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Abstract

Due to the unidirectional masking mechanism,
Decoder-Only models propagate information
from left to right. LVLMs (Large Vision-
Language Models) follow the same architec-
ture, with visual information gradually inte-
grated into semantic representations during for-
ward propagation. Through systematic anal-
ysis, we observe that the majority of the vi-
sual information is absorbed into the semantic
representations. However, the model’s atten-
tion distribution does not exhibit sufficient em-
phasis on semantic representations. This mis-
alignment between the attention distribution
and the actual information flow undermines
the model’s visual understanding ability and
contributes to hallucinations. To address this
issue, we enhance the model’s visual under-
standing by leveraging the core information
embedded in semantic representations. Specif-
ically, we identify attention heads that focus
on core semantic representations based on their
attention distributions. Then, through a two-
stage optimization paradigm, we propagate the
advantages of these attention heads across the
entire model, aligning the attention distribution
with the actual information flow. We evaluate
our method on three image captioning bench-
marks using five different LVLMs, demonstrat-
ing its effectiveness in significantly reducing
hallucinations. Further experiments reveal a
trade-off between reduced hallucinations and
richer details. Notably, our method allows for
manual adjustment of the model’s conservative-
ness, enabling flexible control to meet diverse
real-world requirements.!

1 Introduction

Large Vision-Language Models (LVLMs) (Dai
et al., 2023; Bai et al., 2023; Liu et al., 2024c)
integrate Large Language Models (LLMs) with
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'Code is available at https://github.com/beta-nlp/
SEVI.
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Figure 1: Visual information flow in the image caption-
ing task on LLaVA-1.5. Vision to Vision and Vision to
Text respectively denote the visual features’ contribu-
tions to the visual representations and semantic repre-
sentations.

visual encoders, aligning the extracted visual fea-
tures with the semantic space of the LLMs to en-
able comprehensive understanding of visual con-
tent. However, they often suffer from halluci-
nation (Wang et al., 2023b; Li et al., 2023; Liu
et al., 2024b), where the models may generate con-
tent that is inconsistent with the visual evidence,
thereby severely limiting their reliability in real-
world scenarios.

Recent studies have explored methods to miti-
gate hallucinations in LVLMs. Leng et al. (2024)
and Zhang et al. (2025) attribute hallucinations to
the influence of language priors, proposing con-
trastive decoding-based methods to suppress lan-
guage priors. However, they do not explicitly en-
hance the model’s visual understanding capabilities.
Other studies (Yin et al., 2025; Kang et al., 2025;
He et al., 2025) argue that LVLMs exhibit biased
mechanisms in visual attention distribution, and
propose optimizations such as increasing the rel-
ative weight of key visual tokens. In this work,
however, we point out that these approaches make
suboptimal adjustments to the information flow, as
they overlook the influence of information aggre-
gation.
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In fact, the unidirectional masked generation pro-
cess in Transformer-based models can be regarded
as a form of information flow, where information
from earlier tokens in the input or generated se-
quence flows toward later tokens. Since LVLMs
adopt this architecture, their understanding of vi-
sual content can be modeled as a process in which
visual information flows into the semantic represen-
tations (since visual tokens are positioned before
the textual tokens). Based on this perspective, we
follow the Attention Rollout (Abnar and Zuidema,
2020) to conduct an in-depth analysis of informa-
tion flow within LVLMs. The visualization results
are shown in Fig. 1.

Specifically, we use Fi ; to represent the contri-
butions of the i-th input embedding to the j-th rep-
resentation in layer /. Considering the residual con-
nection in the forward propagation, we formulate
the recursive relation as F! = (I4+W 44, /2-FI 71,
where W 4ty is the attention weight after average
pooling across multi-heads. The contributions of
each input embedding were normalized to 1 across
all representations. We perform layer-wise quantifi-
cation of visual embeddings’ contributions to the
visual and semantic representations, respectively.

As shown in the visualization, visual information
progressively flows into semantic representations
across layers. In the final layers, the majority of
the visual information is integrated into the seman-
tic representations. This indicates that during the
forward pass of the LVLMs, visual information
is gradually encoded into the semantic represen-
tations. While prior works largely concentrate on
optimizing the attention distribution to visual fea-
tures, they neglect the critical insight that essential
information has already been integrated into seman-
tic representations, where attention refinement may
be more impactful.

To further validate this insight, we mask all vi-
sual representations and compare the consistency
between the logits distribution of the vision-masked
input and that of the regular (unmasked) input, as il-
lustrated in Fig. 2. We observe that applying mask-
ing to visual representations starting from earlier
layers leads to significant deviations in the model’s
outputs, whereas masking from later layers has
minimal impact on the final outputs. This finding
further supports our view that visual information
has already been integrated into the semantic repre-
sentations in the later layers.

Building upon the above findings, as the number
of layers increases, textual representations progres-
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Figure 2: Jensen-Shannon divergence (JSD) between
the regular and vision-masked logits distribution.
layer=1 represents the application of masking vision
features starting from the [-th layer. Lower log(JSD)
denotes higher consistency between two distributions.
The generation context is The image depicts a _.

sively integrate more visual information and thus
play an increasingly important role. Consequently,
LVLMs should place greater attention on these in-
tegrated representations. To investigate this, we sta-
tistically analyze the attention allocation between
semantic representations and others at each layer,
as illustrated in Fig. 3. The model’s attention to
semantic representations is significantly lower
than expected, accounting for only about one-fifth
of the total attention. This phenomenon stems from
the nature of supervision in LVLM training, which
is primarily driven by soft supervision from end-
to-end data and lacks explicit guidance on the at-
tention distribution. We argue that the model’s at-
tention distribution should align with the actual
flow pattern of visual information. Otherwise,
hallucinations may arise, as the model does not
sufficiently attend to regions enriched with visual
information.

To address the aforementioned challenge, we
propose SEVI (Semantic-Enhanced Visual Inter-
pretation), a novel training-free approach that aug-
ments the model’s attention to those semantic rep-
resentations that have absorbed visual information.
Furtherly, we encourage the model to focus on
the most meaningful representations in order to
reduce the occurrence of hallucinations. Several
studies (Wang et al., 2023c; Xiao et al., 2024) have
revealed that contextual information tends to spon-
taneously concentrate in some tokens, forming
anchor tokens that encapsulate core information.
These tokens are typically characterized by receiv-
ing disproportionately high attention (Wang et al.,
2023c¢). Therefore, our method focuses the model’s
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Figure 3: Attention distribution between semantic repre-
sentations and all others, obtained by averaging across
all attention heads.

attention on these core semantic representations
at higher layers where information integration and
aggregation occur. The core visual information con-
tained within these representations provides more
effective guidance for the model’s understanding
of visual inputs, thereby mitigating hallucination.

Specifically, we identify superior attention heads
within the multi-head attention mechanism—those
that attend to core semantic representations—and
use their attention distribution as the target distri-
bution to guide the optimization of the model’s
overall attention. To achieve this, we design a
two-stage attention optimization paradigm, incor-
porating a smoothing mechanism to ensure stable
performance improvements.

We evaluate the effectiveness of our method
in mitigating hallucinations by testing it with
five LVLMs: InstructBLIP (Dai et al., 2023),
LLaVA-1.5 (Liu et al., 2024c), LLaVA-Next (Liu
et al., 2024d), Qwen2-VL-Instruct (Wang et al.,
2024b), and Qwen2.5-VL-Instruct (Bai et al.,
2025), on three image captioning benchmarks:
CHAIR (Rohrbach et al., 2018), AMBER (Wang
et al., 2023a), and DetailCaps (Ye et al., 2025).
Experimental results show that our approach sig-
nificantly reduces hallucinations while supporting
manual adjustment of the model’s conservative-
ness, enabling a flexible trade-off between cautious
outputs (fewer hallucinations) and comprehensive
descriptions (richer details).

Our main contributions are as follows:

¢ We reveal that visual information is indeed in-
tegrated into semantic representations. How-
ever, the model’s attention distribution does
not align with this flow pattern, leading to
hallucinations.

* We enhance the visual understanding capabili-

ties of LVLMs by leveraging semantic repre-
sentations. Specifically, we guide the model’s
attention toward core semantic representations
through a two-stage optimization paradigm,
effectively reducing hallucinations.

* We evaluate our method on the image cap-
tioning task, demonstrating its effectiveness
in significantly reducing hallucinations across
three benchmark datasets and five LVLMs.
We observe a trade-off between reducing hal-
lucinations and preserving detail, with our
method enabling controllable conservative-
ness for task-specific needs.

2 Related Work

Various approaches have been proposed to mitigate
hallucinations in LVLMs, such as improving train-
ing data quality (Liu et al., 2024a; Sun et al., 2024;
Gunjal et al., 2024) or designing specific data for-
mats (Hu et al., 2023; Zhai et al., 2024; Chen et al.,
2025) to enhance model reliability. However, these
training-based methods often suffer from limited
scalability.

In recent years, the rapid evolution of LVLM
backbones has brought increasing attention to
training-free methods. Early approaches (Yin et al.,
2024; Wang et al., 2024a; Zhou et al., 2024) primar-
ily relied on post-processing techniques to correct
hallucinated content after generation. However, the
complexity of such pipelines and their dependence
on external modules limit their practical usabil-
ity. Researchers have since shifted focus toward
investigating the root causes of hallucinations, ex-
ploring targeted optimizations in both the decod-
ing strategies and the decoding processes. Some
methods (Leng et al., 2024; Wang et al., 2024c;
Zhang et al., 2025; Zhao et al., 2025) apply con-
trastive decoding algorithms to refine the logits,
thereby reducing the likelihood of hallucination-
related tokens. While these approaches improve
the expressiveness of the model and enhance the
transfer of visual information into textual form,
they do not strengthen the model’s intrinsic cross-
modal understanding. Other works have proposed
enhancements to the attention mechanism, such as
correcting visual positional bias (Li et al., 2025;
Zhu et al., 2025b), directly boosting visual atten-
tion (Zhu et al., 2025a; He et al., 2025), or redis-
tributing attention weights (Kang et al., 2025; Yin
et al., 2025). However, these methods primarily
concentrate on visual attention and overlook the
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vision-integrated semantic representation.

In contrast to these approaches, we analyze the
information flow between the visual and textual
modalities in LVLMs and focus the model’s at-
tention on core information within semantic repre-
sentations, thereby reducing hallucinations more
effectively.

3 Preliminaries

LVLMs consist of a visual encoder and an LLM
backbone. High-dimensional features extracted by
the visual encoder are concatenated with textual
embeddings and jointly fed into the LLM. Subse-
quently, the visual and semantic features undergo
cross-modal interaction through the Self-Attention
layers within the LLM. The cross-modal interaction
in layer [ simplified as AX! = softmax(W)X!,
where X' = [X!, : X/] denotes the hidden states
of visual features X!, and semantic features XY
W € RHXEXL g the attention weights, H is the
number of attention head and L is the model’s con-
text length.

When generating the (j+1)-th token, the model’s
attention to feature Xi at layer [ across all heads
is quantified by the weight value W; ;. A larger
W, ; indicates that the model’s current layer relies
more heavily on the information from Xi when
determining the generated content. Therefore, we
can intuitively infer that more important features
Xﬁ should generally correspond to larger attention
weights W ;.

4 Method

We attribute the occurrence of hallucinations to a
misalignment between the attention distribution of
LVLMs and the visual information flow. To address
this, we enhance the visual interpretation capabil-
ities of LVLMs by leveraging semantic represen-
tations that encapsulate visual information. We
first identify superior attention heads that focus on
core semantic representations, and then propagate
their strengths to other heads through a two-stage
optimization paradigm, as illustrated in Fig. 4.

4.1 Attention Distribution Alignment

Considering that visual information is progres-
sively integrated into semantic representations
through forward propagation—and that only a
few of these representations aggregate core infor-
mation—an intuitive approach is to increase the
model’s attention to these core semantic represen-

tations in the later layers. However, rigidly modify-
ing the model’s attention distribution may disrupt
its inherent latent features, potentially resulting in
suboptimal performance.

In the multi-head attention mechanism, attention
heads naturally diversify after training, forming a
heterogeneous and specialized structure (Vaswani
et al., 2017). Accordingly, we identify superior
attention heads that attend to core semantic repre-
sentations and transfer their attention patterns to
other heads, leading to a global refinement of the
model’s attention distribution.

Specifically, at each layer, we calculate the at-
tention weight of each head with respect to the
semantic representations. We then identify those
heads that allocate more than 50% of their attention
to semantic representations:

, Hg if > WE>) W |
© Ho if Y WE<> Wp M

Wg and Wg respectively denote the attention
weights of head h to semantic and other represen-
tations. Hg denotes the set of heads that focus
more on semantic representations, whereas Hp de-
notes other heads. Hg are further categorized based
on their attention distributions into Core Semantic
Heads (Hg,), which focus on core semantic rep-
resentations, and Global Semantic Heads (Hg,),
which fail to effectively attend to them:

Hs, if maxW§i>r-) W
h e (2)
Hg, if maxW§<r-» Wi

where  is a hyperparameter and Hg, U Hg, =
Hg holds. We then take the core semantic heads
to construct a target distribution to optimize the
model’s attention distribution.

To ensure stable information integration within
the model, we propose a two-stage feature opti-
mization paradigm that more naturally guides the
model’s understanding of visual information.

In the first stage, we use the global semantic
heads to guide the other heads, aligning the model’s
attention transition to semantic representations and
harmonizing with the visual information flow. In
the second stage, we leverage the core semantic
heads to guide the global semantic heads, encour-
aging the model to concentrate more on critical in-
formation and thereby suppressing hallucinations.

The model’s internal attention is then optimized
through a two-stage refinement process.
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Figure 4: The diagram of the two-stage attention distribution alignment. We first categorize attention heads based on
their focus on semantic representations into semantic heads and other heads. Semantic heads are further divided into
core semantic heads and global semantic heads, depending on whether they attend to core semantic representations.
We then align the model’s attention distribution with the core semantic heads through a two-stage optimization

process.

During this process, we incorporate a weighted
smoothing mechanism to adjust the attention distri-
bution of each head:

. Wh + wW’
wh="_"""
14+w

3)
where W denotes the optimized attention weights
of head h, W' represents the target weight dis-
tribution derived from superior heads, and w is a
hyperparameter that controls the extent of the mod-
ification.

We first use the global semantic heads to guide
the other heads, aiming to align the model’s atten-
tion distribution with the flow of visual information.
To this end, we apply average pooling across the
global semantic heads to construct the target atten-
tion distribution:

W 1 W

“h g tw: |Hsg, | ZtGHSq th

Wo = : ‘ N C))
1+w

Subsequently, we use the core semantic heads to
guide the global semantic heads, with the goal of
enhancing the model’s focus on critical information.
Here, we employ max pooling across core semantic
heads to form the corresponding target distribution:

h ) t
_ W, +w-maxiens, W,
59 1+w

(&)

We provide the algorithm of the two-stage opti-
mization process in Appendix A.

4.2 Mitigating Aggravated Language Priors

We optimize the model’s attention distribution to
align with the flow pattern of visual information,
which ultimately results in increased attention to

semantic representations. However, while seman-
tic representations incorporate visual information,
they also inherently contain their own contextual
features. As a result, increasing the model’s re-
liance on semantic representations will exacerbate
the issue of language priors (Wu et al., 2022; Ren
et al., 2023; Chen et al., 2025).

To address this issue, we employ CICD (Zhao
et al., 2025) to eliminate language priors while
preserving visual information. CICD uses the cross-
image consistency of language priors to identify
detrimental priors and mitigate them by contrastive
decoding:

logit(yt | U, T, y<t) :(1 + a)logitH(yt ‘ UV, T, y<t)
- alogitg (yt ‘ U/7 L, y<t)

A (©6)
where logity is the logit distribution after attention
distribution alignment and logit, is the regular logit
distribution with a distinct image v’. « is defined
as follows:

o = 1 —log;o(JSD(logity; logity))  (7)

where JSD(+; -) represents Jensen-Shannon Diver-
gence.

S Experiments

5.1 Experimental Setup

Due to space constraints, we present only the key
aspects of our experimental setup here. Detailed
settings can be found in Appendix B.

Implementation Details Our method guides the
model to focus on core information, thereby reduc-
ing the occurrence of hallucinations. In practice,
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LLaVA-1.5 InstructBLIP LLaVA-1.5-13B

Method

Csl Cij RT GCs) CGiJ Rt GCs|] CGil R7T

Maximum Generation Length is 64
Regular 244 89 56.6 356 132 564 240 78 56.5
VCD (Leng et al., 2024) 250 83 59.0 322 103 606 234 75 594
ICD (Wang et al., 2024c) 232 81 584 298 98 60.6 188 6.6 584
PAI (Liu et al., 2024e) 200 62 569 260 89 539 174 53 587
IBD (Zhu et al., 2025a) 212 69 588 278 92 603 224 71 599
VAR (Kang et al., 2025) 252 86 553 - - - 258 85 563
AD-HH (Yang et al., 2025) 194 6.3 525 - - - 200 6.5 539
VAF (Yin et al., 2025) 262 93 56.6 320 120 553 232 80 576
DeGF (Zhang et al., 2025) 224 7.2 582 324 11.0 594 224 69 59.6
CICD (Zhao et al., 2025) 180 6.1 59.6 238 7.7 622 204 66 594
SEVIBalanced 188 55 595 278 88 609 17.8 55 57.6
SEVIrscused 148 4.7 541 154 59 509 134 45 544
Maximum Generation Length is 512

Regular 546 164 72,6 626 195 669 588 170 734
VCD (Leng et al., 2024) 598 178 75.6 648 188 719 602 164 76.9
ICD (Wang et al., 2024c) 570 150 746 59.0 17.1 69.2 550 145 764
PAI (Liu et al., 2024e) 412 104 68.6 67.6 194 68.0 354 9.5 731
IBD (Zhu et al., 2025a) 576 165 742 576 157 708 506 143 76.1
VAR (Kang et al., 2025) 60.0 183 72.6 - - - 548 153 738
AD-HH (Yang et al., 2025) 46.6 12.6 66.5 - - - 50.0 135 71.0
VAF (Yin et al., 2025) 588 19.0 713 586 178 669 572 162 73.7
DeGF (Zhang et al., 2025) 574 163 755 590 177 71.5 51.8 142 755
CICD (Zhao et al., 2025) 438 11.7 750 49.8 137 703 444 129 76.0
SEVIgalanced 348 9.0 683 41.0 124 67.1 28.6 84 68.7
SEVIrscused 178 55 569 188 84 516 150 51 556

Table 1: Results on CHAIR. SEVIg,janced and SEVIg,cused represent our method operating in the Balanced and
Focused mode, respectively. Cs and Ci represent CHAIRs and CHAIRI, R represents Recall.

we observe a trade-off between hallucination sup-
pression and the richness of generated details, in-
fluenced by the model’s degree of attentional focus.
To address this, we introduce hyperparameters to
control the model’s focus on the core information.
Based on empirical observations, we design two
sets of hyperparameter configurations: (1) Focused
mode that aggressively minimizes hallucinations,
and (2) Balanced mode that strikes a compromise
between detail retention and hallucination reduc-
tion. Specifically, Focused mode optimizes atten-
tion distribution starting from the 5th layer with
w = 4, while Balanced mode begins from the 9th
layer with w = 0.5.

In addition, we set the parameter s in Eq. 2
to 0.2. Further details are discussed in Appendix
B.3. We employ sampling decoding for the next-

token prediction with default settings. All exper-
iments are performed on a single NVIDIA A800
40G GPU.

Benchmarks We evaluate the performance of our
method across three widely adopted multimodal
hallucination benchmarks on the image captioning
task. These include CHAIR (Rohrbach et al., 2018),
DetailCaps (Ye et al., 2025), and AMBER (Wang
et al., 2023a).

Evaluated LVLMs To examine the generaliz-
ability of our approach, we apply it to five LVLMs
drawn from three representative model families:
InstructBLIP (Dai et al., 2023); two models from
the LLaVA family (LLaVA-1.5 (Liu et al., 2024c)
and LLaVA-Next (Liu et al., 2024d)); and two
from the Qwen series (Qwen2-VL-Instruct (Wang
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LLaVA-1.5 InstructBLIP

Method

CAPTURET Cs| Ci] CAPTURET GCs| Cil
Regular 52.60 557 174 52.99 58.6 18.0
VCD (Leng et al., 2024) 52.91 55.7 16.8 53.20 59.6 189
ICD (Wang et al., 2024c) 52.82 539 16.6 53.24 55.7 16.7
PAI (Liu et al., 2024e) 53.49 394 11.8 53.27 62.6 18.3
IBD (Zhu et al., 2025a) 52.48 54.1 15.8 54.14 564 15.5
VAR (Kang et al., 2025) 52.98 55.1 17.1 - - -
AD-HH (Yang et al., 2025) 52.52 4.4 115 - - -
VAF (Yin et al., 2025) 52.36 55.6 18.1 52.63 559 169
DeGF (Zhang et al., 2025) 52.72 55.7 16.6 53.06 59.1 174
CICD (Zhao et al., 2025) 55.80 456 13.1 54.20 457 13.2
SEVIgalanced 53.73 319 8.8 53.33 38.0 12.8
SEVIgscused 58.00 19.3 6.1 56.89 18.3 8.2

Table 2: Results on the COCO subset of DetailCaps. The maximum generation length is 512.

LLaVA-1.5 InstructBLIP
Method
CHAIR| Cover?T Hal| Cog| CHAIR| Covert Hal| Cog |

Regular 11.6 49.7 477 44 124 519 524 5.0
VCD (Leng et al., 2024) 9.8 512 438 44 9.9 540 446 42
ICD (Wang et al., 2024c) 8.8 512 387 4.1 9.8 539 46.7 5.1
PAI (Liu et al., 2024e) 7.7 493 369 33 11.7 52.8 551 54
IBD (Zhu et al., 2025a) 9.8 505 422 44 9.0 56.1 45.1 4.6
PAI (Liu et al., 2024e) 7.7 493 369 33 11.7 52.8 551 54
VAR (Kang et al., 2025) 11.7 51.2 485 4.8 - - - -
AD-HH (Yang et al., 2025) 9.0 48.0 408 3.0 - - - -
VAF (Yin et al., 2025) 11.3 50.2 48.6 43 11.5 51.8 50.1 5.1
DeGF (Zhang et al., 2025) 9.1 50.7 399 4.1 9.7 541 445 52
CICD (Zhao et al., 2025) 6.6 527 348 22 7.1 536 350 23
SEVIBalanced 5.6 48.6 276 1.7 6.0 51.0 285 1.6
SEVIgscused 6.1 423 202 0.8 7.7 428 249 1.2

Table 3: Results on AMBER. The maximum generation length is 512.

et al., 2024b) and Qwen2.5-VL-Instruct (Bai et al.,
2025)). All models are tested at the 7B parameter
scale unless explicitly noted otherwise.

Baselines We conduct a comparison between our
method and several SOTA de-hallucination tech-
niques: VCD (Leng et al., 2024), ICD (Wang et al.,
2024c), IBD (Zhu et al., 2025a), PAI (Liu et al.,
2024e), VAR (Kang et al., 2025), VAF (Yin et al.,
2025), AD-HH (Yang et al., 2025), DeGF (Zhang
et al., 2025), and CICD (Zhao et al., 2025).

5.2 Main Results

Results on CHAIR CHAIR is a benchmark de-
signed to detect object hallucinations in image cap-

tions, relying on human annotations to provide re-
liable ground truth. Following common practice,
we conduct experiments with maximum sequence
lengths set to 64 and 512, respectively. The re-
sults are shown in Fig. 1. Our method effectively
reduces hallucinations by guiding the model’s atten-
tion toward core information, achieving particularly
low hallucination rates under the focused mode.
However, we observe that when the model concen-
trates on critical information, it tends to become
more conservative, as reflected by a slight drop
in recall. In contrast, the balanced mode allows
the model to capture more details while still main-
taining a low hallucination rate, resulting in the
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Method LLaVA-Next Qwen2-VL Qwen2.5-VL
Cs)] Cij Rt Cs|] Cij Rt GCs] Cii Rt
Regular 322 11.0 564 302 83 531 286 93 56.0
SEVIgalancea 25.8 93 49 202 53 543 222 7.0 539
SEVIgscusea 208 99 378 188 7.0 419 164 7.1 392

Table 4: Results CHAIR with more LVLMs. The maximum generation length is 128.

Setting Cs| Ciyl Rt
PAI with different layers

None (only CD) 254 7.6 61.9
[2-15] (Lower) 208 6.8 56.7
[16-31] (Higher) 246 8.0 593
[2-31] (PAI) 200 6.0 57.6
SEVI combined with PAI

Regular 244 8.9 56.6
SEVIgocused 148 4.7 54.1
SEVIgocuseqa W/ PAIL 142 53 522
SEVIBalanced 188 5.5 595
SEVIBajanced W/ PAIL 150 53 554

Table 5: PAI increase visual attention from the 2nd layer
to the final layer ([2-31]). None (only CD) denotes the
use of contrastive decoding alone, without increasing
visual attention.

best overall performance. In addition, our method
yields the most pronounced improvement on the
13B model relative to the 7B model, indicating its
effectiveness in harnessing the latent capacity of
larger models for visual understanding.

Results on DetailCaps DetailCaps evaluates
the correctness of captions in terms of objects,
attributes, and relationships, incorporating both
exact-match and soft-match metrics. The exper-
imental results are presented in Tab. 2. Our method
outperforms existing approaches in both hallucina-
tion rate and overall caption correctness. Moreover,
the focused mode achieves a higher CPAURE score,
indicating not only a lower incidence of hallucina-
tions but also greater accuracy in the described
content. This highlights the practical value of our
approach for real-world applications.

Results on AMBER AMBER carefully selects
high-quality images to construct its benchmark and
provides a more fine-grained evaluation of object
hallucinations. The experimental results are shown

. LLaVA-1.5 InstructBLIP

Setting

Cs| Cil Cs| Cil
Regular 546 164 62.6 19.5
w/o CICD 38.6 139 444 203
w/o Core Heads 39.0 9.7 45.0 133
w/o Global Heads 222 7.0 232 11.6
w/o Two-Stage Opt. 184 9.6 352 10.7
SEVIg,cused 178 55 188 84

Table 6: Ablation study on CHAIR with Focused mode.
w/o Two-Stage Opt. represents applying core semantic
heads to non-semantic heads. We find that this approach
disrupts the model’s internal representations and leads
to response collapse. To improve the smoothness of
attention alignment, we set w = 1 in this setting.

in Tab. 3. Our method achieves a significantly
lower hallucination rate while maintaining a com-
parable Cover score to other approaches, resulting
in the best overall performance.

5.3 Visual or Semantic Representations,
Which Should LVLMs Focus On?

Some works (Liu et al., 2024e; Zhu et al., 2025a)
emphasize the importance of visual attention,
whereas we encourage the model to focus more on
semantic representations. To investigate whether
the model should prioritize visual or semantic rep-
resentations, we take PAI (Liu et al., 2024¢) as a
contrast, which directly increases the model’s at-
tention to visual representations.

As we analyze in Fig. 1 and Fig. 2, visual infor-
mation resides in visual representations during the
early layers of LVLMs and is gradually integrated
into semantic representations in later layers. There-
fore, we hypothesize that LVLMs should focus on
visual representations in the lower layers and
shift to semantic representations in the higher
layers. We perform ablation studies on both lower
and higher layers within the PAI to better under-
stand the layer-wise impact. The results at the top

24856



of Tab. 5 are consistent with our hypothesis, indi-
cating that it is more beneficial for the model to
focus on visual representations in the lower lay-
ers. Furthermore, we explore combining PAI with
our method by applying PAI to the lower layers
(layers [2—15]) to enhance visual attention, while
adopting our approach in the higher layers (layers
[16-31]). The results at the bottom of Tab. 5 further
demonstrate our hypothesis.

5.4 Effectiveness on more LVLMs

We evaluated our method on several state-of-the-art
LVLMs, with the experimental results presented
in Tab. 4. Across these models, our method con-
tinues to demonstrate strong hallucination suppres-
sion capabilities, with both modes exhibiting their
expected effectiveness. These results validate the
excellent generalization ability of our approach and
highlight its practical potential as a training-free
solution.

5.5 Ablation Study

Through a two-stage optimization paradigm, we re-
allocate the model’s attention toward the semantic
representations, encouraging it to focus on the core
visual information and thereby reducing hallucina-
tions. In addition, we employ CICD to address the
issue of language priors that aggravate when the
model over-focuses on semantic representations.
We conduct ablation studies on these three compo-
nents, with the results presented in Tab. 6. The core
semantic heads play a pivotal role in guiding the
model’s focus, and removing them in the ablation
study leads to a noticeable increase in hallucina-
tion rate. The global semantic heads help modulate
the cross-modal attention distribution, aligning it
with the flow of visual information, which also
contributes significantly to hallucination reduction.
The combination of both components has a syner-
gistic effect, and incorporating the CICD method to
mitigate language priors, amplified by overattend-
ing to semantic representations, further enhances
the performance of the model. Additionally, the
two-stage optimization paradigm also has a positive
effect, making the optimization process more sta-
ble and smooth. The experimental results confirm
the effectiveness and soundness of our method’s
design, highlighting the value of each component.

6 Conclusion

We systematically analyze the information flow in
LVLMs and verify that visual information is indeed

integrated into the semantic representations. How-
ever, the model’s attention remains predominantly
focused on the visual representation. This incon-
sistency impairs the model’s visual understanding
and contributes to hallucination. To address this,
we propose Semantic-Enhanced Visual Interpre-
tation (SEVI), a method that guides the model’s
attention toward the core components of semantic
representations through a two-stage optimization
process. Extensive experiments demonstrate that
our approach significantly mitigates hallucinations.

While our method optimizes the attention dis-
tribution in LVLMs based on the underlying in-
formation flow, it does not directly enhance the
flow mechanism itself. In future work, we plan to
explore more efficient strategies for visual informa-
tion propagation.

Limitations

Our method guides the model to focus on the most
critical information, thereby reducing the occur-
rence of hallucinations. During our experiments,
we observed a trade-off mechanism in the model’s
focusing process: excessive focus leads to a more
conservative image captioning. In an effort to avoid
hallucinated content, the model may overlook some
details, which is reflected in a slight decrease in
recall. Although our method demonstrates supe-
rior overall performance—showing a significant
advantage on comprehensive metrics such as CAP-
TURE—it still faces a trade-off between reducing
hallucinations and generating more details. To ad-
dress this issue, we introduce hyperparameters to
control the model’s level of conservativeness, al-
lowing users to manually adjust the behavior based
on specific application scenarios. Furthermore, as
a training-free approach, our method offers greater
usability but is inherently limited by the perfor-
mance ceiling of the model itself.
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A Two-Stage Optimization

We present the algorithm of our method in Algo-
rithm 1.

B Detailed Experiments

B.1 Benchmarks

We evaluate the performance of our method across
three widely adopted multimodal hallucination
benchmarks on the image captioning task. These
include CHAIR, DetailCap, and AMBER.

CHAIR (Rohrbach et al., 2018) evaluates the
proportion of hallucinated objects—those gener-
ated by the model but not present in the reference
annotations. Following prior work, we randomly
sample 500 images from the MSCOCO (Lin et al.,
2014) dataset for evaluation. CHAIRs and CHAIRi
are the main metrics to evaluate hallucination:

|Hallucinated Objects|

CHAIRs = |
i |All Objects| ®)
Halluci
CHAIRi = |Hallucinated Sentences|
|All Sentences|
DetailCaps (Ye et al., 2025) is a fine-grained

image captioning benchmark, accompanied by
ground-truth detail captions generated by GPT-4V
(Yang et al., 2023), Gemini 1.5 Pro (Team et al.,
2024), and GPT-40 (OpenAl et al., 2024) for eval-
uation purposes. It comprises 4,870 images from
various datasets; we use a subset of 700 images
from MSCOCO in our experiments. CAPTURE
evaluates the alignment between generated and ref-
erence captions by computing F1 scores using both
hard and soft matching across three semantic as-
pects: entities (F'1op;), attributes (F'1,4), and re-
lations (F'1,). The final score is calculated as a
weighted average:

aFlobj + BF Ly + 7 F L

CAPTURE =
a+B+y

(©))

where o = 5, 8 =5, and v = 2.

AMBER (Wang et al., 2023a) contains 1,004
carefully curated high-quality images, each with
manually annotated objects. AMBER contains mul-
tiple evaluation metrics: CHAIR, Cover, Hal, and
Cog. Given a list of annotated objects A, =
obj{‘, objé“, ‘e ,obj;j1 and a set of generated ob-

jects R, ;» €ach metric is defined as follows:

len(R’, - N Ay
CHAIR — 1 — 2oy : bj),
1en(Robj)
len(Ry,,; N Aobj)
len(Agp;)
_ |CHAIR > 0|
~ |All Captions|’
len (R, N Hop;)
len(R},;)

Cover =
(10)
Hal

Cog =

where H,,; denotes the set of hallucinated target
objects generated by LVLMs, and All Captions
refers to the total number of generated captions.

B.2 Baselines

We conduct a comparison between our method and
several SOTA de-hallucination techniques:

* VCD (Leng et al., 2024) introduces Gaussian
noise into images to activate language priors,
thereby constructing negative contexts and re-
moving these priors through contrastive de-
coding. However, this approach leads to a
loss of visual information. Moreover, the use
of noisy images deviates from the model’s
training distribution, potentially causing per-
formance degradation.

* ICD (Wang et al., 2024c) constructs negative
contexts by designing adversarial instructions
and applies contrastive decoding to mitigate
their influence. Like VCD, it faces challenges
such as visual information loss and perfor-
mance bias.

* IBD (Zhu et al.,, 2025a) strengthens the
model’s focus on visual information by us-
ing the original context as a negative refer-
ence, and further refines contrastive decoding
via inter-layer and inter-context consistency
mechanisms.

* VAR (Kang et al., 2025) reallocates attention
from sink visual tokens to other visual tokens,
allowing the model to capture more detailed
visual information.

* VAF (Yin et al., 2025) rebalances the atten-
tion allocation between instructions and visual
inputs, redirecting attention from the textual
instructions toward the visual information.
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Setting Cs, Cil Rt R-Cs-Cit
k=015 21.6 7. 57.6 289
k=02 178 55 569  33.6
k=025 126 63 491 302
k=03 110 54 448 284

Table 7: Explore on hyperparameter x with the Focused
mode.

* DeGF (Zhang et al., 2025) generates negative
contexts via cross-modal back-translation and
strengthens consistency signals throughout the
contrastive decoding process.

¢ CICD (Zhao et al., 2025) leverages the con-
sistency of language priors across images by
using different images to construct negative
contexts. It detects detrimental priors via con-
sistency analysis and removes them through
contrastive decoding, while retaining benefi-
cial priors essential for accurate understand-
ing.

B.3 Hyperparameters

We investigate the appropriate setting of hyperpa-
rameters using LLaVA-1.5-7B. The parameter s
serves as the threshold for distinguishing between
core semantic heads and global semantic heads.
We analyze the peak attention values of semantic
heads, as shown in Fig. 5. Based on this analy-
sis, we explore the impact of x under the focused
mode, with the results presented in Tab.7. A higher
threshold encourages the model to attend to more
central information, resulting in a lower hallucina-
tion rate but also a reduced recall. To balance these
trade-offs, we define a heuristic metric to evalu-
ate the model’s overall performance. Based on the
experimental results, we set kK = 0.2.

The attention adjustment strength w and the start-
ing layer (SL) for attention optimization are interde-
pendent. Therefore, we perform a joint search over
these two hyperparameters, with the results summa-
rized in Tab.8. Based on two heuristic evaluation
metrics, we select two representative hyperparam-
eter configurations, corresponding to the Focused
mode (w=4, SL=5) and Balanced modes (w=0.5,
SL=9).

C Case Studies

To demonstrate the effectiveness of our method in
mitigating hallucinations, we provide qualitative

0.00 0.25 0.50

Max/Sum

0.75 1.00

Figure 5: Semantic attention peaks. We plot the
KDE (Kernel Density Estimation) of the peak atten-
tion weights for attention heads focusing on semantic
representations. The x-axis represents the proportion of
the highest-attended representation’s attention weight
among all semantic representations, while the y-axis
denotes the density.

case studies. We select one simple image (Fig. 6)
and one complex image (Fig. 7) as case studies.
The captions were generated by LLaVA-1.5, with
hallucinated content highlighted in red and image-
consistent content highlighted in green.

It can be observed that Regular Decoding pro-
duces a large amount of hallucinated content, even
in the simple image. In contrast, our method ef-
fectively reduces the occurrence of such halluci-
nations. Both the Focused and Balanced modes
significantly mitigate hallucinations; however, the
Focused mode makes the model overly conserva-
tive, potentially overlooking fine-grained details.
For example, in Fig. 7, the Focused mode fails to
capture items such as knife and fork, whereas the
Balanced mode not only reduces hallucinations but
also preserves more detailed information.
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Algorithm 1 Attention Distribution Alignment within a Layer

Input: attention weights W € R#XLxL

the end indexes of visual tokens e,
hyperparameters « and w
Output: aligned attention weights W
Weur < W[i, —1,:]  # Attention weights of the last token
Wi < Softmax(We,) # Apply softmax normalization
Wg < W[:,e+1:] # Attention to semantic representations
Wo « Wy:,: e+ 1]  # Attention to other representations
# Head categorization:
Hg + (3. Wg>> Wyp) #Semantic heads
Hop < —~Hg # Other heads
H. <+ (maxWg > k-Y  Wg) # Heads focusing on core information
H, <~ —H. # Heads fail to focus on core information
Hgs, < HsN Hy; # Global semantic heads
Hg <+ HgN H, # Core semantic heads
# Two-Stage Optimization:
if |[Ho| > 0 and |Hg,| > 0 then
# Guide the other heads using the global semantic heads
my < @ > WewlHs,,:| # Average pooling
W [Ho, | < (Weu[Ho,:] +w-m1)/(1 +w)
end if
if |Hs.| > 0and |Hs,| > 0 then
# Guide the global semantic heads using the core semantic heads

mgy < max Wy [Hg,,:] #Max pooling
Weu([Hs,, | < (Weu[Hs,,:| +w-m2)/(1+w)

end if

WI[;,—1,:] «+ W, # Update attention weights

Return: W
Setting CHAIRs| CHAIRi| Recallt R-Cs-Cit 2R-Cs-Cit
w=0.5, SL=2 32.8 8.7 68.0 26.5 94.5
w=0.5, SL=5 34.4 94 68.8 25.0 93.8
w=0.5, SL=9 314 9.1 67.8 27.3 95.1
w=0.5, SL=17 45.2 12.3 74.3 16.8 91.1
w=I1, SL=2 294 7.7 64.4 27.3 91.7
w=1, SL=5 27.4 8.0 64.7 29.3 94.0
w=I1, SL=9 26.0 6.7 63.7 31.0 94.7
w=1, SL=17 47.0 13.5 74.3 13.8 88.1
w=2, SL=2 234 7.3 60.5 29.8 90.3
w=2, SL=5 23.6 6.7 59.9 29.6 89.5
w=2, SL=9 23.6 7.1 61.2 30.5 91.7
w=2, SL=17 47.8 13 74.9 14.1 89.0
w=4, SL=2 18.0 6.1 55.5 314 86.9
w=4, SL=5 17.8 5.5 56.9 33.6 90.5
w=4, SL=9 21.6 7.1 57.6 28.9 86.5
w=4, SL=17 47.0 13.0 74.1 14.1 88.2

Table 8: Results of grid search. SL stands for Start Layer, indicating the layer from which attention optimization
begins. Cs, Ci, and R separately represent CHAIRs, CHAIRi, and Recall.
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Regular

The image features a sitting in the middle of a field with its base
elevated up in the sand. The fire hydrant is surrounded by and likely
serves its purpose in case of emergencies. It is situated near a concrete wall
which appears to be a part of the surrounding landscaping. The hydrant is
prominently visible in the scene, with no other objects or potted plants providing
a sense of perspective within the area.

Balanced mode

The image features a prominently sitting in a
. The hydrant is situated on a and is surrounded by
. The vibrant stands out against the
, creating a harmonious blend of colors and textures. The combination
of the vivid hue and the life creates a serene and peaceful
atmosphere.

Focused mode

The image features a sitting in a or gravel

. The fire hydrant is in color, and its bright red hue
contrasts sharply with the surrounding plants, adding a beautiful contrast to the
garden scene. The bright 1< color of the creates a
with its surroundings, making it a striking addition to the scene.

Figure 6: Case study I.

Regular

The image shows a seated together at a s
enjoying a . In front of them, several are filled with , and
are positioned around the table. Other tableware items include a s
, and , placed near the people. The couple appears to be sitting in a
casual restaurant setting. Additionally, there is a chair on the right side of the
table for another person, although no one else is visible in the scene. A person
can be seen in the background, possibly a waiter or a fellow patron at the
restaurant.

Balanced mode

The image depicts sitting together at a , enjoying a
meal of and . They have multiple H , and filled with
food in of them. Various such as s , and can be
seen placed on the table, ready for use. Additional is present,

including a vase, and a bottle can be spotted on the table. The couple seems to
be enjoying each other's company and sharing the dining experience.

Focused mode

The image shows X , sitting at a
and enjoying a meal together. They appear to be while
. On the table, there are various containing different types of
food, along with multiple placed in and around them. Additionally, there
are several on the table, indicating a variety of wines may have
been served with the meal. Overall, it's a joyful and happy moment.

Figure 7: Case study II.
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