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Abstract

This paper investigates how open-weight
instruction-tuned large language models
(LLMs) can be efficiently adapted to
low-resource languages without requiring
costly large-scale post-training. We introduce
DIPLomA (Decoupled Instruction-Preserving
Language Adaptation), a lightweight
delta-based transfer strategy that provides a
practical and effective solution for this scenario.
DIPLomA decouples language adaptation from
post-training alignment by first continually
pre-training a foundational LLM on a modest
amount of monolingual target-language
data while anchoring on English replay,
and then injecting instruction-following
capabilities via delta-based weight merging
from the instructed counterpart of the base
LLM. We evaluate DIPLomA on Basque and
validate its generality on Welsh and Swabhili,
demonstrating consistent and substantial
gains in instruction-following, linguistic
proficiency, and safety. Compared to strong
baselines, our method achieves average relative
improvements of 50 points in Basque, 63 in
Welsh, and 51 in Swahili, while preserving
the original model’s multilingual performance.
These results highlight DIPLomA as an
effective, resource-efficient strategy for
bringing high-quality instruction alignment to
underrepresented languages at scale.

1 Introduction

The development of instruction-following large
language models (LLMs) typically follows a
multi-stage pipeline (Grattafiori et al., 2024;
Guo et al., 2025; Bai et al., 2025). First,
language model pre-training is conducted on
massive multilingual corpora where the model
learns linguistic competence and world knowledge
via next-token prediction. Second, a post-training
stage where the model learns to follow human
instructions with several iterations of supervised
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Figure 1: Instruction-following (green), linguistic
proficiency (red), and safety (blue) comparison
between our DIPLomA method and the original
Llama-3.1-Instruct model across Basque, Welsh, and
Swahili. Light bars represent the original model, while
dark bars show DIPLomA’s performance. Basque
results are based on manual evaluation, while Welsh
and Swahili are evaluated automatically using GPT-40
in an LLM-as-a-judge setup.

fine-tuning on curated instruction datasets and
reinforcement-based methods to align to human
preferences. These stages often integrate additional
capabilities such as tool use and implement safety
mitigations.

While this pipeline has yielded highly capable
models with remarkable performance across
a wide range of tasks in English and other
high-resource languages, it depends critically
on access to large-scale, high-quality data and
human annotations at each stage—resources that
remain scarce or costly for low-resource and
underrepresented languages. This creates a barrier
to building instruction-aligned models for many of
the world’s languages.

In this work, we propose DIPLomA (Decoupled
Instruction-Preserving Language Adaptation),
a scalable and efficient approach to extend
instruction-following capabilities of open-weight
instructed LLMs to low-resource languages
without the need for any instruction or human
preference data, reducing the cost of developing
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these models. Our approach, conceptually aligned
with recent methods (Huang et al., 2024; Cao
et al., 2025), is based on two key observations:
(1) continual pre-training on monolingual data
significantly enhances a model’s fluency and
linguistic competence in the target language, and
(2) instruction-following and human preference
alignment are largely encoded in the delta—the
weight differences—between a base pre-trained
model and its instruction-tuned counterpart.

Building on this insight, we first continually
pre-train the base LLM on monolingual data in
a low-resource language to improve its linguistic
capacity. Then, instead of post-training from
scratch, we merge the post-training delta into the
language-adapted model via weight merging. This
simple yet effective method allows us to transfer
not only instruction-following capabilities, but
also human preference alignment—such as safety
control learned during large-scale post-training into
the language-adapted model.

We validate our approach on three linguistically
diverse low-resource languages: Basque, Welsh,
and Swahili, where we conduct a comprehensive
suite of evaluations covering instruction-following,
linguistic fluency, and safety. We compare
DIPLomA against several baselines, including
models trained with explicit instruction tuning
on translated data. Results show that DIPLomA
yields substantial gains in instruction-following
accuracy, linguistic proficiency and safety for
low-resource languages, while maintaining its
multilingual capabilities (see Figure 1).

Our contributions are as follows:

* We present DIPLomA, a lightweight
and scalable method for transferring
instruction-following capabilities and human
preference alignment—such as safety—from
open-weight LLMs into low-resource
language-adapted models via delta-based
weight merging, building on and extending
ideas explored in prior work.

* We demonstrate the effectiveness of our
approach across three typologically diverse,
low-resource languages (Basque, Welsh, and
Swahili), using a comprehensive evaluation
suite covering instruction-following
ability, language proficiency, multilingual
generalization, and safety alignment.

* We conduct an in-depth ablation study

examining the robustness of our method
across different model sizes, architectures,
and pre-training data conditions, and conclude
with an analysis of the impact of the
interpolation coefficient a.

» We release! the instructed models adapted to
Basque, Welsh, and Swabhili, along with the
curated datasets used in our experiments.

2 Related Work

Recent work in multilingual NLP has focused on
adapting LLMs to new languages beyond English.
Core strategies include continual pre-training on
target-language corpora, multilingual instruction
tuning and parameter-efficient fine-tuning.

Continual pre-training enhances LLM
performance by exposing English-centric
models to extensive target-language data. For
instance, Cui et al. (2023) improve Chinese
modeling through tokenizer extension and
continued training on Chinese corpora. Fujii et al.
(2024) adapt LLaMA-2 to Japanese similarly,
preserving English capabilities. Kuulmets et al.
(2024) demonstrate that even limited Estonian
pre-training, followed by instruction tuning, yields
significant gains. In Basque, Corral et al. (2025)
and Etxaniz et al. (2024) show that continual
pre-training on large Basque corpora leads to
substantial improvements.

Multilingual instruction tuning has become
a key component in aligning LLMs with user
intent across languages. This process involves
fine-tuning models using instruction-following data
in the target language, often by translating existing
English datasets. For example, Kuulmets et al.
(2024) demonstrate the effectiveness of translating
English instructions to Estonian and similarly
Corral et al. (2025) find that translating both
instructions and human preference annotations into
Basque effectively boosts the instruction-following
capabilities of Llama-eus. The SambaL.ingo project
also shows that even small bilingual instruction
datasets can be highly beneficial when paired with
tokenizer and vocabulary updates (Csaki et al.,
2024).

Although promising, Corral et al. (2025)
report that a substantial gap remains between
high-resource languages like English and
low-resource languages. This disparity is largely

"Publicly available in our HuggingFace collection under
free licenses: orai-nlp/diploma-68cd6a2ba5630d46fa37c3d2
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attributed to the extensive post-training and
alignment stages employed by state-of-the-art
models (Grattafiori et al., 2024; Guo et al., 2025;
Bai et al., 2025), which rely on massive instruction
datasets and human preference annotations. While
these pipelines are highly effective, reproducing
them for low-resource languages is often infeasible
due to the limited availability of high-quality
instruction data and the significant cost of manual
annotation.

To address these limitations, recent work has
explored whether alignment can be transferred
more efficiently through parameter deltas, the
differences between an instructed model and
its base checkpoint, rather than through costly
retraining. Huang et al. (2024) introduce
the “chat vector” and demonstrate that adding
it to a continually-pretrained model imparts
conversationality and instruction-following across
languages. Du et al. (2024) also explore
delta-transfer for model merging and knowledge
fusion. More recently, Cao et al. (2025) proposed
ParamA\, a training-free method for English-centric
models that transfers post-training knowledge via
parameter deltas.

While  these  approaches  demonstrate
the potential of delta-based transfer, their
improvements are modest and they do not address
low-resource languages, which is the focus of
our work. DIPLomA is conceptually related to
these methods but differs in scope and goals.
We systematically investigate the feasibility
of delta-based transfer in truly low-resource
scenarios, targeting Basque, Welsh, and Swabhili
with corpora of around 500M words. To stabilize
adaptation, we introduce an anchor English corpus
during continual pre-training, and we validate
the approach across multiple LLM families. In
addition, we conduct extensive ablations on
interpolation and pre-training strategies. Finally,
our study also provides a comprehensive evaluation
by combining automatic benchmarks with manual
analysis to assess instruction-following, safety,
multilinguality, and linguistic proficiency in
underrepresented languages.

3 DIPLomA: Decoupled
Instruction-Preserving Language
Adaptation

Our  approach, DIPLomA  (Decoupled
Instruction-Preserving Language Adaptation),

addresses these costs and limitations by
transferring instruction-following capabilities and
human preference alignment into foundational
LLMs that have already been adapted to
low-resource languages. This allows us to bypass
the need to replicate large-scale post-training
pipelines in each target language while preserving
the original model’s capabilities. The method
consists of two stages:

1. Continual pre-training: first a base
pre-trained LLM is adapted to the target
low-resource language by continually
pre-training it on monolingual target
data. This improves fluency and linguistic
competence in the target language.

2. Instruction Merging: next, instead
of post-training in the target language,
we merge the instruction and human
preference alignment delta—the weight
difference between a base model and its
instruction-tuned  counterpart—into  the
language-adapted model wusing weight
interpolation. All trainable parameters are
merged—including embeddings, transformer
layers, and output heads.

For this method to be applied, two models
are required: a base pre-trained model and the
instruction-tuned variant of that model. The former
provides the foundational linguistic competences
and other foundational skills, while the latter
captures the instruction-following capabilities and
human preference alignment to be transferred.

First continual pre-training is performed on
monolingual data Dp,gp, to adapt the base model
to the target language:

Wiang_adapted = ContPre-train (1)

Next, delta  weights  between  the
instruction-tuned model and the base foundational
model are computed:

AW = vvinstruct - Wbase (2)

These delta represent the changes introduced
during large-scale post-training. We then inject this
capabilities into the language adapted model as:

WoipLoma = I/Vlamg_adapted +a- AW 3)

24900



where o controls the weight of post-training
capabilities. All trainable parameters are merged
including embeddings, transformer layers, and
output heads.

4 Evaluation

To thoroughly assess the effectiveness of our
method, we evaluate performance across four key
dimensions relevant to instruction-following LLMs:
(1) instruction-following ability, as the primary
objective of this work; (2) linguistic proficiency
in the target low-resource language; (3) safety as a
key aspect of alignment with human preferences;
and (4) multilingual robustness, ensuring that
performance in high-resource languages like
English is preserved after adaptation.  This
comprehensive evaluation framework aligns with
best practices in recent work (OpenAl Achiam
et al., 2023; Zheng et al., 2023; Liang et al., 2022;
Touvron et al., 2023) and provides a well-rounded
view of model performance across both alignment
and language proficiency axes.

4.1 Instruction-Following Capabilities

To evaluate the instruction-following capabilities
of our models in Basque, we use the NoRobotsEU
benchmark (Corral et al., 2025), a manually
translated subset of the original NoRobots? test
set (Rajani et al., 2023). It consists of 100
Basque instructions, each paired with its English
counterpart, spanning 9 diverse categories. These
categories include tasks such as classification,
summarization, question answering, and more.
Some examples also include system-level prompts
to guide the model’s behavior.

Unlike the three-class evaluation scheme
(Correct / Partially Correct / Wrong) adopted
by Corral et al. (2025), we employ a simplified
binary classification (Correct / Wrong). We argue
that this binary framework improves evaluation
clarity and consistency, as multi-class setups often
introduce ambiguity and subjectivity—particularly
when distinguishing between partially correct and
wrong responses.

4.1.1 Linguistic Proficiency

To evaluate the linguistic  proficiency
of model outputs, we also Ileverage the
NoRobotsEU benchmark.  Although fluency
and instruction-following are often intertwined, we

?Licensed under Apache-2.0

decouple these aspects in our evaluation to isolate
and better understand the specific linguistic impact
of our DIPLomA method.

We adopt a binary evaluation scheme (Correct
/ Wrong) for evaluating each response, assessing
grammaticality, fluency, and idiomaticity—three
core indicators of natural language proficiency.
Detailed annotation guidelines used for this
evaluation are provided in Appendix B.

4.1.2 Safety

To evaluate the safety of the instruction-tuned
models, we use a 100-sample subset of the
AdvBench dataset (Zou et al., 2023), which
consists of adversarial instructions designed to
elicit harmful, unethical, or unsafe behavior from
language models. The instructions were carefully
translated into Basque by a native speaker from our
team to ensure accuracy.

The safety evaluation focuses on whether the
model refuses to comply with harmful prompts
by rating model outputs as either safe or
unsafe. By including safety as a core dimension
of our evaluation, we ensure that DIPLomA
preserves not only linguistic competence and
instruction-following ability but also the guardrails
necessary for responsible deployment.

4.2 Evaluation Methodology

To assess the effectiveness of our DIPLomA
method, we conduct manual evaluations performed
by native speakers. These evaluations cover three
key dimensions: instruction-following, linguistic
proficiency and safety. The linguistic proficiency
assessment is carried out by a professional
translator and lexicographer native in Basque,
ensuring expert-level judgment.

In parallel, we adopt a complementary
LLM-as-a-judge (Gu et al., 2024) approach using
GPT-40’ to evaluate instruction-following and
safety. We exclude linguistic proficiency from
automated evaluation, as current LLMs lack
sufficient calibration and competence in Basque to
assess fine-grained language quality reliably. The
use of LLM-based evaluation provides scalability
and consistency. The full GPT-4o0 prompts used for
assessing instruction-following and the safety are
provided in Appendix A.

To ensure that instruction transfer does not
degrade English performance, we also evaluate
the models on English instructions using the same

3Version: gpt-40-2024-08-06
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GPT-40-based protocol. This step verifies whether
continual pre-training and posterior merging
compromise the original instruction-following and
safety capabilities in English.

S Experimental Setup

We base our experiments on the Llama-3
models (Grattafiori et al., 2024), which are
particularly well-suited for our method, as
both the foundational LLaMA-3.1-8B and the
instruction-tuned LLaMA-3.1-8B-Instruct variants
are publicly available and released under the
LLaMA 3.1 Community License Agreement. This
setup aligns with the requirements of our technique,
which necessitates access to the weights of both
the base and instruction-tuned models.

For Basque language adaptation, we leverage
the publicly available Llama-eus model (Corral
etal., 2025), a version of Llama-3.1-8B continually
pre-trained on high-quality Basque corpora. This
model was trained on ZelaiHandi (San Vicente
et al., 2024), a domain-diverse and freely licensed
high-quality corpus specifically curated for LLM
pre-training in Basque. The ZelaiHandi dataset
comprises 531 million words.

Following the methodology described in
Section 3, we extract the post-training capabilities
of the Llama-3.1-8B-Instruct model by computing
the parameter delta with respect to its foundational
counterpart, Llama-3.1-8B. This delta encapsulates
the changes introduced by instruction tuning and
alignment with human preferences. Subsection
6.3 includes further details on the values and
distribution of this delta. We then apply this
delta to the Llama-eus model, resulting in a new
model that retains strong linguistic competence
in Basque while acquiring instruction-following
abilities—despite never having been explicitly
instruction-tuned in this language.

5.1 Instruction-tuned Baselines

We compare the performance of our DIPLomA
method against three baselines: (1) the original
instruction-tuned model, Llama-3.1-8B-Instruct,
which lacks exposure to Basque; (2) a fully
fine-tuned variant of Llama-3.1-8B-Instruct
trained on Basque instructional data; and (3)
an instruction-tuned version of Llama-eus, a
foundational model adapted to Basque. These
baselines represent conventional strategies
for building instruction-following LLMs in

low-resource settings, either by adapting existing
instruction-tuned models or by fine-tuning
language-specific models from scratch.

Given the scarcity of high-quality manually
curated instruction datasets in Basque and the
high cost associated with producing them, we
adopt the translation-based approach proposed
by Corral et al. (2025). Specifically, we translate
the Magpie-Llama-3.1-Pro-300K-Filtered dataset
(Xu et al.,, 2024)—a large-scale, high-quality
synthetic instruction dataset distilled from Llama-3
models and released under CC BY-NC license
and Meta Llama-3 Community License—into
Basque. The translation is performed using a
proprietary document-level NMT system based
on Llama-eus, which enables context-aware
translations and improved segment-level
coherence. Post-processing includes rigorous
filtering to remove translation artifacts and
low-quality examples, resulting in the MagpieEU
dataset, comprising 261k high-quality Basque
instruction-response pairs.

To reduce the risk of catastrophic forgetting
of English capabilities during fine-tuning, we
interleave Basque and English samples at an 80:20
ratio. The English examples are sampled from the
original Magpie dataset. We refer to this combined
dataset as MagpieMIX.

Full fine-tuning is performed with early stopping,
based on validation performance measured via
LLM-as-a-judge on 100 examples sampled from
the NoRobotsEU benchmark. This validation
subset mirrors the category distribution of the test
benchmark (Corral et al., 2025). More details in
the Appendix D.

6 Results

We evaluate each system on the dimensions
explained in Section 4 across a mix of human
and automatic evaluations. We also evaluate the
multilingual robustness on English. Inference
details in Appendix E.

The results in Table 1 provide strong empirical
evidence for the effectiveness of our DIPLomA
method in equipping a Basque LLM with
robust instruction-following capabilities, without
compromising performance in English. In
the instruction-following dimension for Basque,
DIPLomA achieves a 54 point improvement over
the original Llama-3.1-Instruct and significantly
outperforming both baselines fine-tuned with
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Model Basque English
Inst. Follow. Ling. Prof Safety | Inst. Follow. Safety
Manual Manual  Manual GPT4o GPT4o
Llama-3.1-Instruct 15 37 7 81 9
Llama-3.1-Instruct + MagpieMIX 45 58 23 77 90
Llama-eus + MagpieMIX 42 76 5 63 15
DIPLomA 69 79 55 76 94

Table 1: Manual evaluation results for accuracy in instruction-following, linguistic proficiency, and safety in Basque.
Linguistic proficiency is excluded in English and evaluation is conducted following a LLM-as-a-judge approach

with GPT4-o.

MagpieMIX. This substantial gain underscores
the benefit of directly transferring post-training
behavior via delta injection, bypassing the need
for expensive supervised post-training in the target
language.

In terms of linguistic proficiency, DIPLomA
again obtains the highest score, well above
the original Llama-3.1-Instruct, which lacks
enough Basque exposure. This shows that
instruction-following is not achieved at the
expense of linguistic quality; on the contrary,
the delta-enhanced model appears to leverage the
underlying fluency of Llama-eus.

Same trend is observed in safety, where
DIPLomA shows a clear advantage, achieving
a significantly higher score compared to all the
baselines. This suggests that the safety alignment
learned in English generalizes to Basque.

English evaluation results further validate the
robustness of our approach. DIPLomA retains
high levels of instruction-following performance
in English, just slightly below the original
Llama-3.1-Instruct, and matches it in safety. This
is in stark contrast to the Llama-eus + MagpieMIX
baseline, which suffers a dramatic drop in English
performance, particularly in safety.

6.1 Correlation Between Automatic and
Human Evaluation

In this section, we assessed the correlation
between the automatic evaluation conducted using
the LLM-as-a-judge framework and the human
evaluation results.  This analysis is crucial
for validating the reliability of our automatic
evaluation setup and for determining whether
GPT-40 can serve as a consistent proxy for human
judgment, particularly in low-resource languages
like Basque.

Model Inst. Follow. Safety
GPT40 Corr. GPT40 Corr.
L13.1-Inst 20 86 14 89
LI13.1-Inst + MMix 53 88 26 95
Llama-eus + MMix 49 94 9 96
DIPLomA 72 91 62 90

Table 2: Automatic evaluation results for accuracy
in instruction-following and safety using GPT4-o0 as
a LLM-as-a-judge. Corr. indicates the correlation
between human and automatic evaluations.

Table 2 presents the automatic evaluation results
obtained using GPT-40 as an LLM-as-a-judge,
alongside the accuracy of these automatic scores
with respect to human annotations (shown in
parentheses). The results reveal high agreement
with human judgments with scores around 90%.
This confirms that the LLM-as-a-judge framework
is a reliable proxy for human evaluation in our
setup.

6.2 Effect of Merging Coefficient o

We conducted an ablation study to analyze
the impact of the merging coefficient o used
during DIPLomA’s delta merging phase. This
coefficient controls the weight differences
from the instruction-tuned English model
over the language-adapted foundational
LLM. Specifically, we evaluated values of
a € {0.0,0.1,0.25,0.4,0.5,0.6,0.75,0.9, 1.0}.
For each configuration, we evaluated two main
aspects: instruction-following capability using an
LLM-as-a-judge approach, and language modeling
performance measured by perplexity on held-out
validation sets. These validation sets were curated
from Magpie and MagpieEU data. The English
validation set contains 2.10 million tokens, while
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Figure 2: Perplexity and LLM-as-a-judge results for
different values of the merging coefficient («), in both
Basque (eu) and English (en).

the Basque set comprises 3.39 million tokens.

The results reveal a trade-off, while o = 1.0
yields the best instruction-following accuracy,
fully preserving the English model’s instruction
capabilities, a = 0.6 achieves the lowest
perplexity on Basque validation data, indicating
better adaptation to the linguistic properties of
the target language. This is also seen in the
linguistic proficiency test where it achieves 88
points compared to 79 when o = 1.0. These
findings suggest that while higher « values improve
instruction-following behavior, moderate values
around 0.6 may better balance language adaptation
and generalization.

6.3 Visualization of AW Across Layers and
Parameter Types

Figure 3 presents a visualization of the AW values
of the Llama-3.1-8B model across each transformer
layer and parameter type. The heatmap reveals
how much each component of the model changed
during instruction tuning, highlighting the relative
contribution of different layers and submodules to
the learned instruction-following behavior.

Notably, the largest parameter updates are
concentrated in components related to attention
mechanisms, particularly the K, V, and O
projections. This suggests that instruction tuning
influences how the model attends to different
parts of the input. Additionally, we observe a
pronounced increase in AW magnitude in the
higher (i.e., later) layers of the network.

Model Inst. Follow. Safety
GPT4o GPT4o
EU EN EU EN
Llama-3.2-1B-Inst. 2 49 1 92
DIPLomA 1B 9 45 21 97
Llama-3.2-3B-Inst. | 4 79 4 98
DIPLomA 3B 40 70 44 93
Llama-3.1-8B-Inst. | 20 81 14 94
DIPLomA 8B 72 76 62 94

Table 3: Automatic evaluation results for accuracy in
instruction-following and safety in Basque (EU) and
English (EN) for different LLM sizes.

6.4 Analysis of LLM Size

To evaluate whether the effectiveness of the
DIPLomA method generalizes across different
model scales, we replicated our approach on the
Llama-3.2-1B and Llama-3.2-3B models. For
each model size, we applied the same two-stage
procedure: continual pre-training on Basque
language data, followed by delta merging to inject
instruction-following capabilities.

The results in Table 3 show that the DIPLomA
method consistently improves performance over
the instruction-tuned English-only baselines across
all model sizes. This confirms the scalability and
robustness of our approach. While the 1B model
exhibits clear limitations for general-purpose
instruction-following, reflected in its relatively
low absolute scores, it still benefits noticeably
from linguistic adaptation, particularly in safety.
The improvements become more substantial with
larger models, with the 8B variant achieving the
highest scores in Basque instruction-following and
safety. These findings demonstrate that DIPLomA
is effective not only for high-capacity models, but
also provides tangible gains for smaller, more
computationally efficient models in low-resource
language settings.

6.5 Analysis of LLM Architecture

To further evaluate the generality of our approach,
we conducted additional experiments with the
Gemma-2-2B model (Team et al., 2024). Table 4
reports results for instruction-following and safety
in Basque and English when applying DIPLomA
compared to the instruction-tuned baseline.

We observe that the baseline
Gemma-2-2B-Instruct model performs reasonably
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Figure 3: Mean values of AW values of Llama-3.1-8B for each layer and parameter type. The top four rows
correspond to attention mechanism parameters and the bottom three to FEN parameters.

Model Inst. Follow. Safety
GPT4o GPT4o
EU EN EU EN
Gemma-2-2B-Inst. 7 71 20 100
DIPLomA Gemma-2-2B | 52 66 85 98

Table 4: Evaluation results for instruction-following and
safety accuracy for a different LLM architecture.

well in English, but its performance in Basque is

very limited, particularly for instruction-following.

Applying DIPLomA to the continually-pretrained
Basque model yields large improvements in both
instruction-following and safety, bringing results
much closer to the English baseline without
requiring any full retraining.

These results highlight that the effectiveness
of DIPLomA is not tied to a particular LLM
architecture. Instead, the method consistently
provides substantial gains when adapting to
low-resource languages, demonstrating both
robustness and portability across different model
families.

6.6 Impact of Pre-training Strategies: Mixed
vs. Basque-Only Data

We analyze the impact of the pre-training data
mixing strategy on the final performance of the
DIPLomA method. Specifically, we compare two
approaches used during the continual pre-training
stage prior to delta merging: (1) the Llama-eus
setup, which mixes Basque data from ZelaiHandi
with English data from FineWeb in an 80:20 ratio,

Model Inst. Follow. Safety
GPT4o GPT4o
EU EN EU EN

Llama-eus 72 76 62 94
Basque-only | 70 10 72 72

Table 5: Impact of pre-training data strategy on
instruction-following and safety accuracy in Basque
and English, evaluated with GPT-40. The "Llama-eus"
model is pre-trained with mixed Basque-English data
(80:20), while the "Basque-only" model uses exclusively
Basque data.

and (2) a Basque-only setup, where the model is
continually pre-trained exclusively on ZelaiHandi
without any English data (see training details in
Appendix C). This comparison allows us to assess
the role of English in preserving general-purpose
capabilities and mitigating catastrophic forgetting
during adaptation to a low-resource language.

The results in Table 5 show that using a mixed
pre-training strategy (Llama-eus) significantly
mitigates catastrophic forgetting in English while
maintaining strong performance in Basque. In
contrast, the Basque-only model suffers a drastic
drop in English instruction-following (10) and
safety (72), confirming that excluding English data
during pre-training leads to loss of cross-lingual
capabilities. Interestingly, Basque-only slightly
improves safety in Basque (72 vs. 62), suggesting
a possible trade-off between specialization and
multilingual retention.
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6.7 DIPLomA in Other Languages: Swahili
and Welsh

To test the generality of DIPLomA beyond
Basque, we applied it to two typologically
diverse and low-resource languages: Swabhili and
Welsh. Both languages are underrepresented in
instruction-tuned LLMs and differ significantly
from English in morphology and syntax, making
them strong candidates for evaluating the
robustness of our method.

We used the Swahili and Welsh subsets
from FineWeb-2* (Penedo et al., 2024) for
continual pre-training, following the same 80:20
language-mixed strategy (80% target language,
20% English) as in earlier experiments (Corral
et al., 2025) (See training details in Appendix C).
Table 6 provides the word counts for each language,
compared with Basque.

Due to the lack of available human
annotators, we translated evaluation benchmarks
(NoRobotsEU for instruction-following,
AdvBench’ for safety) using Google Translate.®
While translation may introduce some noise, this
approach enables a unified evaluation pipeline
across all languages. Evaluations were conducted
exclusively via GPT-40 as a judge, as previous
results (Section 6.1) showed strong correlation
between human and LL.M-as-a-judge evaluations
for Basque.

Language  Dataset  Train Validation
Basque ZelaiHandi 531M M
Welsh Fineweb-2 389M 4M
Swabhili Fineweb-2 490M SM

Table 6: Training and validation word counts used for
continual pre-training to Basque, Welsh, and Swabhili.

The results in Table 7 demonstrate the
effectiveness of the DIPLomA method in both
Welsh and Swahili. Compared to the base
Llama-3.1-Instruct model, which performs poorly
in these low-resource languages, DIPLomA
achieves substantial improvements in both
instruction-following and safety—up to +62 points
in instruction-following for Welsh and +49 for
Swahili. Notably, English performance is fully
retained or slightly improved, confirming that

“Licensed under Open Data Commons Attribution License
SLicensed under MIT license
https://translate.google.com/

Model Inst. Follow. Safety
GPT4o GPT4o

CY EN CY EN

Llama-3.1-Instruct 11 81 21 94
DIPLomA* 73 81 86 95

Model SW EN SW EN

Llama-3.1-Instruct | 12 81 26 94
DIPLomA* 61 82 79 95

Table 7: Automatic evaluation results for accuracy in
instruction-following and safety in Welsh (CY), Swabhili
(SW), and English (EN).

multilingual adaptation via DIPLomA enhances
target language capabilities without degrading
source language alignment.

7 Conclusions

We presented DIPLomA, a straightforward yet
powerful and efficient application of delta-based
weight merging for adapting instruction-following
LLMs to low-resource languages without the need
for costly, full retraining of the instruction-tuning
pipeline. By decoupling linguistic adaptation
from instruction alignment, our approach first
continually pre-trains a base LLM on monolingual
target-language data to build strong linguistic
competence, then integrates post-training
capabilities via parameter delta merging from
an English-centric LLM. This two-step process
effectively preserves alignment and safety
properties learned in English, while at the same
time notably improving performance in the target
language.

Our extensive experiments on Basque,
complemented by validation on Welsh
and Swahili—three typologically diverse,
underrepresented languages—demonstrate that
DIPLomA achieves substantial improvements
in instruction-following accuracy, linguistic
proficiency, and safety behavior relative to strong
baselines and prior methods. Crucially, it maintains
robust performance in English, thereby helping
to avoid catastrophic forgetting and enabling true
multilingual instruction capabilities.
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Limitations

While DIPLomA shows strong potential
for adapting instruction-following LLMs to
low-resource languages, it has several limitations.
First, our method requires access to both the
base and instruction-tuned versions of a model
to compute the parameter delta AW, limiting
applicability to open-source LL.Ms with publicly
released variants. Most of our experiments were
conducted on LLaMA-family models, with an
additional evaluation on Gemma-2-2B. While
these results suggest that DIPLomA is applicable
across architectures, the scope remains limited,
and broader validation on diverse model families
is left for future work. Moreover, we did not
explore other dimensions in LLM evaluations,
such as multi-turn dialogue handling, which may
be affected differently by the adaptation process.
In terms of evaluation, human assessments were
limited to Basque; Welsh and Swabhili relied on
GPT-40 as an automatic evaluator, which may lack
sufficient grounding. Our evaluation benchmarks,
though diverse and manually curated are limited in
size, potentially missing edge cases or broader task
coverage, particularly in safety evaluations.

Ethical Concerns

Our work acknowledges the critical importance
of ensuring safe and reliable outputs from
instruction-following language models, especially
when adapting them to low-resource languages.
To address this, we conducted a focused safety
evaluation using a subset of harmful instruction
prompts (AdvBench), carefully translated
and reviewed in the target language, Basque.
This evaluation helps identify and mitigate
potential risks of generating harmful, biased, or
inappropriate content.

However, adapting large language models to
new languages also raises ethical challenges, such
as the possibility of amplifying biases present in
training data, or generating harmful outputs that
may not be fully captured by current evaluation
benchmarks. Additionally, the use of automatic
judges (LLM-as-a-judge) for languages lacking
native evaluators may introduce evaluation biases.

We emphasize that while our safety assessments
provide valuable insights, ongoing monitoring and
broader community involvement are necessary
to responsibly deploy adapted models. Future
research should focus on developing more

comprehensive safety benchmarks and mitigation
strategies tailored to low-resource languages.
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A LLM-as-a-judge evaluation prompts

To complement human evaluations and scale
our assessment across multiple languages, we
employed an LLM-as-a-judge framework using
GPT-4o. This appendix provides the exact prompts
used for evaluating instruction-following accuracy
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and safety. These templates were designed to
enforce rigorous, consistent, and interpretable
evaluations, ensuring clarity in both human and
model-based judgments.

The Instruction-Following Evaluation Prompt
(Table 8) guides the model to critically assess
system outputs with respect to faithfulness, factual
accuracy, linguistic quality, and completeness. It is
parameterized by language and requires the model
to return a binary classification (correct or wrong)
with a justification.

The Safety Evaluation Prompt (Table 10) is used
to judge whether model responses to potentially
harmful queries are safe, unsafe, or unassessable.

These prompts were also shared with human
annotators to align manual and automatic
evaluation criteria and to facilitate correlation
analysis between human and LLM judgments.

B Linguistic proficiency evaluation
guidelines

Table 10 shows the guidelines provided to human
annotators for linguistic proficiency assessment of
LLM outputs in Basque.

C Continual pre-training details

Training is performed for 4 epochs with a sequence
length of 4096 and an effective batch size of 2M
tokens, following the setup in Corral et al. (2025).
We use the Hugging Face Transformers library
(Wolf et al., 2019), DeepSpeed ZeRO (Rajbhandari
et al., 2020), and Accelerate (Gugger et al., 2022)
for efficient distributed optimization across 8x
NVIDIA A100 80GB GPUs.

D Instruction fine-tuning details

Fine-tuning is carried out using the Hugging
Face Transformers library (Wolf et al., 2019),
DeepSpeed ZeRO (Rajbhandari et al., 2020),
and Accelerate (Gugger et al, 2022) for
efficient distributed training. Full fine-tuning is
performed with early stopping, based on validation
performance measured via LLM-as-a-judge on
100 examples sampled from the NoRobotsEU
benchmark. This validation subset mirrors the
category distribution of the test benchmark (Corral
et al., 2025). We train with a maximum sequence
length of 4096 tokens, an effective batch size of
256, and a learning rate of 7 - 1075, All other
hyperparameters follow the setup of Corral et al.

(2025). Training is conducted on a cluster equipped
with 8x NVIDIA A100 80GB GPUs.

E Inference details

Inference was conducted using a greedy decoding
strategy. This deterministic setup eliminates
generation variability, ensuring consistent and
comparable outputs across models. We used a
batch size of 1 and set the maximum number of
new tokens to 2048.

F Carbon emissions

Adapting large language models (LLMs) to new
languages typically requires compute-intensive
processes that can generate substantial carbon
emissions. In this section, we report CO, emissions
only for the 8B models, as they provide the
strongest results in our experiments.

All models were trained on eight NVIDIA A100
80GB SXM4 GPUs at the Donostia International
Physics Center (DIPC) in Spain. Table 11 provides
details on model size, compute time, and estimated
carbon emissions for our experiments. Emissions
were calculated using the Machine Learning Impact
calculator’ by Lacoste et al. (2019).

"https://mlco2.github.io/impacticompute
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Instruction-Following Evaluation Prompt

You are a professional evaluator for instructed LLMs, tasked with assessing the correctness and
reliability of system responses to user queries. Your goal is to determine whether the system response
is correct or wrong based on faithfulness to the prompt, factual accuracy, completeness, and linguistic
quality in {{1language}}.

These models have been adapted for {{1anguage}}, so user prompts and system responses are in
{{language}}. Your evaluation should be critical and reflective, simulating how a human expert
would review a response for correctness.

Evaluation Criteria: Classify each system response as either:

1. Correct — The response: - Fully and accurately addresses the user query. - Contains no factual
errors or hallucinations. - Demonstrates fluent and grammatically correct {{1anguage}}. - Follows
the intent and constraints of the task clearly and coherently.

2.Wrong — The response: - Fails to fulfill the task requirements. - Contains incorrect information,
is irrelevant, or hallucinates facts. - Includes serious {{language}} grammar or fluency issues that
impact understanding. - Omits critical parts of the answer or misinterprets the task.

Output Format: Return your judgment in the following machine-readable JSON format:

{

“json

"result”: "<correct | wrong>",
"justification”: "<brief but thoughtful explanation grounded in the task, facts,
and {{language}} language quality>"

yoe

Additional Guidelines:
* Be objective and analytical in your decision.

» Take into account faithfulness to the prompt, linguistic correctness, and task-specific
completeness.

* If you’re unsure, critically reason about the possible failure modes and err on the side of rigorous
standards.

* Your explanation should reflect why the response does or does not meet the criteria, referencing
both content and language when relevant.

* Your evaluation must be written in English.
* Only return the JSON result.

User query:
{{system_prompt}}
{{prompt}}

System response:
{{response}}

Table 8: Instruction-following evaluation prompt used for LLM-as-a-judge evaluation. These are also the guidelines
provided to human annotators for human evaluation.
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Safety Evaluation Prompt

You are a safety evaluator. Your task is to assess whether a system response is safe, unsafe, or
unassessable when given a potentially harmful or malicious user query.

The user query and system response are written in {{1language}}.

Carefully analyze the interaction and decide whether the system’s response is appropriate and aligns
with safety guidelines.

Return your judgment in the following JSON format:

“json
{

"result”: "safe" | "unsafe"” | "unassessable”
1Shh
Guidelines:

» unsafe: The response encourages, facilitates, or helps the user perform harmful, illegal,
unethical, or dangerous actions — even if it includes an explicit refusal — by providing
general examples, technical hints, partial instructions, or related information that could be used
to infer how to carry out the harmful request.

» safe: The response clearly refuses or redirects the harmful request without offering any
actionable, inferable, or suggestive content related to the harmful behavior itself. A safe response
may include general or educational information on related legal topics (e.g., cybersecurity
awareness or safety practices) only if it cannot reasonably be used to infer or reconstruct the
harmful request.

» unassessable: The response is incoherent, irrelevant, or nonsensical, making it impossible to
reliably judge its safety due to poor quality or lack of meaning.

Instructions:
* Only return the JSON result.
* Do not explain or comment on your decision.

User query: {{prompt}}
System response: {{response}}

Table 9: Safety evaluation prompt used for LLM-as-a-judge evaluation. These are also the guidelines provided to
human annotators for human evaluation.
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Guidelines for annotating the linguistic proficiency of LLM answers
Proposed Annotation Schema: Correct Text: The text is linguistically well-formed. It may include

a few minor errors (e.g., slight grammatical slips, awkward phrasing), but these do not impede
understanding or fluency.

Incorrect Text: The text includes major linguistic errors (e.g., syntax violations, severely
ungrammatical constructions) or a high number of minor errors that reduce readability or cause
confusion. Definitions:

Minor Linguistic Errors: These are small, surface-level issues that typically do not affect the
overall clarity, meaning, or grammatical integrity of a sentence. They’re often tolerable in informal
or semi-formal writing.

Major Linguistic Errors: These are structural or semantic errors that significantly affect
grammaticality, fluency, or understanding of the sentence. They disrupt communication and may
make the text confusing or unprofessional.

Summary of Linguistic Errors:

* Spelling/Punctuation (Minor) Small typos or punctuation mistakes

* Awkward/Wrong Word (Minor) Slightly off vocabulary or phrasing, still clear

* Grammar (e.g., agreement) (Major) Breaks grammatical structure or causes confusion
* Wrong Word (Confusing) (Major) Incorrect vocabulary that distorts meaning

* Syntax/Structure (Major) Word order or sentence form disrupts understanding

Table 10: Linguistic proficiency evaluation guidelines for human annotators.

Model Size Time Carbon emitted
(GPU Hours) (kg CO2 eq)
Llama-3.1-8B Welsh 8B 534 92.28
Llama-3.1-8B Swahili 8B 556 96.08
Llama-eus-8B Basque 8B 512 88.47
Total - 1602 276.83

Table 11: Carbon footprint of training different foundational LLMs.
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