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Abstract

Extracting entities and relations from scientific
text is challenging due to long sentences with
densely packed entities. Pipeline approaches
address this by first extracting entities and then
predicting relations between all possible en-
tity pairs. Since the relation extraction phase
operates over this exhaustive set, the inclu-
sion of candidate pairs that may be semanti-
cally related but lack syntactic proximity in-
troduces precision errors, ultimately reducing
Rel+ F1 metric. We propose a simple yet
effective syntactic filtering method based on
dependency parsing to prune unlikely entity
pairs before relation prediction. By leveraging
syntactic proximity in the dependency parse
tree, our approach retains structurally plausi-
ble pairs and reduces false positives in down-
stream relation classification. Our method is
grounded in consistent statistical patterns ob-
served across all evaluated datasets, reinforcing
its generalizability and effectiveness. We inte-
grate this filtering step into architectures such
as PL-Marker and HGERE, and evaluate its
impact across multiple datasets. Our method
improves Rel+ F1 scores significantly by an
absolute increase of 3.5–10.3% on SciERC,
SciER, and ACE05 datasets. These results high-
light the importance of syntactic cues for ac-
curate relation extraction in complex domains
like scientific literature. Our code is available
at https://github.com/basiralab/DP-ERE.

1 Introduction

Entity and relation extraction (ERE) is a critical
task in natural language processing (NLP), en-
abling the identification of named entities and their
semantic relationships from unstructured text (Yan
et al., 2023). This task is pivotal for constructing
knowledge graphs, enhancing information retrieval
systems, and powering question-answering appli-
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cations. However, ERE remains a persistent chal-
lenge due to the inherent complexity of natural lan-
guage, the interdependencies between entities and
relations, and the domain-specific nuances of text,
such as those found in scientific literature (Zhang
et al., 2024).

Traditional pipeline approaches, which sequen-
tially perform named entity recognition (NER) fol-
lowed by relation extraction (RE), are particularly
susceptible to error propagation: inaccuracies in
NER can cascade into the RE phase, degrading
overall performance (Yan et al., 2023). These is-
sues have been partially mitigated by recent state-
of-the-art (SOTA) methods such as PL-Marker (Ye
et al., 2022) and HGERE (Yan et al., 2023). Such
models generate a large set of potential entities,
many of which are unlikely to be related, but are
nevertheless considered in the relation extraction
phase to maintain completeness. This exhaustive
candidate set, however, often leads to lower pre-
cision due to the inclusion of numerous irrelevant
entity pairs.

In this work, we propose a novel enhancement
to pipeline-based Entity and Relation Extraction
(ERE) systems that addresses the challenge of rela-
tion prediction over a large set of potential entity
pairs. Extending the standard pipeline, we intro-
duce a dependency parsing (DP) based refinement
step (Kiperwasser and Goldberg, 2016) between
the NER and RE stages. This step leverages the
syntactic structure of the sentence to construct a
dependency parse tree and filters out entity pairs
that, despite potential semantic relatedness, exhibit
long syntactic distances. Statistical analysis across
multiple datasets, including SciERC, SciER, and
ACE05, reveals that the shortest dependency path
length between entities is significantly shorter for
true relations compared to unrelated pairs, as de-
tailed in section 4.6. By leveraging this insight, our
approach filters out unrelated entity pairs, thereby
reducing the error rate of relation classifiers in the
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RE stage.
Our method is particularly effective on challeng-

ing datasets such as SciERC (Luan et al., 2018),
which contains domain-specific scientific text with
complex entity-relation structures. On the SciERC
dataset, our approach yields a 10.3% absolute im-
provement in Rel+ F1 score using the HGERE as
the base model. Our approach easily integrates into
existing pipeline systems, making it practical for
real-world ERE tasks.

2 Related Work

Evolution of ERE Architectures. Entity and
relation extraction (ERE) has evolved significantly,
from early pipeline-based approaches such as
(Zelenko et al., 2003) and (Chan and Roth,
2011), to joint modeling frameworks designed
to mitigate error propagation (EP). Joint models,
such as (Miwa and Bansal, 2016) and (Katiyar
and Cardie, 2017), addressed EP by sharing
parameters across tasks but lacked mechanisms for
explicitly modeling complex interdependencies.
The advent of pre-trained language models
(PLMs) like BERT (Devlin et al., 2019) improved
entity representations through techniques such as
T-Concat (Lee et al., 2017) and Solid Markers
(Baldini Soares et al., 2019). More recent models,
including PL-Marker’s (Ye et al., 2022) packed
levitated markers and HGERE’s hypergraph
neural networks (Yan et al., 2023), have achieved
SOTA results by refining span representations and
incorporating higher-order inference. However,
their performance in relation extraction remains
limited, often yielding F1 scores below 50% on
datasets like SciERC (Yan et al., 2023), primarily
due to the syntactic complexity inherent in
scientific texts.

Syntax-Informed Relation Extraction. The
use of syntactic information to guide relation
extraction has a long history. Early approaches
integrated syntactic structures into SVM-based
models using complex features like convolution
tree kernels over constituency or dependency
parses (Zhang et al., 2006; Nguyen et al., 2009).
More recently, with the rise of neural networks,
research has focused on embedding syntactic
information directly into model architectures.
Methods like those from (Zhang et al., 2018)
and (Guo et al., 2019) use Graph Convolutional
Networks (GCNs) over pruned dependency trees

to learn syntax-aware representations during
training. Similarly, (Tian et al., 2021) proposed a
dependency-driven approach with attentive GCNs
to integrate syntactic information directly into the
model. These methods aim to make the model
itself syntax-aware by fundamentally altering its
architecture.

Our Contribution. While prior work has suc-
cessfully integrated syntactic information into ERE
models, our approach is methodologically distinct.
Instead of embedding syntax into the model’s archi-
tecture, we introduce a lightweight, model-agnostic
filtering mechanism applied at inference time. This
’plug-and-play’ module sits between the standard
NER and RE stages, using dependency parsing to
prune syntactically distant and thus unlikely en-
tity pairs before they are processed by the relation
classifier. This design avoids the need for com-
plex architectural modifications or the retraining of
syntax-aware models. Grounded in statistical anal-
ysis, our approach is simple, effective, and broadly
applicable, making it easy to integrate into any
pipeline-based system. As a result, we achieve sig-
nificant performance gains on the SciERC, SciER,
and ACE05 datasets, notably surpassing the 50%
F1 score threshold on SciERC for the first time and
marking a significant improvement over previous
best-performing models.

3 Problem Formulation

3.1 Task Definition

Relation extraction (RE) aims to identify and clas-
sify semantic relationships between entity pairs
in a sentence. Formally, given a sentence s =
{w1, w2, . . . , wn} with n tokens and a set of en-
tity mentions E = {e1, e2, . . . , em}, where each
entity ei = (si, ti, li) is defined by start index si,
end index ti, and type li ∈ LE , the task is to pre-
dict a relation label rij ∈ R ∪ {NIL} for each pair
(ei, ej). Here, R is the set of relation types, and
NIL denotes no relation.

The dataset D = {(s(k), E(k), R(k))}Nk=1 com-
prises N sentences, with s(k) as the k-th sentence,
E(k) its entities, and R(k) = {(ei, ej , rij)} its la-
beled relations. The goal is to train a model that
accurately maps entity pairs to their relation labels.

3.2 Dependency Parsing (DP)-Based Filtering

We propose filtering entity pairs using DP, leverag-
ing syntactic proximity in the dependency tree. Re-
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lated entities often have short dependency paths via
relational tokens (e.g., verbs). Let Ts = (Vs, As)
be the dependency tree of sentence s, with tokens
Vs = {w1, . . . , wn} and edges As ⊆ Vs × Vs,
where (wi, wj) indicates wi is the head of wj . Each
entity ei = (si, ti, li) has a head token hi ∈ Vs, the
syntactic root of [si, ti].

The dependency path length d(hi, hj) is the
number of edges in the shortest undirected path
between head tokens hi and hj . We define a filter-
ing function:

f(ei, ej) =

{
1 if d(hi, hj) ≤ δ

0 otherwise
(1)

where δ ∈ Z+ (e.g., δ = 15). Only pairs with
f(ei, ej) = 1 are considered for prediction. In our
approach, DP-based filtering is applied only during
the inference phase. This design choice helps re-
duce ambiguity by eliminating unlikely entity pairs
at test time, leading to more precise predictions.
We deliberately avoid applying this filtering during
training to retain true negative examples, which
are essential for learning a well-calibrated decision
boundary and ensuring the model’s robustness.

3.3 Dependency Length Computation

The path length d(hi, hj) is computed as:

• Construct paths Pi = [hi, pi1, . . .] and Pj =
[hj , pj1, . . .] from hi and hj to the tree root.

• Find the least common ancestor (LCA) l, the
deepest token common to Pi and Pj . Then the
dependency-distance is defined as:

d(hi, hj) = (|Pi|−level(l))+(|Pj |−level(l)),

where level(l) is the index of l in the paths.

3.4 Objective

Let P = {(ei, ej) | ei, ej ∈ E(k), i ̸= j} be all
possible pairs and Ptrue ⊆ P the pairs with rij ̸=
NIL. The filtered set is:

Pfiltered = {(ei, ej) ∈ P | f(ei, ej) = 1}.

The objective is to minimize the size of
|Pfiltered|, subject to Ptrue ⊆ Pfiltered. A moder-
ate value for δ as argued in Section 4.5 ensures
Ptrue ⊆ Pfiltered, as true relations typically have
short paths.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets
We conducted our experiments on three widely
used ERE datasets: ACE05 (Walker et al., 2006),
SciERC (Luan et al., 2018), and SciER (Zhang
et al., 2024). Our choice of dataset is dependent
on the fact that SOTA models have consistently
struggled on these datasets due to their inherent
complexity. In particular, the poor performance of
the SOTA HGERE model on the SciERC dataset
can be attributed to the limited size and increased
complexity of the dataset. For fair and accurate
benchmarking, we used the official test splits pro-
vided for all three datasets. Refer Appendix A.1
for more information on the properties of datasets.

4.1.2 Implementation
DP-based filtering is applied to the potential en-
tity pairs received from the NER stage, incorporat-
ing edge cases as detailed in Appendix A.2 (han-
dling edge cases). We used spaCy’s pre-trained
en_core_web_md model (Honnibal et al., 2020) to
perform DP on the SciERC and ACE05 datasets,
while a larger variant of the model is used for
SciER. The rationale behind model selection is
provided in Appendix A.7. The filtered entity pairs
obtained from this stage are then passed to the
relation classification module. For a visual under-
standing of how the dependency parsing module
integrates into the PL-Marker and HGERE archi-
tectures, refer Appendix Figures 6 and 7 respec-
tively. Our model’s size, hyperparameters, device
configuration, and GPU runtime are detailed in
Appendix A.3–A.8 for accurate reproduction.

4.1.3 Evaluation Metrics
This study evaluates the end-to-end RE using two
distinct metrics: the boundaries evaluation (Rel),
which requires correct identification of subject and
object entity spans along with their relation, and
the strict evaluation (Rel+), which further demands
accurate prediction of entity types in addition to
boundaries and relations (Ye et al., 2022).
4.2 Baselines

We evaluate the effectiveness of our DP-based fil-
tering strategy by integrating it into two previously
SOTA ERE models: PL-Marker and HGERE. For
each model, we assess performance on the ACE05,
SciERC and SciER datasets, both with and without
the inclusion of the DP module.
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Model ACE05 SciER SciERC
Rel Rel+ Opt Rel Rel+ Opt Rel Rel+ Opt

PL-Marker (Ye et al., 2022) 68.93 66.45 - 59.18 56.78 - 53.37 41.63 -
PL-Marker + DP 73.27+4.3 69.84+3.4 12 64.63+5.5 61.12+4.3 24 60.85+7.5 49.71+8.1 20
HGERE (Yan et al., 2023) 70.73 67.54 - 61.25 58.31 - 55.74 43.64 -
HGERE + DP 75.22+4.5 71.02+3.5 12 68.45+7.2 64.59+6.3 26 64.51+8.8 53.97+10.3 24

Table 1: Relation (Rel), relation+ (Rel+), and optimal DP distance threshold (Opt) on the test sets of ACE05, SciER,
and SciERC. "DP" indicates models enhanced with DP-based entity pair filtering. Subscripts in green show F1
improvements over original models. We used SciBERT encoder (Beltagy et al., 2019) for embedding calculations.

Figure 1: Histogram of sentence lengths in the SciERC
dataset.

Figure 2: Histogram of DP-Distance between Ground
Truth entity pairs.

4.3 Results

Table 1 reports the performance of PL-Marker and
HGERE before and after applying DP-based fil-
tering. On the SciERC dataset, Rel+ F1 improves
substantially from 41.6% to 49.7% for PL-Marker
and from 43.6% to 53.9% for HGERE, highlight-
ing the effectiveness of our method on complex
scientific text. In contrast, gains on the simpler
ACE05 dataset are more modest, with a maximum
improvement of 3.5%. The greater improvement
observed in the HGERE model compared to PL-
Marker is likely due to reduced noisy entities in
the message-passing phase of its hypergraph neural
network, enabled by the DP-based filtering.

4.4 Comparative Analysis with Alternative
Filtering Methods

To validate our choice of dependency parsing as
a filtering criterion, we conducted a comparative
analysis against other potential filtering techniques.
We implemented two alternative filters and evalu-
ated their performance on the SciERC dataset using
the HGERE model as the base. The results, sum-
marized in Table 2, demonstrate the unique value
of leveraging syntactic structure for this task.

Table 2: Comparison of different filtering methods on
the SciERC dataset using the HGERE base model. Our
DP-based filter significantly outperforms the baseline
and other filtering strategies.

Filtering Method Rel+ F1 Score (%)
HGERE (Baseline) 43.6
Semantic Similarity Filter 41.8
Graph-based Pruning 46.2
DP-based Filter (Our Method) 53.9

The Semantic Similarity Filter, which prunes
entity pairs based on the cosine similarity of their
SciBERT embeddings, surprisingly degraded
performance. This is because high semantic
similarity does not guarantee a direct syntactic
relation. For instance, in a sentence discussing
“protein kinase A activation” and “adenylyl cyclase
regulation,” the two entities are thematically
similar but may be syntactically parallel rather
than directly related. A semantic filter incorrectly
retains such confusing pairs, whereas our DP-based
filter correctly identifies the long dependency path
and prunes them.

The Graph-based Pruning filter, which con-
structs a co-occurrence graph for each sentence,
yielded a moderate improvement over the base-
line. However, it falls short of our method be-
cause a co-occurrence graph primarily captures
token proximity, not grammatical roles. In contrast,
our DP-based method leverages the dependency
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Figure 3: Ablation study: Relation of Rel+ F1 score
while varying DP max length threshold on PL-Marker
and HGERE models using SciERC dataset.

tree, which explicitly models the grammatical rela-
tionships (e.g., subject-object) that underpin most
relational facts. This linguistic precision makes it a
far more effective filter for reducing false positives
while retaining true relations, ultimately leading to
a substantial performance gain.

4.5 Ablation Study

Figure 3 illustrates the impact of varying the maxi-
mum dependency length on the Rel+ F1 score for
PL-Marker and HGERE on the SciERC dataset.
Performance improves with longer paths, peaking
at length 20 for PL-Marker and 24 for HGERE, af-
ter which it declines and stabilizes near baseline lev-
els. At longer lengths, filtering becomes ineffective
as few entity pairs are excluded. HGERE shows
greater resilience due to its hypergraph neural net-
work, which models higher-order entity-relation
interactions.

4.6 Case Study

This section analyzes the superiority of our
DP-based distance over linear token distance
for filtering entity pairs. We first evaluated a
baseline filter using linear distance, measured as
the number of tokens between entity spans. On
the SciERC dataset, this approach yielded Rel+
F1 scores of 44.3% for PL-Marker and 44.9% for
HGERE. While an improvement over the original
baselines, this falls significantly short of our
DP-based method. The limitation of linear distance
is its inability to capture semantically meaningful
but non-adjacent relationships, a challenge our
syntax-aware method effectively overcomes.

A further data-driven motivation for DP-based
filtering stems from the structural properties of sci-

entific texts. As shown in Fig. 1, sentences in
SciERC are, on average, significantly longer than
those in general-domain datasets like ACE05. This
leads to a quadratic increase in the number of pos-
sible entity pairs, escalating computational costs
and injecting a high volume of irrelevant candi-
dates that complicate relation extraction. However,
a comparison of sentence lengths (Fig. 1) and the
dependency path lengths of true relations (Fig. 2)
reveals a crucial pattern: despite long sentences,
the syntactic path between related entities is consis-
tently short. Our DP-based filtering method capital-
izes on this observation to prune a large number of
syntactically implausible pairs early in the pipeline,
thereby improving relation classification by signifi-
cantly reducing false positives.

5 Conclusion

The integration of dependency parsing-based fil-
tering into pipeline architectures marks a signif-
icant advancement in entity and relation extrac-
tion for scientific texts. By leveraging syntactic
structures to prune irrelevant entity pairs, our ap-
proach enhances Rel+ F1 scores of models like
PL-Marker and HGERE. This method’s simplicity,
robustness, and domain-generalizability make it a
versatile solution for complex ERE tasks across di-
verse datasets. As scientific literature continues to
grow in volume and complexity, our syntactic en-
hancement offers a scalable framework to improve
knowledge extraction, fostering the development
of more accurate knowledge graphs and advanced
NLP applications.
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6 Appendices

Limitations

While our dependency parsing-based filtering ap-
proach demonstrates significant improvements in
relation extraction performance, particularly on
complex scientific datasets like SciERC, several
limitations should be acknowledged.

• The effectiveness of the filtering relies heav-
ily on the quality of the dependency parser.
We used spaCy’s en_core_web based models,
trained on general English text, but scientific
texts may exhibit distinct syntactic structures,
potentially reducing parsing accuracy.

• The dependency path length threshold (δ)
which is used for inference, was optimized
for each dataset; however, determining an op-
timal δ for new or diverse datasets may require
additional tuning, limiting out-of-the-box ap-
plicability. For more information on hyperpa-
rameter tuning, refer Appendix A.4.

• Additionally, the approach’s effectiveness
across varied scientific domains or non-
English languages remains untested, as it as-
sumes syntactic proximity correlates with se-
mantic relations, a premise that may not hold
universally across languages and domains.

• The computational overhead of dependency
parsing, though minimal, could also pose chal-
lenges for large-scale applications.

• Finally, our evaluation focused on pipeline
architectures (PL-Marker and HGERE), leav-
ing its integration with non-pipeline models
unexplored.

Future work could address these by fine-tuning
parsers on domain-specific data, incorporating
syntactic information during training, and testing
broader applicability.

Use of AI Assistants

We acknowledge the use of ChatGPT (OpenAI)
and Grammarly to enhance the clarity, coherence,
and grammatical correctness of our manuscript.
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A Appendix

A.1 Dataset Information

ACE2005 SciERC SciER
#Entity Types 7 6 3
#Relation Types 6 7 9
#Entities 35706 8089 24518
#Relations 6684 4716 12083
#Docs 464 500 106
#Relations/Doc 15.2 9.4 114.0

Table 3: Properties of datasets used in experimentation

A.2 Handling Edge Cases
Several edge cases are addressed to ensure robust-
ness:

1. Invalid Spans: If an entity span is empty or
out of bounds (e.g., due to tokenization mis-
matches), spaCy may fail to assign a valid
span.root. In such cases, the pair is retained
to avoid discarding potentially valid relations,
and a warning is logged (e.g., for subword
index errors).

2. Parser Errors: If spaCy fails to parse a
sentence or assigns an incorrect head token,
the pair is retained to prevent false negatives.
This is particularly relevant for scientific texts,
which may deviate from the general English
syntax of the en_core_web_md training data.

A.3 Model Parameters
We retain the original configurations of both PL-
Marker and HGERE when integrating our depen-
dency parsing module. All dataset-specific parame-
ters, defined in the shells directory by the authors
of HGERE1 and the scripts directory in origi-
nal PL-Marker2, remain unchanged throughout our

1https://github.com/yanzhh/HGERE
2https://github.com/thunlp/PL-Marker
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Figure 4: Left: Histogram of sentence lengths in the SciER dataset. Right: Histogram of DP distances between
entities related in the ground truth of the SciER dataset.

Figure 5: Left: Histogram of sentence lengths in the ACE05 dataset. Right: Histogram of DP distances between
entities related in the ground truth of the ACE05 dataset.

experiments. The pre-trained models used in our
experiments such as DP models - en_core_web_md
and en_core_web_lg as well as the SciBERT en-
coder uses default parameters provided by their
original python library.

A.3.1 Model Size
The core architecture and size of the PL-Marker
and HGERE models are unmodified. The only
addition is the integration of the spaCy de-
pendency parser model en_core_web_md, which
consists of approximately 20M parameters and
en_core_web_lg consisting of 210M parameters,
are in the same magnitude as that of the original
PL-Marker and HGERE models.

A.4 Hyperparameter Tuning

Our approach introduces only a single hyperparam-
eter, which defines the maximum allowable depen-
dency path length between entity pairs. To deter-
mine its optimal value, we perform a grid search
over the set {8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36} across all three datasets. Since
dependency parsing is performed once and filter-
ing is applied only at inference time, we cache the

parse trees and recompute only the candidate entity
pairs for each path length threshold. This results
in a highly efficient search process with minimal
computational overhead. Despite its simplicity, this
tuning procedure is sufficient to achieve peak Rel+
F1 scores, underscoring the effectiveness and prac-
ticality of our method.

A.5 GPU Training Time

Total training time (hours) of GPU required for
each experiment is provided in Table 5.

A.6 Theoretical Analysis

Our filtering method’s effectiveness is grounded in
linguistic theory, specifically in how dependency
parsing is uniquely suited to handle the complex
syntactic structures common in scientific texts. Sci-
entific writing often obscures direct relationships
through long-distance dependencies (where related
entities are separated by many words), nominaliza-
tions (where actions are expressed as nouns, like
“the inhibition of X”), and frequent use of the pas-
sive voice. A simple linear distance metric fails
in these cases, but dependency grammar excels be-
cause it models grammatical relationships rather
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Figure 6: Visual pipeline for understanding PL-Marker+DP model

than token position. It correctly identifies the syn-
tactic heads of entities, creating a direct path be-
tween them that bypasses intervening modifiers and
correctly interprets grammatical roles even when
word order is inverted, such as through relations
like nsubj:pass.

Ultimately, this means a short dependency path
is a robust and theoretically sound indicator of a
true relation, a principle that does not apply to lin-
ear distance. Our DP-based filter is therefore not
just a heuristic; it is a direct application of linguis-
tic theory. It imposes a strong inductive bias tai-
lored to the predicate-argument structure inherent
in language. This is precisely what allows it to ef-
fectively prune the noisy, syntactically implausible
candidate pairs that confuse modern neural models,
which often lack this explicit syntactic awareness.

A.7 Selection of DP Model

We evaluated all variants of spaCy’s en_core_web
models at inference, such as small, medium, and
large, which progressively increase in the num-
ber of parameters. For the SciERC and ACE05
datasets, the medium-sized model yielded the best
performance with the HGERE baseline. In con-
trast, the large model performed best on the SciER
dataset, likely due to the greater complexity and
longer sentence lengths present in the dataset (Re-
fer Table 4 and Figure 4).

Table 4: Performance of HGERE with different sizes
of the general-domain en_core_web parser. Best scores
for each dataset are in bold.

Dataset Small Medium Large
SciERC 62.11 64.59 64.28
SciER 51.57 53.62 54.97
ACE05 69.93 71.02 70.86

A.8 Device Configuration
The computational experiments in this study were
conducted on a high-performance computing sys-
tem equipped with an NVIDIA Tesla A30 GPU,
with Driver Version 556.123 and CUDA Driver
Version 12.4. The system features a GPU with a
memory capacity of 24.00 GiB.

A.9 Reproducibility and Fairness
All the experiments were conducted using three
different random seeds similar to the codebase of
PL-Marker and HGERE. The results provided in
Table 1 and Figures 3 are the mean performance
over these random seeds to ensure fairness. The
results can be reproduced with a minimal change
to the initialization and evaluate functions present
in the original code repositories of PL-Marker3 and
HGERE4, while adding another function for the
distance calculation mechanism.

3https://github.com/thunlp/PL-Marker
4https://github.com/yanzhh/HGERE
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Figure 7: Visual pipeline for understanding HGERE+DP model

Base Model Dataset NER Stage RE Stage Seeds DP Infer Time (hrs) Total (hrs)
Epochs Time (hrs) Epochs Time (hrs)

PL-Marker
SciERC 20 5.4 10 0.5 3 <0.01 17.7
SciER 20 8.1 10 1.9 3 0.03 30
ACE05 10 3.1 10 0.8 3 <0.01 11.7

HGERE
SciERC 8 2.7 30 5.1 3 <0.01 23.4
SciER 8 4.9 30 9.5 3 0.03 43.2
ACE05 5 2.5 15 4.8 3 <0.01 21.9

Table 5: Total GPU time used for experiments. "Epochs" refer to the training iterations per stage. "NER Time" and
"RE Time" are total training durations for Named Entity Recognition and Relation Extraction stages respectively.
"DP Infer Time" is the preprocessing time at inference for dependency parsing. "Total Time" is calculated as (NER
Time + RE Time + DP Infer Time) × Seeds.
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