
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 24793–24809
November 4-9, 2025 ©2025 Association for Computational Linguistics

RTTC: Reward-Guided Collaborative Test-Time Compute

J. Pablo Muñoz*

Intel Labs
Santa Clara, CA, USA
jpablomch@gmail.com

Jinjie Yuan∗

Intel Corporation
Beijing, China

jinjie.yuan@intel.com

Abstract
Test-Time Compute (TTC) has emerged as a
powerful paradigm for enhancing the perfor-
mance of Large Language Models (LLMs) at
inference, leveraging strategies such as Test-
Time Training (TTT) and Retrieval-Augmented
Generation (RAG). However, the optimal adap-
tation strategy varies across queries, and in-
discriminate application of TTC strategy in-
curs substantial computational overhead. In
this work, we introduce Reward-Guided Test-
Time Compute (RTTC), a novel framework
that adaptively selects the most effective TTC
strategy for each query via a pretrained re-
ward model, maximizing downstream accuracy
across diverse domains and tasks. RTTC op-
erates in a distributed server-client architec-
ture, retrieving relevant samples from a re-
mote knowledge base and applying RAG or
lightweight fine-tuning on client devices only
when necessary. To further mitigate redundant
computation, we propose Query-State Caching,
which enables the efficient reuse of historical
query states at both retrieval and adaptation
levels. Extensive experiments across multiple
LLMs and benchmarks demonstrate that RTTC
consistently achieves superior accuracy com-
pared to vanilla RAG or TTT, validating the
necessity of adaptive, reward-guided TTC se-
lection and the potential of RTTC for scalable,
high-performance language model adaptation.

1 Introduction

Large language models have achieved remarkable
performance across a wide range of tasks. How-
ever, their robustness and adaptability to new do-
mains or distribution shifts at inference time re-
main open challenges. Traditionally, two major
paradigms have been explored to enhance LLM per-
formance at test time: Retrieval-Augmented Gener-
ation (RAG) (Lewis et al., 2020; Gao et al., 2023b),
which augments model input with retrieved knowl-
edge, and Test-Time Training (TTT) (Sun et al.,

*Equal contribution.

Llama-3-8B-Inst Llama-3.1-8B-Inst Mistral-7B-Inst-v0.3 Qwen2.5-3B-Inst95

100

105

110

115

120

125

Ac
cu

ra
cy

 Im
pr

ov
em

en
t (

%
)

Baseline

No Adaptation
RAG
TTT
RTTC
RTTC-Joint

Figure 1: Performance overview of RTTC on down-
stream tasks across various LLMs. “Accuracy Improve-
ment” indicates the relative average score on five down-
stream tasks evaluated in §4.

TTC Strategy Latency Memory Accuracy

No Adaptation (Direct Inference) + + +
Retrieval-Augmented Generation (RAG) ++ ++ +++
Test-Time Training (TTT) +++ +++ +++

Table 1: Comparison of computational cost and accu-
racy boosting benefits for different Test-Time Compute
(TTC) strategies. More plus signs indicate higher cost
or increased accuracy. While RAG and TTT both pro-
vide significant accuracy improvements, each has its
strengths, depending on the query and scenario.

2020; Hardt and Sun, 2024; Hübotter et al., 2024;
Snell et al., 2025), which adapts model parame-
ters using relevant samples. Both approaches have
demonstrated significant effectiveness.

However, the practical deployment of RAG and
TTT raises two concerns: accuracy and efficiency.
Accuracy: The effectiveness of RAG or TTT also
varies across queries. Sometimes RAG outper-
forms TTT, and vice versa. For some inputs, the
model’s direct response is already sufficiently ac-
curate, while for others, the inference stage may
benefit from retrieval augmentation or adaptive
fine-tuning. Efficiency: Both RAG and TTT intro-
duce significant computational overheads—RAG
increases inference latency and memory usage by
expanding the input context, while TTT requires

24793

No Adaptation Response

Reward

Output

Retrieval
Retrieval-Augmented

Generation (RAG)

Test-Time Training
(TTT)

Server

Response Response

Output

𝒓𝟎 > 𝝉r

Yes

No

Output

𝒓RAG > 𝒓𝟎

Yes

No
𝒓𝟎 𝒓𝑹𝑨𝑮

Reward

Figure 2: Workflow of Reward-guided Test-Time Compute (RTTC). For each query, a pretrained reward model
evaluates candidate responses and selects the optimal adaptation strategy (No Adaptation, RAG, or TTT). τr is a
predefined threshold.

additional fine-tuning steps and memory for model
updates. Moreover, naively applying RAG or TTT
to every query can lead to unnecessary computa-
tion and inefficient resource utilization. A summary
of the computational cost and accuracy associated
with each strategy is provided in Table 1. There-
fore, an adaptive approach that can dynamically
select the optimal strategy at test-time for each
query is crucial for maximizing performance
while minimizing overhead.

Aiming to tackle the above challenges, we
propose Reward-guided Test-Time Computing
(RTTC). This framework dynamically selects
among three strategies for each query: No Adap-
tation (i.e., returning the model’s response with-
out adaptation), Retrieval-Augmented Generation
(RAG), and Test-Time Training (TTT). At the
core of RTTC is a pretrained reward model that
evaluates candidate responses and guides the sys-
tem to choose the most effective adaptation strat-
egy in a query-adaptive manner (see Figure 2).
This reward-guided collaboration enables RTTC
to adaptively exploit the most suitable strategy for
each query, achieving robust downstream perfor-
mance improvements across diverse domains and
tasks. Unlike prior work that statically applies ei-
ther RAG or TTT, our approach introduces a princi-
pled decision-making mechanism that maximizes
performance. Additionally, RTTC also introduces
the Query-State Caching (QSC) mechanism to fur-
ther optimize the test-time efficiency. QSC lever-
ages historical query embeddings and their asso-
ciated retrieved samples or fine-tuned model state
(e.g., LoRA (Hu et al., 2022)) to potentially by-
pass the need for repeated retrieval and fine-tuning,
thus reducing computational overhead and latency.
Overall, our main contributions are:

1. We introduce RTTC, a reward-guided collab-
orative test-time compute framework. We de-
sign an effective decision process that lever-
ages a pre-trained reward model to adaptively
choose the optimal inference strategy, en-

abling robust LLM adaptation.

2. We further propose a Query-State Caching
(QSC) mechanism that reuses historical query
information, reducing redundant computation
and latency during inference.

3. Extensive experiments demonstrate that
RTTC consistently outperforms baselines,
achieving higher accuracy across multiple
LLMs and downstream tasks.

In summary, our work is the first to unify direct
inference, RAG, and TTT within a reward-guided,
query-adaptive framework. The remainder of the
paper is organized as follows. We discuss related
work in §2. Then, §3 describes the RTTC system,
while §4 presents results on various downstream
tasks. Our final thoughts are in §5.

2 Related Work

Test-Time Compute. Test-time compute tech-
niques have been proposed as an alternative to
scaling model parameters for improving model per-
formance (Snell et al., 2025). Notable strategies
include Chain-of-Thought (CoT) prompting (Wei
et al., 2022) and few-shot learning (Brown et al.,
2020). CoT prompting guides the model through
intermediate steps to break down complex tasks,
enhancing its ability to handle intricate queries.
Few-shot learning helps the model adapt to new
tasks with just a few examples. Other test-time
compute methods include verifying the model’s re-
sults, for example, through code execution (Brown
et al., 2025).

Retrieval-Augmented Generation (RAG).
RAG has emerged as a prominent paradigm for en-
hancing model performance by incorporating exter-
nal knowledge at inference time (Lewis et al., 2020;
Gao et al., 2023b). By retrieving relevant docu-
ments and augmenting the model’s input, RAG en-
ables LLMs to access up-to-date or domain-specific
information beyond their pretraining corpus. This

24794

Multi-Domain

Knowledge

Base

Query

Retrieval

Language Model

RAG / TTT

Response

Retrieved
samples

Clients

Query
Embedding

Server
Math

Coding

Embedding Model

Server
Medical

…

Figure 3: Overview of the retrieval and test-time compute stages. When the reward model determines that the LLM
response without adaptation does not meet expectations, relevant samples are retrieved from a remote multi-domain
knowledge base. By leveraging advanced test-time compute strategies (RAG or TTT), RTTC improves model
performance on client devices.

approach has demonstrated strong results across
open-domain question answering, fact verification,
and knowledge-intensive tasks. RAG introduces
additional computational overhead due to retrieval
and longer input sequences, and its effectiveness
can vary depending on the quality of retrieved con-
tent and the task.

Test-Time Training (TTT). TTT (Hardt and
Sun, 2024; Hübotter et al., 2024; Akyürek et al.,
2024) has proven effective for adapting models
to distribution shifts by fine-tuning on retrieved
samples during inference. Recent work, such as
SIFT (Hübotter et al., 2024), has improved re-
trieval strategies for TTT, while Omni-ARC (Iron-
barArc24, 2024) leveraged TTT to achieve state-
of-the-art results in the ARC-AGI challenge (ARC-
AGI, 2025; Chollet, 2019). Despite these advances,
TTT can incur significant computational and mem-
ory costs.

System Considerations. In distributed settings,
prior work has explored scalable retrieval and adap-
tation using distributed indexes and multi-server
architectures to accelerate query processing over
large datasets (Hardt and Sun, 2024; Douze et al.,
2024). While such approaches focus on efficient
data access and retrieval, our work emphasizes
adaptive test-time compute and downstream task
performance. RTTC can flexibly incorporate these
distributed retrieval techniques to further optimize
efficiency when needed.

Next, we explore RTTC, a system that enhances
model performance via reward-guided collabora-
tive test-time compute.

3 RTTC System

This section outlines the architecture and work-
flow of Reward-Guided Collaborative Test-Time
Compute (RTTC), a system designed to optimize
the performance of large language models (LLMs).
RTTC unifies direct inference, retrieval-augmented
generation (RAG), and test-time training (TTT)
within a reward-driven, query-adaptive framework,
leveraging a remote multi-domain knowledge base
for robust adaptation. The overall workflow is
shown in Figure 2 and formally summarized in
Algorithm 1.

3.1 Reward-Guided Test-Time Compute
Pipeline

Given an input query x ∈ X , RTTC orchestrates
a multi-stage adaptive inference process, guided
by a pretrained reward model R that is utilized to
dynamically select the most effective computation
strategy for each query x. The pipeline proceeds as
follows:

Step 1. Initial Inference and Reward Evaluation
Upon receiving a query x, the LLM M0 generates
an initial response ŷ0 = M0(x). This response is
assessed by the pretrained reward model R, which
estimates its quality r0 = R(x, ŷ0). If r0 surpasses
a predefined threshold τr, the system returns ŷ0,
minimizing latency and computational overhead.

Step 2. Retrieval of Relevant Knowledge When
the initial response does not meet the requirements
we set (i.e., r0 < τr), the system transitions to
a retrieval phase. The query x is encoded into a
dense embedding ex = E(x) using a shared em-
bedding model E. This embedding is transmitted

24795

Query

Embedding Model

Embedding

State

Embedding

State

Embedding

State
…

Query-State Caching (QSC)

Similar Score

> 𝝉e?

No

Yes
Language

Model

Retrieval / TTT
Retrieval the most

relevant one from Cache

Cache

(most relevant)

Embedding

State

Eviction

Mechanism New Item

Embedding

State

State

Figure 4: Overview of the Query-State Caching (QSC) strategy for multi-turn caching and efficient test-time
compute. QSC is compatible with both RAG and TTT: for RAG, the cached state consists of retrieved samples;
for TTT, the cached state stores the fine-tuned model state (e.g., LoRA adapters (Hu et al., 2022)). By managing
historical query embeddings and their associated states, QSC accelerates the test-time compute cost (retrieval and
fine-tuning).

to a remote server hosting a multi-domain knowl-
edge base D, which returns a set of relevant sam-
ples Sk = {(xi, yi)}ki=1 identified via similarity
search (e.g., using FAISS (Douze et al., 2024) and
SIFT(Hübotter et al., 2024) algorithms). The de-
tails of distributed retrieval workflow are illustrated
in Figure 3.

Step 3. Retrieval-Augmented Generation (RAG)
The retrieved samples Sk are prepended to the
original query, forming an augmented input x′ =
[Sk;x]. The LLM then generates a new response
ŷRAG = M0(x

′) conditioned on this expanded con-
text. The reward model re-evaluates the new re-
sponse, yielding rRAG = R(x′, ŷRAG). If rRAG >
r0, ŷRAG is returned as the final output.

Algorithm 1 Reward-Guided Test-Time Compute
Pipeline
Input: Query x; LLM M0; reward model R; embedding
model E; knowledge base D; threshold τr .
1: Initial Inference: Generate ŷ0 = M0(x).
2: Reward Evaluation: Compute r0 = R(x, ŷ0).
3: if r0 ≥ τr then
4: Return ŷ0
5: else
6: Retrieval: Encode x as ex = E(x).
7: Retrieve relevant samples Sk = {(xi, yi)}ki=1 fromD

using similarity search.
8: RAG Inference: Form x′ = [Sk;x] and generate

ŷRAG = M0(x
′).

9: Compute rRAG = R(x, ŷRAG).
10: if rRAG > r0 then
11: Return ŷRAG
12: else
13: Test-Time Training: Adapt M0 on Sk to obtain

MTTT = TRAIN(M0,Sk).
14: Generate final response ŷTTT = MTTT(x).
15: Return ŷTTT
16: end if
17: end if

Step 4. Test-Time Training (TTT) If nei-
ther direct inference nor RAG yields a satisfac-
tory response, RTTC invokes test-time training.
The same retrieved samples Sk are used to per-
form lightweight, query-specific fine-tuning of the
LLM, resulting in an adapted model MTTT =
TRAIN(M0,Sk) via LoRA (Hu et al., 2022). The
adapted model generates the final response ŷTTT =
MTTT (x).

Alternative: Joint RAG and TTT Decision In
addition to the sequential decision process de-
scribed above, RTTC also supports a joint strat-
egy wherein both RAG and TTT are executed in
parallel for queries where the initial response is
insufficient. The system then returns the response
(either ŷRAG or ŷTTT) with the higher reward score
as determined by the reward model. While this
approach can further enhance robustness by con-
sistently selecting the best available response, it
incurs additional computational and latency over-
head due to the need to perform both TTT and
reward evaluation for some queries. In practice,
this joint strategy is optional and can be selectively
enabled for scenarios where maximizing response
quality is prioritized over efficiency.

3.2 Distributed Architecture

RTTC is implemented in a server-client paradigm,
where the remote server maintains the knowledge
base D and handles retrieval, while all inference,
reward evaluation, and adaptation steps are per-
formed locally on the client device. This design
can help mitigate privacy risks by keeping sensi-
tive inference and eliminates the need to store the
knowledge base locally, thereby significantly re-
ducing memory overhead on client devices. An

24796

overview of the distributed retrieval workflow is il-
lustrated in Figure 3, which highlights how relevant
samples are retrieved from a remote multi-domain
knowledge base to support advanced test-time com-
pute strategies on client devices.

Algorithm 2 Query-State Caching (QSC)
Input:
Current query embedding ext ; set of historical query embed-
dingsQ;
Reuse threshold τe; budget b; similarity metric γ; eviction
mechanism κ.

[RAG] Input: RAG cache CRAG : ex → retrieved samples.
[RAG] Output: SRAG

t (retrieved samples).
1: ex∗ = argmin

e
xi∈Q

γ(exi , ext)

2: if γ(ex∗ , ext) > τe then
3: SRAG

t ← CRAG[ex∗] // RAG cache hit
4: else
5: SRAG

t ← RETRIEVESAMPLES(ext)
6: if |CRAG| ≥ b then
7: U = {erx1 ...e

r
xm} = κ(CRAG)

8: CRAG ← CRAG \ U
9: end if

10: CRAG[ext]← SRAG
t

11: Q ← Q∪ {ext}
12: end if

[TTT] Input: TTT cache CTTT : ex → trained adapters;
retrieved samples SRAG

t ; initial adapter S0.
[TTT] Output: STTT

t (trained adapters).
1: ex∗ = argmin

e
xi∈Q

γ(exi , ext)

2: if γ(ex∗ , ext) > τe then
3: STTT

t ← CTTT[ex∗] // TTT cache hit
4: else
5: STTT

t ← TRAIN(S0, S
RAG
t) // Use the same retrieved

samples as RAG for TTT
6: if |CTTT| ≥ b then
7: U = {erx1 ...e

r
xm} = κ(CTTT)

8: CTTT ← CTTT \ U
9: end if

10: CTTT[ext]← STTT
t

11: Q ← Q∪ {ext}
12: end if

3.3 Query-State Caching (QSC)

The retrieval and fine-tuning stages at the client
introduce notable computational and latency over-
head in the RTTC pipeline. To address this, we
propose Query-State Caching (QSC), a unified
caching strategy at both the retrieval (RAG) and
model state (TTT) levels. As described in Algo-
rithm 2 and illustrated in Figure 4, QSC maintains
a set of historical query embeddings Q and two
corresponding caches: one mapping embeddings
to retrieved samples for RAG, and another map-
ping embeddings to fine-tuned adapters for TTT.
For each new query, the most similar historical
embedding is identified using a similarity metric
γ. If the similarity exceeds a reuse threshold τe,

the corresponding cached state (retrieved samples
for RAG or adapters for TTT) is reused, allowing
the system to bypass redundant retrieval or fine-
tuning. Otherwise, new retrieval or fine-tuning is
performed, and the cache is updated accordingly,
with an eviction mechanism κ ensuring the cache
stays within a fixed budget b. This unified approach
substantially reduces redundant computation and
latency, enabling efficient and scalable test-time
adaptation.

4 Experiments

We implement a prototype of the RTTC system as
a testbed, demonstrating the potential benefits in a
larger deployment. Next, we discuss the resources
utilized in our experimentation, followed by results
demonstrating the benefits of enabling RTTC.

4.1 Setup

Knowledge base To rigorously evaluate the
RTTC prototype, we construct a comprehensive
multi-domain knowledge base by integrating sev-
eral representative datasets spanning Coding, Math,
and Medical domains. This diverse collection en-
sures robust and generalizable evaluation across
tasks. For further details regarding dataset compo-
sition and sources, please refer to Appendix §A.

Evaluation We comprehensively evaluate the
RTTC prototype across Coding, Math, and Med-
ical domains using a suite of established bench-
marks and evaluation tools. For the coding do-
main, we assess performance on MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021)
using the Bigcode-Evaluation-Harness (Ben Allal
et al., 2022). In the math domain, we evaluate
on MathQA (Amini et al., 2019) with the LLM-
Adapters evaluation scripts (Zhiqiang et al., 2023),
and on GSM-Plus (Li et al., 2024) using LM-Eval-
Harness (Gao et al., 2023a). For the medical do-
main, we employ MedConceptsQA ATC (Pal et al.,
2022), also evaluated with LM-Eval-Harness; we
refer to this task as ATC for brevity. All experi-
ments are conducted under the zero-shot setting to
reflect real-world deployment scenarios. For exper-
imental efficiency, we evaluate RTTC on subsets of
some benchmarks: 200 samples for MathQA and
GSM-Plus, and 600 samples for ATC. The details
of all evaluation tasks are summarized in Table 2.

Models We test our method on various LLMs,
including LLAMA-3-8B-INST, LLAMA-3.1-8B-

24797

Domain Task Evaluation Tool # Samples

Coding
MBPP (Austin et al., 2021)

Bigcode-Evaluation-Harness (Ben Allal et al., 2022)
500

HumanEval (Chen et al., 2021) 164

Math
MathQA (Amini et al., 2019) LLM-Adapters (Zhiqiang et al., 2023) 200*

GSM-Plus (Li et al., 2024)
LM-Eval-Harness (Gao et al., 2023a)

200*

Medical MedConceptsQA ATC (Pal et al., 2022) 600*

Table 2: Details of the tasks evaluated in the experiments. *Only a subset of the original test set is used for these
tasks (200 samples for MathQA and GSM-Plus, 600 for ATC) to increase experimental efficiency.

Model Strategy MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr. Strategy Distribution (%)

LLAMA-3-8B-INST

No Adaptation 51.6 54.9 29.0 19.5 36.8 38.4 – 100% / – / –

RAG 42.0 48.8 39.5 20.5 41.8 38.5 100.4% – / 100% / –

TTT 49.0 54.9 37.0 29.5 36.7 41.4 108.0% – / – / 100%

RTTC 53.6 56.1 39.0 23.5 37.3 41.9 109.2% 13.3% / 26.6% / 60.1%

RTTC-Joint 50.4 57.9 35.5 33.0 39.3 43.2 112.7% 13.3% / 30.2% / 56.6%

LLAMA-3.1-8B-INST

No Adaptation 52.2 59.8 16.5 20.0 38.5 37.4 – 100% / – / –

RAG 42.4 51.8 32.5 33.0 44.3 40.8 109.2% – / 100% / –

TTT 51.6 63.4 25.0 34.0 37.8 42.4 113.3% – / – / 100%

RTTC 54.0 61.0 29.0 30.5 38.8 42.7 114.1% 6.6% / 25.8% / 67.6%

RTTC-Joint 55.2 62.8 31.0 37.5 40.2 45.3 121.2% 6.6% / 23.9% / 69.5%

MISTRAL-7B-INST-V0.3

No Adaptation 37.6 33.5 28.0 15.0 23.8 27.6 – 100% / – / –

RAG 30.2 28.1 35.0 16.0 25.8 27.0 97.9% – / 100% / –

TTT 38.4 38.4 32.0 16.5 24.0 29.9 108.2% – / – / 100%

RTTC 32.4 37.2 32.0 21.0 23.8 29.3 106.1% 23.2% / 24.9% / 51.9%

RTTC-Joint 33.4 36.6 32.5 22.5 24.3 29.9 108.2% 23.2% / 29.4% / 47.4%

QWEN2.5-3B-INST

No Adaptation 41.2 26.2 26.0 32.5 26.5 30.5 – 100% / – / –

RAG 38.8 41.5 32.5 42.0 26.3 36.2 118.8% – / 100% / –

TTT 42.4 25.6 30.5 37.0 26.3 32.4 106.2% – / – / 100%

RTTC 47.4 43.3 28.5 42.0 26.5 37.5 123.1% 42.8% / 18.1% / 39.1%

RTTC-Joint 48.0 42.7 27.5 43.5 26.2 37.6 123.2% 42.8% / 15.7% / 41.5%

Table 3: Performance comparison of different adaptation strategies across representative LLMs and evaluation tasks.
“Impr.” denotes the relative improvement over the No Adaptation baseline. “Strategy Distribution (%)” reports the
proportion of queries handled by each branch in the RTTC pipeline: No Adaptation, RAG, and TTT, respectively.
RTTC-Joint corresponds to the “Alternative: Joint RAG and TTT Decision” described in section 3. All reported
results reflect the best performance achieved across the evaluated retrieval sample sizes {1, 2, 4, 8, 16} for each
method.

INST (Dubey et al., 2024), MISTRAL-7B-INST-
V0.3 (Jiang et al., 2023) and QWEN2.5-3B-INST

(Yang et al., 2024). For the retrieval stage in RTTC,
we utilize QWEN3-EMBEDDING-0.6B (Zhang
et al., 2025) as the embedding model. For the
reward model, we employ SKYWORK-REWARD-
V2-QWEN3-0.6B (Liu et al., 2025).

Hyperparameters and Implementation For
RAG and TTT, the number of retrieval samples
is selected from {1, 2, 4, 8, 16}. TTT is performed
for two epochs with a learning rate of 5 × 10−5

and a batch size of 1. LoRA fine-tuning is applied
in TTT, using a rank of 32 and an alpha of 16,
targeting the Query, Key, Value, Up, and Down
projection layers. The threshold τr is 2.0. For

QSC, the reuse threshold τe and budget b are set
to 0.5 and 8, respectively. The similarity metric γ
is the inner product, and the eviction mechanism κ
adopts a Least Frequently Used (LFU) policy.

4.2 Main Results

Table 3 presents a comprehensive comparison of
adaptation strategies across multiple LLMs and
tasks. Several key observations: (1) RTTC consis-
tently outperforms both RAG and TTT baselines,
achieving the highest average accuracy improve-
ments across all models and tasks. For example, on
LLAMA-3.1-8B-INST, RTTC yields a 114.1% rel-
ative improvement over the no adaptation baseline,
while the joint variant (RTTC-Joint) further boosts

24798

Strategy Total Cost

No Adaptation N · C0

RAG N · (C0 + CRet + CRAG)
TTT N · (C0 + CRet + CTTT)
RTTC N · (C0 + CRew) + (dRAG + dTTT) ·N · (CRet + CRAG + CRew) + dTTT ·N · CTTT
RTTC-Joint N · (C0 + CRew) + (dRAG + dTTT) ·N · (CRet + CRAG + CTTT + 2CRew)

Table 4: Total cost comparison for N queries under different adaptation strategies. C0 denotes the base inference
cost per query (No Adaptation); CRet, CRAG, and CTTT represent the additional costs for retrieval, RAG, and TTT,
respectively, with CTTT > CRAG > 0; CRew is the reward model evaluation cost. For RTTC, dRAG and dTTT
indicate the fractions of queries routed to the RAG and TTT branches, as reported in the main results (see “Strategy
Distribution (%)” of Table 3).

Metric No Adapt. RAG TTT
Context Length 96.1 96.1 96.1
Token Generation Count 326.6 353.5 344.7
Inference Latency (sec) 7.5 8.7 8.4
Total Latency (sec) 7.5 9.8 12.1
Retrieval:

Embedding Processing (sec) - 0.06 0.06
Retrieval (sec) - 1.06 1.06

RAG:
Augmented Context Length - 3058.2 -
TTT:

Train (sec) - - 2.60
Merge (sec) - - 0.01
Unmerge (sec) - - 0.01
Training Token Count - - 5,921.6

Table 5: Performance comparison of RAG and TTT
against No Adaptation using MISTRAL-7B-INST-V0.3
on MathQA dataset. Results are averaged over 10 test
samples with 8 test-time training samples per query. The
experiments were conducted on NVIDIA A100.

performance to 121.2%. (2) The joint decision strat-
egy (RTTC-Joint), which selects the best response
between RAG and TTT per query, achieves the best
overall results, highlighting the benefit of adaptive,
reward-guided selection. (3) The strategy distri-
bution indicates that RTTC predominantly lever-
ages TTT for challenging queries, while efficiently
falling back to direct inference or RAG when appro-
priate, thus balancing accuracy and computational
cost. (4) Notably, the effectiveness of RAG and
TTT varies by task and model, underscoring the
necessity of a unified, query-adaptive framework.
Overall, these results demonstrate that RTTC ro-
bustly enhances downstream performance across
diverse domains and models, validating the effec-
tiveness of reward-guided, collaborative test-time
compute.

4.3 Cost Analysis

Table 4 presents a comparative analysis of the com-
putational cost associated with different TTC strate-

gies. While RAG and TTT each introduce substan-
tial additional overhead due to retrieval, longer con-
text or fine-tuning, the cost profile of RTTC is in-
herently query-adaptive and cannot be strictly char-
acterized as lower or higher than either baseline.
The overall cost of RTTC depends on the distri-
bution of queries across its decision branches (see
“Strategy Distribution (%)” in Table 3). For queries
where the initial response is sufficient, RTTC ter-
minates early, incurring only minimal inference
and reward evaluation costs. However, for queries
routed to RAG or TTT, RTTC will incur additional
overhead compared to vanilla RAG or TTT, as each
branch is preceded by an initial inference and re-
ward evaluation step. Thus, RTTC embodies an
adaptive early-stopping mechanism, dynamically
allocating computation to maximize response qual-
ity.

To complement the theoretical cost analysis, Ta-
ble 5 reports empirical measurements of compu-
tational performance across different adaptation
strategies. These results, obtained on 10 test sam-
ples of MathQA, detail latency and other metrics
under realistic deployment conditions. Compared
to the baseline (No Adaptation), RAG and TTT
increase total latency due to retrieval, augmented
context and fine-tuning, with TTT incurring the
highest cost. RAG significantly expands context
length, while TTT introduces additional training
steps; both yield higher token generation counts.

Given that RTTC might introduce additional
overhead in certain scenarios, we propose Query-
State Caching (QSC) to mitigate redundant re-
trieval and fine-tuning operations. QSC leverages
historical query states to reuse previously computed
results, thereby reducing unnecessary computation
and latency. The effectiveness of QSC is evaluated
in the following subsection.

24799

Model Query-State MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Rel. RAG Cache TTT Cache
Caching Utilization Utilization

LLAMA-3-8B-INST
✗ 53.8 55.5 35.0 19.0 38.8 40.4 100.00% – –
✓ 52.4 56.1 33.0 16.5 39.5 39.5 97.71% 66.53% 70.11%

LLAMA-3.1-8B-INST
✗ 55.0 60.4 28.0 26.5 39.3 41.8 100.00% – –
✓ 54.4 64.0 21.5 29.0 40.3 41.9 100.02% 62.72% 67.03%

MISTRAL-7B-INST-V0.3
✗ 41.0 37.2 30.5 20.5 23.0 30.4 100.00% – –
✓ 38.4 37.2 28.0 20.0 24.2 29.6 97.09% 62.34% 70.10%

QWEN2.5-3B-INST
✗ 42.0 36.6 24.5 44.5 26.2 34.8 100.00% – –
✓ 41.2 40.9 25.0 40.0 25.8 34.6 99.49% 64.02% 69.85%

Table 6: Performance comparison of RTTC with and without Query-State Caching (QSC). All results use 4
retrieved samples per query for fair comparison (note: this differs from Table 3, which reports the results for
the best-performing retrieval sample size). “RAG Cache Utilization” and “TTT Cache Utilization” report the
proportion of queries that successfully reused cached retrieval results and cached adapters, respectively, as defined
in Algorithm 2. These metrics reflect the effectiveness of QSC in reducing redundant retrieval and fine-tuning
operations. “Rel.” denotes the relative average performance compared to the baseline (RTTC without QSC).

4.4 Query-State Caching (QSC)

Table 6 presents the evaluation of Query-State
Caching (QSC) across multiple LLMs and tasks.
The results demonstrate that enabling QSC yields
substantial reductions in redundant retrieval and
fine-tuning operations, as evidenced by high cache
utilization rates for both RAG retrieval sample (62–
66%) and TTT adapter (67–70%) caches. Impor-
tantly, QSC achieves these efficiency gains with
only marginal impact on average task performance,
maintaining relative accuracy within 97–100% of
the baseline (w/o QSC). This indicates that QSC
effectively balances efficiency and quality.

It should be noted that the reported cache utiliza-
tion rates may be somewhat optimistic due to the
experimental protocol, which involves evaluating
benchmark samples from the same domain in suc-
cession. This sequential testing increases the likeli-
hood of cache hits, thereby inflating the observed
utilization. In real-world deployment scenarios
with more diverse and interleaved query streams,
the actual cache hit rates are expected to be lower.
Nevertheless, the results substantiate the potential
of QSC to reduce redundant computation while
preserving robust downstream performance.

4.5 In-Domain Sample Retrieval

To quantitatively assess the effectiveness of RTTC
in retrieving domain-relevant samples from a multi-
domain knowledge base, we analyze the domain
composition of retrieved samples for each evalua-
tion task. Figure 5 presents a heatmap of the pro-
portional distribution of retrieved samples across
all domains for five tasks.

The results demonstrate strong in-domain align-

MBPP Humaneval MathQA GSM-Plus ATC
Evaluation Tasks

The Stack Python

MetaMath

Orca-Math

Math 50K

MedMCQA

Medical-o1-reasoning-SFT

MedQA-USMLE

Kn
ow

le
dg

e
Ba

se

96.54% 97.92% 10.16% 0.07% 6.96%

1.33% 0.76% 19.86% 72.25% 0.02%

1.37% 0.69% 66.24% 27.40% 0.03%

0.73% 0.57% 2.25% 0.26% 0.00%

0.03% 0.06% 1.38% 0.02% 86.60%

0.00% 0.00% 0.05% 0.00% 2.82%

0.00% 0.00% 0.05% 0.00% 3.58%
0.0

0.2

0.4

0.6

0.8

Figure 5: Domain distribution of retrieval samples from
knowledge base across evaluation tasks (counted all
test samples). The red border indicates the domain
corresponding to the current task (in-domain). Higher
values within the red border reflect stronger domain
alignment.

ment: for each task, the majority of retrieved sam-
ples originate from the corresponding domain, as
highlighted by the red-bordered cells. For instance,
MBPP and Humaneval retrieve over 97% and 98%
of samples from The Stack Python, respectively.
This high degree of domain specificity is primarily
attributable to the quality of the embedding model,
which enables precise semantic matching between
queries and knowledge base entries. The effective-
ness of RTTC in test-time adaptation fundamen-
tally relies on both a high-quality embedding model
and a well-curated, diverse knowledge base, which
together ensure that retrieved samples are highly
relevant to the current task.

Additionally, we performed a t-SNE visualiza-
tion of the embeddings for some samples in the
database, as shown in Figure 6. The visualization
demonstrates a clear clustering by domain, further
illustrating the discriminative power of the embed-
ding model and the importance of database quality.
These factors are essential for enabling RTTC to

24800

Math: MetaMath
Math: Orca-Math
Math: Math 50K
Coding: The Stack Python
Medical: MedMCQA
Medical: Medical-o1-reasoning-SFT
Medical: MedQA-USMLE

Figure 6: t-SNE visualization of the embeddings for
some samples in the knowledge base using the QWEN3-
EMBEDDING-0.6B embedding model. Each dataset
contains 1000 randomly selected samples.

reliably retrieve domain-specific samples, thereby
maximizing the benefit of test-time adaptation.

4.6 Extended Experimental Results

For completeness and to facilitate deeper analysis,
we provide additional experimental results and ab-
lation studies in the Appendix. These include com-
prehensive comparisons across varying numbers
of retrieved samples (see Appendix §B, Table 8,
Table 9, Table 10, and Table 11), reward thresholds
τr (see Appendix §C and Table 12), and reward
models (see Appendix §D and Table 13). The ex-
tended results further substantiate the robustness
and generalizability of RTTC across diverse mod-
els, tasks, and settings. Readers are referred to the
Appendix for full tables and discussion.

5 Conclusion

Test-time Compute (TTC) is an effective paradigm
for enhancing model performance at the expense
of increased computation during inference. We
present RTTC, a system that adaptively selects the
optimal TTC strategy for each query at test-time.
The results of the RTTC prototype, which utilizes
supervisory signals from a knowledge base, serve
as a call to action to investigate further improve-
ments to learning at test-time methods. RTTC is
guided by a reward model that assists in the de-
cision of the TTC method to apply at inference
time. Importantly, the reward-guided approach in
RTTC is theoretically extensible to any TTC strat-
egy, providing an open and generalizable direction
for future research in adaptive test-time compute.
The current version of RTTC works on text queries.

With increased sophistication, future versions of
RTTC must handle more complex tasks and multi-
modal queries.

Limitations

Although RTTC produces compelling results and
demonstrates that a reward-guided approach can
alleviate the challenges of deciding between popu-
lar test-time compute techniques at runtime, it also
opens new research opportunities for the future.
Currently, the proposed approach is limited by the
manual definition of several hyperparameters, for
instance determining the value for the threshold τr
to trigger RAG or TTT. This current limitations
present exciting opportunities in future work. An-
other current limitation is related to determining
the right data mix in the knowledge base. In real-
world applications, the effectiveness of RTTC is
likely more pronounced with a more extensive and
diverse knowledge base. A larger knowledge base
would provide a broader range of samples, poten-
tially improving the relevance and quality of the
data retrieved for TTT, thereby further enhancing
the model’s performance. Our experimental results
have demonstrated the feasibility and potential ben-
efits of RTTC.

For experimental efficiency, our TTT experi-
ments employ a single set of hyperparameters
(learning rate, number of epochs, LoRA config-
uration, etc.) across all tasks and models, without
extensive hyperparameter exploration. We believe
that TTT has significant potential for further im-
provement, and that more optimal hyperparameter
choices could further enhance the performance of
RTTC.

In the current version of RTTC’s prototype, the
server can recover the content of the user’s prompt.
A real-world solution should incorporate privacy
mechanisms to protect the user. In addition to en-
crypting the query for transmission, e.g., utilizing
Secure Sockets Layer (SSL)/Transport Layer Secu-
rity (TLS), several open research challenges exist
to enhance the privacy and handling of the user’s
content on the server.

Ethical Considerations

Test-time compute (TTC) techniques offer improve-
ments in model performance, making them more
accurate, albeit at the cost of increased computation.
However, they alone do not solve existing chal-
lenges in large foundation models and their smaller

24801

counterparts. Our research explores systems and
techniques to enable running TTC in client devices
with resource constraints. However, applying our
system and techniques to real-world applications
must include additional safeguards to prevent hallu-
cinations or intentional misinformation that could
negatively impact the well-being of system users.
The research community must continue to inves-
tigate solutions to address these and other open
challenges in popular language models.

References

Ekin Akyürek, Mehul Damani, Linlu Qiu, Han Guo,
Yoon Kim, and Jacob Andreas. 2024. The surprising
effectiveness of test-time training for abstract reason-
ing. arXiv preprint arXiv:2411.07279.

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik
Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. 2019. MathQA: Towards interpretable math
word problem solving with operation-based for-
malisms. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
2357–2367, Minneapolis, Minnesota. Association for
Computational Linguistics.

ARC-AGI. 2025. ARC Prize — arcprize.org. https:
//arcprize.org. [Accessed 13-03-2025].

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and 1
others. 2021. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732.

Loubna Ben Allal, Niklas Muennighoff, Lo-
gesh Kumar Umapathi, Ben Lipkin, and
Leandro von Werra. 2022. A framework
for the evaluation of code generation mod-
els. https://github.com/bigcode-project/
bigcode-evaluation-harness.

Bradley Brown, Jordan Juravsky, Ryan Saul Ehrlich,
Ronald Clark, Quoc V Le, Christopher Re, and Aza-
lia Mirhoseini. 2025. Large language monkeys: Scal-
ing inference compute with repeated sampling.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Information
Processing Systems, volume 33, pages 1877–1901.
Curran Associates, Inc.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang,
Wanlong Liu, Rongsheng Wang, Jianye Hou, and
Benyou Wang. 2024. Huatuogpt-o1, towards
medical complex reasoning with llms. Preprint,
arXiv:2412.18925.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

François Chollet. 2019. On the measure of intelligence.
CoRR, abs/1911.01547.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024. The faiss library.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, and 1 others. 2024. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Bider-
man, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h,
Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey
Schoelkopf, Aviya Skowron, Lintang Sutawika, and
5 others. 2023a. A framework for few-shot language
model evaluation.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang
Jia, Jinliu Pan, Yuxi Bi, Yixin Dai, Jiawei Sun,
Haofen Wang, and Haofen Wang. 2023b. Retrieval-
augmented generation for large language models: A
survey. arXiv preprint arXiv:2312.10997, 2(1).

Moritz Hardt and Yu Sun. 2024. Test-time training on
nearest neighbors for large language models. In In-
ternational Conference on Learning Representations.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. LoRA: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and An-
dreas Krause. 2024. Efficiently learning at test-
time: Active fine-tuning of llms. arXiv preprint
arXiv:2410.08020.

IronbarArc24. 2024. arc24 — ironbar.github.io. https:
//ironbar.github.io/arc24/. [Accessed 13-03-
2025].

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego

24802

https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://doi.org/10.18653/v1/N19-1245
https://arcprize.org
https://arcprize.org
https://github.com/bigcode-project/bigcode-evaluation-harness
https://github.com/bigcode-project/bigcode-evaluation-harness
https://openreview.net/forum?id=0xUEBQV54B
https://openreview.net/forum?id=0xUEBQV54B
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/2412.18925
https://arxiv.org/abs/2412.18925
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2401.08281
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://ironbar.github.io/arc24/
https://ironbar.github.io/arc24/

de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, and 1 others. 2023.
Mistral 7b. arXiv preprint arXiv:2310.06825.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2020. What dis-
ease does this patient have? a large-scale open do-
main question answering dataset from medical exams.
arXiv preprint arXiv:2009.13081.

Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia
Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine
Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, Dzmitry Bahdanau, Leandro von Werra, and
Harm de Vries. 2022. The stack: 3 tb of permissively
licensed source code. Preprint.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented gen-
eration for knowledge-intensive nlp tasks. Advances
in neural information processing systems, 33:9459–
9474.

Qintong Li, Leyang Cui, Xueliang Zhao, Lingpeng
Kong, and Wei Bi. 2024. Gsm-plus: A compre-
hensive benchmark for evaluating the robustness of
llms as mathematical problem solvers. Preprint,
arXiv:2402.19255.

Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie
He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei Shen,
Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui
Zhou. 2025. Skywork-reward-v2: Scaling preference
data curation via human-ai synergy. arXiv preprint
arXiv:2507.01352.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. 2024. Orca-math: Unlocking
the potential of slms in grade school math. Preprint,
arXiv:2402.14830.

Ankit Pal, Logesh Kumar Umapathi, and Malaikannan
Sankarasubbu. 2022. Medmcqa: A large-scale multi-
subject multi-choice dataset for medical domain ques-
tion answering. In Proceedings of the Conference
on Health, Inference, and Learning, volume 174 of
Proceedings of Machine Learning Research, pages
248–260. PMLR.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Avi-
ral Kumar. 2025. Scaling LLM test-time compute
optimally can be more effective than scaling param-
eters for reasoning. In The Thirteenth International
Conference on Learning Representations.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller,
Alexei Efros, and Moritz Hardt. 2020. Test-time
training with self-supervision for generalization un-
der distribution shifts. In International conference
on machine learning, pages 9229–9248. PMLR.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,

and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others.
2024. Qwen2 technical report. arXiv preprint
arXiv:2407.10671.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang,
Huan Lin, Baosong Yang, Pengjun Xie, An Yang,
Dayiheng Liu, Junyang Lin, Fei Huang, and Jingren
Zhou. 2025. Qwen3 embedding: Advancing text
embedding and reranking through foundation models.
arXiv preprint arXiv:2506.05176.

Hu Zhiqiang, Lan Yihuai, Wang Lei, Xu Wanyu, Lim
EePeng, Lee Roy Ka-Wei, Bing Lidong, and Poria
Soujanya. 2023. Llm-adapters: An adapter family
for parameter-efficient fine-tuning of large language
models. arXiv preprint arXiv:2304.01933.

24803

https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.19255
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://proceedings.mlr.press/v174/pal22a.html
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J

A Knowledge Base Details

To support rigorous and multi-domain evaluation
of the RTTC system, we aggregate a large-scale
knowledge base comprising datasets from Cod-
ing, Math, and Medical domains. Table 7 sum-
marizes the dataset composition, sample counts,
and sources.

Coding Domain We sample 600,000 entries
from the Python subset of The Stack (Kocetkov
et al., 2022), providing diverse programming
knowledge.

Math Domain Three datasets are included:
MetaMath (Yu et al., 2023) (395,000 samples),
Orca-Math (Mitra et al., 2024) (200,035 samples),
and Math 50K (Zhiqiang et al., 2023) (50,000 sam-
ples), collectively covering a wide range of mathe-
matical reasoning and problem-solving scenarios.

Medical Domain The medical subset consists of
MedMCQA (Pal et al., 2022) (182,822 samples),
Medical-o1-reasoning-SFT (Chen et al., 2024)
(19,704 samples), and MedQA-USMLE (Jin et al.,
2020) (10,178 samples), focusing on medical ques-
tion answering and reasoning.

All datasets are strictly used for experimental
purposes. This knowledge base provides a robust
foundation for cross-domain adaptation and bench-
marking.

B Detailed Comparison Across Retrieval
Sample Sizes

Tables 8–11 present comprehensive results for all
evaluated models and adaptation strategies under
varying numbers of retrieved samples. Across all
settings, both RTTC and RTTC-Joint consistently
outperform baseline RAG and TTT approaches,
achieving the highest average accuracy and relative
improvement. This superiority holds regardless
of the retrieval sample size, demonstrating the ro-
bustness and effectiveness of reward-guided, query-
adaptive selection in collaborative test-time com-
pute.

C Analysis of Reward Threshold

Table 12 presents an evaluation of the effect of
the reward threshold (hyper-parameter) on the se-
lection and effectiveness of adaptation strategies
within the RTTC framework. The threshold con-
trols the minimum quality required for the initial
model response, as assessed by the reward model.

Queries with reward scores below this threshold are
routed to more advanced adaptation stages (RAG
or TTT).

Accuracy vs. Cost Trade-off: As the threshold
increases, the average accuracy and relative im-
provement often improve, reflecting the benefit of
more advanced adaptation. However, this comes at
the expense of increased computational cost, since
more queries undergo RAG and/or fine-tuning. The
distribution of queries across No Adaptation, RAG,
and TTT branches shifts toward greater use of adap-
tation strategies as the threshold rises, further il-
lustrating the trade-off between performance and
efficiency.

In summary, the reward threshold is a critical
parameter for balancing accuracy and efficiency
in adaptive test-time compute. Careful tuning is
required to achieve optimal results for specific de-
ployment scenarios.

D Analysis of Reward Model

Table 13 presents a comprehensive evaluation of
adaptation strategies across different LLMs, reward
thresholds, and reward models. Here, “0.6B” de-
notes the SKYWORK-REWARD-V2-QWEN3-0.6B
reward model, and “8B” denotes the SKYWORK-
REWARD-V2-LLAMA-3.1-8B reward model.

RTTC relies critically on the reward model to
guide adaptive strategy selection. We investigate
the impact of increasing reward model size by com-
paring the 0.6B and 8B variants. As shown in
the table, using a larger reward model (8B) does
not consistently yield significant improvements in
accuracy across tasks. However, the 8B model
tends to assign higher reward scores, resulting in a
greater proportion of queries being handled by No
Adaptation at the same threshold compared to 0.6B
reward model. This shift indicates improved effi-
ciency, as fewer queries require costly adaptation.
These findings highlight the necessity of tuning the
reward threshold for each reward model to achieve
optimal performance and efficiency in specific de-
ployment scenarios. Additionally, it is important
to consider that larger reward models incur higher
inference costs, although this effect is negligible in
the overall pipeline.

24804

Domain Dataset # Samples # Samples per Domain Link

Coding The Stack Python (Kocetkov et al., 2022) 600,000 600,000 bigcode/the-stack

Math

MetaMath (Yu et al., 2023) 395,000

645,035

meta-math/MetaMathQA

Orca-Math (Mitra et al., 2024) 200,035 microsoft/orca-math-word-problems-200k

Math 50K (Zhiqiang et al., 2023) 50,000 math_50k.json

Medical

MedMCQA (Pal et al., 2022) 182,822

212,704

openlifescienceai/medmcqa

Medical-o1-reasoning-SFT (Chen et al., 2024) 19,704 FreedomIntelligence/medical-o1-reasoning-SFT

MedQA-USMLE (Jin et al., 2020) 10,178 GBaker/MedQA-USMLE-4-options-hf

Total: 1,457,739

Table 7: Knowledge base composition. These datasets cover various domains, including coding, math, and medical.
The Stack Python dataset consists of a random sample of 600,000 entries from the original Stack dataset (Python).

Number of Retrieval Samples Strategy MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr.

/ No Adaptation 51.6 54.9 29.0 19.5 36.8 38.4 –

1

RAG 36.6 41.5 36.5 25.5 38.2 35.7 92.9%
TTT 52.2 55.5 28.5 20.5 36.8 38.7 100.9%
RTTC 52.8 53.7 32.0 27.5 37.3 40.7 106.0%
RTTC-Joint 53.4 54.9 33.5 30.0 37.5 41.9 109.1%

2

RAG 40.0 45.7 37.0 28.0 40.3 38.2 99.6%
TTT 51.8 56.1 27.0 21.5 37.2 38.7 100.9%
RTTC 52.0 54.9 30.5 27.0 37.5 40.4 105.3%
RTTC-Joint 52.6 54.9 31.0 26.0 38.5 40.6 105.8%

4

RAG 42.0 48.8 39.5 20.5 41.8 38.5 100.4%
TTT 52.2 56.1 35.5 19.5 37.2 40.1 104.5%
RTTC 53.6 56.1 39.0 23.5 37.3 41.9 109.2%
RTTC-Joint 54.8 56.7 41.5 21.5 37.2 42.3 110.4%

8

RAG 42.6 49.4 35.5 14.0 41.8 36.7 95.6%
TTT 52.0 57.9 40.5 16.0 37.5 40.8 106.3%
RTTC 51.8 54.9 34.0 19.0 36.0 39.1 102.0%
RTTC-Joint 52.4 56.1 37.0 18.5 38.5 40.5 105.6%

16

RAG 39.6 48.2 37.0 11.5 41.5 35.6 92.7%
TTT 49.0 54.9 37.0 29.5 36.7 41.4 108.0%
RTTC 49.6 54.3 32.5 24.0 36.8 39.4 102.8%
RTTC-Joint 50.4 57.9 35.5 33.0 39.3 43.2 112.7%

Table 8: Performance comparison of different adaptation strategies for LLAMA-3-8B-INST. “Impr.” denotes the
relative improvement over the No Adaptation baseline. RTTC-Joint corresponds to the “Alternative: Joint RAG and
TTT Decision” described in section 3.

24805

https://huggingface.co/datasets/bigcode/the-stack
https://huggingface.co/datasets/meta-math/MetaMathQA
https://huggingface.co/datasets/microsoft/orca-math-word-problems-200k
https://github.com/AGI-Edgerunners/LLM-Adapters/blob/main/ft-training_set/math_50k.json
https://huggingface.co/datasets/openlifescienceai/medmcqa
https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT
https://huggingface.co/datasets/GBaker/MedQA-USMLE-4-options-hf

Number of Retrieval Samples Strategy MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr.

/ No Adaptation 52.2 59.8 16.5 20.0 38.5 37.4 –

1

RAG 38.4 45.7 26.0 41.5 41.5 38.6 103.3%
TTT 51.4 60.4 18.0 18.5 38.8 37.4 100.1%
RTTC 52.6 60.4 21.5 31.0 38.8 40.9 109.3%
RTTC-Joint 52.8 59.8 21.5 30.0 39.7 40.8 109.0%

2

RAG 42.4 51.8 32.5 33.0 44.3 40.8 109.2%
TTT 51.4 60.4 19.0 23.0 39.0 38.6 103.1%
RTTC 51.6 59.2 24.0 29.0 41.3 41.0 109.7%
RTTC-Joint 52.6 59.2 25.0 30.0 40.8 41.5 111.0%

4

RAG 45.0 50.6 28.0 36.0 43.5 40.6 108.6%
TTT 52.2 61.0 17.0 20.0 38.8 37.8 101.1%
RTTC 55.2 61.0 22.0 25.0 40.0 40.6 108.7%
RTTC-Joint 54.8 60.4 22.5 30.0 40.3 41.6 111.3%

8

RAG 41.8 53.1 32.5 23.0 43.5 38.8 103.7%
TTT 51.6 61.0 20.0 22.0 39.5 38.8 103.8%
RTTC 53.0 59.2 26.5 25.5 41.0 41.0 109.7%
RTTC-Joint 53.0 60.4 27.5 27.5 41.5 42.0 112.3%

16

RAG 38.0 54.9 31.0 21.0 41.2 37.2 99.5%
TTT 51.6 63.4 25.0 34.0 37.8 42.4 113.3%
RTTC 54.0 61.0 29.0 30.5 38.8 42.7 114.1%
RTTC-Joint 55.2 62.8 31.0 37.5 40.2 45.3 121.2%

Table 9: Performance comparison of different adaptation strategies for LLAMA-3.1-8B-INST. “Impr.” denotes the
relative improvement over the No Adaptation baseline. RTTC-Joint corresponds to the “Alternative: Joint RAG and
TTT Decision” described in section 3.

Number of Retrieval Samples Strategy MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr.

/ No Adaptation 37.6 33.5 28.0 15.0 23.8 27.6 –

1

RAG 24.6 26.8 29.5 25.0 26.5 26.5 96.0%
TTT 38.4 38.4 32.0 16.5 24.0 29.9 108.2%
RTTC 29.0 34.8 32.0 22.0 26.2 28.8 104.3%
RTTC-Joint 29.6 37.2 32.0 23.0 24.8 29.3 106.3%

2

RAG 25.4 23.8 33.0 22.0 25.0 25.8 93.6%
TTT 40.2 36.6 29.0 14.0 23.5 28.7 103.9%
RTTC 31.2 37.8 34.0 20.0 23.0 29.2 105.8%
RTTC-Joint 32.4 36.6 36.5 20.5 22.7 29.7 107.8%

4

RAG 27.8 27.4 29.5 16.0 24.7 25.1 90.9%
TTT 39.0 37.8 30.5 15.0 23.3 29.1 105.6%
RTTC 30.6 37.2 32.0 17.5 23.3 28.1 101.9%
RTTC-Joint 31.8 36.6 32.5 18.0 24.5 28.7 103.9%

8

RAG 29.4 22.0 32.5 19.5 26.3 25.9 94.0%
TTT 39.8 32.3 31.5 19.0 24.0 29.3 106.3%
RTTC 32.4 37.2 32.0 21.0 23.8 29.3 106.1%
RTTC-Joint 33.4 36.6 32.5 22.5 24.3 29.9 108.2%

16

RAG 30.2 28.1 35.0 16.0 25.8 27.0 97.9%
TTT 36.4 29.9 30.0 13.0 24.8 26.8 97.2%
RTTC 30.8 34.2 35.5 19.0 23.8 28.7 103.9%
RTTC-Joint 31.4 36.6 35.5 19.5 24.7 29.5 107.0%

Table 10: Performance comparison of different adaptation strategies for MISTRAL-7B-INST-V0.3. “Impr.” denotes
the relative improvement over the No Adaptation baseline. RTTC-Joint corresponds to the “Alternative: Joint RAG
and TTT Decision” described in section 3.

24806

Number of Retrieval Samples Strategy MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr.

/ No Adaptation 41.2 26.2 26.0 32.5 26.5 30.5 –

1

RAG 29.2 23.8 27.5 30.0 26.8 27.5 90.1%
TTT 42.4 27.4 23.5 32.0 26.0 30.3 99.3%
RTTC 45.4 40.2 25.5 36.0 26.3 34.7 113.8%
RTTC-Joint 45.4 41.5 26.0 36.5 25.5 35.0 114.7%

2

RAG 32.6 25.6 32.0 36.0 25.5 30.3 99.5%
TTT 39.8 26.8 24.0 31.0 25.8 29.5 96.8%
RTTC 45.4 39.0 27.5 41.0 25.2 35.6 116.8%
RTTC-Joint 45.2 40.2 27.0 41.5 26.0 36.0 118.1%

4

RAG 36.6 36.0 30.5 40.5 27.0 34.1 111.9%
TTT 41.2 27.4 22.5 32.5 26.0 29.9 98.2%
RTTC 46.0 41.5 26.5 41.5 26.2 36.3 119.2%
RTTC-Joint 45.6 43.9 27.0 43.5 26.0 37.2 122.0%

8

RAG 38.8 41.5 32.5 42.0 26.3 36.2 118.8%
TTT 41.8 27.4 26.5 35.0 26.2 31.4 103.0%
RTTC 47.4 43.3 28.5 42.0 26.5 37.5 123.1%
RTTC-Joint 48.0 42.7 27.5 43.5 26.2 37.6 123.2%

16

RAG 35.4 37.8 32.5 46.0 25.7 35.5 116.4%
TTT 42.4 25.6 30.5 37.0 26.3 32.4 106.2%
RTTC 46.2 41.5 28.0 45.5 25.7 37.4 122.6%
RTTC-Joint 46.4 45.1 29.0 46.0 26.3 38.6 126.5%

Table 11: Performance comparison of different adaptation strategies for QWEN2.5-3B-INST. “Impr.” denotes the
relative improvement over the No Adaptation baseline. RTTC-Joint corresponds to the “Alternative: Joint RAG and
TTT Decision” described in section 3.

24807

Model Strategy Threshold (τr) MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr. Strategy Distribution (%)

LLAMA-3-8B-INST

No Adaptation - 51.6 54.9 29.0 19.5 36.8 38.4 – 100% / – / –

RAG - 42.0 48.8 39.5 20.5 41.8 38.5 100.4% – / 100% / –

TTT - 49.0 54.9 37.0 29.5 36.7 41.4 108.0% – / – / 100%

RTTC

2.0 53.6 56.1 39.0 23.5 37.3 41.9 109.2% 13.3% / 26.6% / 60.1%

5.0 53.4 56.1 39.5 22.0 37.3 41.7 108.6% 1.2% / 26.9% / 71.9%

8.0 53.4 56.1 39.5 22.0 36.8 41.6 108.4% 0.1% / 27.0% / 73.0%

RTTC-Joint

2.0 50.4 57.9 35.5 33.0 39.3 43.2 112.7% 13.3% / 30.2% / 56.6%

5.0 54.6 56.7 42.0 20.5 37.7 42.3 110.3% 1.2% / 28.2% / 70.6%

8.0 54.6 56.7 42.0 20.5 38.2 42.4 110.5% 0.1% / 28.4% / 71.6%

LLAMA-3.1-8B-INST

No Adaptation - 52.2 59.8 16.5 20.0 38.5 37.4 – 100% / – / –

RAG - 42.4 51.8 32.5 33.0 44.3 40.8 109.2% – / 100% / –

TTT - 51.6 63.4 25.0 34.0 37.8 42.4 113.3% – / – / 100%

RTTC

2.0 54.0 61.0 29.0 30.5 38.8 42.7 114.1% 6.6% / 25.8% / 67.6%

5.0 53.6 62.2 30.5 30.0 38.8 43.0 115.1% 1.7% / 23.3% / 75.0%

8.0 53.6 62.2 30.5 29.5 38.8 42.9 114.8% 0.0% / 23.3% / 76.7%

RTTC-Joint

2.0 55.2 62.8 31.0 37.5 40.2 45.3 121.2% 6.6% / 23.9% / 69.5%

5.0 55.2 63.4 32.5 37.0 39.8 45.6 121.9% 1.7% / 24.4% / 73.9%

8.0 55.2 64.0 32.5 37.0 40.2 45.8 122.4% 0.0% / 24.6% / 75.4%

MISTRAL-7B-INST-V0.3

No Adaptation - 37.6 33.5 28.0 15.0 23.8 27.6 – 100% / – / –

RAG - 30.2 28.1 35.0 16.0 25.8 27.0 97.9% – / 100% / –

TTT - 38.4 38.4 32.0 16.5 24.0 29.9 108.2% – / – / 100%

RTTC

2.0 32.4 37.2 32.0 21.0 23.8 29.3 106.1% 23.2% / 24.9% / 51.9%

5.0 32.4 37.8 34.5 21.0 23.2 29.8 107.9% 4.6% / 32.2% / 63.2%

8.0 32.8 37.8 37.5 19.5 23.3 30.2 109.4% 1.4% / 33.1% / 65.5%

RTTC-Joint

2.0 33.4 36.6 32.5 22.5 24.3 29.9 108.2% 23.2% / 29.4% / 47.4%

5.0 35.2 36.0 31.5 24.0 24.3 30.2 109.5% 4.6% / 35.0% / 60.4%

8.0 33.8 36.6 39.0 20.5 22.7 30.5 110.6% 1.4% / 32.9% / 65.8%

QWEN2.5-3B-INST

No Adaptation - 41.2 26.2 26.0 32.5 26.5 30.5 – 100% / – / –

RAG - 38.8 41.5 32.5 42.0 26.3 36.2 118.8% – / 100% / –

TTT - 42.4 25.6 30.5 37.0 26.3 32.4 106.2% – / – / 100%

RTTC

2.0 47.4 43.3 28.5 42.0 26.5 37.5 123.1% 42.8% / 18.1% / 39.1%

5.0 46.6 42.7 31.5 43.5 27.2 38.3 125.6% 12.1% / 24.0% / 63.9%

8.0 46.0 39.0 31.0 50.0 25.0 38.2 125.3% 4.5% / 25.4% / 70.1%

RTTC-Joint

2.0 48.0 42.7 27.5 43.5 26.2 37.6 123.2% 42.8% / 15.7% / 41.5%

5.0 46.4 45.1 31.0 49.5 26.0 39.6 129.9% 12.1% / 21.6% / 66.4%

8.0 46.4 43.9 32.5 51.5 26.2 40.1 131.5% 4.5% / 24.7% / 70.8%

Table 12: Impact of Reward Threshold in RTTC. Performance comparison of different adaptation strategies
under varying reward thresholds. The “Threshold (τr)” column denotes the value of the reward model’s first-stage
evaluation parameter: a higher threshold enforces stricter quality requirements for the initial response, increasing
the likelihood of triggering RAG or TTT adaptation. Larger thresholds generally yield higher accuracy, but also
incur greater computational cost due to more frequent execution of advanced adaptation strategies. “Impr.” denotes
the relative improvement over the No Adaptation baseline. “Strategy Distribution (%)” reports the proportion of
queries handled by each branch in the RTTC pipeline: No Adaptation, RAG, and TTT, respectively.

24808

Model Strategy
Threshold Reward

MBPP HumanEval MathQA* GSM-Plus* ATC* Avg. Impr.
Strategy

(τr) Model Size Distribution (%)

LLAMA-3-8B-INST

No Adaptation - - 51.6 54.9 29.0 19.5 36.8 38.4 – 100% / – / –

RAG - - 42.0 48.8 39.5 20.5 41.8 38.5 100.4% – / 100% / –

TTT - - 49.0 54.9 37.0 29.5 36.7 41.4 108.0% – / – / 100%

RTTC

5.0
0.6B 53.4 56.1 39.5 22.0 37.3 41.7 108.6% 1.2% / 26.9% / 71.9%

8B 53.6 54.9 34.0 28.5 38.8 42.0 109.4% 38.5% / 25.4% / 36.1%

8.0
0.6B 53.4 56.1 39.5 22.0 36.8 41.6 108.4% 0.1% / 27.0% / 73.0%

8B 53.4 55.5 33.5 29.5 37.5 41.9 109.2% 19.6% / 28.2% / 52.2%

RTTC-Joint

5.0
0.6B 54.6 56.7 42.0 20.5 37.7 42.3 110.3% 1.2% / 28.2% / 70.6%

8B 52.0 57.3 34.0 31.0 37.7 42.4 110.5% 38.5% / 22.5% / 39.0%

8.0
0.6B 54.6 56.7 42.0 20.5 38.2 42.4 110.5% 0.1% / 28.4% / 71.6%

8B 53.8 56.1 32.5 30.5 38.0 42.2 110.0% 19.6% / 28.5% / 51.9%

LLAMA-3.1-8B-INST

No Adaptation - - 52.2 59.8 16.5 20.0 38.5 37.4 – 100% / – / –

RAG - - 42.4 51.8 32.5 33.0 44.3 40.8 109.2% – / 100% / –

TTT - - 51.6 63.4 25.0 34.0 37.8 42.4 113.3% – / – / 100%

RTTC

5.0
0.6B 53.6 62.2 30.5 30.0 38.8 43.0 115.1% 1.7% / 23.3% / 75.0%

8B 53.6 59.8 21.5 31.0 41.2 41.4 110.7% 45.1% / 19.0% / 35.9%

8.0
0.6B 53.6 62.2 30.5 29.5 38.8 42.9 114.8% 0.0% / 23.3% / 76.7%

8B 53.8 59.8 27.5 31.0 39.3 42.3 113.1% 27.3% / 18.2% / 54.6%

RTTC-Joint

5.0
0.6B 55.2 63.4 32.5 37.0 39.8 45.6 121.9% 1.7% / 24.4% / 73.9%

8B 53.8 59.8 24.5 36.5 40.0 42.9 114.8% 45.1% / 13.5% / 41.4%

8.0
0.6B 55.2 64.0 32.5 37.0 40.2 45.8 122.4% 0.0% / 24.6% / 75.4%

8B 53.8 60.4 27.5 37.5 40.2 43.9 117.3% 27.3% / 16.2% / 56.6%

MISTRAL-7B-INST-V0.3

No Adaptation - - 37.6 33.5 28.0 15.0 23.8 27.6 – 100% / – / –

RAG - - 30.2 28.1 35.0 16.0 25.8 27.0 97.9% – / 100% / –

TTT - - 38.4 38.4 32.0 16.5 24.0 29.9 108.2% – / – / 100%

RTTC

5.0
0.6B 32.4 37.8 34.5 21.0 23.2 29.8 107.9% 4.6% / 32.2% / 63.2%

8B 31.4 34.8 32.0 22.5 28.0 29.7 107.8% 38.1% / 31.5% / 30.4%

8.0
0.6B 32.8 37.8 37.5 19.5 23.3 30.2 109.4% 1.4% / 33.1% / 65.5%

8B 31.0 36.0 33.5 20.5 24.8 29.2 105.7% 22.4% / 34.0% / 43.6%

RTTC-Joint

5.0
0.6B 35.2 36.0 31.5 24.0 24.3 30.2 109.5% 4.6% / 35.0% / 60.4%

8B 31.4 36.6 34.0 21.0 27.0 30.0 108.7% 38.1% / 28.9% / 33.0%

8.0
0.6B 33.8 36.6 39.0 20.5 22.7 30.5 110.6% 1.4% / 32.9% / 65.8%

8B 31.4 36.6 35.0 21.0 26.2 30.0 108.8% 22.4% / 34.2% / 43.4%

QWEN2.5-3B-INST

No Adaptation - - 41.2 26.2 26.0 32.5 26.5 30.5 – 100% / – / –

RAG - - 38.8 41.5 32.5 42.0 26.3 36.2 118.8% – / 100% / –

TTT - - 42.4 25.6 30.5 37.0 26.3 32.4 106.2% – / – / 100%

RTTC

5.0
0.6B 46.6 42.7 31.5 43.5 27.2 38.3 125.6% 12.1% / 24.0% / 63.9%

8B 48.6 45.1 27.0 41.5 27.0 37.8 124.1% 52.7% / 20.6% / 26.7%

8.0
0.6B 46.0 39.0 31.0 50.0 25.0 38.2 125.3% 4.5% / 25.4% / 70.1%

8B 48.6 42.7 28.5 44.0 27.7 38.3 125.6% 35.8% / 24.0% / 40.2%

RTTC-Joint

5.0
0.6B 46.4 45.1 31.0 49.5 26.0 39.6 129.9% 12.1% / 21.6% / 66.4%

8B 46.8 46.3 27.5 45.5 26.0 38.4 126.1% 52.7% / 16.7% / 30.7%

8.0
0.6B 46.4 43.9 32.5 51.5 26.2 40.1 131.5% 4.5% / 24.7% / 70.8%

8B 49.6 43.9 29.0 45.0 27.2 38.9 127.7% 35.8% / 22.4% / 41.8%

Table 13: Impact of Reward Model in RTTC. Performance comparison of adaptation strategies under varying
reward models. “0.6B” refers to the SKYWORK-REWARD-V2-QWEN3-0.6B, and “8B” refers to the SKYWORK-
REWARD-V2-LLAMA-3.1-8B. The “Threshold (τr)” column denotes the minimum reward score required for direct
response acceptance. “Impr.” reports relative improvement over the No Adaptation baseline. “Strategy Distribution
(%)” indicates the proportion of queries handled by No Adaptation, RAG, and TTT branches, respectively.

24809

