content promotion and enhancement of user experience. We may ...", ...]

Final “Fiverr collects several types of information about its users. This includes

information you directly provide during registration, such as your email

Answe_r address, location, and potentially Facebook or Google account login details
Generation and username. They may also request additional information like ..."

Figure 1: Overview of Embedding-Free RAG. Our
framework uses LLMs in the retrieval stage to find rele-
vant context in a user-provided grounding document.

Retrieval-Augmented Generation (RAG) has
emerged as the leading technique to mitigate these
shortcomings by incorporating external informa-
tion into in-context learning (Lewis et al., 2020;
Minaee et al., 2024). Despite the simple premise,
deploying RAG systems for real-world applications
requires substantial NLP expertise, including deci-
sions on embedding models (Caspari et al., 2024),
chunking strategies (Qu et al., 2024; Yepes et al.,
2024), reranker models (Nogueira et al., 2019; Jin
et al., 2022), and other optimizations (Ma et al.,
2023; Guu et al., 2020). In specialized fields like
finance, law, or medicine, custom fine-tuned em-
beddings are often needed (Dolphin et al., 2022;
Chalkidis et al., 2020; Yuan et al., 2022), as off-
the-shelf models are typically trained on general-
purpose datasets and struggle with domain-specific
linguistic patterns (Tang and Yang, 2024; Anderson
et al., 2024).

The complex implementation of RAG systems
and the inability of the framework to generalize
have been a significant challenge for practitioners

24974

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24974-24985
November 4-9, 2025 ©2025 Association for Computational Linguistics

(Wang et al., 2024a). Google’s 2024 introduction
of long-context LL.Ms (Pichai and Hassabis, 2024)
was seen as a potential replacement, with some pre-
dicting the “death of RAG” (Dahl, 2024). However
long-context LL.Ms have since been shown to have
notable drawbacks, most prominently their suscep-
tibility to positional bias (Tian et al., 2024). The
“lost in the middle” phenomenon demonstrates that
long-context LLMs struggle to effectively use rele-
vant information located in the middle of an input
during in-context learning (Liu et al., 2024). These
models also face challenges with transparency and
trustworthiness because their vast inputs are too
large for humans to easily verify.

We introduce Embedding-Free RAG, a retrieval
framework that replaces embedding-based search
with an algorithmic approach that leverages the
reasoning capabilities of LLMs. Our framework
enables a unified, plug-and-play pipeline while re-
stricting input to only relevant context, mitigating
the “lost in the middle” issue in long-context LLMs.
The result is a system that combines the strengths
of traditional RAG and long-context models. By
surfacing the exact text used to generate answers,
Embedding-Free RAG improves trustworthiness
and transparency — a necessity for fields where
users rely on Al outputs to make sensitive deci-
sions. The goal of our paper is specifically to ad-
dress the understudied “Chat with a Document,”
scenario when users provide grounding documents
with their query.

1.1 Motivation for “Chat with a Document”

Traditional RAG assumes external knowledge is
unknown and must be retrieved from a broad cor-
pus via search (Gao et al., 2023), typically by pre-
indexing the corpus to enable scalable query-time
retrieval. In contrast, real-world applications in-
creasingly support “Chat with a Document” inter-
actions (Microsoft, 2024; Adobe, 2024; PDF.ai,
2024), where users upload documents on-the-fly to
ground Al-driven question answering. This user-
provided context offers a practical path to integrat-
ing expert domain knowledge (Rane et al., 2024).
While related to Document AI (Cui et al., 2021),
our setting emphasizes real-time, user-driven dia-
logue rather than offline, structured extraction. It
is also related to reading comprehension, where
models answer questions from a single passage.
However, unlike standard reading comprehension,
“Chat with a Document” admits arbitrarily large
inputs, demanding new solutions.

1.2 Key Contributions

In this work, we identify a critical gap in ad-hoc
question answering over user-provided grounding
documents and formalize the “Chat with a Docu-
ment” problem for the first time in the academic
literature. To address this setting, we propose
Embedding-Free RAG, a novel algorithmic frame-
work that replaces embedding-based retrieval with
LLM-driven reasoning, enabling a one-size-fits-all
RAG pipeline without the need for task-specific
tuning or infrastructure. We demonstrate that
Embedding-Free RAG delivers strong performance
in complex, domain-specific question-answering
tasks, validating its effectiveness in high-value,
real-world use cases.

2 Embedding-Free RAG

We formally define the “Chat with a Document”
Problem and introduce Embedding-Free RAG. In
Section 2.2, we detail the generalized Embedding-
Free RAG framework. Section 2.4 discusses some
optimizations and algorithm variants, including par-
allelization in the retrieval stage (Section 2.4.1), use
of task-specific LLMs (Section 2.4.2) and leverag-
ing rich metadata from structured documents (Sec-
tion 2.4.3).

2.1 Problem Statement

In “Chat with a Document,” the inputs are a user-
provided document D and a query (), with the goal
of returning an answer A that accurately responds
to () using only the information in D. Although we
assume a single document, the problem naturally
extends to multi-document inputs.

This is an online problem: both D and () are pro-
vided at inference time, and the system must return
A with low latency. The low latency requirement
prevents task-specific tuning, offline preprocessing
or index construction on the revealed document
and query. Traditional RAG pipelines that rely on
pre-built dense indexes, or graph-based retrieval
methods that require constructing and traversing
knowledge graphs, are impractical in this setting.
While D may originate from structured formats
such as PDFs, we assume it is available as a raw
text string, potentially sourced from diverse media
(e.g., PowerPoint decks or scraped web content).

In some cases, D may be accompanied by meta-
data M that captures structural or positional infor-
mation, such as section headers or page locations.
We refer to this variant as “Chat with a Structured

24975

Document,” where the input is (D, M, Q)) and the
task remains to produce an answer A grounded in
both D and M. We elaborate on this setting in
Section 2.4.3.

2.2 Generalized Embedding-Free RAG

Embedding-Free RAG addresses the “Chat with
a Document” problem while preserving the core
retrieve-then-generate structure of traditional RAG.
In traditional RAG, embedding models are used in
the retrieval stage to retrieve relevant chunks of text
that are then passed with the user query to an LLM
to generate a final answer during the Generation
stage. We mimic this structure in Embedding-Free
RAG, while eliminating the need for retrieval-stage
hyperparameter tuning, which is infeasible in on-
line settings. Our approach involves two key steps:

1. Anchor Creation: identify text spans likely
relevant to the query (Section 2.2.1).

2. Chunk Construction: expand anchors into
context-rich chunks for answer generation
(Section 2.2.2).

2.2.1 Anchor Creation

To create anchors, we first pass the document text
to the LLM in a reference quotation generation
prompt. The LLM’s output should be a list of rel-
evant reference quotations r = [ry,...,rg], with
each r; corresponding to a sentence in the docu-
ment that pertains to the user query. An example
prompt template is provided in Appendix A.1. In
the event that an empty list is returned (r = [)),
we assume the document does not contain any rele-
vant information and a grounded answer cannot be
provided to the query.

Once the reference quotations r are obtained,
they must be mapped to their corresponding posi-
tions in the original text. During experimentation,
we found that LLMs may not exactly reproduce the
original sentences. To identify the original source
of a quotation generated by a language model (e.g.,
one with slight variations in spacing or spelling),
we use the Levenshtein distance to find the most
similar sentence in the original document. This
allows for robust matching even when exact text
comparison fails.

Definition 1. The Levenshtein distance between
two strings is the minimum number of single-
character edits (insertions, deletions, or substitu-
tions) needed to transform one into the other.

Using sentence splitters, the input document
D can be decomposed into its sentences s =
[s1,...,sp]. Forareference quotation r;, the index
a; of the matching original anchor sentence can be
found using the Levenshtein distance:

aj = argieﬁ??n] lev(rj, si),
yielding a final list of anchors a = [a1,...,ag].
Numerous efficient implementations of the Leven-
shtein distance exist, such as the RapidFuzz library
for Python (Bachmann). Experimental evaluations
showing the time and space efficiency of fuzzy
matching on real data are available in Section 3.1.3.

2.2.2 Chunk Construction
The anchor generation stage produces a list of sen-
tence indices [a1, . .., ai] from the original docu-
ment D that the LLM identifies as relevant to the
user query (). However, these anchors alone may
not provide enough context for a complete response.
To enhance the answer quality and accuracy, we
construct chunks around the anchor sentences to
provide additional context.

A simple approach is to create chunks by select-
ing w sentences before and after each anchor:

Cj = [smax{l,aj —w}hrc Smin{aj—i-w,n}]?

resulting in an initial list of chunks ¢ = [c1, . .., cg].
Overlapping chunks in ¢ are merged to form the fi-
nal list of contiguous excerpts C' (see Algorithm 2).
Despite its simplicity, this approach performs well
in our experiments. More advanced chunking meth-
ods can be used when additional structural infor-
mation about D is available (see Section 2.4.3).

2.2.3 Final Answer Generation

The final stage of Embedding-Free RAG exactly
mimics the answer generation stage of traditional
RAG. The list of chunks C' is treated in the same
way as chunks retrieved by an embedding model
would be in a traditional RAG flow. Appendix A.2
shows a sample final answer prompt. Algorithm 1
shows the final generalized Embedding-Free RAG
algorithm.

2.3 Comparison with Traditional RAG

Traditional RAG pipelines depend heavily on
embedding-based retrieval, where documents are
preprocessed into vector representations, stored in
a vector database, and retrieved using similarity
search. Optimizing these systems requires careful

24976

Algorithm 1 Generalized Embedding-Free RAG

Require: query @), document D, window size w
Ensure: answer A to () based on D
1: > Step 1: Generate Reference Quotations
2: Call LLM with Reference Quotation Genera-
tion Prompt using) and [s1, ..., Sp]
3: > Assume the LLM returns a list of reference
quotations [ri, ..., 7]
4: > Step 2: Compute Closest Sentence Indices
5: Compute [aq, ..., ay,] where:
6: for each reference quotation 7 in [r1, .. .
do
7: aj argmingp ., lev(rj,s;) > Find
the index of the sentence s; in D that has the
minimum Levenshtein distance to 7;
8: end for
9: > Step 3: Generate Chunks Around Closest
Sentences
10: Generate [cg, . . .
11: for each index ¢; in [aq, . .

s T

, Cm] Where:

., Q) do

12: Cj < [Smax{l,aj—w}v e 73min{aj+w,n}] >
Create a chunk around the sentence Sa; with a
window size w

13: end for

14: > Step 4: Consolidate Overlapping Chunks

15: Call Algorithm 2 with [¢q, . .., ¢y] to get con-
solidated chunks C

16: > Step 5: Generate Final Answer

17: Call LLM with Final Answer Prompt using ()
and C

18: return Final answer A generated by LLM

design of chunking strategies, reranker models, and
domain-specific fine-tuning — often with signifi-
cant upfront engineering costs.

Embedding-Free RAG maintains the same high-
level retrieve-then-generate flow but replaces the
embedding stage entirely. Instead of static similar-
ity search, our framework directly uses an LLM to
identify relevant spans on-the-fly, eliminating the
need for pre-computation or domain-specific hyper-
parameter tuning. This makes it uniquely suited for
scenarios where documents are introduced at query
time and where real-time processing is essential.
By removing the dependency on embeddings and
offline indexing, our approach offers a lightweight,
plug-and-play alternative to traditional pipelines
while preserving transparency and grounding.

2.4 Embedding-Free RAG Optimizations

We now discuss variants of Embedding-Free RAG
that are optimized for different scenarios.

2.4.1 Parallelized Document Processing

Long-context LLMs are known to be susceptible
to the “lost in the middle” effect for large inputs
(Liu et al., 2024). This can lead to false negatives
for reference quotation generation on large input
documents. As a solution, we suggest parallelized
document processing during quotation generation
by splitting D into smaller subdocuments, which
are processed individually before aggregating the
anchors and proceeding with chunk generation.

Restricting the LLM’s context to subdocuments,
however, risks loss of global context. For instance,
a query about company performance in a public
filing may fail if the filing date appears in a dif-
ferent subdocument. To address this, we prepend
a lightweight summary to each subdocument dur-
ing quotation generation. This summary (2-3 sen-
tences based on the first 5,000 words of the docu-
ment) is not an extensive document representation
but rather a minimal contextual scaffold to enhance
and relevance across fragmented subdocuments.

Beyond improving retrieval accuracy, this ap-
proach enables substantial efficiency gains. Unlike
methods dependent on monolithic structures such
as memory trees (Wang et al., 2024b), Embedding-
Free RAG decouples information extraction from
question answering, enabling parallelization. Paral-
lelization in turn reduces latency, as LLM response
time scales linearly with output length (Chen et al.,
2024) and typically fewer quotations are produced
per subdocument. It also lowers cost when us-
ing vendor-hosted models with token-based pricing
tiers (Google, 2024).

2.4.2 Using Task-Specific LLMs

While the Embedding-Free RAG framework is
model-agnostic, it uses LLMs in two different ca-
pacities: (1) for the information extraction task and
(2) for the final answer generation. The LLM used
in these two steps need not be the same. As the
task of identifying relevant information in a pas-
sage is easier than any reasoning and understanding
of nuance required to synthesize a final answer, we
recommend using a faster and less powerful LLM
for quotation generation. Beyond reducing cost,
using a lightweight LLLM during retrieval signifi-
cantly improves latency, especially when combined
with the parallelization described in Section 2.4.1.

24977

2.4.3 Structured Documents

In scenarios where users provide structured docu-
ments (e.g., PDFs with hierarchical organization),
two key advantages emerge. First, instead of rely-
ing on reference quotations as anchors, an LLM
can be prompted to return identifiers derived from
metadata M, corresponding to specific sections
or subsections. Second, the document’s hierarchy
can inform chunking; by prompting the LLM to
generate structure-aware tags, we enable retrieval
of coherent units (e.g., pages or subsections) as
chunks. To support this, the document text may
require preprocessing annotation with structural
metadata, allowing the LLM to effectively exploit
the document’s organization during retrieval and
response generation.

2.5 Cost of Embedding-Free RAG

Embedding-Free RAG processes a document ex-
actly once per query during the Retrieval Phase,
resulting in input token usage proportional to the
document length, plus a small prompt overhead. In
the question-answering paradigm, the retrieved sub-
set of the text will be much smaller than the entire
document, resulting in O(> ", |s;|) input tokens
processed by the LLM for the entire pipeline. This
is comparable to commercial “Chat with a Docu-
ment” solutions that rely on large-context LLMs to
process entire documents and queries in-context.

While traditional RAG approaches are cheaper
per query, they incur significant upfront costs such
as designing chunking strategies, tuning retriev-
ers, fine-tuning embeddings and preparing domain-
specific datasets. For instance, the CAUD legal
dataset took 40 lawyers over a year and cost $2
million to create (Pipitone and Alami, 2024). In
contrast, Embedding-Free RAG minimizes setup
costs and enables rapid deployment, even in highly
specialized or low-resource domains.

3 Empirical Evaluations

Our empirical evaluations focus on domains which
prove challenging for modern RAG systems, specif-
ically question answering on legal and financial
documents. We use the LegalBench-RAG (Pipitone
and Alami, 2024) and FinanceBench (Islam et al.,
2023) benchmarks. The queries for both bench-
marks directly reference the document to be used,
narrowing the scope of RAG from a corpus-wide
search to effectively the “Chat with a Document”
problem. Unless otherwise specified, our evalu-

ations use the parallelized variant of Embedding-
Free RAG described in Section 2.4.1, with Gemini
1.5 Flash as the LLM for both quotation and fi-
nal answer generation, subdocument size of 3000
words and chunk window size w = 5.

LegalBench-RAG. This benchmark prioritizes
accurate retrieval by extracting concise, highly rel-
evant text segments from legal documents for 4
datasets: Privacy Question Answering (PrivacyQA)
(Ravichander et al., 2019), Contract Understanding
Atticus Dataset (CUAD) (Hendrycks et al., 2021),
Mergers and Acquisitions Understanding Dataset
(MAUD) (Wang et al., 2023) and Contract Natural
Language Inference (ContractNLI) (Koreeda and
Manning, 2021).

The datasets span a variety of areas in the legal
space, with PrivacyQA focusing on privacy poli-
cies of consumer apps, CUAD on private contracts,
MAUD on merger and acquisition documents of
public companies and ContractNLI focusing on
NDA-related documents. Each of the nearly 7000
queries in the LegalBench-RAG benchmark is as-
sociated to one legal document, with ground-truth
annotations created by domain-experts through a
rigorous quality controlled process.

FinanceBench. This benchmark evaluates
LLMs on financial question answering, covering
40 publicly traded US companies and public filings
from 2015 to 2023. We used the open-source eval-
uation dataset that consists of 150 cases, designed
for a fine-grained analysis of question answering
capabilities across the following 3 categories:

* Domain-Relevant: Expert-written queries
targeting commonly analyzed financial indi-
cators (e.g., recent dividend payments, consis-
tency of operating margins).

* Novel-Generated: Scenario-based questions
crafted by financial experts, tailored to the spe-
cific company, report, and industry. Designed
to be realistic, varied, and non-trivial.

* Metrics-Generated: Questions requiring nu-
merical reasoning and calculations using fi-
nancial statements (e.g., income statement,
balance sheet, cash flow).

3.1 Retrieval Performance

We evaluate the performance of Embedding-Free
RAG on the retrieval subtask using the LegalBench-
RAG dataset. In the original paper, Pipitone and
Alami (2024) evaluated the recall and precision

24978

] Embedding—Free RAG

B SOTA Traditional RAG (best F1)

SOTA Traditional RAG (best Recall)

Recall Precision
0.3+
0.8
0.15
0.2+ 0.6
0.10
0.4
0.1+
0.2 0.05
0.0- 0.0 0.00
ALL CUAD ContractNLIMAUD PrivacyQA ALL CUAD ContractNLIMAUD PrivacyQA ALL CUAD ContractNLI MAUD PrivacyQA

Dataset

Dataset

Dataset

Figure 2: Embedding-Free RAG out-of-the-box significantly outperforms each of the strongest dataset-specific
RAG pipelines evaluated in the LegalBench-RAG benchmark (Pipitone and Alami, 2024) on F1 Score. Each SOTA
datapoint represents the best-performing configuration by metric from a pool of 28 RAG pipelines, optimized with
varied chunking, reranking, and retrieval strategies per dataset. Embedding-Free RAG achieves higher F1 scores
across all four legal datasets with an average improvement of 2.6x and up to 4.6x on the most challenging dataset

(MAUD).

of various RAG pipelines on the task of retriev-
ing the ground-truth annotation from a document
given a query. These pipelines used OpenAl’s
“text-embedding-3-large” embedding model and in-
cluded varied chunking strategies, reranking strate-
gies and number of chunks retrieved. Across these
variations, the paper evaluated 28 different RAG
pipelines on all datasets. We refer to the best of
these 28 pipelines as state-of-the-art (SOTA), look-
ing at best overall performance across both F1 and
Recall scores, as well as best performance on each
of the datasets for the two metrics. No one pipeline
of the 28 was the best on more than one dataset.

In our evaluations, we evaluated the preci-
sion, recall and F1 score of the chunks generated
by Embedding-Free RAG on each query in the
LegalBench-RAG benchmark dataset. We show the
F1 scores for Embedding-Free RAG using Gem-
ini 1.5 Flash as the reference quotation generation
LLM in Figure 2. Embedding-Free RAG outper-
formed the best overall RAG pipeline of Pipitone
and Alami (2024) on F1 score by a factor of 2.6x,
as well as for each of the 4 datasets. The largest
improvement on performance was with the MAUD
dataset, where Embedding-Free RAG achieved an
F1 score 4.6x higher than the previous best result.
Of the 4 datasets, retrieval on MAUD was the most
challenging in the original paper, with the highest
recall RAG pipeline only achieving a recall of 0.31
and a precision of 0.01 (Pipitone and Alami, 2024).
In comparison, Embedding-Free RAG achieved a
recall of 0.66 and a precision of 0.08

3.1.1 Retrieval Across Multiple Documents

Although Embedding-Free RAG is intended for
the “Chat with a Document” task, it can still be

applied to a more traditional RAG settings where
there is a corpus of documents and the correct doc-
ument is not known a priori. Rather than using just
one document in the quotation generation phase
for Embedding-Free RAG, all documents can be
passed as inputs. We evaluated the performance of
Embedding-Free RAG on the Multi-Document sce-
nario for the PrivacyQA dataset. Due to cost con-
cerns, we evaluated the performance of the pipeline
on a subset of 10 queries across the entire corpus.
The results are shown in Table 1.

Input Precision Recall F1 Score
Single Document 0.1489 0.6571 0.2428
Multi-Document 0.1395 0.6339 0.2287

Table 1: Although not intended for use over an en-
tire corpus due to cost considerations, Embedding-Free
RAG still maintains strong performance in the multi-
document regime.

The results of Table 1 show that Embedding-
Free RAG can be used in more traditional RAG
settings, especially when the corpus is small and
cost is not an issue.

3.1.2 Impact of Different LLLMs on Retrieval

To determine the impact of LLM used for reference
quotation generation in the retrieval phase, we con-
ducted an ablation study on the entire PrivacyQA
dataset. Our evaluation compared Llama 3.1 (8B
and 70B), Qwen 2.5 (7B, 14B and 32B), DeepSeek
R1 Distill Qwen (7B, 14B and 32B) and DeepSeek
R1 Distill Llama (70B) using the same reference
quotation generation prompt. Table 2 shows that
on the PrivacyQA dataset Embedding-Free RAG
achieves a 2x improvement in recall for 7 out of 9

24979

models for the best-performing Traditional RAG
pipeline with respect to the F1 score evaluated by
Pipitone and Alami (2024). The smallest Llama 3.1
models still achieved recall twice that of the SOTA
Traditional RAG pipeline, showing that smaller
Qwen-based models might need custom prompts
for the quotation generation task, unlike the out-of-
the-box prompt (Appendix A.1) which was used to
evaluate all models in the ablation study.

LLM ‘ Precision Recall F1 Score
Llama 3.1 (8B) 0.0991 0.6315 0.1714
Llama 3.1 (70B) 0.1709 0.6611 0.2717
Qwen 2.5 (7B) 0.1135 0.3231 0.1680
Qwen 2.5 (14B) 0.1787 0.6684 0.2821
Qwen 2.5 (32B) 0.1473 0.5094 0.2286

DeepSeek R1

Distill Qwen (7B) 0.0670 0.1853 0.0984
DeepSeek R1

Distill Qwen (14B) 0.1136 0.5720 0.1895
DeepSeek R1

Distill Qwen (32B) 0.1397 0.5998 0.2266
DeepSeek R1

Distill Llama (70B) 0.1525 0.7456 0.2533

Table 2: Varying the LLM used for reference quotation
generation on the retrieval subtask for the PrivacyQA
dataset (Ravichander et al., 2019) demonstrates that
the strong performance of the Embedding-Free RAG
framework generalizes across different models.

3.1.3 Fuzzy Matching Performance

We conducted a similar study on the entire Priva-
cyQA dataset to quantify the performance of the
fuzzy matching used during the anchor creation
stage. Using the RapidFuzz Python library on a
16GB RAM machine, we found the computational
cost of fuzzy matching to be negligible. The aver-
age time to match one quotation to the correspond-
ing sentence index was 0.005 £ 0.009 seconds,
while average space utilization was 34.64 + 14.01
KB, with peak space utilization 34.83 £ 14.01 KB.

3.2 Comparison with Long-Context LLMs

We compared the performance of Embedding-Free
RAG vs long-context LLMs on question answer-
ing for MAUD, the most challenging dataset in the
LegalBench-RAG benchmark. MAUD presents
unique difficulties due to its extensive context
length and highly technical content, which re-
quires domain expertise in mergers and acquisi-
tions. Since LegalBench-RAG primarily evaluates

the retrieval subtask, it does not provide ground-
truth answers for queries. To address this, we gen-
erate ground-truth answers with an LLM by sup-
plying the ground-truth context from the dataset.

In our experiment, for each query we gener-
ate answers using two methods: (1) long-context
LLM answer generation, where we provide the
entire document along with the question, and (2)
Embedding-Free RAG answer generation, where
we pass our retrieved chunks for response gener-
ation. For all Embedding-Free RAG variants, we
use Gemini 1.5 Flash in the reference quotation
generation phase.

To evaluate performance, we employ an LLM
oracle (GPT-40) to compare the generated answers
against the ground truth and return either a “Cor-
rect”, “Incorrect” or “Decline to Answer” label,
where the final label corresponds to the scenario
where the generator LLM responds that it cannot
answer the user query based on the provided con-
text. The reliability of the LLM oracle is validated
on a subset of the data, ensuring its assessments
align with human-verified ground-truth labels. For
answer generation, we experiment with Gemini 1.5
Flash and GPT-4o for final answer generation for
both the long-context LLM and Embedding-Free
RAG setting.

Correct answer ~ WM Incorrect answer Decline to answer

GP"IF40
Embedding-Free RAG

100 -
80
60
40 4

201

% of Evaluation Data

i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
!
h

GPT40 Gemini 1.5 Flas. Gemini 1.5 Flash

Long-Context LLMs

Figure 3: Using the same LLM for answer generation
in the Embedding-Free RAG framework compared to
passing the entire document into the model’s context
for question answering improves accuracy up to 2x on
the MAUD dataset (Wang et al., 2023). The high rate
of “failure to answer” responses from the Long-Context
LLMs provides evidence of the models’ susceptibilities
to positional bias and the “lost in the middle” effect.

Figure 3 shows that Embedding Free-RAG gives
a higher percentage of correct answers compared
to long-context LLLMs for both Gemini and GPT
models. Using Embedding-Free RAG provides a
52% and 100% improvement over the long-context

24980

model alone, for Gemini 1.5 Flash and GPT-4o,
respectively. Additionally, the long-context LLLMs
often fail to give an answer, stating that the query
cannot be answered with the available information.
The failure to recognize that the query can be an-
swered using the text is indicative of positional bias
on these large inputs (on average 350,000 charac-
ters per document for the MAUD dataset).

3.3 Structured Documents

We next evaluate the performance of Embedding-
Free RAG on FinanceBench, specifically using
the structured Embedding-Free RAG variant (see
Section 2.4.3). In the original paper, Islam et al.
(2023) bench-marked sixteen distinct model config-
urations across five setups and two prompt orders.
These configurations tested various approaches to
financial question answering, including a naive
“closed book” setting (no additional information
provided), an unrealistic “oracle” setting (provid-
ing an LLM with the correct page from the source
document), and three more realistic settings: a sin-
gle vector store per document, a shared vector store
across all documents, and a long-context window
approach using the full public filing. We compare
our results against the best results from the three
pipelines that fit within the “Chat with a Document”
paradigm: (1) the single vector store per document,
(2) the long-context LLM with access to the en-
tire document, and (3) the oracle setting, which
represents RAG with perfect retrieval.

To incorporate metadata about the structured
public filing documents into Embedding-Free RAG,
we used pages as our atomic unit. When pars-
ing each PDF with standard Python libraries, the
text can be easily annotated on the fly with where
pages begin and end. During the retrieval phase, we
prompted the LLM to return a list of page numbers
which contain relevant information. The returned
list of pages function as anchors, and we retrieve
each specified page and pass all of them to the LLM
for the final generation prompt. While Gemini 1.5
Flash was used for reference quotation generation,
we used GPT-4 Turbo for the final answer genera-
tion LLM, as that was the best-performing model
available and evaluated when the benchmark was
published. This allows us to directly compare the
performance of Embedding-Free RAG with the re-
sults of Islam et al. (2023).

Table 3 shows the performance of Embedding-
Free RAG on the FinanceBench benchmark, with
the best performing methods evaluated by Islam

Technique Correct Incorrect Failed to
Answer Answer Answer
Traditional RAG™ 50% 11% 39%
Long-Context LLM™ | 79% 17% 4%
Embedding-Free RAG| 82% 14% 4%
Oracle” 85% 15% 0%

Table 3: Embedding-Free RAG outperforms the best
traditional RAG and long-context LLM results on the
FinanceBench benchmark (Islam et al., 2023), achieving
an accuracy close to that of the Oracle (an LLM with
access to ground-truth context).

et al. (2023) shown (annotated with asterisks).
Embedding-Free RAG excels on this challeng-
ing benchmark, outperforming both the best long-
context LLM result as well as best traditional RAG
result. The performance of the Oracle shows that
the performance of GPT-4 Turbo, even with access
to the ground-truth retrieved information, still only
achieves 85% accuracy. This result demonstrates
the limitations of GPT-4 Turbo itself in answering
challenging financial questions and contextualizes
the 83% accuracy of Embedding-Free RAG.
Since LLMs struggle with tabular data (Zhang
et al., 2023), we wanted to compare the perfor-
mance of Embedding-Free RAG on text extracted
using a standard Python PDF parsing library with
content extracted by Optical Character Recogni-
tion (OCR). Extracting text from a document us-
ing OCR provides the LLM with more structural
information about tables and other objects in the
filings. For our OCR engine, we use Amazon Tex-
tract (AWS, 2024), which is able to return tabular
data within a document in markdown format. The
pages are then annotated in the same manner and
the same reference quotation generation prompt.

Qustinype | sy Aceucy
Domain Relevant 70% 64%
Novel Generated 84% 84%

Metrics Generated 92% 78%

Table 4: Surprisingly, Embedding-Free RAG on content
extracted with OCR performed worse than on content
extracted without OCR across all question types on the
FinanceBench benchmark (Islam et al., 2023).

Table 4 shows the surprising results that refer-
ence quotation generation is actually worse with
tabular information displayed in markdown format.
The biggest drop in performance is for the met-

24981

rics generated question type, which heavily relies
on parsing and utilizing information in tables. Al-
though our results are only for the performance
of Gemini 1.5 Flash on OCR outputs and may be
a model-related artifact, evidence in the literature
suggests that markdown may not be an optimal
representation of tabular data, compared to other
formats such as HTML (Sui et al., 2024).

4 Conclusion

Embedding-Free RAG advances RAG by replac-
ing traditional embedding models with an LLM-
based, model-agnostic approach. Our one-size-fits-
all pipeline removes the need for extensive hyperpa-
rameter tuning, cutting deployment costs and com-
plexity. Extensive empirical evaluations on chal-
lenging legal and financial datasets demonstrate
Embedding-Free RAG’s superior performance on
retrieval tasks question-answering accuracy. Scal-
ability is enabled through parallelization, sup-
porting efficient processing of large documents.
Embedding-Free RAG offers a powerful and adapt-
able solution for real-time, user-driven question
answering on user-provided documents, particu-
larly in specialized domains where domain-specific
knowledge is crucial.

5 Limitations

While Embedding-Free RAG performs well on
challenging QA tasks, it is not suitable for all use
cases. It is ill-suited for summarization, where
reference quoting is undefined or intractable, and
often requires passing the full document to the
LLM—undermining the efficiency benefits. For
large-scale applications over fixed document sets,
traditional RAG remains more cost-effective long-
term due to its lower inference overhead, despite
higher initial setup costs. In such settings, alterna-
tives like DocAl and programmatic extraction may
be more appropriate. Finally, the additional cost of
Embedding-Free RAG might not be necessary for
less-challenging, non-technical documents, where
long-context LLM inference alone can suffice.

Acknowledgments

We thank Koustuv Dasgupta for his valuable feed-
back and guidance in refining and positioning this
work. We are also grateful to Bing Xiang and Rahul
Sharma for their support in bringing this publica-
tion to fruition.

References
Adobe. 2024. Adobe document upload. Website.

Toufique Ahmed, Christian Bird, Premkumar Devanbu,
and Saikat Chakraborty. 2024. Studying llm per-
formance on closed-and open-source data. arXiv
preprint arXiv:2402.15100.

Peter Anderson, Mano Vikash Janardhanan, Jason He,
Wei Cheng, and Charlie Flanagan. 2024. Green-
back bears and fiscal hawks: Finance is a jungle
and text embeddings must adapt. arXiv preprint
arXiv:2411.07142.

AWS. 2024. Amazon textract. Website.
Max Bachmann. Rapidfuzz 3.11.0. Website.

Zechen Bai, Pichao Wang, Tianjun Xiao, Tong He,
Zongbo Han, Zheng Zhang, and Mike Zheng Shou.
2024. Hallucination of multimodal large language
models: A survey. arXiv preprint arXiv:2404.18930.

Laura Caspari, Kanishka Ghosh Dastidar, Saber Zer-
houdi, Jelena Mitrovic, and Michael Granitzer. 2024.
Beyond benchmarks: Evaluating embedding model
similarity for retrieval augmented generation systems.
arXiv preprint arXiv:2407.08275.

Ilias Chalkidis, Manos Fergadiotis, Prodromos Malaka-
siotis, Nikolaos Aletras, and Ion Androutsopoulos.
2020. Legal-bert: The muppets straight out of law
school. arXiv preprint arXiv:2010.02559.

Yanxi Chen, Yaliang Li, Bolin Ding, and Jingren Zhou.
2024. On the design and analysis of 1lm-based algo-
rithms. arXiv preprint arXiv:2407.14788.

Lei Cui, Yiheng Xu, Tengchao Lv, and Furu Wei. 2021.
Document ai: Benchmarks, models and applications.
arXiv preprint arXiv:2111.08609.

Dawid Dahl. 2024. The death of rag: What a 10m token
breakthrough means for developers. Website.

Rian Dolphin, Barry Smyth, and Ruihai Dong. 2022.
Stock embeddings: Learning distributed repre-
sentations for financial assets. arXiv preprint
arXiv:2202.08968.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen
Wang. 2023. Retrieval-augmented generation for
large language models: A survey. arXiv preprint
arXiv:2312.10997.

Google. 2024. Pricing models. Website.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Mingwei Chang. 2020. Retrieval augmented
language model pre-training. In International confer-
ence on machine learning, pages 3929-3938. PMLR.

Dan Hendrycks, Collin Burns, Anya Chen, and
Spencer Ball. 2021. Cuad: An expert-annotated
nlp dataset for legal contract review. arXiv preprint
arXiv:2103.06268.

24982

https://www.adobe.com/acrobat/online/ai-chat-pdf.html
https://aws.amazon.com/textract/
https://pypi.org/project/RapidFuzz/
https://dev.to/dawiddahl/the-death-of-rag-what-a-10m-token-breakthrough-means-for-developers-3p24
https://dev.to/dawiddahl/the-death-of-rag-what-a-10m-token-breakthrough-means-for-developers-3p24
https://ai.google.dev/pricing#1_5flash

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems.

Pranab Islam, Anand Kannappan, Douwe Kiela, Re-
becca Qian, Nino Scherrer, and Bertie Vidgen. 2023.
Financebench: A new benchmark for financial ques-
tion answering. arXiv preprint arXiv:2311.11944.

Qiao Jin, Chuangi Tan, Mosha Chen, Ming Yan, Ningyu
Zhang, Songfang Huang, Xiaozhong Liu, et al.
2022. State-of-the-art evidence retriever for preci-
sion medicine: algorithm development and validation.
JMIR Medical Informatics, 10(12):e40743.

Yuta Koreeda and Christopher D Manning. 2021.
Contractnli: A dataset for document-level natural
language inference for contracts. arXiv preprint
arXiv:2110.01799.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Dongfang Li, Zetian Sun, Xinshuo Hu, Zhenyu Liu,
Ziyang Chen, Baotian Hu, Aiguo Wu, and Min
Zhang. 2023. A survey of large language models
attribution. arXiv preprint arXiv:2311.03731.

Ming Li, Keyu Chen, Zigian Bi, Ming Liu, Benji Peng,
Qian Niu, Junyu Liu, Jinlang Wang, Sen Zhang, Xu-
anhe Pan, et al. 2024. Surveying the mllm landscape:
A meta-review of current surveys. arXiv preprint
arXiv:2409.18991.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics, 12:157-173.

Xinbei Ma, Yeyun Gong, Pengcheng He, Hai Zhao,
and Nan Duan. 2023. Query rewriting for retrieval-
augmented large language models. arXiv preprint
arXiv:2305.14283.

Microsoft. 2024. Microsoft document upload. Website.

Shervin Minaee, Tomas Mikolov, Narjes Nikzad,
Meysam Chenaghlu, Richard Socher, Xavier Am-
atriain, and Jianfeng Gao. 2024. Large language
models: A survey. arXiv preprint arXiv:2402.06196.

Rodrigo Nogueira, Wei Yang, Kyunghyun Cho, and
Jimmy Lin. 2019. Multi-stage document ranking
with bert. arXiv preprint arXiv:1910.14424.

OpenAl. 2024. Introducing openai ol. Website.

PDF.ai. 2024. Pdf.ai document upload. Website.

Sundar Pichai and Demis Hassabis. 2024. Our next-
generation model: Gemini 1.5. Website.

Nicholas Pipitone and Ghita Houir Alami. 2024.
Legalbench-rag: A benchmark for retrieval-
augmented generation in the legal domain. arXiv
preprint arXiv:2408.10343.

Renyi Qu, Ruixuan Tu, and Forrest Bao. 2024. Is seman-
tic chunking worth the computational cost? arXiv
preprint arXiv:2410.13070.

NL Rane, M Paramesha, J Rane, and O Kaya. 2024.
Emerging trends and future research opportunities
in artificial intelligence, machine learning, and deep
learning. Artificial Intelligence and Industry in Soci-
ety, 5:2-96.

Abhilasha Ravichander, Alan W Black, Shomir Wilson,
Thomas Norton, and Norman Sadeh. 2019. Ques-
tion answering for privacy policies: Combining com-
putational and legal perspectives. arXiv preprint
arXiv:1911.00841.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and
Dongmei Zhang. 2024. Table meets llm: Can large
language models understand structured table data?
a benchmark and empirical study. In Proceedings
of the 17th ACM International Conference on Web
Search and Data Mining, pages 645-654.

Yixuan Tang and Yi Yang. 2024. Do we need domain-
specific embedding models? an empirical investiga-
tion. arXiv preprint arXiv:2409.18511.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Runchu Tian, Yanghao Li, Yuepeng Fu, Siyang Deng,
Qinyu Luo, Cheng Qian, Shuo Wang, Xin Cong,
Zhong Zhang, Yesai Wu, et al. 2024. Distance be-
tween relevant information pieces causes bias in long-
context 1lms. arXiv preprint arXiv:2410.14641.

Steven H Wang, Antoine Scardigli, Leonard Tang,
Wei Chen, Dimitry Levkin, Anya Chen, Spencer
Ball, Thomas Woodside, Oliver Zhang, and Dan
Hendrycks. 2023. Maud: An expert-annotated le-
gal nlp dataset for merger agreement understanding.
arXiv preprint arXiv:2301.00876.

Xiaohua Wang, Zhenghua Wang, Xuan Gao, Feiran
Zhang, Yixin Wu, Zhibo Xu, Tianyuan Shi,
Zhengyuan Wang, Shizheng Li, Qi Qian, et al. 2024a.
Searching for best practices in retrieval-augmented
generation. In Proceedings of the 2024 Conference
on Empirical Methods in Natural Language Process-
ing, pages 17716-17736.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang,
Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng Li,

24983

https://learn.microsoft.com/en-us/microsoft-copilot-service/content-sources-files
https://openai.com/o1/
https://pdf.ai/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/

Xian Li, Bing Yin, et al. 2024b. Memoryllm: To-
wards self-updatable large language models. arXiv
preprint arXiv:2402.04624.

Antonio Jimeno Yepes, Yao You, Jan Milczek, Sebas-
tian Laverde, and Renyu Li. 2024. Financial report
chunking for effective retrieval augmented genera-
tion. arXiv preprint arXiv:2402.05131.

Zheng Yuan, Zhengyun Zhao, Haixia Sun, Jiao Li, Fei
Wang, and Sheng Yu. 2022. Coder: Knowledge-
infused cross-lingual medical term embedding for
term normalization. Journal of biomedical informat-
ics, 126:103983.

Han Zhang, Xumeng Wen, Shun Zheng, Wei Xu,
and Jiang Bian. 2023. Towards foundation mod-
els for learning on tabular data. arXiv preprint
arXiv:2310.07338.

24984

A Auxiliary Algorithms

A.1 Reference Quotation Generation

Your task is to find information related to the Query based on the Document Chunk.
Here is a description of the Document: {doc_desc}

Your response must be a list of relevant quote strings.

The quotes must be exact quotes from the Document that are directly related to the query.
Each exact quote must be a word-for-word quote from the Document.

If there are no related quotes, return an empty list.

Reminder, this is what your response should look like:
["<quote_1>", "<quote_2>", ... , "<quote_n>"]

If there are no relevant quotes, your answer should be an empty list.
Do not return an empty string or None, instead return exactly the following:

I[]l

Query: {query}

Document Chunk: {doc}

Format: {format_instructions}
Output List:

A.2 Final Answer Generation

Read the following Text and answer the Question directly in 10-15 words.

Please be sure to directly answer the question.

Say "Sorry, the information is not available.” if you don't know the answer based on the Text.
Question: {query}

Here is a description of the Document: {doc_desc}

Text: {doc}

Answer:

A.3 Merging Overlapping Chunks

Algorithm 2 Merge Overlapping Chunks

Require: c = [c1,c2,. .., ¢;j] where ¢; = [Syinfa;—w,1}s - - - » Smax{as+w,n})
1: C < [] > Initialize the merged list
: for each ¢; in c do
if C' is empty then
C «+ [CZ]

last_chunk <+ C[—1]
if c; overlaps with last_chunk then

merged—Chunk — [Smin(min{ai—w,l},min{alast—w,l})v R Smax(max{ai+w,n},max{amsl+w,n})}

2
3
4
5: else
6
7
8
9 C[—1] < merged_chunk

10: else

11: C+ CU]lg]
12: end if

13: end if

14: end for

15: return C

24985

