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Abstract

Recent research has attempted to associate pref-
erence optimization (PO) performance with the
underlying preference datasets. In this work,
our observation is that the differences between
the preferred response y+ and dispreferred re-
sponse y− influence what LLMs can learn,
which may not match the desirable differences
to learn. Therefore, we use distance and re-
ward margin to quantify these differences, and
combine them to get Distance Calibrated Re-
ward Margin (DCRM), a metric that measures the
quality of a response pair for PO. Intuitively,
DCRM encourages minimal noisy differences and
maximal desired differences. With this, we
study three types of commonly used preference
datasets, classified along two axes: the source
of the responses and the preference labeling
function. We establish a general correlation be-
tween higher DCRM of the training set and better
learning outcome. Inspired by this, we pro-
pose a best-of-N2 pairing method that selects
response pairs with the highest DCRM. Empiri-
cally, in various settings, our method produces
training datasets that can further improve mod-
els’ performance on AlpacaEval, MT-Bench,
and Arena-Hard over the existing training sets.1

1 Introduction

Preference optimization (PO) methods such as
DPO (Rafailov et al., 2024) have shown success
in improving LLMs’ performance in various tasks
(Dubois et al., 2024). These methods usually in-
volve a contrastive learning objective that encour-
ages LLMs to generate a preferred response y+

with higher probability and a dispreferred response
y− with lower probability, given a query x.

Prior research (Tang et al., 2024; Razin et al.,
2024) has shown the importance of selecting suit-
able response pairs for PO training. In particular,
the contrastive training signals sent to LLMs are
partly derived from the differences between y+ and

1Our code is at https://github.com/HCY123902/DCRM.
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Figure 1: Top: Ideal response pairs should have fewer
noisy differences (small distances) and more desired
differences (large reward margins). DCRM measures re-
sponse pair quality with this intuition; Bottom: Com-
mon preference datasets (SS-RM, DS-RM, DS-Fix; See
§ 2.2) have varying locations in the distance-reward mar-
gin landscape, but none achieves an ideal combination.

y−. However, the latter often includes a mix of
desirable differences we want the model to learn
(e.g., y+ is more helpful than y− in factoid ques-
tion answering) as well as noisy differences. For
instance, y+ and y− can differ in features that are
irrelevant to quality or correctness, e.g. different
writing styles for factoid question answering. Ide-
ally, we want a preference optimization dataset that
minimizes the fraction of these noisy signals in the
overall dataset, thereby prioritizing useful signals
(See Figure 1).

Although prior research (D’Oosterlinck et al.,
2024; Wu et al., 2024) has investigated the correla-
tion between certain proxies of “differences” (e.g.,
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edit distance) and PO learning outcome, it does
not distinguish noisy and desired differences, and
therefore cannot accurately model the relationship.

In this paper, we develop a metric called Dis-
tance Calibrated Reward Margin (DCRM) to mea-
sure the density of desired differences among the
overall differences in a preference optimization
dataset. DCRM computes the the ratio between the
reward margin, which we use as a proxy for de-
sired differences, and two distance metrics (edit
distance, probability difference), which we use as
proxies for the total difference. We find that DCRM
scores effectively capture the quality of a prefer-
ence optimization dataset; language models trained
on datasets with higher scores report in better learn-
ing outcomes after training.

Concretely, we study DCRM’s impact on quality
for three types of preference dataset construction
strategies, categorized based on the (1) source of
the positive (y+) and negative (y−) pairs, and the
(2) preference labeling scheme (reward model v/s
heuristics). Combined, these cover the common
preference dataset curation techniques used in prior
works (Meng et al., 2024; Amini et al., 2024; Köpf
et al., 2023; Chen et al., 2024). For all strategies,
we use Ultrafeedback (Cui et al., 2023) as the seed
to construct the datasets. We train three base mod-
els (LLaMA-2-7B-Chat, LLaMA-3.2-1B-Instruct,
Gemma-2B-IT) on these datasets and use AlpacaE-
val (Dubois et al., 2024), MT-Bench (Zheng et al.,
2023), and Arena-Hard (Li et al., 2024) for evalua-
tion.

For all models and dataset combinations, we
find that different dataset construction strategies
result in datasets with very different DCRM scores.
Interestingly, we find that higher DCRM scores of
training datasets correlate with better training out-
comes for the trained models. We operationalize
this correlation and propose a strategy called Best
of N2 that curates preference optimization training
data that maximizes the dataset-wide DCRM score.
Our strategy allows us to flexibly construct better
quality preference datasets for any given model
and input questions combination. Our results show
that LLMs trained on datasets that maximize DCRM
leads to a substantial boost in performance com-
pared to the original datasets. Our contribution is
summarized as follows.
• We propose a novel metric DCRM that measures

the quality of a response pair for PO training.

• We compare three common types of preference
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Figure 2: Commonly used preference datasets, catego-
rized into 3 types according to their responses sources
and preference labeling functions.

datasets and show a positive correlation between
the average DCRM value of a training dataset and
the training effectiveness.

• We propose best-of-N2 pairing, which selects
response pairs with high DCRM values for better
PO training.

2 Task Setup

2.1 Problem Definition
Let π(y|x) be a language model (LM) that places
a probability distribution over response y condi-
tioned on input x. Let D = {xi, y+i , y−i } be a pref-
erence dataset where responses y+ are preferred
to y−. Offline preference optimization, like Direct
Preference Optimization (DPO)2 (Rafailov et al.,
2024), use D to train model πθ starting from the
base model πref , by minimizing the following loss:

LDPO

= −E(x,y+,y−)∼D

[
log σ

(
β log

πθ(y
+|x)

πref(y+|x)

− β log
πθ(y

−|x)
πref(y−|x)

)]

where β is a hyperparameter.
In this work, we aim to understand how qualita-

tive and quantitative differences between y+ and
y− influence the learning behavior of DPO.

2.2 Preference Datasets
To guide our investigation, we group common tech-
niques for preference dataset curation into 3 cate-
gories, according to two axes: source distribution

2Many variations of DPO have been proposed (Azar et al.,
2023; Park et al., 2024; Meng et al., 2024; Hong et al., 2024).
Since our focus in this work is investigating the impact of
preference dataset choices, we fix DPO as our PO algorithm.
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of the response y, and the preference labeling func-
tion (see Figure 2).

Same Source w/ RM Preference (SS-RM) The
original DPO work (Rafailov et al., 2024) proposed
to sample y+ and y− from the same model, πref
(SSπref

), and derive the preference labels using a
reward model. This has been widely adopted in
follow-up works (Meng et al., 2024; Amini et al.,
2024; Azar et al., 2023; Lai et al., 2024). Note that
y+ and y− can also be from the same source that
is not πref (SSπother

), meaning that these datasets
can be re-used to train a different base LLM too.

Diff Source w/ RM Preference (DS-RM) Ear-
lier work in DPO used output pairs sampled from
two different humans (Köpf et al., 2023) or models
(Ultrafeedback binarized (Cui et al., 2023; Tunstall
et al., 2023); Argilla-OpenOrca3) to construct the
dataset (i.e., y+ is from a different source than y−).
The preference labels were typically assigned using
a reward model or LLM-based judges. This dataset
construction is agnostic to the choice of the pol-
icy πref . Once created, these datasets can again be
re-used without additional sampling or preference
labeling overhead for any new choice of πref (Wu
et al., 2024; Hong et al., 2024; Bai et al., 2022).

Diff Source w/ Fixed Preference (DS-Fix)
It is possible to have a prior estimate of the relative
strengths of two sampling sources (e.g. using rank-
ings on benchmarks like Chatbot-Arena (Chiang
et al., 2024)). In such scenarios, instance-level pref-
erence between 2 responses from different sources
can be assigned based on model-level rankings (i.e.,
y+ is always from a "stronger" model than y−).
Methods such as SPIN (Chen et al., 2024) have suc-
cessfully used such strategies (setting y− ∼ πref)
while others (D’Oosterlinck et al., 2024) report
suboptimal performance with these datasets.

2.3 Measuring density of desired differences

Our goal is to study how corpus-level differences in
preference pairs impact models’ learned behavior
after DPO. We quantify the difference between y+

and y− using a combination of three metrics, which
we explain and motivate below:

Token-level edit distance (e∆) between y+ and
y− is the first distance metric that we use. It is

3https://huggingface.co/datasets/argilla/
distilabel-intel-orca-dpo-pairs

the token-level Levenshtein distance between 2 out-
puts. In particular, it counts the number of inser-
tions, deletions, or substitutions of a single LLM
token that are needed to convert y− into y+. e∆
is easily computable and πref agnostic. It captures
differences in length, lexicon, syntax, etc.

πref ’s LogProb Difference (p∆) is the second
distance metric that we use. It is computed as
|log πref(y+|x)−log πref(y

−|x)|. p∆ measures the
difference in probability mass placed on y+ and y−

by πref . It captures a different notion of “distance”
from edit-distance; two samples can be very dif-
ferent lexically but be assigned similar probability
by πref , or vice versa. These are tougher for the
implicit reward model in DPO to distinguish, and
this measure helps us account for such instances.

Reward Margin (r∆) measures the difference in
rewards from a reward model RM. It is computed
as r∆ = ry+ − ry− , where ry is the reward score
RM assigns to an output y. This reward margin
quantifies the desired differences in targeted (rele-
vant) features between the two outputs, irrespective
of their lexical and probability differences.

We combine these to construct a single met-
ric that measures the density of “desired” differ-
ences between two outputs. We call this distance-
calibrated reward margin (DCRM):

DCRM(y+, y−) =
σ(r∆)− 0.5

e∆ + p∆ + ϵ
(1)

We omit (y+, y−) as the arguments for r∆, e∆, p∆
for brevity and include constant ϵ = 1 for numeric
stability. The numerator captures the normalized
reward margin4 between y+ and y− (a 0-centered
Bradley-Terry model (Bradley and Terry, 1952)),
and the denominator measures their distances (i.e.,
lexical and probabilistic differences).5

We hypothesize that when the useful contrast
signals (desired differences, measured by r∆) are a
large fraction of the total differences (measured by
e∆ + p∆) in the response pair (i.e., useful signals
are dense), training becomes more effective.
DCRM captures this hypothesis. A high DCRM im-

plies (1) a high reward margin between y+ and y−

(i.e. there are many desired differences between the
two for πref to learn from) and (2) low distances be-
tween the two (i.e., the total differences are small).

4We apply the sigmoid function to normalize r∆ to be
between [0, 1] and subtract 0.5 to preserve the margin sign.

5We do not adjust the scales of e∆ and p∆ since we find
that these are similar across most settings in our experiments.
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Type Dataset πref =LLaMA2 (LLaMA-2-7B-Chat) πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)

e∆ p∆ r∆ (e-2) DCRM (e-2) e∆ p∆ r∆ (e-2) DCRM (e-2)

SS-RM πref 427 32.48 2.82 4.54 434 120.07 4.22 7.53
Gma2 370 91.78 1.70 2.87 370 84.78 1.70 3.15
Mst 526 158.54 2.13 1.59 526 176.22 2.13 1.68

DS-RM Gma2-Mst 542 226.47 2.03 1.13 542 228.22 2.03 1.17

DS-Fix Gma2-Mst 542 226.47 1.02 0.43 542 228.22 1.02 0.44

Table 1: Statistics of the datasets. Each metric value is averaged across examples. Changing πref changes p∆ and
so we report separate statistics for LLaMA2 and LLaMA3.2. The reported DCRM values are scaled 1k times for
visualization, which does not affect correlation analysis. SS-RM datasets have the highest DCRM while DS-Fix ones
have the lowest DCRM.

In this case, training signals are more meaningful
and less noisy for the LLMs to learn effectively.6

3 Experiment Setup

3.1 Training Setup

Models We experiment with three options for
our base model (πref ). They include LLaMA2
(LLaMA-2-7B-Chat; Touvron et al. (2023b)),
LLaMA3.2 (LLaMA-3.2-1B-Instruct; Grattafiori
et al. (2024), and an extra model from other series
Gemma (Gemma-2B-IT; Mesnard et al. (2024)).
We train each of these models using the DPO ob-
jective for 2 epochs, and select the best checkpoint
based on validation performance. Please refer to
Appendix B for other training details. Due to length
constraints, we report results for LLaMA2 and
LLaMA3.2 in the main paper, and put the results
for Gemma in Appendix E.

We use the overall scores from the reward model
ArmoRM (Wang et al., 2024a) to compute r∆.

Preference Datasets We use the 60K prompts
from Ultrafeedback (Cui et al., 2023). We create
our preference datasets using responses sampled
from four different models across the three settings
(SS-RM, DS-RM, DS-Fix) described in § 2.2.

For SS-RM, we sample responses from the base
model πref . We also use Gemma-2-9B-IT (Gma2)
and Mistral-7B-Instruct-v0.2 (Mst) as two extra
sources of responses. For each source, we follow
Meng et al. (2024) and sample N = 5 responses
and then select the best response pair with the high-
est r∆ using the reward model RM.

For DS-RM, we fix the source distributions to
Gemma-2-9B-IT (Gma2) and Mistral-7B-Instruct-
v0.2 (Mst). We sample one response from each,
and decide the preference label using RM. We find

6See Appendix D for the properties of DCRM.

that roughly 70% of y+ comes from Gma2 and
70% of y− comes from Mst.

For DS-Fix, we use the same response pairs as
DS-RM, but always set y+ to be from Gemma-2-9B-
IT (stronger model) and y− to be from Mistral-7B-
Instruct-v0.2 (weaker model), respectively.

Dataset Statistics Table 1 shows the dataset
statistics. As expected, SS-RM datasets, which get
the paired responses from the same source, have
the lowest e∆ and p∆, leading to the highest overall
DCRM. DS-RM has higher distances and consequently
lower DCRM. Surprisingly, we find that DS-Fix has
the lowest reward margin even though its samples
have a higher lexical difference. This makes it have
the lowest DCRM across the three settings.

3.2 Quantitative Evaluation

We evaluate the general conversational and
instruction-following abilities of our trained mod-
els πθ using three chat benchmarks, AlpacaEval,
MT-Bench, and Arena-Hard. AlpacaEval reports
the models’ win rates against a baseline model,
GPT-4-1106-Preview (Achiam et al., 2024). Arena-
Hard runs similar evaluations, with GPT-4-0314
as the baseline model. MT-Bench is a multi-turn
conversational benchmark and uses a judge model
to score the model’s responses on a scale of 10.7

4 Comparing Different Types of
Preference Datasets

In this section, we compare models that are trained
on different types of preference datasets, and estab-
lish a correlation between the dataset-level DCRM
value and downstream performances. We report
the results in Table 2.

7For all three benchmarks, we use GPT-4o-mini-2024-
0718 (Hurst et al., 2024) as the judge to regulate costs.
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AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

SS-RM +πref 22.36 16.81 5.55 16.67
+Gma2 15.89 13.12 5.50 11.57
+Mst 15.49 12.07 5.40 10.42

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55

DS-Fix +Gma2-Mst 13.26 8.99 5.24 6.68

LLaMA3.2 14.15 15.34 4.66 10.88

SS-RM +πref 22.80 25.65 5.01 18.88
+Gma2 24.57 27.52 4.99 15.91
+Mst 19.43 19.94 4.91 16.03

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61

DS-Fix +Gma2-Mst 10.31 8.20 4.54 14.94

Table 2: Main Results; AP-L: Length-Controlled Win
Rate on AlpacaEval; AP-R: Raw Win Rate on AlpacaE-
val; MT: MT-Bench Score; AH: Arena-Hard Win Rate;
SS-RM datasets generally lead to the best performance
while DS-Fix ones lead to the worst performance.

Sampling from the same source distribution
(SS-RM) outperforms other methods. Table 2
shows that sampling response pairs from the same
distribution (πref and others) and deriving prefer-
ences using the reward model perform better than
DS-RM and DS-Fix. In particular, training with
responses from πref gives the best performance,
which mirrors findings from prior work (Tang et al.,
2024). Relating back to Table 1, SS-RM datasets
also have the highest DCRM value.

To our surprise, SS-RM Gma2 is on par with
SS-RM πref when πref=LLaMA3.2. Consulting Ta-
ble 1, we see that SS-RM Gma2 has a lower p∆ than
that of LLaMA3.2, possibly explaining this result.

DS-Fix performs worse than the base model.
This technique performs the worst among the three
dataset settings. Similar results have also been re-
ported by D’Oosterlinck et al. (2024). In fact, we
find that its performance is worse than even the
starting model. In Appendix A, we show that there
are consistent stylistic differences between the two
source distributions (e.g. presence of more emojis
in Y + than Y −), which is reflected in the model’s
output after training. Again, relating back, DS-Fix
datasets also have the lowest DCRM value.

DCRM is positively correlated with model per-
formance after training. With the above obser-
vations, we formally quantify the correlation be-
tween DCRM and downstream performance. To in-
clude sufficient data points, we sample multiple
outputs from the source distributions and select re-

Figure 3: DCRM is positively correlated with models’
performance boost on AP-L. PCC: Pearson Correlation
Coefficient; Y axis: change in AP-L after training. Each
point in the diagram corresponds to a trained model.

sponse pairs that vary the dataset-level p∆, e∆, and
r∆.8 We compute the performance boost, i.e. the
AP-L improvement of πθ against πref , and show its
correlation with DCRM in Figure 3.9

We find that DCRM and downstream performance
are moderately positively correlated, with a Pear-
son Correlation of 0.59, which is stronger than the
individual metrics – correlation with e∆, p∆, and
r∆ is -0.51, -0.55, and 0.43 respectively (See Ap-
pendix F.1). We observe a saturation effect once
DCRM passes 0.075, and suspect this to be caused
by the inherent limitations of the reward model.

5 Operationalizing DCRM

In § 4, we observe that higher DCRM is correlated
with better training outcomes. Can we use this
correlation to guide training dataset selection?

Approach An answer is to sample responses
from πref . However, this can be expensive with
a large model or dataset. Instead, we want to inves-
tigate how to select the best response pair from an
existing pool of responses, Formally, given N re-
sponses {y1, · · · , yN} (and also {yN+1, · · · , y2N}
from a second model in the DS setting), we propose
to select the pair (yi, yj) with the highest DCRM. We
denote this as Best of N2 pairing (BoN2), since we
select the best pair from N ×N candidates. Our
method is different from the conventional method
(used in SS-RM), which chooses the pair with the
highest reward margin by setting y+ and y− to the
response with the highest and lowest reward scores.

Setup We apply our method to three baselines.
In the Same Source (SS-RM) setting, we reselect

8See Appendix F for details.
9See MT and AH correlations in Appendix G.
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Type Dataset πref =LLaMA2 (LLaMA-2-7B-Chat) πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)

e∆ p∆ r∆(e-2) DCRM(e-2) e∆ p∆ r∆(e-2) DCRM(e-2)

SS-RM πref 427 32.48 2.82 4.54 434 120.07 4.22 7.53
w/ BoN2 370 23.87 2.52 5.94 356 63.55 3.58 11.48

SS-RM Mst 526 158.54 2.13 1.59 526 176.22 2.13 1.68
w/ BoN2 410 79.94 1.79 2.07 339 78.81 1.78 2.44

DS-RM Gma2-Mst 542 226.47 2.03 1.13 542 228.22 2.03 1.17
w/ BoN2 458 142.94 3.27 2.58 374 134.94 3.24 3.02

Table 3: Statistics of the original and new datasets; w/ BoN2 indicates datasets whose response pairs are reselected
using best-of-N2 method. They have a higher DCRM value than their original counterparts.

AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

SS-RM +πref 22.36 16.81 5.55 16.67
w/ BoN2 22.41 17.2 5.67 16.07

SS-RM +Mst 15.49 12.07 5.40 10.42
w/ BoN2 17.42 13.29 5.48 10.99

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55
w/ BoN2 16.82 13.6 5.48 11.75

LLaMA3.2 14.15 15.34 4.66 10.88

SS-RM +πref 22.80 25.65 5.01 18.88
w/ BoN2 24.77 27.64 5.10 20.25

SS-RM +Mst 19.43 19.94 4.91 16.03
w/ BoN2 21.73 21.37 5.11 16.62

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61
w/ BoN2 24.53 27.76 5.04 19.17

Table 4: Main Results; BoN2 datasets give a stronger
performance than their original counterparts.

the response pair using the existing N responses
sampled from (1) πref , or (2) Mst. In the Different
Sources (DS-RM)10 setting, we use (3) Gma2-Mst
as the third baseline, and select a response pair with
the highest DCRM while maintaining the condition
that y+ and y− come from different sources.11

Table 3 gives a comparison between the origi-
nal and reselected datasets. After reselection with
DCRM, both e∆ and p∆ decrease, while r∆ stays in
a reasonable range without too much drop.

5.1 Main Results

We compare BoN2 against the baselines in Table 4.

Best of N2 pairing increases performance across
all settings. When training LLaMA3.2, we ob-
serve a higher performance across all baselines.

10Applying our method to the DS-Fix setting leads to the
same dataset as DS-RM, so we combine them together

11Baseline (3) is not strictly a fair comparison. In Ap-
pendix E we provide a fair baseline w/ BoN2 (r∆ only).

AP-L AP-R MT AH

LLaMA2 12.57 10.43 5.41 8.90

+πref 22.36 16.81 5.55 16.67
w/ BoN2 22.41 17.20 5.67 16.07

-p∆ 22.1 17.27 5.59 15.62
-e∆ 24.04 17.14 5.51 14.61
-r∆ 14.81 12.11 5.54 12.97

Table 5: Ablation Study on DCRM in the SS-RM setting;
Removing p∆ or e∆ hurts performance slightly, while
removing r∆ significantly reduces performance.

When training LLaMA2, performance increases
notably on top of both Mst (SS-RM) and Gma2-
Mst (DS-RM), especially for the latter.

However, performance only increases marginally
in the LLaMA2 πref (SS-RM) setting. We suspect
that most responses from LLaMA2 are similar to
each other. In this case, maximizing the reward
margin will not incur very high distances, so the
response pairs from πref (SS-RM) are already close
to the best. There is little room for improvement
no matter how we reselect the pairs. This is evident
in Table 3, where we observe a smaller reduction
in e∆ and p∆ compared with every other setting.

5.2 Ablation Study

Since DCRM is composed of three metrics, we do an
ablation study of our method in the πref (SS-RM)
setting. We remove one of p∆, e∆, or r∆ from
DCRM and reselect the response pair. Table 5 shows
that removing p∆ gives a performance close to
that of the complete metric, while removing
e∆ slightly hurts performance. In Appendix I,
we show that removing either of these in the Mst
(SS-RM) and DS-RM settings can still give a per-
formance boost over the original datasets, which
means in these settings our method can be effective
with a cheaper computation.
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Removing r∆ makes training much less effective.
This is expected, since without r∆ our method se-
lects response pairs that have the smallest distances
and are minimally different. This not only elimi-
nates noisy differences, but also those useful ones.

6 Qualitative Analysis (Feature-Analysis)

§ 4 and § 5 show the correlation between the DCRM
value of a training set and quantitative performance.
We also want to inspect whether these datasets have
qualitative differences, to validate our starting moti-
vation that connects performance with data quality
(i.e., more desired differences and fewer noisy ones
between y+ and y− make PO more effective), and
better ground DCRM with this quality.

We analyze the feature differences between y+

and y−. We define relevant features (correctness,
helpfulness, etc.) as those that the LLMs should
learn, and irrelevant features (writing style, sar-
casm, tone, etc.) as those not targeted by the task.

Features To align with the reward signals, we use
the 11 features (de-duplicated) from the ArmoRM
reward model as the relevant features. These in-
clude helpfulness, truthfulness, etc. We manually
define 21 irrelevant features that are roughly orthog-
onal to these relevant features (See the full lists in
Appendix C.1). The useful training signals come
from differences between y+ and y− that are along
relevant features and are pointing in the correct di-
rection (y+ is better than y− for a relevant feature),
which we call desired feature differences.

Metrics We define f∆ as the number of features
along which y+ and y− differ. To measure the frac-
tion of desired feature differences, we define fdes

∆

as the fraction of features in f∆ that are (a) relevant
and (b) contrasted in the correct direction (i.e. y+

is “better” than y− for that feature). Fraction of
features that only satisfy condition (a) is denoted
by f rel

∆ . Similar to DCRM, fdes
∆ indicates the ratio of

useful contrast signals among noisy signals.
To compute these, we prompt GPT-4o-mini-

0718 to (1) identify the three most prominent fea-
tures that differ between the two responses (setting
f∆=3) and (2) indicate a contrast direction for each
feature if applicable (i.e., whether y+ is better). Re-
ferring to the list of relevant features, we can then
compute f rel

∆ and fdes
∆ . Note that we can use this

to study the training dataset (i.e. Y +-Y −), and the
learned differences after training (Ytrained-Yref ).

Y +-Y − Ytrained-Yref

f rel
∆ fdes

∆ f rel
∆ fdes

∆

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 63.83 41.83 53.75 29.81

Gma2 56.42 38.08 53.94 29.53
Mst 62.83 37.83 54.00 29.19

DS-RM Gma2-Mst 61.75 39.92 53.31 28.66

DS-Fix Gma2-Mst 62.5 36.33 52.22 18.83
πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)

SS-RM πref 64.67 43.25 60.08 37.50
Gma2 56.42 38.08 59.00 37.58
Mst 62.83 37.83 61.00 35.58

DS-RM Gma2-Mst 61.75 39.92 60.33 34.17

DS-Fix Gma2-Mst 62.50 36.33 60.17 23.33

Table 6: fdes
∆ : Percentage of desired feature differ-

ences among the identified feature differences; f rel
∆ : Per-

centage of relevant feature differences; Y +-Y −: differ-
ences identified between y+ and y− in the training set;
Ytrained-Yref : differences identified between model’s
output on AlpacaEval after training (Ytrained) and be-
fore training (Yref ). SS-RM datasets typically have the
highest fdes

∆ , followed by DS-RM and then DS-Fix.

Analysis of training datasets (Y + − Y −) To
study the feature differences LLMs see during train-
ing, we compute the average f rel

∆ and fdes
∆ across

200 randomly sampled (y+, y−) from the training
dataset. Higher fdes

∆ implies higher dataset quality.

Analysis of learning outcomes (Ytrained − Yref )
To study what LLMs actually learn after train-
ing, we compute f rel

∆ and fdes
∆ for 200 randomly

sampled (ytrained ∼ πθ(x), yref ∼ πref(x)) pairs
where x is a test prompt in the AlpacaEval dataset.
Higher fdes

∆ implies that the model learns more
useful signals (e.g., to be more helpful) and fewer
noisy ones (e.g., to be more sarcastic).

Following § 4 and § 5, we compare different
preference datasets in § 6.1, and then show how
BoN2 can improve response pair quality in § 6.2.

6.1 Comparing Common Preference Datasets
We present the results in Table 6 to understand (1)
what the model sees during training and (2) what it
actually learns.

DS-Fix datasets have the lowest proportion of
desired feature differences in its training data.
Analyzing the training set Y +-Y −, we see that re-
sponse pairs from πref (SS-RM) have the highest
percentage of desired feature differences, indicat-
ing the highest quality. On the other hand, DS-Fix
has the lowest percentage. These results are consis-
tent with our observations in Table 2. Surprisingly
DS-RM has a higher fdes

∆ than Gma2 (SS-RM) and
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Figure 4: Distributions of relevant (top) and irrelevant
(bottom) feature differences. Each pair of adjacent blue
and orange bars represents the percentage of a kind
of feat. diff. (y+ more helpful, y− less truthful, etc.)
among the identified feat. diff. Blue: training set differ-
ences (Y +-Y −); Orange: differences in model outputs
on AlpacaEval after or before training (Ytrained-Yref ).
Y +-Y − and Ytrained-Yref have similar distributions.

Mst (SS-RM). A possible explanation will be their
actual marginal differences in dataset quality since
at least 1 side of the response sources overlap.

Desired feature differences learned by the model
are proportional to their presence in the train-
ing set. Our initial observation is that higher fdes

∆

in the training dataset (i.e. Y +-Y −) generally in-
duces higher fdes

∆ in Ytrained-Yref . This indicates
a consistency between the training set and learned
outcome for desired feature differences. To analyze
this trend in a fine-grained manner and for more
general feature differences, we do the following
case study in the LLaMA2 πref (SS-RM) setting.

In general, feature differences learned by the
model are proportional to their presence in the
training set. We inspect the distribution of fea-
ture differences per category (i.e., the percentage of
each kind of feat. diff. among all the identified feat.
diff.). Figure 4 shows that for both relevant and ir-
relevant features, the distributions for Y +-Y − and
Ytrained-Yref are similar, with a KL divergence of
0.2109 and 0.1284 respectively, so more promi-
nent feature differences in the training set are

Y +-Y − Ytrained-Yref

f rel
∆ fdes

∆ f rel
∆ fdes

∆

πref =LLaMA2 (LLaMA-2-7B-Chat)
SS-RM πref 63.83 41.83 53.75 29.81

w/ BoN2 64.17 41.50 54.58 31.58

SS-RM Mst 62.83 37.83 54.00 29.19
w/ BoN2 66.25 39.08 54.08 30.25

DS-RM Gma2-Mst 61.75 39.92 53.31 28.66
w/ BoN2 62.83 42.75 55.67 30.83

πref =LLaMA3.2 (LLaMA-3.2-1B-Instruct)
SS-RM πref 64.67 43.25 60.08 37.50

w/ BoN2 65.00 44.83 59.67 38.42

SS-RM Mst 62.83 37.83 61.00 35.58
w/ BoN2 65.17 40.25 59.33 34.25

DS-RM Gma2-Mst 61.75 39.92 60.33 34.17
w/ BoN2 62.83 41.42 60.33 36.75

Table 7: Results for feature-based analysis. BoN2

datasets have a higher fdes
∆ in most settings.

picked up by the model more after training.12

6.2 Effect of Applying Best-of-N2 Pairing

We conduct the same feature-based analysis as in
§ 6.1. Table 7 indicates that in most settings, the
datasets produced by our method have a higher
percentage of desired feature differences (See
fdes
∆ in Y +-Y −), which guides the models to learn

effectively and do better in relevant features after
training (See fdes

∆ in Ytrained-Yref ). In the LLaMA2
πref (SS-RM) setting, fdes

∆ in Y +-Y − remains ap-
proximately the same after applying our method,
which can be caused by what we discuss in § 5.1.

7 Related Work

Preference Optimization Preference Optimiza-
tion is an alternative to traditional RLHF meth-
ods (Ouyang et al., 2022) such as PPO (Schulman
et al., 2017). It avoids the need for an explicit re-
ward model. Popular PO algorithms includes DPO
(Rafailov et al., 2024), IPO (Azar et al., 2023),
KTO (Ethayarajh et al., 2024), R-DPO (Park et al.,
2024), SimPO (Meng et al., 2024), CPO (Xu et al.,
2024), ORPO (Hong et al., 2024), and so on. Many
papers report performance increases on AlpacaE-
val when training LLMs using PO methods on chat
datasets (Ding et al., 2023; Cui et al., 2023).

Response Pairs The choice of response pairs in
PO affects training outcomes. Tajwar et al. (2024)
and Tang et al. (2024) investigate response sources
and illustrate the benefits of sampling responses
on policy. Another line of work focuses on the

12See Appendix C.3 for more analysis.
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differences between y+ and y−. Prior work (Fisch
et al., 2024; Amini et al., 2024; Furuta et al., 2024)
suggests that LLMs should learn a different reward
margin for each example, since different response
pairs can vary in their contrastiveness (i.e., y+ is
much or only a little better than y−).

In reality, however, y+ and y− often differ in
features irrelevant for the task. Shuieh et al. (2025)
show that the presence of irrelevant differences
can become spurious training signals that can harm
LLMs’ performance. D’Oosterlinck et al. (2024)
further confirm this phenomenon and assoicates
the increase in these distracting signals with an
increase in response gaps (Jaccard Similarity, Edit
Distance, etc.).

To address this, certain work focuses on elimi-
nating specific irrelevant differences such as length
(Singhal et al., 2023). Others take a more general
perspective. Wu et al. (2024) use reward margins
to measure differences and dynamically scales the
training signals for each example. D’Oosterlinck
et al. (2024) and Guo et al. (2024) construct mini-
mally different pairs by revising y− with a stronger
LLM to get y+. However, these methods either
do not accurately model the relationship between
response pair differences and quality, or require a
stronger LLM to be present.

8 Conclusion
We propose a metric called DCRM that measures
the density of useful training signals in response
pairs and show its correlation with the PO training
outcome. Inspired by this correlation, we design a
Best of N2 pairing method, which can curate high-
quality datasets to train LLMs with PO effectively.
In addition, we provide a feature analysis to inspect
the characteristics of various common datasets with
varying DCRM values.

Limitations

We only focus on general chat datasets and bench-
marks for training and evaluation. While we do
provide evaluation results for more task-specific
benchmarks such as GSM8K, we do not exten-
sively train LLMs in these task-specific settings.

In addition, our BoN2 method works with an
existing pool of responses. Instead of having to
sample multiple responses per prompt, an alter-
native to our method will be to use constrained
decoding to guide the response generation process
toward a high DCRM value.

Ethics Statement

After manual inspection, we are confident that our
work adheres to ethical guidelines. We use Ultra-
feedback prompts to curate our datasets, which are
open-sourced and publicly available, without the
presence of sensitive or private content.
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A Preliminary Study in the DS-Fix setting

Although prior work (D’Oosterlinck et al., 2024)
has shown that sampling responses from differ-
ent sources gives different performances on chat
benchmarks like AlpacaEval (Dubois et al., 2024),
a missing piece is a qualitative understanding of
how the choice of these sources shapes the learned
behaviors of LLMs.

In an early pilot study in the DS-Fix setting, we
observe a trend for LLMs to over-exploit benign
features when y+ and y− have consistent stylistic
differences, which in turn leads to worse perfor-
mance after training. The following are 2 examples
that demonstrate this.

Case Study I: Chat Benchmark We use the
60K prompts from Ultrafeedback (Cui et al., 2023)
and sample y+ from a strong model Gemma-2-
9B-IT (Riviere et al., 2024) and y− from a weak
model Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).
We set πref to LLaMA-2-7B-Chat (Touvron et al.,
2023b) and train it with DPO for 2 epochs. We
evaluate its performance on AlpacaEval.

AlpacaEval
LC WR Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+Gma2-Mst 13.26 8.99 1166

Table 8: Result on AlpacaEval. LC: length controlled
win rate; WR: raw win rate. The model’s raw win rate
decreases after training.

Surprisingly, the model’s raw win rate decreases
after training (See Table 8). We then closely in-
spect the model’s output. Compared with πref , the
trained model tends to generate more emojis and
other stylistic symbols (See example on the top left
of Figure 5).

Quantitatively, we conduct a token-level analy-
sis, where we calculate the average frequency for
each token to appear in models’ responses to Al-
pacaEval questions before training (Yref ) or after
training (Ytrained) (See details in Appendix A.1).
We then check the tokens whose frequency in-
creases the most when going from Yref to Ytrained
(See Figure 5 top right). As expected, 5 out of the
top 10 tokens are emoji tokens (those surrounded
by <>). The rest are mostly also stylistic tokens (**
and * are used to bold text and create bullet points).

These stylistic features are indeed learned from
the training set. We calculate the same frequency

differences for each token when changing from
dispreferred responses Y − to preferred responses
Y +, and found the same emoji token (<0x0A>)
and other stylistic tokens (**, *, etc.) to appear
much more frequently in Y + than in Y −.

Case Study II: Math Benchmark We also con-
duct experiments on a Math Benchmark, GSM8K
(Cobbe et al., 2021). We adopt the setting from
SPIN (Chen et al., 2024) and set y+ to be the re-
sponses from human annotators and y− to be the re-
sponses from πref (LLaMA-2-7B-Chat). We then
use DPO to train πref for 5 epochs, on 6,725 ex-
amples from GSM8K’s original training split. We
use the remaining 748 examples for validation and
select the best checkpoint. Similar to the previous
case study, we again observe a surprising perfor-
mance drop on GSM8K’s test split.

GSM8K ACC (0-shot)

LLaMA-2-7B-Chat 23.88

+Human-πref 18.20

Table 9: Result on GSM8K; ACC: Accuracy; The
model’s accuracy decreases after training.

Manual inspection suggests that the model tends
to generate repetitive sentences that include nonsen-
sical math calculations (Figure 5 bottom left). The
token-level analysis reveals that the model learns to
generate more digits, which is also attributable to
the difference between Y + and Y − in the training
set (Figure 5 bottom right and middle).

The above suggests that differences between y+

and y− in irrelevant spurious features in the train-
ing set cause LLMs to pick up these features in-
stead of those targeted ones (correctness, etc.). This
leads us to hypothesize that when the proportion (or
density) of truly useful contrast signals decreases
among all the contrast signals in the response pair,
training becomes less effective.

A.1 Token-level Analysis

We define a length normalized bag of words rep-
resentation of a sequence y as follows: we count
for each token t in the vocabulary V its number
of occurrences in y, which we denote as n(t, y).
We then divide it by the length of y, |y|, to get
bown(t, y) = n(t,y)

|y| . This tells how much of y
is made up of t. We then compute the average
of this value across the model’s responses to Al-
pacaEval queries after training (Ytrained) to get
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Who is Larry Page?

Great question!  Larry Page is a well-
known  tech entrepreneur and 
computer scientist. He is best known for 
co-founding  Google, the … have any 
other questions. 

Thank you for your question! Larry Page is 
a well-known American computer 
scientist and entrepreneur, best known as 
the co-founder of Google, the … have any 
other questions.
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Terry eats 2 yogurts a day … How much 
does he spend on yogurt over 30 days?

Terry eats 2 yogurts a day. Terry eats 2*2=4 
yogurts a day. Terry eats 4*30=120 yogurts 
a month. ... Terry eats 
58009600000000000000*5=2920440000
00000000

Terry eats 2 yogurts a day, so he eats 2 x 2 
= 4 yogurts in one day. … Terry spends 
$1.25 x 30 = $37.50 on yogurt.
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<0x0A> ** _ _** * !
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Math Benchmark

Chat Benchmark

Common Tokens:

Common Tokens:

Figure 5: Top: Case Study with Chat Benchmark; Bottom: Case Study with Math benchmark; Left: Example of
LLM’s output before training (yref ) and after training (ytrained); Middle: Top 10 tokens whose frequency increases
the most when changing from Y − to Y + in the training set; Right: Top 10 tokens whose frequency increases the
most when changing from the model’s output before training (Yref ) to after training (Yref ) on the test set.

bown(t, Ytrained) =

∑
y∈Ytrained

bown(t,y)

|Ytrained| , and sim-
ilarly bown(t, Yref ) for model’s responses before
training (Yref ).

The difference between bown(t, Ytrained) and
bown(t, Yref ) tells how much more frequently t ap-
pears in the model’s responses after training. Simi-
larly, we can take the preferred responses Y + and
dispreferred responses Y − in the training set, and
search for tokens that occur more frequently in
Y +.

B Training Details

We set β = 0.1, and train the model for 2 epochs.
We use Adam Optimizer with a learning rate of
5e-7, warmup ratio of 0.1, and a cosine learning
schedule.

C Feature Difference Analysis

C.1 Relevant and Irrelevant Features

We define the relevant features to be the 11 features
synthesized from the 19 reward features modeled
by ArmoRM. As for the irrelevant features, we
manually select 21 features that are not directly
related to the relevant features and include an addi-
tional "other" feature that refers to all other features
not specified in the list. See details in Table 10.

Relevant Features

"helpfulness", "correctness", "factuality", "co-
herence", "verbosity", "instruction follow-
ing", "truthfulness", "honesty", "harmless-
ness", "code complexity", "code readability"

Irrelevant Features

"writing style", "tone", "politeness", "friendli-
ness", "caring or not", "intimacy", "empathy",
"language type", "casual or formal", "author-
itative or not", "creativity", "certainty", "hu-
mor", "passive or active", "pessimistic or op-
timistic", "explicit or implicit", "sarcastic or
not", "passion", "repetitiveness", "word usage
diversity", "structure of presentation", "other"

Table 10: Complete List of Relevant and Irrelevant
Features
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Reward difference per relev. feat.

Y+ - Y- Ytrained-Yref

Figure 6: The fine-grained, per feature reward score
differences in both settings overlap significantly. X-
axis: relevant feature. u: Ultrafeedback, h: Helpsteer
(Wang et al., 2024b), a: Argilla, b: BeaverTails (Ji et al.,
2023); Y-axis: reward score difference per feature when
going from Y − (Yref ) to Y + (Ytrained).

C.2 Prompt

The prompt is shown in Table 11. We instruct the
judge to identify the top 3 features in which the
2 given responses differ, and the corresponding
contrast directions if applicable. To avoid potential
biases, we do not reveal the source of each response
(y+ or y−; ytrained or yref ). Additionally, we ask
the judge to give 2 separate predictions where in the
first prediction y1 = y+(ytrained), y2 = y−(yref )
and in the second prediction y1 = y−(yref ), y2 =
y+(ytrained), respectively.

C.3 Reward differences for relevant features

Reward differences of relevant features fol-
low similar distributions between Y +-Y − and
Ytrained-Yref . Since we have the fine-grained re-
ward score for each of the relevant features from Ar-
moRM13, we compute the change in reward score
per feature. Consistent with what we notice in § 6.1,
Figure 6 shows that the reward score changes in
Y +-Y − and Ytrained-Yref are similar. In particular,
the top 3 features with the highest changes, which
explain over 50 percent of the total reward score
changes, are the same for both settings (i.e., the
top 3 are honesty, code complexity, and instruction
following in both settings).

D DCRM Properties

Our DCRM metric has the following properties.

13These are the 19 original, unsynthesized features, contain-
ing duplications.

1. Encourage high reward margin, low distance.
Denote the distance e∆ + p∆ as d. For any re-
sponse pairs pij and pi′j′ , if r∆(pij) > r∆(pi′j′)
and d(pij) = d(pi′j′), then DCRM(pij) >
DCRM(pi′j′). Similarly, if r∆(pij) = r∆(pi′j′)
and d(pij) < d(pi′j′), then DCRM(pij) >
DCRM(pi′j′).

2. Preserve reward margin sign. DCRM al-
ways has the same sign as the reward margin.
For any pairs pij , pi′j′ , pi′′j′′ where r∆(pij) <
0, r∆(pi′j′) = 0, and r∆(pi′′j′′) > 0, we
should have DCRM(pi′′j′′) > DCRM(pi′j′) >
DCRM(pij). This means any pair with a pos-
itive overall training signal has a higher DCRM
value than those with an overall neutral signal,
followed by those with an overall negative sig-
nal. Additionally, for any pairs pij and pi′j′

where r∆(pij) = r∆(pi′j′) = 0, we have
DCRM(pij) = DCRM(pi′j′). This means any
pairs with an overall neutral training signal have
the same DCRM value.

E Complete Results

Table 12, 13, 14 show the complete results and
dataset statistics for each πref that we have trained.

Similar to the main results in § 5.1, we observe
that SS-RM generally performs the best and DS-
Fix generally performs the worst, and that there
is a positive correlation between the average DCRM
value of the training dataset and the model’s perfor-
mance boost after training.

F Correlation Analysis on AlpacaEval

In addition to the 3 SS-RM, 1 DS-RM, and 1 DS-
Fix settings discussed in § 3, we also include the 8
additional settings for more accurate computation
of the correlation. These include the 3 settings in
§ 5 where we apply our Best of N2 method with
DCRM and 5 settings from the ablation study (e∆
only, p∆ only, e∆+p∆, e∆+r∆, p∆+r∆).

F.1 Correlation with individual metrics

In Figure 7, 8, and 9, for each individual com-
ponent of DCRM (e∆, p∆, and r∆), we show the
correlation between the training set’s metric value
and the change in the model’s length controlled
win rate on AlpacaEval post-training. DCRM has a
stronger correlation than these individual metrics.
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Given 2 responses y1 and y2 to a query x, identify the top 3 most prominent features in which y1 and y2
differ. Provide a justification for each feature that you identified. The features that you identified should
only come from the following set of potential features:

{explicit or implicit, instruction following, code readability, caring or not, pessimistic or optimistic,
writing style, certainty, truthfulness, casual or formal, tone, intimacy, code complexity, passion,
friendliness, passive or active, authoritative or not, word usage diversity, correctness, politeness, language
type, factuality, empathy, creativity, coherence, repetitiveness, verbosity, sarcastic or not, structure of
presentation, harmlessness, humor, helpfulness, honesty}

Note that the features "code complexity" and "code readability" are only applicable for programming or
coding tasks. Do not indicate these for non programming or coding tasks.

If you think none of the feature listed above can explain the differences between y1 and y2, propose new
features that can explain the differences. Again, provide a justification for each proposed new feature.

Additionally, for any feature where it makes sense to say y1 is "better" or "worse" than y2 in terms of that
feature (e.g., helpfulness, where more helpful is better; verbosity, where less verbose is better), identify
which response is better. You should put "y1" or "y2". For other features where differences do not imply
"better" or "worse" (writing style, tone, formal or casual, language type, etc.), put "Not applicable".

Give your response in the following JSON format:

{
feature 1: {

"justification": justification 1,
"better response": "y1" or "y2" or "Not applicable"

},
...
feature 3: {

"justification": justification 3,
"better response": "y1" or "y2" or "Not applicable"

}
}

Query x: {x}

Response y1: {y1}

Response y2: {y2}

Answer:

Table 11: Prompt for Sequence-level Analysis.
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Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

LLaMA-2-7B-Chat 12.57 10.43 5.41 8.90 - - - -

SS-RM +πref 22.36 16.81 5.55 16.67 427 32.48 2.82 4.54
w/ BoN2 22.41 17.2 5.67 16.07 370 23.87 2.52 5.94
+Mst 15.49 12.07 5.40 10.42 526 158.54 2.13 1.59
w/ BoN2 17.42 13.29 5.48 10.99 410 79.94 1.79 2.07
+Lma3 19.59 15.49 5.38 12.62 427 74.07 2.01 1.82
+Gma2 15.89 13.12 5.50 11.57 370 91.78 1.70 2.87

DS-RM +Gma2-Mst 14.13 11.51 5.52 10.55 542 226.47 2.03 1.13
w/ BoN2 (r∆ only) 16.20 13.17 5.48 11.98 495 257.84 3.78 2.21
w/ BoN2 16.82 13.6 5.48 11.75 458 142.94 3.27 2.58

DS-Fix +Gma2-Lma3 14.02 9.53 5.63 10.62 490 212.21 2.21 2.08
+Gma2-Mst 13.26 8.99 5.24 6.68 542 226.47 1.02 0.43

Table 12: Results on LLaMA-2-7B-Chat. Lma3: LLaMA-3-8B-Instruct

Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

Gemma-2B-IT 16.07 10.31 4.80 5.40 - - - -

SS-RM +πref 27.03 18.01 4.97 9.58 229 56.48 4.15 11.11
w/ BoN2 28.08 17.64 4.93 10.50 197 35.93 3.74 14.90
+Mst 22.96 14.66 5.02 8.39 526 244.81 2.13 1.50
w/ BoN2 26.71 16.89 5.03 9.58 342 99.29 1.74 2.22
+Lma3 25.49 17.04 5.15 8.63 427 110.00 2.01 3.07
+Gma2 25.13 17.76 5.19 10.22 370 103.15 1.70 2.85

DS-RM +Lma3-Mst 22.36 15.03 4.96 7.70 466 295.38 1.77 1.10
w/ BoN2 (r∆ only) 24.41 15.16 4.98 7.09 515 355.66 3.59 2.03
w/ BoN2 26.14 17.76 5.09 9.21 393 170.61 3.03 2.80

DS-Fix +Lma3-Mst 16.81 16.15 4.53 6.23 466 295.38 0.71 0.32

Table 13: Results on Gemma-2B-IT. Note that for symmetrical purposes, we include an additional Lma3-Mst
(DS-RM/DS-Fix) setting in place of the Gma2-Mst (DS-RM/DS-Fix) setting since Gemma and Gma2 are from the
same series.

Performance Dataset Statistics
AP-L AP-R MT AH e∆ p∆ r∆(e-2) DCRM(e-2)

LLaMA-3.2-1B-Instruct 14.15 15.34 4.66 10.88 - - - -

SS-RM +πref 22.80 25.65 5.01 18.88 434 120.07 4.22 7.53
w/ BoN2 24.77 27.64 5.10 20.25 356 63.55 3.58 11.48
+Mst 19.43 19.94 4.91 16.03 526 176.22 2.13 1.68
w/ BoN2 21.73 21.37 5.11 16.62 339 78.81 1.78 2.44
+Lma3 27.81 32.73 5.16 19.35 427 61.33 2.01 3.81
+Gma2 24.57 27.52 4.99 15.91 370 84.78 1.70 3.15

DS-RM +Gma2-Mst 20.01 21.61 5.01 13.61 542 228.22 2.03 1.17
w/ BoN2 (r∆ only) 21.72 24.66 4.99 17.84 495 269.60 3.78 3.02
w/ BoN2 24.53 27.76 5.04 19.17 374 134.94 3.24 3.02

DS-Fix +Gma2-Lma3 10.31 8.20 4.84 13.23 490 211.42 2.21 2.27
+Gma2-Mst 17.79 13.79 4.54 14.94 542 228.22 1.02 0.44

Table 14: Results on LLaMA-3.2-1B-Instruct
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Figure 7: Correlation with e∆

Figure 8: Correlation with p∆

G Correlation with MT-Bench and
Arena-Hard

In Figure 10 and 11 we show the correlations be-
tween DCRM and the model’s performance changes
on MT-Bench and Arena-Hard. We observe a weak
positive correlation with MT-Bench scores with
a Pearson Correlation Coefficient of 0.20, possi-
bly due to the fact that MT-Bench evaluates the
model’s multi-turn conversation abilities, while our
dataset and training are for single-turn conversation.
Arena-Hard shows a moderate positive correlation,
with a Pearson Correlation Coefficient of 0.49, sim-
ilar to the case with AlpacaEval discussed in § 4.

H Task-specific and OOD Downstream
Performance

We also investigate more task-specific and out-of-
distribution downstream performance for each set-
ting, using GSM8K (Cobbe et al., 2021)14 and
MixEval-Hard (Ni et al., 2024). As shown in Ta-

14We use the lm-evaluation-harness library ver-
sion 0.4.5 at https://github.com/EleutherAI/
lm-evaluation-harness/tree/v0.4.5 to compute
GSM8K results.

Figure 9: Correlation with r∆

Figure 10: Correlation with MT-Bench Performance

ble 15, the model’s performance trained in the
DS-Fix settings decreases compared with the base
model πref , while in other settings the performance
is maintained close to πref or even increases. This
suggests that noisy signals learned from the DS-
Fix datasets not only hurt LLMs’ general conver-
sational abilities but also their task-specific down-
stream effectiveness.

We further compare our BoN2 method with the
SS-RM πref baseline. For a more holistic compari-
son, we add two extra benchmarks. IFEval (Zhou
et al., 2023) evaluates the model’s ability to gen-
erate text that follows format-related instructions.
MMLU evaluates the model’s factual knowledge
in multiple tasks and domains. As shown in Ta-
ble 16, on GSM8K and MixEval-Hard, our model
outperforms the baseline. On MMLU, the two mod-
els’ results are on par. On IFEval, our checkpoint
slightly underperforms the baseline. These results
show that, compared with the conventional prefer-
ence dataset, BoN2 dataset helps the model better
maintain its performance in various downstream
tasks that have objective evaluations.
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Figure 11: Correlation with Arena-Hard Performance

GSM8K ME-Hard

LLaMA-2-7B-Chat 23.28 24.55

SS-RM +πref 21.51 24.3
w/ BoN2 23.35 25.75
+Mst 21.76 26.5
w/ BoN2 22.14 25.4
+Lma3 23.91 26.1
+Gma2 23.76 26.1

DS-RM +Gma2-Mst 22.16 25.65
w/ BoN2 22.90 26.5

DS-Fix +Gma2-Lma3 19.82 21.1
+Gma2-Mst 18.62 20.55

Table 15: Task-specific and out-of-distribution down-
stream performance of each setting. GSM8K: 5-shot
accuracy on GSM8K; ME-Hard: MixEval-Hard over-
all score; Training on DS-Fix datasets hurts models’
performance while training on other datasets generally
preserves or even increases the performance.

I Ablation Study for best-of-N2 pairing

We also do an ablation study in the LLaMA-2-
7B-Chat πref (SS-RM) setting. In particular, we
remove 1 of e∆, p∆, and r∆ from DCRM. Remov-
ing e∆ or p∆ means setting DCRM’s denominator
to p∆ + ϵ or e∆ + ϵ. Removing r∆ means setting
DCRM to just 1

e∆+p∆+ϵ , in which case the new Best
of N2 method effectively selects the pair with the
smallest distance.

Table 17 shows that the performance after re-
moving either e∆ or p∆ is close to that of the
complete metric. In Table 18, 19, and 20 we have
similar observations in other settings too. A merit
entailed by this insight is that, in certain settings
such as Mst (SS-RM) and DS-RM, our method can
work well with just e∆ and r∆, without the need
for a forward pass on the model to compute p∆. r∆
are usually collected during the preference annota-

IFEval MMLU GSM8K ME-Hard

LLAMA2 38.53 47.20 23.28 24.55

+ πref 41.88 48.00 21.51 24.3
w/ BoN2 41.36 48.10 23.35 25.75

Table 16: Comparison between SS-RM πref and BoN2.
The IFEval score is the average of prompt level and
instruction level strict accuracy; LLAMA2: LLaMA-2-
7B-Chat.

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+(SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561

-p∆ 22.1 17.27 1526
-e∆ 24.04 17.14 1513
-r∆ 14.81 12.11 1529

Table 17: Ablation Study on DCRM

tion process and given in the preference dataset. In
this case, we only need to compute e∆ to apply our
selection strategy, which is cheap and simple.

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+(SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561

-p∆ 22.1 17.27 1526
-e∆ 24.04 17.14 1513

+(SS-RM) Mst 15.49 12.07 1463
w/ BoN2 17.42 13.29 1456

-p∆ 16.86 12.80 1446
-e∆ 17.13 13.04 1446

+(DS-RM) Gma2-Mst 14.13 11.51 1511
w/ BoN2 16.82 13.6 1522

-p∆ 16.8 13.54 1528
-e∆ 17.54 13.98 1518

Table 18: On LLaMA-2-7B-Chat, keeping r∆ and 1
distance metric also works reasonably well and gives
performance close to the complete metric.

Removing r∆ makes training less effective. In
general, we observe in Table 21 that purely optimiz-
ing against distances with either e∆, p∆, or both
is much less effective than when r∆ is included.
This is expected, since selecting the pair with the
smallest distance reduces the reward margin signifi-
cantly, indicating that not only the noisy differences
but also the desired differences are eliminated in
the selected pair.
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AP-L AP-R Length

Gemma-2B-IT 16.07 10.31 1224

+(SS-RM) πref 27.03 18.01 1357
w/ BoN2 28.08 17.64 1343

-p∆ 26.73 16.02 1311
-e∆ 28.2 17.76 1331

+(SS-RM) Mst 22.96 14.66 1349
w/ BoN2 26.71 16.89 1328

-p∆ 25.37 16.67 1355
-e∆ 25.89 15.65 1278

+(DS-RM) Lma3-Mst 22.36 15.03 1379
w/ BoN2 26.14 17.76 1432

-p∆ 25.89 18.63 1458
-e∆ 24.12 15.78 1364

Table 19: On Gemma-2-9B-IT, keeping r∆ and 1 dis-
tance metric also works reasonably well and gives per-
formance close to the complete metric.

AP-L AP-R Length

LLaMA-3.2-1B-Instruct 14.15 15.34 1980

+(SS-RM) πref 22.8 25.65 2725
w/ BoN2 24.77 27.64 2825

-p∆ 24.58 27.89 2582
-e∆ 24.19 27.33 2716

+(SS-RM) Mst 19.43 19.94 1980
w/ BoN2 21.73 21.37 1915

-p∆ 21.08 20.56 1892
-e∆ 21.00 20.68 1882

+(DS-RM) Gma2-Mst 20.01 21.61 2062
w/ BoN2 24.53 27.76 2145

-p∆ 23.43 26.52 2181
-e∆ 23.16 26.21 2127

Table 20: On LLaMA-3.2-1B-Instruct, keeping r∆ and
1 distance metric also works reasonably well and gives
performance close to the complete metric.

J Discussion on Computational cost

The term N2 in BoN2 comes from pairing the
N responses. We analyze the cost BoN2 incurs
and compare that with the cost of the conventional
response pairing methods (e.g., selecting the re-
sponse pair with the largest r∆).

Firstly, in the sampling stage, similar to conven-
tional methods, we sample N responses (not N2

responses) from the model, which means we do not
incur extra sampling cost.

Secondly, in the reward scoring stage, we again
follow conventional methods and use the reward
model to give each response a reward score.

Thirdly, during pairing, we compute r∆, e∆, and
p∆ for each response pair. Computing r∆ just
needs simple arithmetic, which incurs O(1) cost
for each pair. For p∆, again only O(1) arithmetic

AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+ (SS-RM) πref 22.36 16.81 1530
w/ BoN2 22.41 17.20 1561
e∆ only 13.97 11.68 1538
p∆ only 15.89 13.11 1537
e∆ +p∆(DCRM-r∆) 14.81 12.11 1529

Table 21: Ablation Study on DCRM without reward mar-
gins. Selecting response pairs with the smallest dis-
tances leads to suboptimal performance.

operations are incurred, and the log probability of
each response is a readily available byproduct when
sampling the responses, so no extra forward passes
are needed. e∆ can be computed with the edit dis-
tance library from Python. After this, we compute
the DCRM value of each response pair and select the
pair with the highest DCRM.

Therefore, the only non-trivial computation in-
troduced by BoN2 pairing is for e∆, denoted
as c(e∆). Formally, the total extra cost is
O(N2(c(e∆) +O(1))). Although this is quadratic
in terms of the number of responses N , we argue
that this cost is still minimal, since (1) c(e∆) is
done by efficient Python implementation and is up-
per bounded by the maximum context length, so it
can be viewed as a constant; (2) a relatively small
N is usually sufficient and large N gives diminish-
ing returns (See Appendix K), (3) this extra cost is
only incurred once when curating the dataset.

Consequently, the bulk of computation is still
spent on response sampling and reward scoring,
which are the same in our and conventional meth-
ods, and applied to each output separately (i.e.,
O(N) compute). This means the cost of our
method is comparable to those of the conventional
methods.

K Increasing Number of Responses

The hyperparameter N controls the number of re-
sponses in the response pool. Increasing N should
help create a more diverse set of responses, boost
the quality of the response pairs identified by our
BoN2 method, and raise the trained model’s per-
formance on benchmarks. To inspect the effect
of increasing N , we change N from the original
value of 5 to 8 and curate a new dataset to train
LLaMA-2-7B-Chat. Table 22 shows the results.

As N increases, we observe diminishing returns.
We suspect the reason to be that we are only sam-
pling from one single source model, which puts an
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AP-L AP-R Length

LLaMA-2-7B-Chat 12.57 10.43 1502

+ (SS-RM) πref 22.36 16.81 1530
w/ BoN2, N = 5 22.41 17.20 1561
w/ BoN2, N = 8 23.35 17.89 1548

Table 22: Results with different values of N . Increasing
N beyond 5 gives diminishing returns.

upper bound on the response diversity. However,
this is not a deficiency specific to our method. In
fact, all methods that sample multiple responses
from the same model will eventually suffer from
diminishing returns as N increases.

L Training on GSM8K Examples

To verify the robustness of BoN2 in different train-
ing distributions, we curate a new training set from
GSM8K. In particular, we split the original training
set of GSM8K into 6,725/748 training/validation
examples. We then use the SS-RM setting and sam-
ple 5 responses from LLaMA-2-7B-Chat for each
question, followed by computing the reward scores
of these responses. We select the response pairs
using either the conventional method (the +πref
baseline, which maximizes the reward margin) or
BoN2. The model is trained for 10 epochs, with
the same hyperparameters as the main experiments
on UltraFeedback. The results on GSM8K’s test
split are as follows.

GSM8K ACC (0-shot)

LLaMA-2-7B-Chat 23.88

+πref 26.38
w/ BoN2 27.52

Table 23: Results when training and evaluating on
GSM8K. BoN2 gives higher accuracy than the baseline.

Our method gives a higher accuracy on the test
set of GSM8K, indicating that it is effective across
task settings and training distributions. We also
would like to connect to Table 9 in Appendix A,
where we show that training on the DS-Fix vari-
ant causes a decrease in the model’s performance,
even compared with the reference model. This is
consistent with our observations when training on
UltraFeedback examples.
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